
1

VFL: A Verifiable Federated Learning with
Privacy-Preserving for Big Data in Industrial IoT

Anmin Fu, Member, IEEE, Xianglong Zhang, Naixue Xiong, Senior Member, IEEE,
Yansong Gao and Huaqun Wang

Abstract—Due to the strong analytical ability of big data,
deep learning has been widely applied to model the collected
data in industrial IoT. However, for privacy issues, traditional
data-gathering centralized learning is not applicable to industrial
scenarios sensitive to training sets. Recently, federated learning
has received widespread attention, since it trains a model by
only relying on gradient aggregation without accessing training
sets. But existing researches reveal that the shared gradient still
retains the sensitive information of the training set. Even worse,
a malicious aggregation server may return forged aggregated
gradients. In this paper, we propose the VFL, verifiable federated
learning with privacy-preserving for big data in industrial IoT.
Specifically, we use Lagrange interpolation to elaborately set
interpolation points for verifying the correctness of the aggre-
gated gradients. Compared with existing schemes, the verification
overhead of VFL remains constant regardless of the number of
participants. Moreover, we employ the blinding technology to
protect the privacy of the gradients submitted by the participants.
If no more than n-2 of n participants collude with the aggregation
server, VFL could guarantee the encrypted gradients of other
participants not being inverted. Experimental evaluations corrob-
orate the practical performance of the presented VFL framework
with high accuracy and efficiency.

Index Terms—Federated learning, Privacy-preserving, Verifi-
able, Big data, Industrial IoT.

I. INTRODUCTION

RECENTLY, the integration of artificial intelligence and
industrial IoT has promoted the development of intelli-

gent industry [1], [2], [40]. As a branch of artificial intelli-
gence, due to strong capabilities in modeling, identification,
and classification of big data [2], deep learning has been
applied to solve data-driven problems in industrial IoT [41].
Nowadays, with the development of industry IoT and the
popularity of intelligent products [3], [4], [18], [20], large
amounts of data are generated by industry IoT systems and
resided in various devices [25], which provides favorable
conditions for training high-quality deep learning model. In

This work is supported by National Natural Science Foundation of China
(61572255, 61941116), the Fundamental Research Funds for the Central
Universities (30920021129), Jiangsu Key Laboratory of Big Data Security &
Intelligent Processing, NJUPT(BDSIP1909), and CERNET Innovation Project
(NGII20190405). (Corresponding authors: Naixue Xiong).

A. Fu, X. Zhang and Y. Gao are with the School of Computer Science
and Engineering, Nanjing University of Science and Technology, Nanjing,
210094, PR China. (e-mail: fuam@njust.edu.cn; 1651949523@qq.com; yan-
song.gao@njust.edu.cn).

N. Xiong is with the Northeastern State University, Department of
Mathematics and Computer Science, Tahlequah, OK, USA. (e-mail: xiong-
naixue@gmail.com).

H. Wang is with the Jiangsu Key Laboratory of Big Data Security and
Intelligent Processing, Nanjing University of Posts and Telecommunications,
Nanjing 210023, PR China. (email: whq@njupt.edu.cn).

order to effectively utilize these data, it is a desiderata of
exploring deploy deep learning into end devices. Deep learning
is hungry about data to increase, in particular, its accuracy,
thus it is common practice to collect or share industrial data
among different enterprises and institutions. However, these
shared industrial data contain sensitive information [5], [16],
[39], such as account information, case history, etc. Once these
data are shared, clients cannot restrict the purpose for which
it is used. For example, in the healthcare system, patients are
least willing their diagnoses to be accessible to unauthorized
third parties.

Furthermore, there is a trend to strengthen data privacy
to prevent misuse of it. The European Union enforced the
General Data Protection Regulation (GDPR) on May 25, 2018.
It enforces enterprises to employ clarified language in the
privacy agreements and reserves clients the right to delete
or withdraw their data. In fact, these laws oblige data to be
stored in the form of islands [14]. The inability to share data
renders in hardness of training an accurate model without
harvesting rich data. For medical institutions, each of them
is restricted to train a model over the limited local data,
such model is with unsatisfied accuracy and may not even be
applicable to handle inputs from a different institution that are
out of data feature distribution learned by the trained model.
Therefore, the privacy issues and legislation put forward new
requirements for effective deployment of deep learning to
large-scale collaborative industrial applications.

In order to address the industrial data island issue resulted
from by the laws and still utilize them legitimately, some
secure centralized deep learning schemes have been proposed.
In such schemes, the collected data are pre-encrypted [25],
or pre-masked with noise [26]. Nevertheless, since the neural
network requires nonlinear computation, it is difficult to mount
deep learning on encrypted dataset [30], [23]. Training noise-
added data is, however, usually accompanied with a trade-off
of accuracy drop. Moreover, the computational overhead of
secure centralized deep learning makes it extremely challenge
to be applicable for large-scale industrial data and deep model
structure that are commonly adopted to achieve high accuracy.

In addition to secure centralized deep learning, Google
proposed federated learning, a distributed deep learning frame-
work in 2016 [7], [27], [28]. Federated learning only requires
participant to share their gradients for aggregation rather than
localized data directly. The main benefit is to protect privacy
of localized data as they are inaccessible. Compared to cen-
tralized deep learning, federated learning avoids the processing
of training sets, such as encryption, and improves efficiency.

ar
X

iv
:2

00
7.

13
58

5v
2

 [
cs

.C
R

]
 3

0
Ju

l 2
02

0

2

Therefore, federated learning has received widespread atten-
tion from both the academia and industry.

Though federated learning greatly reduces privacy leakage
surface, it, however, still faces challenges of fundamentally
preventing privacy leakage. Phong et al. [9] demonstrated that
the aggregation server could approximate the local data by
numerical methods. Wang et al. [11] designed the mGAN-AI
(Generative Adversarial Network) model on the aggregation
server to recover the original images of target participants.
The gradients shared in plaintext is the main reason for these
privacy issues. Recently, schemes built upon homomorphic
encryption [35] have been proposed, where the gradients are
aggregated in the form of ciphertext. But participants use
the same secret key, if the aggregation server colludes with
any participant to have the key, the ciphertext is no longer
meaningful.

Apart from privacy issues, inadvertently, most schemes
ignored the verification of the correctness of the aggregated
result [6]. Driven by certain illegal interests, the aggregation
server may reduce the aggregation operation to save compu-
tational cost [12], or forge the aggregated result to impact the
model update. Even worse, curious aggregation server could
carefully return crafted results to participants for analyzing
the statistical characteristics of participant-uploaded data and
seduce participants to unintentionally expose more sensitive
information [11]. Therefore, the effective verification of the
aggregated result shall be always taken into consideration.

In this paper, we propose VFL, a verifiable federated
learning with privacy-preserving to achieve efficient and secure
model training for industrial intelligent. Specifically, we use
Lagrange interpolation and the blinding technology to achieve
secure gradient aggregation. Meanwhile, we devise an efficient
verification mechanism, where participants can detect forged
results with an overwhelming probability. Our contributions
are summarized as follows:
• We propose a verification mechanism for the correctness

of the aggregated results based on the characteristics of
Lagrange interpolation. In our scheme, each participant
can independently and efficiently detect forged results.
Compared with existing schemes, the computational over-
head of our verification mechanism does not increase with
the number of participants. Our verification mechanism
also demands for less overhead to each participant.

• We combines Lagrange interpolation and the blinding
technology to realize the secure aggregation of gradients.
The joint model and the gradients are protected from the
aggregation server. Furthermore, if no more than n-2 of
n participants collude with the aggregation server, VFL
can guarantee that the gradients of other participants will
not be leaked.

• We provide a comprehensive security analysis for our
scheme, which demonstrates the security of the training
set and model as well as the verifiability of the VFL
framework. We evaluate our scheme over the MNIST
dataset with multi-layer perceptron (MLP). The exper-
imental results demonstrate that our scheme has high
accuracy and efficiency, and the verification overhead is
acceptable to the participants.

The rest of the paper is organized as follows: we briefly
outline related work in Section II and introduce preliminaries
in Section III. After that, we present an structure overview
of the VFL framework and elaborates on its procedures in
Section IV. The correctness and security analysis for VFL are
provided in Section V. Experiment evaluation of the proposed
scheme is presented in Section VI. Finally, we conclude our
paper in Section VII.

II. RELATED WORK

Secure training can be divided into two categories: central-
ized and distributed. In this section, we briefly describe them
accordingly.

A. Secure Centralized Training

Secure centralized training means the server collects the
training sets for training without gaining privacy. To protect
the privacy of training sets, Li et al. [36] proposed a multi-key
privacy-preserving deep learning in cloud computing, which
realizes the conversion of multi-key homomorphic encryption
[42] and double decryption mechanism [38] to enable the
server trains the model on the ciphertext set. Li et al. [8] im-
plemented naive Bayesian classifiers on multiple data sources
using homomorphic encryption and differential privacy. Xu et
al. [26] proposed a differential privacy GAN scheme GANob-
fuscator, which achieves different privacy through GANs by
adding carefully designed noise. The scheme generates syn-
thetic data according to the training task instead of using
real training data directly. Mohassel et al. [17] proposed the
SecureML system based the ABY mixed-protocol [32] and
oblivious transfer [34], where participants split their data
and respectively sent them to two non-colluding servers to
implement the stochastic gradient descent (SGD) algorithm by
means of secure multi-party computation. Agrawal et al. [21]
utilized key components of DNN training and improved upon
the state-of-the-art in DNN training in two-party computation,
which improved the efficiency and accuracy of centralized
training.

Secure centralized training requires participant to process
the training sets in advance, such as encrypting, adding noise
or splitting, and performs training on the processed data.
However, due to the complexity of the neural network model,
it is inefficient for the server to train the processed data.
Therefore, secure centralized training is not suitable for large-
scale industrial applications.

B. Secure Distributed Training

Different from secure centralized training, secure distributed
training assigns the training work to participants. Shokri
et al. [19] firstly proposed the collaborative deep Learning
framework, in which the participants share the gradients and
update the model asynchronously. Google extended the frame-
work to the parallel scene and proposed federated learning
[7], [27], [28] that requires participants to upload gradients
synchronously for aggregation. The two schemes prevent the
server being directly access the training sets. Unfortunately,

3

existing researches revealed that this could still lead to privacy
breaches [11].

Phone et al. [9] pointed out that the training sets can be
recoveried form the gradients by numerical methods, and pro-
posed to employ additively homomorphic encryption to realize
secure aggregation. Li et al. [10] used the one-time mask tech-
nology to improve upon additively homomorphic encryption.
The trainers and the introduced server-aid complete training
on the ciphertext set through multiple interactions. Zhou et
al. [15] deployed federated learning on the Internet of Things
(IoT). The scheme not only protects the data security of IoT
devices, but also improves the training efficiency and model
accuracy. Abadi et al. [29] proposed a deep learning scheme
with differential privacy, in which participants add Laplacian
noise to gradients to satisfy differential privacy. Although the
above schemes realize the secure gradient aggregation, they
do not consider the verification of the aggregated results.

Ma et al. [12] focused on the verifiable federated learning,
they take advantage of bilinear aggregate signature [45] to
verify the correctness of the aggregated results. Nevertheless,
all the participants are required to join the verification process.
When the number of participants is large, the verification
mechanism results in high cost. Xu et al. [22] adopted
the homomorphic hash function and Shamir’s secret sharing
to realize secure gradient aggregation and verification. The
scheme also supports participant drops, but it does not consider
protecting the model. The aggregation server can get the final
model, but in practice, only participants possess ownership of
the model. Zheng et al. [13] proposed the Helen framework,
which introduces a secure multi-party computing protocol
SPDZ [31] to verify the result and employs multi-key homo-
morphic encryption to perform secure collaborative training
of linear models. Nevertheless, it is specifically designed for
linear models and thus dose not support training the models
with nonlinear layers. Zhang et al. [37] took advantage of
hash function [44] and Paillier encryption [43] to protect the
gradients and verify the correctness of the aggregated results.
But Paillier encryption brings high cost to participants. And the
verification overhead of the scheme increases with the number
of the participants.

Among secure distributed training schemes, few schemes
have considered on the verifiability of federated learning. For
the existing verifiable schemes, they are with limitations in
terms of computational overhead or the type of models sup-
ported. Therefore, efficient and verifiable federated learning
with non-linear model supporting is still a pressing concern.

III. PRELIMINARIES

In this section, we first simply introduce federated learning.
Then we give the basic concept of Lagrange interpolation that
will be employed to construct our verification mechanism.

A. Federated Learning

In federated learning [7], each participant and server collab-
oratively train a unified neural network model. To speed up
the convergence of the model, participants share their gradients
to the aggregation server, which aggregates all gradients and

returns the result to each participants. The federated learning
framework is shown in Fig. 1. Suppose there are n participants,
Pi (i = 1, 2, ..., n.), who agree on a model architecture. Each
round of federated learning can be described as follow.

We denote a neural network model as a function f(x,M),
where x is the inputs and M is the model parameter. The
model parameter M contains all the biases and the connections
between all neurons. Assume that participant Pi holds the
training set Di =

{
〈xj , yj〉

∣∣j = 1, 2, ..., T
}

, where xj is the
input, yj is the label, and T denotes the size of Di. The loss
function Lf (Di,M) can be defined as:

Lf (Di,M) =
1

T

∑
〈xj ,yj〉∈Di

(yj − f(xj ,M))2.

The goal of training the neural network model is to find
the gradient to update M for minimizing the value of the loss
function Lf (Di,M). In our VFL framework, we adopt the
stochastic gradient descent (SGD) to calculate the participant
Pi’s gradient wi:

wi = ∇Lf (D∗i,M),

where ∇Lf is derivative of the loss function Lf . D∗i is a
random subset of Di. Then participants upload their gradients
to the aggregation server for aggregation:w =

∑n
i=1 wi.

Finally, the aggregation server sends the aggregated result
to each participant and participants update model parameter
M = M − η · wn after receiving w, where η is learning rate.
If the termination conditions are not met, then continuing the
next round of federated learning.

Data

Participant

Model

Data

Participant

Model

Data

Participant

Model

. . .

Aggregation server

1P

2P

nP

Fig. 1: The federated learning framework.

B. Lagrange Interpolation

Lagrange interpolation can find such a polynomial that takes
the observed value at each observed point exactly. In the
field of cryptography, Lagrange interpolation has been widely
applied to secret sharing [33] and coding computing [24],
[46]. The following gives a brief introduction to Lagrange
interpolation.

Given n+1 distinct interpolation points xi, (i = 0, 1, ..., n.),
together with corresponding numbers f(xi), which may or
may not be samples of a function f , there is a unique n-degree

4

Aggregation server Aggregate encrypted gradients

3

...

1

2

3

4

 Initialization Phase

 Model Training Phase

 Aggregation Phase

 Update PhasePublic key
generator

1

Distribute
parameters

Upload ciphertext Download aggregated result Upload ciphertext Download aggregated result

Participant Model：M

2

n
MM

Local dateset：
1D

4

Train the model gradient： 1
2

AaF m

?

)(Verify correctness：
4

Decrypt result：
4

Calculate ciphertext：
2

Calculate ciphertext：
2

n

nD

Participant Model：M

2

n
MM

Local dateset：

4

Train the model gradient：
2

AaF m

?

)(Verify correctness：
4

Decrypt result：
4

nP
1P

Fig. 2: Architecture of the VFL.

polynomial Ln(x) satisfying Ln(xi) = f(xi), (i = 0, 1, ..., n).
Let

li(x) =

n∏
j=0,j 6=i

(x− xj)
(xi − xj)

, (i = 0, 1, ..., n.).

Obviously, li(x) is also an n-degree polynomial and satisfies

li(xj) =

{
1, j = i
0, j 6= i

, (i = 0, 1, ..., n.).

Then the n-degree polynomial Ln(x) can be written in La-
grange form:

Ln(x) =

n∑
i=0

f(xi)li(x).

Through the above Lagrange interpolation formula, we can
conclude that for an n-degree polynomial function, selecting
any n + 1 points of it can recover the function expression.

IV. OUR PROPOSED VFL SCHEME

This section first gives an overview of the VFL framework,
and then details its procedures.

A. Overview

Fig. 2 presents the architecture of the VFL. The architec-
ture consists of three entities: Public Key Generator (PKG),
Participants, and Aggregation Server.
• PKG : The PKG is to initialize the neural network model,

generate keys and parameters and distributed them to
participants.

• Participants: Our scheme is constructed for the IoT and
the participant is played by a cluster of end devices:
each holds a small amount of data or low diversity
of data. The objective of participants is to collaborate
in training high-quality neural network models through
federated learning. In each round of federated learning,

each participant trains the model locally, encrypts their
own gradients, and uploads it to the aggregation server.
In addition, they receive the aggregated ciphertexts from
the aggregation server, verify the correctness of it, and
update the model. We assume that the participants are
honest and curious, which means they will upload the
correct gradient values. However, some participants may
collude with the aggregation server in order to obtain the
gradient of other participants.

• Aggregation Server: In each round of federated learning,
the aggregation server aggregates the uploaded cipher-
texts, and then distributes the result to each participant.
We suppose that the aggregation server is malicious. It
may try to steal the privacy information of participants
through the received gradients, even worse, forge the
aggregated ciphertexts to impact the model update.

As can be seen in Fig. 2, the processes of VFL are divided
into four phases: initialization phase, model training phase,
model training phase and update phase. We give a simple
summary of different phases in Fig. 3, while details are
deferred to the following section in the next section. In Fig. 3,
red part indicates the initialization phase, blue part represents
the model training phase, green part is the aggregation phase
and purple part is the update phase.
• Initialization phase: The PKG initializes the joint model,

generates and distributes keys and parameters to each
participant.

• Model training phase: The n participants, in parallel, train
the model locally and encrypt the calculated gradient,
then upload the encrypted gradient to the aggregation
server for aggregation.

• Aggregation phase: The aggregation server aggregates the
received encrypted gradients, and returns the result to all
participants.

• Update phase: Each participant first verifies the correct-

5

Input：

 PKG：Distributed parameters, keys and PRG.
 Participants: Local training sets.
Output:
 Well-trained model.

1. Train local model and calculate private gradient .
2. Blind gradient and the split it.
3. Perform Lagrange interpolation on the split data.
4. Calculate the value of interpolation function at some fixed points.
5. Package calculated results and obtain the ciphertext.

iw

Participants Aggregation Server

Execute

Upload ciphertext

1. Aggregate all participants ciphertexts and get the sum.

Distribute the sum
1. Verify the correctness of the aggregated ciphertext.
2. If the result is correctness, participants decrypt. Otherwise, end the
protocol.
3.Update local model.

Untile meeting termination condition.

iw

Fig. 3: The simple summary of different phases.

ness of the result. If the result is correct, they decrypt
the aggregated ciphertext and update the model local.
Otherwise, abort update.

B. Initialization Phase
The initialization phase is mainly directed by PKG, which

generates parameters locally and distributes them to each
participant. For simplicity, we assume there are n partic-
ipants represented by Pi (i ∈ N), where the set N =
{1, 2, ..., n} (n ≥ 2). In the VFL framework, the PKG needs
to generate and distribute the following parameters.

1) According to the neural network architecture agreed by
the participants, the PKG randomly generates a learning
rate η and initializes the model parameter M . In addition,
all the participants receive m positive integers g1, g2, ...,
gm that are pairwise co-prime gcd(gi, gj) = 1 (i 6= j)
and they are large enough to avoid generating overflow
error, where m(m ≥ 3) is the security parameter of our
scheme. We define G =

∏m
i=1 gi. These parameters will

be used to package the data.
2) The PKG randomly generates two constant sequences
{ai|i = 1, 2, ...,m} and {bi|i = 1, 2, ...,m} without in-
tersection. These two constant sequences will be used as
interpolation points to process participants’ gradients.

3) The PKG sends parameter Ai (i ∈ N) and A =
∑n

j=1Aj

to Pi (i ∈ N), where the specification of parameter Ai

and A are the same as parameter M . In our scheme, the
parameter A is used to assist the participants to verify
the correctness of the aggregated result.

4) The PKG sends each participant two seed sequences and
the same pseudo-random generator PRG(·), where the
seed sequences received by Pi are

{
s
(j)
i

∣∣∣j ∈ N, j 6= i
}

and
{
s
(i)
j

∣∣∣j ∈ N, j 6= i
}

. Obviously, participants Pi and

Pj , (i 6= j), have two identical seeds s(i)j and s(j)i . This
set of parameters will be used to generate pseudo-random
numbers to blind participants’ gradients.

Algorithm 1 Gradient encryption algorithm.

Input:
Private gradient wi, Pseudo-random generator PRG(·);
Two seed sequences

{
sji

}
and

{
sij
}

, (j ∈ N, j 6= i);
Two constant sequences {aj} and {bj}, (j = 1, 2, ...,m).

Output:
Gradient ciphertext JwiK;

1: Blind the gradient wi :

w
(j),t
i ← PRG(s

(j)
i)t; w(i),t

j ← PRG(s
(i)
j)t;

w̃i ← wi −
∑n

j=1,j 6=i w
(j),t
i +

∑n
j=1,j 6=i w

(i),t
j ;

2: Randomly select m− 1 parameters, which satisfy:
w̃i =

∑m−1
j=1 vi,j ;

3: Lagrange interpolation is performed on the data set
{(a1, vi,1), (a2, vi,2), ..., (am−1, vi,m−1), (am, Ai)} to ob-
tain the function Fi(x):
Fi(x) ←

∑m−1
j=1

[
vi,j

∏m
k=1,k 6=j

(x−ak)
(aj−ak)

]
+[

Ai

∏m−1
k=1

(x−ak)
(am−ak)

]
;

4: Input bi(j = 1, 2, ...,m) into the function Fi(x) and
package the results to calculate the ciphertext JwiK:

JwiK← CRT [Fi(b1), Fi(b2), ..., Fi(bm)] ;
5: Return JwiK.

Note that except for parameters g1, g2, ..., gm and G, all
other parameters and pseudo-random generator are kept secret
from the aggregation server.

C. Model Training Phase

In this phase, each participant Pi trains model on the local
dataset Di and calculates the private gradient wi. In the t-th
round, participant Pi calculates the loss on Di’s subset D∗i.

Lf (D∗i,M) =
1

|D∗i|
∑

(xj ,yj)∈D∗i

(yi − f(xi,M)).

Pi executes back propagation and SGD algorithm to cal-
culate the private gradient wi = ∇Lf (D∗i,M), and then
encrypts it.

In the VFL framework, the means of post-processing,
encrypting, gradients before uploading to the aggregation
server is the key to secure gradient aggregation and verifi-
ability. Algorithm 1 exemplifies Pi’s encryption operations.
We define Pi’s private gradient as wi, which is the same
specification as the model parameter M . In round t, Pi uses the
pseudo-random generator PRG(·) to generate two parameter
sequences

{
w

(j),t
i

∣∣∣j ∈ N, j 6= i
}

and
{
w

(i),t
j

∣∣∣j ∈ N, j 6= i
}

,
which are the same size as wi. Define the size of wi to be
|wi|. w(j),t

i and w(i),t
j are composed of the parameters between

((t− 1) · |wi|)-th and (t · |wi|+ 1)-th parameters generated by
PRG(s

(j)
i) and PRG(s

(i)
j), respectively. Then Pi blinds the

gradient wi:

w̃i = wi −
n∑

j=1,j 6=i

w
(j),t
i +

n∑
j=1,j 6=i

w
(i),t
j . (1)

6

Next, each participant takes advantage of Lagrange inter-
polation to process the blinded gradient. Firstly, Pi splits
w̃i, that is, Pi randomly generates m − 1 parameters
{vi,j , |j = 1, 2, ...,m− 1} that satisfies w̃i =

∑m−1
j=1 vi,j .

Then performing Lagrange interpolation on the data set
{(a1, vi,1), (a2, vi,2), ..., (am−1, vi,m−1), (am, Ai)} to calcu-
late the function Fi(x). Notice that the specification of Fi(x)
is also the same to wi, and every element in it is a (m− 1)-
degree polynomial. Then Pi feeds the constant sequence
{bi|i = 1, 2, ...,m} into the function Fi(x) in turn and gets
the result (Fi(b1), Fi(b2), ..., Fi(bm)).

The size of the result is m times that of the original gradient
wi. In order to reduce the communication overhead, we use the
Chinese remainder theorem (CRT) to package the result. The
CRT implies that for the following system of congruences:

y ≡ a1(mod g1)
y ≡ a2(mod g2)

· · ·
y ≡ am(mod gm)

, (2)

there is a unique solution y ≡ (a1H1G1 + a2H2G2 + · · · +
amHmGm)mod G in the finite field FG, where the Gi =
G/gi, and Hi = G−1i mod gi is the inverse element of Gi

of module gi. Therefore, the data set (a1, a2, ..., am) can be
represented as y. To ease description, we write the packaged
data y as CRT [a1, a2, ..., am].

In our scheme, the participant Pi performs the CRT on
the result (Fi(b1), Fi(b2), ..., Fi(bm)) corresponding to mod-
ules gj (j =1, 2, ...,m) and get the packaged data JwiK
= CRT [Fi(b1), Fi(b2), ..., Fi(bm)], which is the ciphertext
of gradient wi. Obviously, due to packaging, the size of
JwiK is the same as wi. Thus our scheme has the same
communication overhead as the original federated learning [7].
Finally, participants send their ciphertexts to the aggregation
server.

D. Aggregation Phase

After the aggregation server receives the ciphertexts up-
loaded by all the participants, it performs aggregation.
The calculation of this process is JwK =

∑n
i=1JwiK. For

two packaged data y(1) = CRT [a
(1)
1 , a

(1)
2 , ..., a

(1)
m] and

y(2) = CRT [a
(2)
1 , a

(2)
2 , ..., a

(2)
m] corresponding to modulus

g1, g2, ..., gm, the following equation holds:

y(1) + y(2) ≡ a(1)i + a
(2)
i (mod gi), (i = 1, 2, ...,m) (3)

The equation (3) implies the CRT satisfies additive homo-
morphism, so the equation (4) holds.

JwK =

n∑
i=1

JwiK

= CRT

[
n∑

i=1

Fi(b1),

n∑
i=1

Fi(b2), ...,

n∑
i=1

Fi(bm)

]
= CRT [F (b1), F (b2), ..., F (bm)] ,

(4)

where JwK is the aggregated ciphertext, and F (x) =∑n
i=1 Fi(x). Every element in F (x) is also a (m − 1)-

degree polynomial. Note that the aggregation server can not

Algorithm 2 Verification and decryption algorithm.

Input:
Ciphertext JwK;
two constant sequences {aj} and {bj}, (j = 1, 2, ...,m);

Output:
Plaintext w;

1: Unpack ciphertext JwK;
F (bi)← JwK mod gi, (i = 1, 2, ...,m);

2: Lagrange interpolation is performed on the data set
{(b1, F (b1)), (b2, F (b2)), ..., (bm, F (bm))} to obtain the
function F (x):
F (x)←

∑m
j=1

[
F (bj)

∏m
k=1,k 6=j

(x−bk)
(bj−bk)

]
;

3: Calculate F (am) to verify the correctness of the aggre-
gated result:
if F (am) = A then

Calculate F (a1), F (a2), ..., F (am−1) to decrypt JwK:
w ←

∑m−1
j=1 F (aj);

else
End the protocol;

4: Return w.

acquire the expression of the function F (x). Because the
constant sequence {bi|i = 1, 2, ...,m} is kept secret from the
aggregate server, which only has the knowledge of the values
of the function F (x) at some unknown points. Afterwards, the
aggregation server returns JwK to each participant.

In aggregation phase, driven by certain illegal interests, a
malicious aggregation server may forge the aggregated result
to impact the model update or attempt to learn sensitive
information of the private gradient. Participants should be
given the ability to verify the correctness of the results and
detect such malicious behavior.

E. Update Phase
After receiving the aggregation value JwK, each participant

firstly unpacks and then verifies the correctness of it. Unless
the aggregation value is correct, the participant decrypts JwK
and updates the local model. Algorithm 2 gives the verifica-
tion and decryption algorithm of our scheme.

Firstly, each participant unpacks the ciphertext JwK by mod-
ular operation and then conducts the Lagrange interpolation
on the data set {(b1, F (b1)), (b2, F (b2)), ..., (bm, F (bm))} to
calculate the expression of the function F (x):

F (x) =

m∑
i=1

F (bi)li(x), (5)

where li(x) =
∏m

j=1,j 6=i
(x−bj)
(bi−bj) . Then participants input

x = am into the function and calculate F (am). If the
equation F (am) = A holds, the aggregation value is correct;
otherwise, it is deemed to be a forged result and federated
learning ends. Note that the size of the F (x) is the same as
the model parameter M , and each element in it is one variable
function, so the process is actually the verification of multiple
equations.

If the aggregated result is correct, each participant inputs the
constant sequence {ai|i = 1, 2, ...,m− 1} into F (x) in turn,

7

and sum up the output results. In this case, the aggregated
value w of participants’ original gradients is

w =

n∑
i=1

wi =

m−1∑
j=1

F (aj). (6)

At the end of this phase, each participant updates the model
parameter M locally: M = M−η·wn . After this, the next round
of federated learning will be performed until the termination
condition is met.

V. EFFECTIVENESS ANALYSIS FOR VFL

This section, we give a theoretical analysis of the VFL
framework in terms of correctness, data privacy, and verifi-
ability.

A. Correctness

Theorem 1. In the VFL framework, if each entity executes
the protocol honestly, participants can obtain correct aggregated
gradients to update the model.

Proof: If each entity executes the protocol honestly in
VFL, the correct aggregated gradients can be obtained by
participants only if equation (6) holds. Next, we prove that
equation (6) holds. According to Algorithm 1,

m−1∑
j=1

F (aj) =

m−1∑
j=1

(

n∑
i=1

(Fi(aj)))

=

n∑
i=1

(

m−1∑
j=1

(Fi(aj)))

=

n∑
i=1

(

m−1∑
j=1

vi,j)

=

n∑
i=1

w̃i.

(7)

In addition,
n∑

i=1

(

n∑
j=1,j 6=i

(w
(j),t
i)) =

n∑
i=1

(

n∑
j=1

w
(j),t
i)−

n∑
i=1

w
(i),t
i

=

n∑
i=1

(

n∑
j=1,j 6=i

w
(i),t
j).

(8)

According to equation (1),
n∑

i=1

w̃i =

n∑
i=1

wi −
n∑

i=1

(

m−1∑
j=1,j 6=i

(w
(j),t
i)) +

n∑
i=1

(

m−1∑
j=1,j 6=i

(w
(i),t
j))

=

n∑
i=1

wi = w.

(9)

From the above three equations, we can conclude that
equation (6) holds. Hence, if each entity in the VFL framework
honestly executes the protocol, the participant can obtain the
correct aggregated gradients to update the model.

B. Data Privacy

The gradients retain sensitive information about the training
set, the aggregation server can steal participants’ privacy from
the gradients [9], [11]. The final model parameter M is the
‘wealth’ of participants. Thus, we aim to protect the private
gradients and the model parameter in our scheme.

Theorem 2. In the VFL framework, each participant’s pri-
vate gradient wi and the model parameter M will not be leaked
to the aggregation server.

Proof: Protecting model parameter M needs to make
sure that the aggregation value w is not leaked in each
round. In the VFL framework, if the aggregation server
tries to calculate the private gradient wi and the aggrega-
tion value w, it needs to get {Fi(a1), Fi(a2), ..., Fi(am−1)}
and {F (a1), F (a2), ..., F (am−1)}, respectively. However, the
constant sequence {bi|i = 1, 2, ...,m} is kept secret from
the aggregation server, so the aggregation server cannot cal-
culate the expression of function Fi(x) and F (x) through
[Fi(b1), Fi(b2), ..., Fi(bm)] and [F (b1), F (b2), ..., F (bm)] . In
addition, the constant sequence {ai|i = 1, 2, ...,m− 1} is also
kept secret from the aggregation server.

In the finite field Fq , the probability that the aggregation
server obtains the two constant sequences is 1

Cm
q ×C

m−1
q−m

, where

Cm
q is the combinatorial number and Cm

q = q!
m!(q−m)! .

Consequently, the larger the value of Cm
q ×Cm−1

q−m is, the more
secure wi and w are. Moreover, the value of q is always very
large, such as 264. Hence, in the VFL framework, the private
gradient wi and the model parameter M will not be leaked to
the aggregation server.

Theorem 3. In the VFL framework, if the aggregation server
colludes with k(k ≤ n − 2) participants, the private gradients
of other participants will not be leaked.

Proof: Without loss of generality, we assume that par-
ticipants P1, P2, ..., and Pk(k ≤ n − 2) collude with the
aggregation server. Note that the seeds sji and sij , (i, j > k),
are kept secret from them. Accroding to equation (1), from
the data uploaded by other participants, they can only get:

w̃i +
k∑

j=1

w
(j),t
i −

k∑
j=1

w
(i),t
j = wi −

n∑
j=k+1,j 6=i

w
(j),t
i +

n∑
j=k+1,j 6=i

w
(i),t
j , (i > k, i ∈ N).

(10)

The private gradient wi is blinded by −
∑n

j=k+1,j 6=i w
(j),t
i +∑n

j=k+1,j 6=i w
(i),t
j , they cannot obtain the private gradients of

other participants. Hence, if the aggregation server colludes
with k(k ≤ n − 2) participants, others’ gradients will not be
subject to privacy threats.

C. Verifiability

Driven by certain illegal interests, the aggregation server
may reduce the aggregation operation to save computational
cost [12], or forge the aggregated result to impact the model
update. The VFL gives participants the ability to verify the
correctness of aggregated results.

8

Theorem 4. In the VFL framework, each participant can
independently verify the correctness of the aggregated result,
and the verification mechanism can detect forged results with
an overwhelming probability.

Proof: If participants receive the correct aggregated result
[F (b1), F (b2), ..., F (bm)], obviously, F (x) satisfies the fol-
lowing condition:

F (am) =

n∑
i=1

Fi(am) =

n∑
i=1

Ai = A. (11)

Each participant can check whether equation (11) holds lo-
cally, hence, they can verify the correctness of the aggregated
result independently.

When participants receive a forged aggregated result, with-
out loss of generality, we suppose the aggregation server
tampered with the aggregated result to

[F (b1) + ∆x1, F (b2) + ∆x2, ..., F (bm) + ∆xm] , (12)

where ∆xi is the variation of F (bi) and
∑m

i=1(∆xi)
2 6= 0.

If the aggregation server attempts to evade the verification
mechanism of our scheme successfully, it needs to ensure that
the following equation holds:

F ∗(am) =

n∑
i=1

[(F (bi) + ∆xi) · li(am)] = A, (13)

where F ∗(x) is calculated from the forged result and li(x) is
given in the equation (5). It can be proved from the equation
(5) and (11) that equation (13) is equivalent to

n∑
i=1

[∆xi · li(am)] = 0. (14)

Therefore, the aggregation server only needs to make the
equation (14) hold. However, li(am) is related to the sequence
{bi|i = 1, 2, ...,m} and the constant am, they are confidential
to the aggregation server. In the finite field Fq , the aggregation
server takes these parameters with a probability of 1

Cm+1
q

.
Thus, li(am) is kept secret from the aggregation server.
Therefore, it is impossible for the aggregation server to forge
a result to make the equation (13) hold.

From the above, we can conclude that the verification mech-
anism of our scheme can effectively verify the correctness of
the aggregated result.

VI. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of VFL frame-
work from model accuracy, computational and communication
overhead, by conducting extensive experiments on representa-
tive dataset.

A. Experimental Setup

Our simulation experiment is conducted on Intel(R)
Core(TM) i5-9400, 2.90 GHz, and 16 GB memory. We use PC
to simulate participants and Alibaba Cloud as the aggregation
server. Our codes are in python. The experiments are organized
on the MNIST image dataset. MNIST dataset is composed of
70,000 images of 28×28 pixels, handwritten digital grayscale

images with labels, among which 60,000 are training data, and
10,000 are test data. We use a popular neural network: multi-
layer perceptron (MLP) as the trained model for federated
learning. The learning goal is to classify the input into 0-9
possible numbers.

model=Sequential()

Self.img_shape=(28,28,1)

model.add(Flatten(input_shape=Self.img_shape))

model.add(Dense(512))

model.add(LeakyReLU(alpha=0.2))

model.add(Dense(1024))

model.add(LeakyReLU(alpha=0.2))

model.add(Dense(256))

model.add(LeakyReLU(alpha=0.2))

model.add(Dense(10, activation= sigmoid))

Fig. 4: Multi-layer perceptron with 784 inputs.

Fig. 4 shows the architecture of the MLP, which is
784(input)-512(hidden)-1024(hidden)-256(hidden)-10(output).
The number of gradients for the MLP architecture is (784+1)×
(512)+(512+1)×1024+(1024+1)×256+(256+1)×10=1192202.
We denote each image as a column vector by reading the
image gray value column by column and normalize the gray
value vector as the input of the MLP. The learning rate we set
is 10−2, and learning rate decay is 10−5. In our experiments,
we set the computing precision is 64-bit and the number of
participants is 20.

B. Model Accuracy

In this experiment, we set m = 4. In fact, we have proved
in Theorem 1 that no matter what the value of m is, the
participants can get the correct aggregated gradient to update
the model in VFL, so the m does not affect the accuracy of the
model. Fig. 5 shows the accuracy of our VFL and the original
federated learning scheme [7] under different rounds. After
400 rounds of training, the accuracy of the VFL framework
training model can reach about 94%, and that of the scheme
[7] is approximately 95%. Experiment results confirm that the
VFL framework hardly sacrifices the model accuracy to protect
data privacy.

C. Computational Overhead

This section evaluates the computational overhead of the
VFL framework from three aspects: encryption, decryption,
and verification, which proves that compared with the exiting
schemes, our scheme brings less computational cost to par-
ticipants. We compare our scheme with the existing Phone’s
scheme [9] and Ma’s scheme [12]. Since the VFL framework’s
encryption algorithm is related to the security parameter m,
we make experimental evaluations of the scheme in two cases:
m=4 and m=8. In addition, we set the size of all secret
keys to 64-bit. In this case, even if m is 4, the probability
of the aggregation server stealing data privacy is less than

1
(C3

264−3
)2
� 1.9 × 10−53 in the VFL, where C3

264−3 is a
combinatorial number.

9

Fig. 5: Accuracy comparison between our scheme and Scheme [7]

1) Computational Overhead of Encryption
In each scheme, the participant trains the given multi-

layer perceptron model, and then encrypts private gradient
parameters. Fig. 6 compares the gradient encryption overhead
of each participant in different schemes. The experimental
results show that in all schemes, the encryption overhead
of each participant increases linearly with the number of
gradient parameters. For the 1192202 gradient parameters in
the given MLP, under different m, the encryption overhead
of our scheme are Te,m=4 = 1.383s and Te,m=8 = 4.916s,
respectively. Since the larger m is, the more interpolation
datasets are required for encryption, the higher the overhead
is. The increased security reduces the efficiency of the VFL.
In addition, the encryption overhead of Phone’s scheme [9]
(based on LWE encryption) and Ma’s scheme [12] (based
on ElGamal encryption) are 8.178s and 19.741s, respectively.
However, because all participants hold the same key, scheme
[9] and [12] cannot resist the collusion attack. Therefore, our
scheme has advantages in terms of encryption overhead and
privacy protection.

2) Computational Overhead of Decryption
Fig. 7 shows the decryption overhead of each participant

in different schemes. For the MLP model, the decryption
overhead of our scheme are Td,m=4 = 0.961s and Td,m=8 =
4.379s, respectively. In our scheme, when the participant
decrypts, m − 1 interpolation points need to be input, the
decryption process can be seen as the addition of m equations.
In addition, the decryption time cost of the scheme [9] is
8.007s and the scheme [12] is 10.577s. We can conclude
that even when m = 8, the decryption overhead of scheme
[9] and scheme [12] is still nearly twice that of our scheme.
Consequently, our scheme has high efficiency in decryption.

3) Computational Overhead of Verification
Fig. 8 shows the experimental results of the verification

overhead in different schemes. Since the scheme [9] does not
support the verification, it is not evaluated for comparison.
We set up the case of 10 groups of participants and compared
the verification overhead of different schemes in each case.
The results confirm that with the increase in the number of

Fig. 6: Encryption overhead of each participant in different
schemes.

Fig. 7: Decryption overhead of each participant in different
schemes

participants, the verification overhead of the scheme [12] in-
creases linearly, while our scheme remains constant. When the
number of participants reaches 20, the verification overhead
of our scheme are Tv,m=4 = 0.325s and Tv,m=8 = 0.623s
respectively, while the scheme [12] is up to 14.624s.

The equation (5) indicates that the computational overhead
of F (am) is related to li(am)(i = 1, 2, ...,m). The calculation
of function li(x)(i = 1, 2, ...,m) is related to the parameter m
and independent on the number of participants n. Therefore,
the verification overhead of our scheme is insensitive to the
number of participants. The scheme [12] employs bilinear
aggregate signature to verify correctness. But all the partic-
ipants are required to participate in the verification process.
Therefore, our verification mechanism is more flexible. In
addition, The scheme [12] requires that when the participants
receive the aggregated result, they should firstly decrypt and
then verify. If the aggregated result is forged, this would
waste participants’ computing resources. Such a cumbersome

10

Fig. 8: Comparison of verification overhead between different
schemes

is eschewed in the VFL which, in contrast, verifies first before
decryption.

D. Communication Overhead

The communication overhead is related to the size of
the uploaded gradient ciphertext and downloaded aggregated
ciphertext. Actually, the size of the gradient ciphertext is the
same as that of aggregated ciphertext. We discuss commu-
nication overhead in terms of communication amount and
time. In theory, communication time increases linearly with the
communication amount. TABLE I presents the communication
amount and time in each round of training for a participant
in different schemes. For 64-bit precision, the MLP model
gradient parameters are 1192202×64/(8× 10242)≈9.10MB
in plain. And our experiment is carried out on a 1Gbps
communication channel. Since we use the CRT to reduce the
data size, so the communication amount of our VFL is the
same as the original federated learning [7], which is about
18.20MB in each interaction, no matter what the value of m is.
The participant in Ma’s scheme [12] need to upload additional
redundant to assist the verification process, the communication
amount is approximately twice that of the scheme [7], about
34.16MB. Though the scheme [9] takes the data packaging
technology to decrease the encryption operations, its ciphertext
size is still about twice that of the scheme [7].

TABLE I: Communication amount and time of different schemes.

Scheme Amount Time

Scheme[9] 34.16MB 0.272s

Scheme[12] 40.34MB 0.322s

VFL(m = 4) 18.20MB 0.151s

VFL(m = 8) 18.20MB 0.151s

E. Total Overhead

This section compares the efficiency of different schemes
by the total overhead per round. In addition to the computa-
tional and communication overhead detailed earlier, the total
overhead includes the overhead of training, updating models,
and aggregating. In all schemes, participants use the same
algorithm to train the model before encryption and update
the model after decryption, so they have the same overhead
of training and updating model. The aggregation overhead is
related to the communication amount and increases with it.
We divide the total overhead into three parts: the overhead
of a participant Tpart, the aggregation server Tser, and com-
munication Tcom. Because participants upload synchronously,
the total overhead is Tpart+Tser+Tcom. TABLE II presents the
summary of the overhead of these schemes for 20 participants
to train the MLP model. For our VFL, the total overhead with
m = 4 is 3.053s, and the one with m = 8 is 10.304s. The total
overhead of the scheme [9] is 16.713s, and the scheme [12] is
45.528s. Even if m = 8, the total overhead of the scheme [9]
and [12] are about 1.62 and 4.42 times that of our scheme,
respectively. Moreover, it is worth mentioning that the scheme
[9] does not have the verification mechanism. Therefore, even
with the additional verification, the VFL is still more efficient.

TABLE II: The summary of overhead of different schemes.

Scheme Tpart Tser Tcom Total

Scheme[9] 16.392s 0.049s 0.272s 16.713s

Scheme[12] 45.149s 0.057s 0.322s 45.528s

VFL(m = 4) 2.736s 0.026s 0.151s 3.053s

VFL(m = 8) 9.865s 0.028s 0.151s 10.304s

F. Industrial Applications

With the popularity of artificial intelligence in industrial
applications, secure training multi-source data has become a
research hotspot in the intelligent industry. The VFL proposed
in this paper can be applied to many industrial scenarios.

1) Enterprise Risk Assessment: With the rapid development
of the Internet and the wide application of e-commerce, it
has become a research hotspot for banks to establish risk

Fig. 9: The datasets about enterprises held by a bank.

11

assessment models for enterprises based on their invoice
amount and credit data. Fig. 9 shows the datasets about
enterprises held by a bank. ID is the taxpayer identity
number, X1 to X4 represent the the invoice amount of
the enterprise in each quarter, X5 is the credit score
and Y indicates whether there is risk (“0” means the
enterprise is in risk.), where Xi is the model input and Y
is the label. In reality, the ID held by different banks has a
small overlap. Fig. 10 presents the application of VFL in
training risk assessment model. Multiple banks efficiently
build a reliable and high-quality risk assessment model
through collaboration without leaking the enterprise cus-
tomer data. Moreover, each bank can independently verify
whether the third party acting as the aggregation server
forges the results to ensure the credibility of the model.
On account of there is a competitive relationship between
banks, VFL prevents data leakage in the case of collusion.

Bank A Bank B

Third party：Aggregation server

Encrypted gradient

Download Download

Bank C

Encrypted gradient

Fig. 10: Application of VFL in risk assessment model of multi
bank cooperative training

2) Anti-Money Laundering: Money laundering samples held
by different banks may have different characteristics.
VFL framework is able to make use of these samples
of several banks to construct a deeper structure model
without disclosing the samples. In the process of model
training, the input can be the number of large sum
transactions, the number of fund sources inconsistent with
the business scope and so on. The label is whether it is
money laundering.

3) Medical System: Due to virus mutation or climate
changes, the same disease may show different symptoms
in different regions. In addition, with the deepening of
medical research, more symptoms will be found. There-
fore, the model trained only by local medical data is
very likely to be misdiagnosed. The VFL realizes the
collaboration of multiple medical institutions to build a
high-precision diagnostic model without revealing spe-
cific information of patients.

In the above industrial scenarios, the protection of the model
is equally important, and ownership of the final model is only
available to participants in the training. The VFL proposed in
this paper avoids the leakage of models and well protects the
right of participants.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the VFL, a privacy-preserving
and verifiable federated learning framework for industrial
intelligent. The VFL framework exploits Lagrange interpola-
tion to carefully set interpolation points, which allows each

participant to verify the correctness of the aggregated result
effectively. Compared with the exiting verifiable federated
learning schemes, the computational overhead of our veri-
fication mechanism does not increase with the number of
participants. Meanwhile, we take advantage of the blinding
technique to protect the trained model and the private gradi-
ents of participants. If no more than n-2 of n participants
collude with the aggregation server, VFL could guarantee the
encrypted gradients of other participants not being inverted.
The experiment results on MNIST dataset demonstrated that
the VFL provides advantages in terms of verification and total
overhead. In the future work, we plan to study more complex
neural networks and the data with richer classification labels.

REFERENCES

[1] Q. Zhang, C. Zhou, Y. Tian, N. Xiong, Y. Qin, B. Hu, “A Fuzzy
Probability Bayesian Network Approach for Dynamic Cybersecurity
Risk Assessment in Industrial Control Systems,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 6, pp. 2497-2506, 2018.

[2] B. Hu, Z. Guan, N. Xiong, H. Chao, “Intelligent Impulsive Synchroniza-
tion of Nonlinear Interconnected Neural Networks for Image Protection,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3775-3787,
2018.

[3] S. Yu, G. Wang, X. Liu and J. Niu, “Security and Privacy in the Age of the
Smart Internet of Things: An Overview from a Networking Perspective,”
IEEE Communications Magazine, vol. 56, no. 9, pp. 14-18, 2018.

[4] D. Minoli, K. Sohraby, and B. Occhiogrosso, “IoT considerations, require-
ments, and architectures for smart buildings—Energy optimization and
next generation building management systems,” IEEE Internet of Things
Journal, vol. 4, no. 1, pp. 269-283, 2017.

[5] G. Xu, H. Li , H. Ren, K. Yang and R. H. Deng, “Data Security Issues
in Deep Learning: Attacks, Countermeasures, and Opportunities,” IEEE
Communications Magazine, vol. 57, no. 11, pp. 116-122, 2019.

[6] A. Fu, Z. Chen, Y. Mu, W. Susilo, Y. Sun and J. Wu, “Cloud-based
Out-sourcing for Enabling Privacy-Preserving Large-scale Non-Negative
Matrix Factorizatio,” IEEE Transactions on Services Computing, DOI:
10.1109/TSC.2019.2937484, 2019.

[7] H. B. McMahan, E. Moore, D. Ramage, and B. A. Arcas, “Federated
learning of deep networks using model averaging,” arxiv:1602.05629,
2016.

[8] T. Li, J. Li, Z. Liu, P. Li, and C. Jia, “Dierentially private Naive Bayes
learning over multiple data sources, ”Information Sciences, vol.444, pp.
89-104, 2018.

[9] L. T. Phong, Y. Aono, T. Hayashi, L. Wang and S. Moriai, “Privacy-
preserving deep learning via additively homomorphic encryption,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 5, pp.
1333-1345, 2018.

[10] T. Li, J. Li, X. Chen, Z. Li, W. Lou and Y. T. Hou, “NPMML: A
Framework for Non-interactive Privacy-preserving Multi-party Machine
Learning,” IEEE Transactions on Dependable and Secure Computing,
DOI:10.1109/TDSC.2020.2971598, 2020.

[11] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang and H. Qi, “Be-
yond Inferring Class Representatives: User-Level Privacy Leakage From
Federated Learning,” in Proc. of International Conference on Computer
Communications (INFOCOM), pp. 2512-2520, 2019.

[12] X. Ma, F. Zhang, X. Chen and J. Shen, “Privacy preserving multi-
party computation delegation for deep learning in cloud computing,”
Information Sciences, vol. 459, pp. 103-116, 2018.

[13] W. Zheng, R. A. Popa, J. E. Gonzalez and I. Stoica, “Helen: Mali-
ciously secure coopetitive learning for linear models,” in Proc. of IEEE
Symposium on Security & Privacy (S&P), pp. 724-738, 2019.

[14] Q. Yang, Y. Liu, T. Chen and Y. Tong, “Federated Machine Learning:
Concept and Applications,” ACM Transactions on Intelligent Systems and
Technology, vol. 10, no. 2, Article. 12, 2019.

[15] C. Zhou, A. Fu, S. Yu, H. Wang and Y. Zhang, “Privacy-Preserving
Federated Learning in Fog Computin,” IEEE Internet of Things Journal,
DOI: 10.1109/JIOT.2020.2987958, 2020.

[16] Z. Xia, L. Jiang, X. Ma, W. Yang, P. Ji and N. N. Xiong, “A privacy-
preserving outsourcing scheme for image local binary pattern in secure
industrial internet of things,” IEEE Transactions on Industrial Informatics,
vol. 16, no. 1, pp. 629-638, 2019.

12

[17] P. Mohassel, Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in Proc. of IEEE Symposium on Security
& Privacy (S&P), pp. 19-38, 2017.

[18] J. M. Batalla, C. X. Mavromoustakis, G. Mastorakis, N. N. Xiong and
J. Wozniak, “Adaptive Positioning Systems Based on Multiple Wireless
Interfaces for Industrial IoT in Harsh Manufacturing Environments,” IEEE
Journal on Selected Areas in Communications, vol. 38, no. 5, pp. 899-914,
2020.

[19] R. Shokri, V. Shmatikov, “Privacy-preserving deep learning,” in Proc.
of ACM SIGSAC Conference on Computer and Communications Security
(CCS), pp. 1310-1321, 2015.

[20] B. Kuang, A. Fu, S. Yu, G. Yang, M. Su and Y. Zhang, “ESDRA:
An Efficient and Secure Distributed Remote Attestation Scheme for IoT
Swarms,” IEEE Internet of Things Journal, vol.6, no. 5, pp. 8372-8383,
2019.

[21] N. Agrawal, A. S. Shamsabadi, M. J. Kusner and A. Gascon, “QUO-
TIENT: Two-Party Secure Neural Network Training and Prediction,” in
Proc. of ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2019.

[22] G. Xu, H. Li, S. Liu, K. Yang and X. Lin, “VerifyNet: Secure and Ver-
ifiable Federated Learning,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 911-926, 2019.

[23] C. Juvekar, V. Vaikuntanathan and A. Chandrakasan, “GAZELLE: A
Low Latency Framework for Secure Neural Network Inference,” USENIX
Security Symposium, pp. 1651-1669, 2018.

[24] Q. Yu, N. Raviv, J. So and A. S. Avestimehr, “Lagrange coded comput-
ing: Optimal design for resiliency, security and privacy,” in Proc. of In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS),
2019.

[25] Y. Liu, A. Liu, T. Wang, X. Liu and N. N. Xiong, “An intelligent
incentive mechanism for coverage of data collection in cognitive Internet
of Things,” Future Generation Computer Systems, vol. 100, pp. 701-714,
2019.

[26] C. Xu, R. Ju, D. zhang and Y. Zhang, Z. Qin and K. Ren, “GANob-
fuscator: Mitigating Information Leakage Under GAN via Differential
Privacy,” IEEE Transactions on Information Forensics and Security, vol.
14, no. 9, pp. 2358-2371, 2019.

[27] J. Konecny, H. B. McMahan, D. Ramage, and P. Richtrik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arxiv:1610.02527, 2016.

[28] J. Konecny, H. B. McMahan, F. X. Yu, P. Richtrik, A. T. Suresh and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,“ arxiv:1610.05492, 2016.

[29] M. Abadi, A. Chu, I. Goodfellow, H. B. Mcmahan, I. Mironov and
K. Talwar, “Deep learning with differential privacy,” in Proc. of ACM
SIGSAC Conference on Computer and Communications Security (CCS),
pp. 308-318, 2016.

[30] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig and
J. Wernsing, “CryptoNets: Applying Neural Networks to Encrypted Data
with High Throughput and Accuracy,” in Proc. of International Conference
on Machine Learning. (ICML), vol. 48, pp. 201-210, 2016.

[31] I. Damgård, V. Pastro, N. P. Smart and S. Zakarias, “Multiparty com-
putation from somewhat homomorphic encryption,” in Proc. of Annual
International Cryptology Conference (CRYPTO), pp. 643-662, 2012.

[32] D. Demmler, T. Schneider and M. Zohner, “ABY-A Framework for
Efficient Mixed-Protocol Secure Two-Party Computation,” in Proc. of
Network and Distributed System Security Symposium (NDSS), 2015.

[33] A. Shamir, “How to share a secret,” Communications of the ACM, vol.
22, no. 11, pp. 612-613, 1979.

[34] M. Naor, B. Pinkas, “Efficient oblivious transfer protocols,” in Proc. of
ACM-SIAM Symposium on Discrete Algorithms (SIAM), pp. 448-457,
2001.

[35] J. W. Bos, K. E. Lauter, J. Loftus and M. Naehrig, “Improved security
for a ring-based fully homomorphic encryption scheme,” in Proc. of IMA
International Conference on Cryptography and Coding (IMACC), pp. 45-
64, 2013.

[36] P. Li, J. Li, Z. Huang, T. Li, C. Gao, S. Yiu and K. Chen, “Multi-key
privacy-preserving deep learning in cloud computing,” Future Generation
Computer Systems, vol. 74, pp. 76-85, 2017.

[37] X. Zhang, A. Fu, H. Wang, C. Zhou and Z. Chen, “A Privacy-Preserving
and Verifiable Federated Learning Scheme,” in Proc. of IEEE International
Conference on Communications. (ICC), 2020.

[38] E. Bresson, D. Catalano and D. Pointcheval, “A simple public-key
cryptosystem with a double trapdoor decryption mechanism and its
applications,” in Proc. of International Conference on the Theory and
Application of Cryptology and Information Security. (ASIACRYPT), pp.
37-54, 2003.

[39] M. Su, B. Zhou, A. Fu, Y. Yu, G. Zhang, “PRTA: A Proxy Re-encryption
based Trusted Authorization scheme for nodes on CloudIoT,” Information
Science, vol. 527, pp. 533-547, 2020.

[40] M. Wu, N. Xiong, L. Tan, “Adaptive Range-Based Target Localization
Using Diffusion Gauss-Newton Method in Industrial Environments,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 11, pp. 5919-
5930, 2019.

[41] C. Wu, C. Luo, N. Xiong and W. Zhang, T. Kim, “A Greedy Deep
Learning Method for Medical Disease Analysis,” IEEE ACCESS, vol. 6,
pp. 20021-20030, 2018.

[42] L. Adriana, E. Tromer, V. Vaikuntanathan. ”On-the-fly multiparty com-
putation on the cloud via multikey fully homomorphic encryption.” in
Prof. of the Annual ACM symposium on Theory of Computing. (STOC),
pp. 1219-1234, 2012.

[43] P. Paillier, ”Public-key cryptosystems based on composite degree resid-
uosity classes,” in Prof. of International Conference on the Theory and
Applications of Cryptographic Techniques. (EUROCRYPT), pp. 223-238,
1999.

[44] MN. KROHN, N. Maxwell, MJ. FREEDMAN, J. Michael, D.
MAZIERES, “On-the-fly verification of rateless erasure codes for efficient
content distribution,” in Prof. of IEEE Symposium on Security and Privacy.
(S&P), pp. 226-240, 2004.

[45] D. Boneh, C. Gentry, B. Lynn and H. Shacham, “Aggregate and
Verifiably Encrypted Signatures from Bilinear Maps,” in Prof. of the
International Conference on Theory and Applications of Cryptographic
Techniques. (EUROCRYPT), 2003.

[46] J. So, B. Guler, AS. Avestimehr and P. Mohassel, “CodedPrivateML: A
Fast and Privacy-Preserving Framework for Distributed Machine Learn-
ing,” IACR Cryptology ePrint Archive, 2019.

	I Introduction
	II Related Work
	II-A Secure Centralized Training
	II-B Secure Distributed Training

	III Preliminaries
	III-A Federated Learning
	III-B Lagrange Interpolation

	IV Our Proposed VFL Scheme
	IV-A Overview
	IV-B Initialization Phase
	IV-C Model Training Phase
	IV-D Aggregation Phase
	IV-E Update Phase

	V Effectiveness Analysis for VFL
	V-A Correctness
	V-B Data Privacy
	V-C Verifiability

	VI Performance Analysis
	VI-A Experimental Setup
	VI-B Model Accuracy
	VI-C Computational Overhead
	VI-D Communication Overhead
	VI-E Total Overhead
	VI-F Industrial Applications

	VII Conclusions and Future Work
	References

