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This research work aims to implement an automated segmentation process to extract the endoplasmic reticulum (ER) network in
fluorescence microscopy images (FMI) using pretrained convolutional neural network (CNN). The threshold level of the raw FMT
is complex, and extraction of the ER network is a challenging task. Hence, an image conversion procedure is initially employed to
reduce its complexity. This work employed the pretrained CNN schemes, such as VGG-UNet and VGG-SegNet, to mine the ER
network from the chosen FMI test images. The proposed ER segmentation pipeline consists of the following phases; (i) clinical
image collection, 16-bit to 8-bit conversion and resizing; (ii) implementation of pretrained VGG-UNet and VGG-SegNet; (iii)
extraction of the binary form of ER network; (iv) comparing the mined ER with ground-truth; and (v) computation of image
measures and validation. The considered FMI dataset consists of 223 test images, and image augmentation is then
implemented to increase these images. The result of this scheme is then confirmed against other CNN methods, such as U-
Net, SegNet, and Res-UNet. The experimental outcome confirms a segmentation accuracy of >98% with VGG-UNet and
VGG-SegNet. The results of this research authenticate that the proposed pipeline can be considered to examine the clinical-
grade FMI.

1. Introduction

Artificial intelligence (AI) techniques are widely adopted in
various engineering and scientific domains to obtain the fin-
est possible solutions for a considerable number of prob-
lems. For example, AI-supported medical data assessment
is one of the vital research fields. Therefore, a chosen scheme
is employed to examine the information collected from hos-
pitals and scan centers.

Typically, medical data includes the information col-
lected from patients, such as personal data, diagnostic infor-
mation, and collected biosignals and bioimages [1–3].
Assessment of medical data collected from the patient is
essential during diagnosis, treatment execution, and moni-
toring of the recovery rate.

The literature confirms that various traditional and
machine-learning (ML) procedures are employed to exam-
ine a variety of medical data with improved accuracy [4,
5]. Along with the ML schemes, deep learning (DL) proce-
dures are also widely employed to examine various medical
data to get a better diagnosis [6, 7]. The DL scheme works
well on various medical databases available in the form of
features, signals, and images. Therefore, it helps to achieve
a superior result compared to other techniques. Most of
the earlier works considered the pretrained DL procedure
because of its superior result. The conventional and modi-
fied forms of the DL techniques are employed in segmenta-
tion and classification tasks [8–10].

In this work, the fluorescence microscopy image (FMI)
database available in [11] is considered for the assessment.
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This dataset consists of the endoplasmic reticulum (ER) net-
work image, and the study of the structural information
plays a vital role in mediating cell condition assessment. Pri-
cewise segmentation of this network is essential for evaluat-
ing the morphology needed to support the disease diagnosis
and drug discovery functions. In the human cells, the ER
network forms an energetic construction that supports the
following functions in the cell, including calcium storage,
protein synthesis, and lipid metabolism. Therefore, the seg-
mentation and examination of ER network structure are
essential in the medical domain to assess the cell’s complete
information and protein structure. This information can be
found in [12, 13].

The extraction of ER network from the FMI is achieved
using the CNN approach, and in this work, novel VGG-
UNet and VGG-SegNet are enhanced with the VGG19
model. The proposed scheme is tested and validated on the
benchmark FMI dataset. This dataset consists of 223 images,
data augmentation is implemented to increase the image
dataset to 2007 images, and each image is resized to 224 ×
224 × 1 pixels. This image is then considered for testing
and validating the ER network segmentation performance
of the CNN technique, and the investigation is implemented
using MATLAB®. A detailed comparative assessment of
CNN schemes, such as U-Net, SegNet, Res-UNet, VGG-
UNet, and VGG-SegNet, is presented. The segmented ER
network is then compared against the ground truth (GT)
available in the database, and the necessary image measures
are computed. The experimental proposed investigation
with the proposed schemes helped achieve a segmentation
accuracy of >98%. This research confirmed that the outcome
of VGG-SegNet is better than other schemes considered in
this work. This work was also tested on the version of the
FMI dataset existing in [11] and achieved a better result.
This confirms that the proposed scheme is efficient in exam-
ining the FMI. In the future, it can be considered to evaluate
the clinical-grade ER network evaluation task using the FMI.

The main contributions of this study are as follows:

(i) The complexity of the dataset is addressed, and to
reduce the complexity, a 16-bit to 8-bit conversion
is employed

(ii) The recent CNN segmentation schemes such as
VGG-UNet and VGG-SegNet are implemented to
examine the fluorescence microscopy images

(iii) Comparative analysis between the commonly con-
sidered CNN segmentation schemes is presented

Other sections of this research are organized as follows:
Section 2 presents earlier works on FMI, Section 3 shows
the methodology employed, and Sections 4 and 5 discuss
the results and conclusions of the present research,
respectively.

2. Related Earlier Research

The assessment of ER network morphology is a clinically
significant task during the disease diagnosis and drug dis-

covery process. Therefore, this assessment is performed to
examine the cell and its related information, and in the liter-
ature, the researchers discuss several ER network examina-
tion methods.

Usaj et al. [14] discussed single-cell image-supported
morphology assessment to detect the cell-to-cell variability
of the internal structures. Abrisch et al. [15] presented a
study regarding mitochondrial morphology regulation based
on fission/fusion procedures converging to ER network.
Silva et al. [16] discussed various procedures to be adopted
to study the cell signaling process during cancer and neuro-
degenerative disorder conditions. Powers et al. [17] discuss a
detailed assessment of the tubular ER network’s reconstruc-
tion process.

The image processing supported cell image assessment
is also widely discussed to examine the cell condition dur-
ing normal and disease conditions. The research of Hein-
rich et al. [18] presented an automated segmentation
procedure to extract the cell organelle from volumetric
electron microscopy images. Chen et al. [19] discussed a
novel three-dimensional residual channel attention proce-
dure to improve the visibility of FMI. Shamir [20] pre-
sented low-level picture descriptors to support the
computer-based FMI examination. Pécot et al. [21] pre-
sented a conditional random field technique-based seg-
mentation and fluorescence estimation procedure to
examine the live cell. Tahir [22] presented a detailed
assessment of the morphological structure of protein
images recorded using FMI. This work implemented gray
level cooccurrence matrix (GLCM) technique to assess
the FMI pictures. Zhang and Zhao [23] proposed a CNN
scheme called CapsNet to evaluate the FMI database to
classify 2D HeLa cells. Moen et al. [24] presented a
detailed assessment of cellular images using a deep learn-
ing scheme. Mabaso et al. [25] present a detailed review
of the assessment and segmentation of FMI.

Extracting the EM network from FMI is a complex task
and achieving better segmentation accuracy is also challeng-
ing. Hence, CNN-supported segmentation is employed to
extract and evaluate the ER network from FMI with better
segmentation accuracy.

3. Methodology

This part of the work demonstrates the methodology
employed to mine the ER network using the CNN
scheme.

Figure 1 depicts the architecture employed in this
research work to examine the FMI database. Initially, the
complex FMI is collected from the dataset. The collected
FMI has a complex threshold level, and its complexity is ini-
tially reduced using an image conversion process that con-
verts the tagged image file (.tif) format into a bitmap
(.bmp) with a chosen threshold of 256 and it is resized to
224 × 224 × 1 pixels. Next, image augmentation is employed
to increase the number of test images, and the augmented
image is then considered to train and validate the perfor-
mance of the CNN scheme. After excellent training, the seg-
mentation performance is tested, and the extracted ER
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network section is then compared with the GT image.
Finally, based on the attained image performance, the
advantage of this proposal is confirmed.

3.1. Image Database. This work considered the ER network
FMI dataset [11] for assessment, and this dataset is formed
with the help of cultured live cells; recorded with the help
of spinning disk confocal microscopy (SDCM).

The recorded ER network was obtained from cells
labelled with Green Fluorescent Protein (GFP), fused
sec61β, and cultivated on MatTek cover glass dishes to
60% confluence. Pictures were collected using a 100 × 1:45
−N:A: oil W.D. 0.13mm objective on a TI2-E reversed
microscope associated with a 488nm 150mW laser of 4 laser
combiner units (Axxis), a CSU-W1 spinning disk scan head
(Yokogawa), and a 95BSI sCMOS camera focused by Nikon
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Figure 2: Sample test image and the 16-bit and 8-bit histogram values.
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Figure 1: Structure of the proposed FMI examination procedure.
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elements software (Nikon). This imagery is then collected as
patches, and every picture is available with its G.T. image.
These images were clustered into two categories: FMI ver-
sion 1 (FMI1) and version 2 (FMI2), and in this study, the
proposed versions were separately tested and validated.
FMI1 consists of 223 test images in the chosen database,
and FMI2 is associated with 175 images.

The significant complexity of this dataset is that every
image is registered as a 16-bit image which exhibits a com-
plex threshold value, and it needs a 16-bit to 8-bit conver-
sion to support the computerized evaluation. In this work,
the conversion of 16-bit to 8-bit conversion is initially per-
formed to reduce the complexity, and the converted image
is then considered for the examination. The conversion of
16-bit to 8-bit is achieved using the MATLAB command

8bit image = Unit8 ∗ 16bit image
256

� �
: ð1Þ

8bit image = Unit8 ∗ ð16bit image/256Þ. Figure 2(a)
depicts the sample test image and its histogram for 16-bit
and 8-bit cases as in Figures 2(b) and 2(c), respectively.

The image values are then increased using the image
augmentation (picture rotation by 0 < θ < ±60o insteps of
15o) process, and this helped to achieve an increase in image
number to 2007 for FMI1. Figures 3 and 4 present the sam-
ple test images and augmented images considered in this
research work.

3.2. Proposed CNN Scheme. In this research, the CNN seg-
mentation methods, such as UNet [26] and SegNet [27],
were improved using the VGG19 scheme. The earlier ver-
sions of CNN segmentation schemes are available along with
VGG11 or VGG16, and these approaches have already con-
firmed their eminence in a class of medical images with
gray/RGB scales. In this work, the conventional CNN seg-
mentation procedures were improved by considering the
VGG19 as the encoder and its inverse operation as the
decoder section. The proposed encoder-decoder section
was then trained to extract the ER network from the test
images with better accuracy using a SoftMax classifier unit.
The architecture of the VGG-UNet and VGG-SegNet is
depicted in Figures 5 and 6, respectively. The necessary
information on VGG-UNet and VGG-SegNet can be found
in [28–32].

(a) Test image

(b) θ = +15o (c) θ = +30o (d) θ = +45o (e) θ = +60o

(f) θ = −15o (g) θ = −30o (h) θ = −45o (i) θ = −60o

Figure 4: Augmented FMI with 0 < θ < ±60o insteps of 15o.
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Figure 3: Sample FMI along with the associated GT image.
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3.3. Pretraining and Segmentation. The considered CNN
segmentation models were initially trained using the test/
GT images to learn about the ER network, which is to be
extracted from the FMI. Initially, the performances of the
CNN models were tuned using optimizers, such as ADAM
and stochastic gradient descent (SGD) with various batch
sizes, such as 4, 8, 16, and 32 with a learning rate = 1e − 5,
dropout rate = 20%, number of iterations = 5000, and
number of epochs = 50. The initial approach helped get a
better learning rate (better accuracy with lesser dice loss)
when the ADAM optimizer was used with a batch size of
8. This process is repeated until a training accuracy of
>95% is achieved, and the sample result achieved during this
process can be found in Figure 7.

The experimental investigation is repeated using the
Python®, and the attained results are presented in
Figure 8. Figure 8(a) depicts the images considered to
train and validate the U-Net, and Figure 8(b) depicts the
performance of the considered scheme for 100 epochs (x
axis). Figure 8(b) confirms that the training of this scheme
saturates before 50 epochs. This confirms that the pre-
trained scheme needs only minimum epochs to learn
and extract the essential section from the considered test
images. A similar result is achieved for other schemes con-
sidered in this study. This confirms that the pretrained
CNN segmentation works similar when implemented with
MATLAB® as well as Python®.

3.4. Performance Validation. The overall merit of the CNN
image segmentation scheme depends on the performance
values computed during the comparison of extracted ER
and GT. In this work, the necessary values were computed
based on the attained values of true positive (TP), true neg-
ative (TN), false positive (FP), and false negative (FN). From
these values, other measures, such as Jaccard Index (JA),
Dice coefficient (DI), accuracy (AC), precision (PR), sensi-
tivity (SE), specificity (SP), F1-score (F1), and negative pre-
dictive value (NPV) were derived.

The representations of these values are presented in
Eqs. (2) to (8) [33–39]:

JA = TP
TP + FP + FN

, ð2Þ

AC =
TP + TN

TP + TN + FP + FN
, ð3Þ

PR =
TP

TP + FP
, ð4Þ

SE =
TP

TP + FN
, ð5Þ

SP =
TN

TN + FP
, ð6Þ

DI = F1 =
2TP

2TP + FN + FP
, ð7Þ

NPV =
TN

TN + FN
: ð8Þ

4. Results and Discussion

This part of work demonstrates the results achieved on a
workstation; Intel i7 2.9GHz processor with 20GB RAM
and 4GB VRAM equipped with MATLAB®.

Initially, the pretrained U-Net is employed to segment the
ER network from the FMI1 dataset. The considered CNN
scheme is trained using the resized and augmented test
images, this training process is continued until it achieves a
training accuracy of >95%, and other procedures followed in
this process are discussed in Subsection 3.3. When the CNN
model is completely trained and achieved the required accu-
racy, then, 50 numbers of test images from FMI1 and FMI2
dataset are considered to validate the segmentation perfor-
mance of the U-Net. After obtaining the necessary results, a
similar procedure is then followed with SegNet, Res-UNet,
VGG-UNet, and VGG-SegNet, and the results are recorded.
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Figure 5: Proposed VGG-UNet architecture.
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The result achieved at various layers of the VGG-UNet is
shown in Figure 9. Figure 9(a) depicts the various layer
results of encoder section; Figure 9(b) depicts the final con-
volution layer outcome of decoder, Figures 9(c) and 9(d)
depict the outcome of SoftMax and the binary form of the
extracted ER network, respectively.

Every CNN scheme is trained using the FMI1 database
(original and augmented images of data size 2007 num-
bers), and after the training, the segmentation perfor-
mance is individually validated. The segmentation
outcome achieved for a sample test image is depicted in
Figure 10. Figure 10(a) shows the GT, and Figures 10(b)
to 10(f) presents the results of the CNN scheme. After col-

lecting the binary form of the ER network, a relative
assessment with GT is performed, and the obtained image
measures are presented in Tables 1 and 2. Table 1 presents
the initial measures, like JA and DI, and Table 2 presents
the essential performance values.

The JA, DI, and segmentation accuracy achieved with
VGG-UNet are better than other methods, and the VGG-
UNet and VGG-SegNet help achieve an accuracy of >99%.
Even though the individual results of U-Net, SegNet, and
Res-UNet are better, the comparison confirms that the pro-
posed scheme is superior. A glyph plot is also constructed to
confirm the overall performance of the proposed CNN. This
plot also confirms that the overall merit of the proposed
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Figure 7: Training performance of VGG-SegNet for FMI1 database.
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CNN scheme is better, and VGG-SegNet helps achieve a bet-
ter result than VGG-UNet.

The developed scheme is verified using 50 numbers of
FMI1 and FMI2 images, and the attained results are individ-
ually recorded. Finally, the mean values of the images are
computed along with their standard deviation (mean ± SD
), and the results are presented in Table 3. This table con-
firms that the segmentation accuracy achieved with the pro-
posed CNN scheme is better (>98%), and the result of VGG-
segment is comparatively reasonable than VGG-UNet. This
confirms that the proposed scheme works well on the FRI

database, and in the future, it can be used to assess the clini-
cally collected FMI available from ER network.

Figure 11 presents the glyph plot, and this confirms that
the result of VGG-UNet and VGG-SegNet is better than U-
Net, SegNet, and Res-UNet for the Table 2 values. Figure 12
presents the spider plot for the overall result of Table 3, and
Figures 12(a) and 12(b) confirm that the VGG-UNet and
VGG-SegNet provide the better result on FMI1 and FMI2
compared to other approaches. In both cases, the overall per-
formance of VGG-SegNet is better than VGG-UNet and other
CNN schemes in this study. Automatic segmentation and

(a) Conv-layer outcome

(b) Final-Conv (c) SoftMax (d) Binary

Figure 9: Sample results achieved with VGG-UNet.
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(a) GT (b) U-Net (c) SegNet

(d) Res-UNet (e) VGG-UNet (f) VGG-SegNet

Figure 10: Segmentation outcome achieved with the considered CNN schemes.

Table 1: Initial performance measures achieved for the chosen FMI.

CNN scheme TP FN TN FP JA (%) DI (%)

U-Net 6418 669 42521 568 83.8406 91.2101

SegNet 6422 676 42496 582 83.6198 91.0793

Res-UNet 6424 692 42599 451 84.8949 91.8305

VGG-UNet 7158 3 42811 185 97.4816 98.7248

VGG-SegNet 7085 0 42811 229 96.8690 98.4096

Table 2: Necessary performance values computed for the chosen FMI.

CNN scheme AC (%) PR (%) SE (%) SP (%) F1 (%) NPV (%)

U-Net 97.5347 91.8695 90.5602 98.6818 91.2101 98.4510

SegNet 97.4928 91.6905 90.4762 98.6490 91.0793 98.4342

Res-UNet 97.7216 93.4400 90.2754 98.9524 91.8305 98.4015

VGG-UNet 99.6312 97.4816 100 99.5697 98.7248 100

VGG-SegNet 99.5431 99.5431 100 99.4679 98.4096 100

Table 3: Performance measures computed for the validation images of FMI dataset.

Database CNN scheme AC (%) PR (%) SE (%) SP (%) F1 (%) NPV (%)

FMI1

U-Net 93:05 ± 2:17 94:16 ± 1:04 91:26 ± 1:17 95:25 ± 0:84 91:31 ± 1:71 95:37 ± 0:46

SegNet 93:73 ± 1:52 94:28 ± 0:72 91:01 ± 2:05 95:16 ± 0:63 91:51 ± 2:05 95:26 ± 1:18

Res-UNet 97:51 ± 0:64 96:06 ± 1:13 92:25 ± 0:84 96:28 ± 1:16 92:18 ± 1:52 96:28 ± 1:05

VGG-UNet 98:22 ± 0:51 96:28 ± 0:55 93:18 ± 1:05 97:13 ± 1:05 95:23 ± 2:03 97:34 ± 0:28

VGG-SegNet 98:28 ± 0:63 96:18 ± 0:81 94:13 ± 1:15 96:35 ± 2:06 96:15 ± 0:72 98:11 ± 0:14

FMI2

U-net 93:72 ± 1:74 94:84 ± 0:28 91:32 ± 2:05 96:15 ± 1:05 92:05 ± 2:05 95:32 ± 1:41

SegNet 94:06 ± 2:08 95:19 ± 1:08 91:38 ± 1:94 95:08 ± 1:26 91:28 ± 1:44 96:17 ± 1:22

Res-UNet 97:14 ± 1:17 95:39 ± 0:42 93:07 ± 1:05 97:22 ± 1:06 92:51 ± 2:01 95:16 ± 2:31

VGG-UNet 98:08 ± 0:27 97:15 ± 2:05 94:27 ± 0:68 97:51 ± 0:88 96:33 ± 0:53 97:50 ± 0:68

VGG-SegNet 98:11 ± 0:31 97:36 ± 1:26 93:91 ± 0:72 97:82 ± 0:57 97:01 ± 0:18 98:09 ± 1:13

8 Scanning



evaluation of the endoplasmic reticulum network in fluores-
cence microscopy images is a difficult task due to the image
complexity. This research confirms that the proposed CNN
scheme helps extract the required sections with better accuracy.
The proposed scheme can be considered to examine other
complex biomedical images collected from actual clinics in
the future.

5. Conclusion

In the medical domain assessment of ER networks, struc-
tural information is essential to support disease analysis
and drug discovery operations. This research employs
CNN-supported segmentation to extract the ER network
from the FMI dataset. This work proposes VGG19-based
CNN architectures, such as VGG-UNet and VGG-SegNet,
to extract the needed information from test images. In this

work, two FMI image sets (FMI1 and FMI2) are considered
for the assessment, and the experimental investigation is
performed in a MATLAB® environment. This work pre-
sented a detailed assessment of U-Net, SegNet, Res-UNet,
and the proposed schemes. The experimental outcome of
this work confirmed that the proposed CNN scheme helped
get a better classification accuracy (>98%), and the VGG-
SegNet offered better overall performance than other tech-
niques. In the future, this technique can be considered to
examine clinically collected FMI.

Data Availability

The fluorescence microscopy images considered in this
research work can be accessed from https://ieee-dataport
.org/documents/fluorescence-microscopy-image-datasets-
deep-learning-segmentation-intracellular-orgenelle
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