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images using modified VGG19 CNN architecture and YOLO algorithm
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Abstract
X-ray images are an easily accessible, fast, and inexpensive method of diagnosing COVID-19, widely used in health

centers around the world. In places where there is a shortage of specialist doctors and radiologists, there is need for a

system that can direct patients to advanced health centers by pre-diagnosing COVID-19 from X-ray images. Also, smart

computer-aided systems that automatically detect COVID-19 positive cases will support daily clinical applications. The

study aimed to classify COVID-19 via X-ray images in high precision ratios with pre-trained VGG19 deep CNN archi-

tecture and the YOLOv3 detection algorithm. For this purpose, VGG19, VGGCOV19-NET models, and the original

Cascade models were created by feeding these models with the YOLOv3 algorithm. Cascade models are the original

models fed with the lung zone X-ray images detected with the YOLOv3 algorithm. Model performances were evaluated

using fivefold cross-validation according to recall, specificity, precision, f1-score, confusion matrix, and ROC analysis

performance metrics. While the accuracy of the Cascade VGGCOV19-NET model was 99.84% for the binary class

(COVID vs. no-findings) data set, it was 97.16% for the three-class (COVID vs. no-findings vs. pneumonia) data set. The

Cascade VGGCOV19-NET model has a higher classification performance than VGG19, Cascade VGG19, VGGCOV19-

NET and previous studies. Feeding the CNN models with the YOLOv3 detection algorithm decreases the training test time

while increasing the classification performance. The results indicate that the proposed Cascade VGGCOV19-NET

architecture was highly successful in detecting COVID-19. Therefore, this study contributes to the literature in terms of

both YOLO-aided deep architecture and classification success.
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1 Introduction

A new pneumonia epidemic called acute respiratory syn-

drome coronavirus 2 (COVID-19) started in Wuhan in the

Hubei province of China in December 2019 [1–3].

COVID-19 rapidly expanded from a single city to the

whole country within 30 days. This sudden increase in

cases caused the collapse of the health system in China

[4, 5]. COVID-19 is transmitted from person to person

through direct contact and by small droplets emitted by

infected people. Similar to the flu, a COVID-19 patient can

develop a variety of symptoms and signs of infection, such

as fever, cough, and respiratory illness. In more severe

cases, the infection can cause breathing difficulties, mul-

tiple organ failure, and a rapidly progressive fatal pneu-

monia in 2–8% of those infected. Pneumonia can be

detected from chest X-ray images [6–8].

Chest radiological imaging such as X-ray and comput-

erized tomography (CT) plays a vital role in the early

diagnosis and treatment of this disease [1, 9]. X-rays can

detect several characteristic signs associated with COVID-

19 in the lung [9]. Early results show that patients sug-

gestive of COVID-19 have abnormalities on chest X-rays

[10]. The real-time reverse-transcription polymerase chain

reaction (RT-PCR) method is also frequently used to

diagnose COVID-19. However, the sensitivity of this

method is around 60–70%. Therefore, it is important to

diagnose patients by examining X-ray images [1, 9]. In
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addition, a detection system based on X-ray images has

many advantages. It is fast, can analyze multiple cases at

the same time, and has more usability. In addition, X-ray

equipment is available in every hospital in the modern

healthcare system. This makes the radiography-based

approach convenient and easily accessible [11]. CT scans

and X-rays are widely used for the detection of COVID-19

in countries in which there are few test kits. Also,

researchers specify that the combination of clinical image

properties with laboratory results may be helpful in the

early diagnosis of COVID-19 [9, 12, 13]. There are also

studies reporting that some changes have been encountered

in the chest X-rays and CT images of asymptomatic chil-

dren and the elderly in the early periods of the disease [14].

These changes can be detected by deep convolutional

neural networks (CNN).

Deep CNN outperformed all other known methods in the

ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC) 2012 [15]. Deep CNNs are among the strong

deep learning architectures that are widely and instinctively

applied in many practical applications such as pattern

recognition and image classification [16]. The greatest

advantage of CNN for image classification is the end-to-end

training of the whole system from raw pixels to the final

categories. This advantage decreases the need to design a

manually convenient feature extractor [15]. Researchers are

focusing on deep learning techniques to determine specific

properties of COVID-19 patients from the chest radiogra-

phy images [17, 18]. Recently, deep learning has been

highly successful in various visual tasks including medical

image analysis. Deep learning has revolutionized the

automatic diagnosis and management of the disease by

correctly analyzing, defining and classifying the patterns in

medical images [11]. In addition, transfer learning is widely

used in CNN architectures. Transfer learning is used to

improve the learner by transferring the information in a

related area. It aims to apply the data extracted from one or

more tasks to the target task. Together with the growth of

deep learning, transfer learning has become an inseparable

part of many applications especially in medical imaging

[19, 20]. There are many pre-trained deep CNN architec-

tures (VGG16, VGG19, MobileNet, Inception, Xception,

ResNet, DarkNet, AlexNet, etc.) in which the transfer

learning approach can be applied.

The Visual Geometry Group Network (VGG) was

developed based on the convolutional neural network

architecture at the Oxford Robotics Institute [16] and was

introduced by Simonyan and Zisserman [21]. VGGNet has

shown particularly good performance in the ImageNet data

cluster. This network has been trained on more than 1

million images in 1000 classes with more than 370,000

iterations to calibrate 138 million weight parameters. In

particular, VGG19 won first place in a classification and

localization competition in the Large-Scale Visual

Recognition Competition, a global image recognition

competition, in 2014 [21, 22]. The VGG is a series of

transfer learning networks that includes VGG11, VGG13,

VGG16, and VGG19. The common feature of these net-

work structures is that several convolution layer modules

are connected to three full connection layers [23]. VGG19

consists of five building blocks. The first and second

building blocks consist of two convolutional layers and one

pooling layer. The third and fourth blocks have four con-

volutional layers and one pooling layer. The final block

consists of four convolutional layers. 3 9 3 small filters are

also used [24].

The detection of the zone that should be the area of

focus and supplying it to these CNN architectures as input

instead of raw images may increase the classification per-

formance. Detection algorithms are used for this process.

One of these algorithms is YOLO (You Only Look Once).

The YOLO architecture consists of 27 CNN layers with 24

convolution layers, followed by two fully connected layers.

YOLOv3 is a deep single-stage CNN developed from

YOLO and YOLOv2 for object detection. The YOLOv3

algorithm is one of the best object detection methods and it

provides perfect improvements in terms of speed. The

YOLO-V3 has high detection accuracy and speed. It also

performs well in detecting small targets. This algorithm

reframes object detection as a single regression problem,

from image pixels to bounding box coordinates and class

probabilities. It works significantly faster than other

detection methods. It uses a different architecture called

Darknet-53 for feature extraction. DarkNet-53 uses 3 9 3

and 1 9 1 convolutional layers and has 53 layers [25–28].

This study aims to develop a new state-of-the-art

VGG19 (Visual Geometry Group Network) architecture-

based improved model to diagnose COVID-19 automati-

cally from chest X-rays, to reveal a new cascade model by

combining this developed model with the YOLOv3 [25]

detection algorithm, and to evaluate the efficiency of these

models. For this purpose, the fully connected (FC) layer of

the pre-trained VGG19 CNN architecture was re-arranged

and attempts were made to diagnose COVID-19 from

binary (COVID-19 vs. normal) and three-class (COVID-19

vs. normal vs. pneumonia) data sets. The modified VGG19

model was also combined with the YOLOv3 algorithm to

detect the lung zone and the classification process was

conducted with this newly formed cascade model. The

performances of these models were compared to each other

and to models in previous studies.

The main contributions of this study can be summarized

as follows.

• We propose the VGG19-based improved VGGCOV19-

NET (Visual Geometry Group Network COVID19-
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NET) and Cascade VGGCOV19-NET models to assist

in the automatic diagnosis of COVID-19 patients.

• Via the VGGCOV19-NET model, we prove that the

classification performances of the pre-trained CNN

architectures can be enhanced as a result of

modification.

• We propose a new Cascade VGGCOV19-NET model

by feeding the VGGCOV19-NET model with the lung

zone X-ray images detected with the YOLOv3

algorithm.

• The new Cascade VGGCOV19-NET model signifi-

cantly decreases the training and test time while

significantly increasing the classification performance.

• The COVID-19 classification performance of Cascade

VGGCOV19-NET is generally higher than that in

previous studies.

• COVID-19 is rapidly diagnosed without manual feature

extraction and selection methods.

The manuscript is organized as follows: Previous studies

are summarized in Part 2. The structures, parameters, and

training of Cascade VGGCOV19-NET and VGGCOV19-

NET model and the data sets and metrics used in the study

are explained in Part 3. Results and classification perfor-

mances are presented in Part 4. The classification perfor-

mances of models are compared to that of previous studies

and the results are discussed in Part 5. Finally, in Part 6, the

conclusion is given.

2 Literature review

There are some studies using radiology images and

machine learning to diagnose COVID-19 in the literature.

Hemdan et al. [16] tried different CNN classifiers to

diagnose COVID-19 from X-ray images. They attained the

highest classification performance from VGG19 and Den-

seNet201 classifiers with 90% accuracy. Wang et al. [29]

classified the normal, pneumonia, and COVID-19 classes

with 93.3% accuracy with a CNN model they called

COVID-Net. Aslan et al. [30] classified the normal,

pneumonia, and COVID-19 classes with 98.70% accuracy

using hybrid CNN model. Hira et al. [31] classified the

normal, pneumonia and COVID-19 classes with 97.55%

accuracy using ResNeXt-50. Khan et al. [11] classified

three classes (COVID-19, pneumonia, and normal) with

95% accuracy and binary class (COVID-19 and normal)

with 99% accuracy using CNN. Medhi et al. [32] diag-

nosed COVID-19 with 93% accuracy with their CNN

model. Ozturk et al. [9] classified three classes (COVID-

19, pneumonia, and normal) with 87.02% accuracy and the

binary class with 98.08% accuracy with the CNN called

DarkCovidNet. Harit et al. [33] classified COVID-19 with

94% accuracy using ResNet. Ahammed et al. [34] classi-

fied three classes (COVID-19, pneumonia, and normal)

with 18 different classifiers. They attained the highest

accuracy value (94%) in their CNN model.

Apostolopoulos and Mpesiana [35] classified three

classes and binary classes using the transfer learning

approach with five different state-of-the-art pre-trained

CNNs. They attained the highest accuracy in the VGG19

model. These accuracy values are, respectively, 98.75%

and 93.48% for the binary class and three-class classifica-

tion. Similarly, Narin et al. [36] classified the binary class

using the transfer learning approach with three different

state-of-the-art pre-trained CNNs. They attained the high-

est accuracy value (98%) in the ResNet model. Benbrahim

et al. [37] classified COVID-19 with 99% accuracy with

the InceptionV3 model and transfer learning approach.

Butt et al. [38] classified three classes with 86.7%

accuracy on chest CT images with the ResNet model. Ying

et al. [39] classified COVID-19 with 94% accuracy with

the DRE-Net CNN model from chest CT images. Zheng

et al. [40] diagnosed COVID-19 with 90.1% accuracy from

chest CT images with the 3D deep CNN model. Harmon

et al. [7] detected COVID-19 with 90.8% accuracy using

the Densnet-121 CNN architecture on a total of 2724 CT

images, 1029 of which were COVID-19 positive. Waheed

et al. [10] stated that it is difficult to collect X-ray images

because the epidemic is new, and they proposed a method

to produce synthetic X-ray images. They suggested that

when synthetic X-ray images produced by this method are

added to the data set, the model performance increases.

3 Method and materials

In this part, the structure of the VGGCOV19-NET, Cas-

cade VGGCOV19-NET, VGG19, and Cascade VGG19

models, the data set used in the formation of the models,

and the performance metrics used in the evaluation of the

models are explained.

3.1 X-ray image data set

The data set used in this study was attained from the X-ray

images used by Ozturk et al. [9] in their study. They have

published this data set as an open resource at https://github.

com/muhammedtalo/COVID-19. The data set consists of

125 COVID-19, 500 pneumonia, and 500 no-findings

X-ray images. They used two different resources in the
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formation of the data set: COVID-19 X-ray images from

the database attained from various open access resources

by Cohen [41] and the ChestX-ray8 database provided by

Wang et al. [42] for normal and pneumonia X-ray images.

Forty-three of the patients in the COVID-19 data set are

women and 82 are men. Metadata information for this data

set are not provided for all patients. The average age of the

26 COVID-19 positive patients is approximately 55 years.

It is a data set convenient for both binary and multi-class

classifications. Figure 1 shows the X-ray images of some

cases with COVID-19, pneumonia, and no-findings taken

from the data set.

3.2 The proposed VGGCOV19-NET and cascade
VGGCOV19-NET models

Deep learning or deep structured learning represents a class

of improved machine learning techniques [37]. The

occurrence of deep learning technology has been a revo-

lution in artificial intelligence. The word ‘‘deep’’ expresses

the increase in the dimension of this network in addition to

the number of layers [9]. CNN is the deep learning

approach commonly used for feature extraction and data

classification in various areas. CNN has many layers, the

input layer, the convolutional layer, the pooling layer, the

fully connected layer, and the output layer [43, 44]. The

most efficient way to use deep CNNs on small data sets is

transfer learning [45]. The data gained by the pre-trained

model on a large data set is transferred on the model to be

trained with the transfer learning method commonly used

in deep learning. The greatest advantage of using the

transfer learning method is that it allows the training of

fewer data clusters and incurs lower calculation costs [36].

The Visual Geometry Group Network (VGG) was devel-

oped based on the convolutional neural network architec-

ture at the Oxford Robotics Institute [16]. VGGNet has

shown particularly good performance in the ImageNet data

cluster. VGG19 consists of five building blocks. The first

and second building blocks consist of two convolutional

layers and one pooling layer. The third and fourth blocks

have four convolutional layers and one pooling layer. The

final block consists of four convolutional layers. 3 9 3

small filters are also used [24, 46].

In this study, the suggested VGGCOV19-NET model is

based on the modified VGG19 [21] to diagnose COVID-19.

The Cascade VGGCOV19-NET model is a hybrid model in

which the VGGCOV19-NET model and the YOLOv3

detection algorithm are used together. The architectures of

the VGGCOV19-NET and Cascade VGGCOV19-NET

models are shown in Fig. 2. The first five blocks of VGG19

are out of the top layer in VGGCOV19-NET, and they have

been transferred to the new model with their weights. The

top layer has been made compatible to the data with

224 9 224 9 3 dimension and the FC layer has been

reformed. The FC layer has one Flatten and three dense

layers in the raw state of the VGG19 model. The first two

dense layers consist of 4096 neurons. The final layer is the

output layer that consists of 1000 neurons. The modified

FC layer of the VGGCOV19-NET model has one flatten

and four Dense layers. The neuron numbers in the first

three dense layers are, respectively, 128, 256 and 512. The

Relu activation function was used in these layers. The final

dense layer is the output layer whose activation function is

Softmax. The neuron number in this layer is two (COVID-

19 and no-findings) for binary classification and three

(COVID-19, no-findings, and pneumonia) for multi-class

classification. The FC layer is given in Fig. 3 with a more

detailed image. As seen in this figure, the flatten layer

output at the front of the FC layer consists of 25,088 fea-

tures. As a result, the input layer of the FC layer has 25,088

neurons. There are 150,528 data for each X-ray image.

These data are filtered, and 25,088 features are extracted in

convolution and pooling layers that are connected from the

front to the flatten layer. The dense layer number, neuron

Fig. 1 Sample X-ray images in the data set: a COVID-19, b Pneumonia, c No-Findings
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number, and activation function in the FC layer were

determined as a result of many trials.

The YOLOv3 detection algorithm is placed at the front

of the VGGCOV19-NET and VGG19 models in the Cas-

cade VGGCOV19-NET and Cascade VGG19 models. The

YOLOv3 algorithm detects the chest zones in X-ray ima-

ges and crops them so that a new X-ray data set focusing on

the chest zone is attained. This data set is given to the

VGGCOV19-NET and VGG19 models as inputs and the

training and test processes of the Cascade models are

conducted.

CNNs are designed using main multiple building blocks

such as convolution, pooling, and FC layers [47]. The

structure of the convolutional and pooling layers of the

VGCOV19-NET model can be expressed as follows:

CL1; CL2; PL1; PL2; CL3; CL4; PL3; PL4; CL5;

CL6; CL7; CL8; PL5; PL6;

CL9; CL10; CL11; CL12; PL7; PL8; CL13; CL14;

CL15; CL16; PL9; PL10:

Here, CL refers to the convolutional layer and PL refers

to the pooling layer using the maximum pooling method.

In the VGGCOV19-NET model, the convolution layer is

very important as it performs the feature extraction process.

This layer uses the convolution operation (represented by

*) instead of the general matrix multiplication and is the

Fig. 2 Architectures of VGGCOV19-NET and Cascade VGGCOV19-NET models
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core building block of CNN. The parameters of the con-

volution layer are made up of a set of learnable filters, also

known as kernels. The main task of the convolutional layer

is to identify the features in the local regions of the input

image and to create a feature map [11].

This process is based on the method of wandering a

selected filter on the input image. The dimension of the

filter can be 3 9 3, 5 9 5 or 7 9 7 pixels. The input of the

next layer (m2 9 m3) is formed with the filter applied to the

image. Activation maps occur as a result of this convolu-

tion process. Activation maps have local distinctive

features.

Each convolution layer has a filter (m1). The output of

Layer l consists of m
lð Þ
1 feature maps in Y

lð Þ
i , m

lð Þ
2 � m

lð Þ
3

dimension. The i. feature map shown with Y
lð Þ
i is calculated

according to Eq. 1. Here, B
lð Þ
i represents the deviation

matrix, and K
lð Þ
i;j represents the filter dimension [48–50].

Y
lð Þ

i ¼ f B
lð Þ
i þ

Xml�1
i

j¼1

K
lð Þ
i;j � Y

l�1ð Þ
j

0
@

1
A ð1Þ

Pooling layers gradually decrease the image dimension

so the parameter number and calculation complexity of the

model are decreased [51]. The pooling layer has two

parameters, (l) the dimension of F lð Þ filter and S lð Þ step.

This layer takes the data in the dimension of m
l�1ð Þ
1 �

m
l�1ð Þ
2 � m

l�1ð Þ
3 as input and again, provides m

lð Þ
1 � m

lð Þ
2 �

m
lð Þ
3 output volume. The operation of the pooling layer is

shown in Eqs. 2, 3 and 4 in short [49].

m
lð Þ
1 ¼ m

l�1ð Þ
1 ð2Þ

m
lð Þ
2 ¼ m

l�1ð Þ
2 � F lð Þ

� �
=S lð Þ þ 1 ð3Þ

m
lð Þ
3 ¼ m

l�1ð Þ
3 � F lð Þ

� �
=S lð Þ þ 1 ð4Þ

In the pooling process, a v vector is reduced to a single

scaler f (v) with pooling process f. There are basically two

pooling types: average pooling fa vð Þ ¼ 1
P

Pp
i¼1 vi, and max

pooling fm vð Þ ¼ maxi vi [52]. Max pooling is used in the

VGGCOV19-NET model.

FC layers turn the feature maps output of (1) final

convolution or pooling layer into a unidimensional vector,

Fig. 3 Architecture of the FC layer of VGGCOV19-NET
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(2) bind to one or more dense layers (3) update the weights,

(4) and give the estimation of the final classification [47].

FC layer mapping is a multi-layered sensor for

m
l�1ð Þ
1 � m

l�1ð Þ
2 � m

l�1ð Þ
3 . When l� 1ð Þ is considered as an

FC layer, the process stages of the FC layer can be shown

as in Eq. 5 [49].

Y
lð Þ

i ¼ f Z
lð Þ
i

� �
with Z

lð Þ
i ¼

Xm1 l�1ð Þ

j¼1

w
lð Þ
i;j y

l�1ð Þ
i ð5Þ

In addition, the activation function is used at the output

of each layer of the VGGCOV19-NET model. This acti-

vation function is Softmax for the output layer of the

model, and rectified linear unit (Relu) for other layers.

Softmax and Relu activation functions are mathematically

defined as in Eqs. 6 and 7, respectively. Softmax is used to

normalize the probability vector x for any input [9, 53].

soft max xið Þ ¼ exp xið Þ
PC

c¼1 exp xcð Þ
ð6Þ

f xð Þ ¼ 0 for x\0

x for x� 0
ð7Þ

3.3 Training of the YOLOv3 detection algorithm
and automatic cropping of the chest region

YOLOv3 is a deep CNN developed for object detection.

The chest region on the chest X-ray image should be tag-

ged before the training of the YOLOv3 model. The labe-

lImg (https://github.com/tzutalin/labelImg) graphical

image annotation tool was used for this. A text file was

formed for each image using this tool, and the coordinates

of the chest region taking place in the image were saved in

this file. There are (X0, Y0, X1, Y1) points giving

information about the exact location of height (cH), width

(cW), and chest region of the images tagged in the text file.

The normalization process is conducted to make the

formed data set convenient for YOLOv3 architecture. With

this process, the center point coordinates (X, Y), height (H),

and width (W) data of the chest region tagged in the image

are attained as in Eqs. 8 and 9 [54]. These data are shown

in Fig. 4.

X ¼ X1 þ X0

2
� 1

cW
; Y ¼ Y1 þ Y0

2
� 1

cH
ð8Þ

W ¼ X1 � X0ð Þ � 1

cW
; H ¼ Y1 � Y0ð Þ � 1

cH
ð9Þ

Training and test processes were conducted by randomly

separating the data into two as 70% training and 30% test

data after the completion of the preliminary processes.

Model performance was evaluated according to Intersec-

tion over Union (IoU) and mean average Precision (mAP)

metrics.

IoU is an important metric to reveal the model success

in object detection. IoU calculates the similarity distance

between the bounding box of the target and the estimated

output [55]. The division of the region remaining between

the estimated value and the necessary reference value to

the whole region is attained as in Eq. 10 [54, 55].

IoU ¼ Overlap area between bounding box of target and predicted

Combined area between bounding box of target and predicted

ð10Þ

mAP ensures the evaluation of the values such as cer-

tainty, sensitivity, F1-score, and IoU from a single point. It

is calculated as in Eq. 11 [54].

mAP ¼
Z 1

0

P Rð ÞdR ð11Þ

Processes were conducted with bounding boxes above a

certain IoU threshold value while calculating the mAP

value to determine the model performance. When the

threshold value is taken as 0.50, mAP value for the test data

was calculated as 99.80%, and the mean IoU value was

calculated as 85.37. These values show that the Chest

region was detected with high precision. The weights

attained for these performance metrics were saved. Then,

all the X-ray images in the data set were given to the

trained YOLOv3 algorithm as input and the chest region

was automatically detected. The detected chest region was

cropped with OpenCv and a new data set containing the

chest region was formed. The X-ray images whose Chest

region were detected and cropped are shown in Fig. 5.

Fig. 4 Coordinates of the tagged chest X-ray image
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3.4 Training of VGGCOV19-NET and cascade
VGGCOV19-NET models

VGGCOV19-NET and Cascade VGGCOV19-NET models

were formed using Tensorflow and the Keras library in the

Phyton programming language. Some preliminary pro-

cesses were conducted on the data sets before the training.

Firstly, the images were adjusted to the dimensions

224 9 224 9 3. Then, each input datum was divided by

255, and the normalization process was completed. One hot

encoding process was applied on the output class labels.

Different optimizer algorithms (Adam, Adadelta, Sgd,

RMSprop, Adamax, Nadam), loss functions (binary cross-

entropy, categorical cross-entropy), and learning rates were

tried to train the models. The best classification perfor-

mance was attained for Adam optimizer, categorical cross-

entropy loss function and 0.001 learning rate. Pre-trained

weights of the VGG19 model were used in convolution

layers and the trainable properties of these layers were

passivized so decreasing calculation time and cost. The

fivefold cross-validation method was used in the training

and testing of the models. Models were trained by 100

epochs for each fold, and a high level of classification

performance was achieved. The formation and training of

CNN models without using GPU is very hard. For this

reason, the training process of models was conducted using

T4 and P100 GPUs on Google Colab (a product of Google

Research). In addition, the original VGG19 model was also

trained under similar conditions, and classification perfor-

mance was attained. Thus, the difference in the classifica-

tion performance of the VGGCOV19-NET model was

better determined. The pseudocode carrying out the pro-

cesses of forming the model explained in Sect. 3.2 and

training the model explained in this section is given below.

This code clearly reveals the formation and training of

VGGCOV19-NET and Cascade VGGCOV19-NET

models.

Fig. 5 Detection and cropping

of the chest region in X-ray

images
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Two different scenarios were tested to diagnose

COVID-19 using X-ray images. While the VGGCOV19-

NET, VGG19, and Cascade models had initially been

trained to classify three categories (COVID-19 vs. no-

findings vs. pneumonia), they were trained to classify two

categories (COVID-19 vs. no-findings) in the second sce-

nario. In other words, multi-class classification was con-

ducted in scenario-1 and binary class classification in

scenario-2. Fivefold cross-validation was used in the

training and test processes of the models. Training accu-

racy and training loss values of multi-class and binary

classifier models are shown in Figs. 6 and 7 for the fold-2

step. It was observed that the Cascade VGGCOV19-NET

model showed a faster training process than the other

models for multi-class. When loss values were examined

for the multi-class classification, the Cascade

VGGCOV19-NET model decreased the loss value very

rapidly and approached zero value. However, the loss value

decreasing performances of VGGCOV19-NET and

VGG19 models were low, inconsistent and unable to

approach zero value. It was also noted that the VGG19

model had many fluctuations in both the loss and accuracy

graphs. This is an indication that the VGG19 model is

unstable in the learning process and does not perform good

learning. In contrast to the VGG19 model, the Cascade

VGG19 model conducted stable learning in the multi-class

classification. All models conducted stable learning in the

binary classification, and the difference between their

learning speeds was a little lower and similar to the multi-

class classification.

The training, testing times, and total trainable parame-

ters of the models are shown in Table 1. The lowest time

belongs to the binary Cascade VGGCOV19-NET model.

The highest time belongs to the multi-class VGG19 model.

In addition, the training and testing times of the Cascade

models are significantly lower than the other models. While

this rate was approximately 70% in the binary classifica-

tion, it was approximately 60% in the multi-class classifi-

cation. The reason for this decrease in training and testing
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Fig. 6 Training loss and accuracy curves attained at fold-2 for multi-

class classification: a training loss and accuracy curves of the

VGGCOV19-NET model, b training loss and accuracy curves of the

Cascade VGGCOV19-NET model, c training loss and accuracy

curves of the VGG19 model, d training loss and accuracy curves of

the Cascade VGG19 model

Fig. 7 Training loss and accuracy curves attained at fold-2 for binary

classification: a training loss and accuracy curves of the VGGCOV19-
NET model, b training loss and accuracy curves of the Cascade

VGGCOV19-NET model, c training loss and accuracy curves of the

VGG19 model, d training loss and accuracy curves of the Cascade

VGG19 model

Table 1 Training and testing times of the models and numbers of trainable parameters

Classification type Model Training and testing time (minutes) Number of trainable parameters (M)

Binary class VGGCOV19-NET 14.27 3.37

Cascade VGGCOV19-NET 4.13

VGG19 18.29 119.55

Cascade VGG19 6.60

Multi-class VGGCOV19-NET 25.36 3.37

Cascade VGGCOV19-NET 10.38

VGG19 32.57 119.55

Cascade VGG19 11.75
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time is that Cascade models focus only on the chest region

and decrease the numbers of pixels to be processed. Also,

the training and testing times of the VGGCOV19-NET

models were lower than those of the VGG19 models.

Similarly, the trainable parameters of the VGGCOV19-

NET model are lower because the neuron number in the FC

layer is low.

3.5 Performance metrics

Models were evaluated according to various performance

metrics as follows: precision (P), recall (R), specificity (S),

F1-score (F1), area under the receiver operating charac-

teristics (ROC) curve (AUC), and accuracy (acc).

• Precision This parameter measures the proportion of

anticipated positives that are true positives. Therefore,

it is dependent on true positive (TP) and false positive

(FP) values [56].

P ¼ TP= TPþ FPð Þ ð12Þ

• Recall Recall is the ratio of the true positives classified

correctly by the model [57]. TP and FN values are used

to calculate Recall [56].

R ¼ TP= TPþ FNð Þ ð13Þ

• Specificity Specificity is the ratio of the true negatives

(those not from pathology) classified correctly by the

model [57]. TN and FP values are used to calculate

specificity [36].

S ¼ TN= TNþ FPð Þ ð14Þ

• F1-Score F1-score is an overall measure of the model’s

accuracy that combines precision and recall. It is the

double of the ratio of the multiplication of F1-score

precision and recall metrics to their totals [16].

F1 ¼ 2� P� Rð Þ= Pþ Rð Þ ð15Þ

• AUC ROC curves are widely used to reveal the results

for binary classification problems in machine learning

[58]. The ROC curve verifies the classification perfor-

mance by showing the false positive rate (FPR) against

the true positive rate (TPR). AUC is an important

parameter for assessing the discriminative ability of

prediction models [16, 59].

4 Results

In this part, the results obtained from VGGCOV19-NET,

Cascade VGGCOV19-NET, VGG19 and Cascade VGG19

models are presented in detail. As specified above, the

VGGCOV19-NET is a model developed by the

reformation of the full connected layer of VGG19 CNN

architecture. Cascade models are the ones formed by

feeding the input of VGGCOV19-NET and VGG19 models

with the output of the YOLOv3 algorithm.

R, P, F1, and acc metrics whose mathematical formu-

lations were explained in the methods part were used to

evaluate the classification performance of the models. The

acc metric determines at what ratio a model anticipates the

values. The P metric determines the repeatability of the

measurement or how many anticipations are true. R repre-

sents the number of correct results found. The F1 score

uses precision and recall metrics to calculate an average

result [38]. Both multi-class and binary classification per-

formances of the models were evaluated according to these

metrics for each fold. Also, an overlapped confusion matrix

(CM) was formed for the purpose of conducting a general

evaluation of the models and the performance metrics

generally representing the model were calculated using this

matrix. To create the overlapped CM, the CMs obtained

from all the folds are summed [9].

For multi-class classification, the classification perfor-

mances of VGGCOV19-NET, Cascade VGGCOV19-NET,

VGG19 and Cascade VGG19 models are given in Table 2,

and overlapped CM is given in Fig. 8. As seen in this table,

the weighted average values of R, P, and F1 metrics are

given for each fold. However, the metric values presented

under the line ‘‘overlapped’’ have been calculated sepa-

rately for each category from the overlapped CM, and these

values are not weighted averages. Consequently, the use of

these values will provide more explanatory data in the

revelation of the general performances of the models for

each category.

When an evaluation is conducted according to the acc

metric, the classification performance of the Cascade

VGGCOV19-NET model is seen to be much higher than

that of the VGGCOV19-NET, VGG19 and Cascade

VGG19 models. The highest mean accuracy value (acc =

97.16%) belongs to the Cascade VGGCOV19-NET

model. The Cascade version of VGGCOV19-NET model

increased the classification performance. A similar situa-

tion also exists between the VGG19 model (acc = 84.17%)

and the Cascade VGG19 model (acc = 94.31%). However,

the increase in the classification performance is far higher

here. Also, according to the R metric, the Cascade

VGGCOV19-NET model correctly classified the COVID-

19, pneumonia, and no-findings patients to an extremely

high extent. The Cascade VGGCOV19-NET model cor-

rectly classified COVID-19 patients by 98.40%

(R = 0.9840), pneumonia patients by 97.60% (R = 0.9760),

and no-findings patients by 96.40% (R = 0.9640). These

figures are eye-catching for model conducting multi-class

classifications. VGGCOV19-NET model correctly classi-

fied the COVID-19 patients by 92.80% (R = 0.9280),
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pneumonia patients by 86.60% (R = 0.8660), and no-find-

ings patients by 90.20% (R = 0.9020). In addition, the

Cascade VGGCOV19-NET model correctly detected

COVID-19 patients at a higher rate than pneumonia and

no-findings patients. The VGG19 model correctly

classified COVID-19 patients by 91.20% (R = 0.9120),

pneumonia patients by 80.40% (R = 0.8040), and no-find-

ings patients by 86.20% (R = 0.8620). These results are,

respectively, 89.60%, 94%, and 95.80% in the Cascade

VGG19 model. The increase in the correct classification

Table 2 R, P, F1-score, and acc

values for COVID-19, no-

findings, and pneumonia classes

of the VGGCOV19-NET,

Cascade VGGCOV19-NET,

VGG19, and Cascade VGG19

models

Models Fold Performance results (%)

Recall Precision F1 Accuracy

VGGCOV19-NET Fold 1 78.20* 78.80* 78.30* 78.22

Fold 2 91.10* 91.10* 91.10* 91.11

Fold 3 84.40* 84.80* 84.50* 84.44

Fold 4 95.10* 95.20* 95.10* 95.11

Fold 5 95.60* 95.70* 95.60* 95.56

Overlapped

COVID-19 92.80 99.15 95.87

No-findings 90.20 86.40 88.26

Pneumonia 86.60 89.09 87.83

Average 89.87 91.55 90.65 88.89

Cascade VGGCOV19-NET Fold 1 85.80* 86.30* 85.90* 85.80

Fold 2 100* 100* 100* 100

Fold 3 100* 100* 100* 100

Fold 4 100* 100* 100* 100

Fold 5 100* 100* 100* 100

Overlapped

COVID-19 98.40 96.85 97.62

No-findings 96.40 98.17 97.28

Pneumonia 97.60 96.25 96.92

Average 97.47 97.09 97.27 97.16

VGG19 Fold 1 80.40* 80.40* 80.20* 80.44

Fold 2 80* 81.50* 79.80* 80

Fold 3 85.30* 87* 85.20* 85.33

Fold 4 88* 88.70* 87.90* 88

Fold 5 87.10 87.40* 87* 87.11

Overlapped

COVID-19 91.20 95 93.06

No-findings 86.20 81.16 83.60

Pneumonia 80.40 84.81 82.54

Average 85.93 86.99 86.40 84.17

Cascade VGG19 Fold 1 83.10* 83.60* 83.10* 83.11

Fold 2 99.10* 99.10* 99.10* 99.11

Fold 3 93.30* 93.50* 93.30* 93.33

Fold 4 97.30* 97.40* 97.30* 97.33

Fold 5 98.70* 98.70* 98.70* 98.67

Overlapped

COVID-19 89.60 0.9912 0.9412

No-findings 95.80 0.9374 0.9476

Pneumonia 94.00 0.9381 0.9391

Average 93.13 0.9556 0.9426 94.31

*Weighted average
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ratio in the Cascade version of VGG19 model is significant

for the three categories.

The second scenario used to diagnose COVID-19 is the

binary classification. Sensitivity, specificity, precision, F1-

score, auc, accuracy, and confusion matrix results of the

models for binary classification are given in Table 3. The

average accuracy values of the Cascade VGGCOV19-

NET, VGGCOV19-NET, Cascade VGG19, and VGG19

models are 99.84%, 98.72%, 99.04%, and 98.56%,

respectively. The classification precision of the Cascade

VGGCOV19-NET model is slightly higher. The Cascade

versions of the VGGCOV19-NET and VGG19 models fed

with YOLOv3 algorithm also increased the classification

performance for the binary classification. Revelation of

how correctly the models classify the true positives (TP)

and true negatives (TN) according to R and S metrics is

important in binary classification. While the Cascade

VGGCOV19-NET model correctly classified the COVID-

19 patients by 99.20%, it correctly classified no-findings

patients by 100%. It is striking in binary classification for

the model to correctly classify both true positives and false

positives at such a high ratio. In addition, while the

VGGCOV19-NET model correctly classified the COVID-

19 patients by 95.40%, it correctly classified no-findings

patients by 99.60%. The provision of the VGGCOV19-

NET model with Cascade structure caused an increase in

the correct classification ratio (R = 0.9920) of COVID-19

patients. A similar situation exists in the Cascade VGG19

model. While the Cascade VGG19 model correctly clas-

sifies COVID-19 patients by 96.80%, the VGG19 model

correctly classifies them by 92.80%. It could be said that

feeding the VGG19 model with the YOLOv3 algorithm

provided a greater increase in the correct classification ratio

of COVID-19 patients.

Another metric used in the verification of the classifi-

cation performance of the models is the ROC curve. ROC

curves in each fold step and AUC values are shown in

Fig. 9 for binary classification. The closeness of the AUC

value to one shows that the classification performance of

the model is high. The fact that the classification

Fig. 8 Overlapped confusion

matrices of models for multi-

class classification a overlapped

confusion matrix of the

VGGCOV19-NET model,

b overlapped confusion matrix

of the Cascade VGGCOV19-

NET model, c overlapped

confusion matrix of the VGG19

model, d overlapped confusion

matrix of the Cascade VGG19

model
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performances of VGGCOV19-NET, Cascade

VGGCOV19-NET, and Cascade VGG19 models are very

high was also verified by the average AUC values (99.60%,

99.60%, and 99.52%). The average AUC value (96.40%)

of the VGG19 model is lower compared to these models.

Two hundred and nineteen different COVID-19 X-ray

images were [60] used to verify the performance of the

Cascade VGGCOV19-NET model which yielded the best

performance in the study. No different data sets were used

for no-findings and pneumonia. The Cascade VGGCOV19-

NET model displayed better performance for this new

dataset in both binary and three-class classification. The

accuracy value was 99.18% for three-class classification

and 99.58% for binary classification. These values are

Table 3 Specificity, sensitivity, auc, F1-score, precision, and accuracy values for no-findings and COVID-19 classes of the VGGCOV19-NET,

Cascade VGGCOV19-NET, VGG19, and Cascade VGG19 models

Models Fold Confusion matrix and performance results (%)

TP TN FP FN Recall Sensitivity Precision F1 Accuracy AUC

VGGCOV19-NET Fold 1 24 98 0 3 89 100 98* 98* 97.60 99.12

Fold 2 21 103 1 0 100 99 99* 99* 99.20 100

Fold 3 28 97 0 0 100 100 100* 100* 100 100

Fold 4 25 97 1 2 93 99 98* 98* 97.60 98.94

Fold 5 21 103 0 1 95 100 99* 99* 99.20 99.95

Overlapped

COVID-19 119 498 2 6 95.40 99.60 98.35 96.85

No-findings 498 119 6 2 99.60 95.40 98.81 99.20

Average 97.50 97.50 98.58 98.03 98.72 99.60

Cascade VGGCOV19-NET Fold 1 28 96 0 1 0.97 1 0.99* 0.99* 99.20 98

Fold 2 21 104 0 0 100 100 100* 100* 100 100

Fold 3 29 96 0 0 100 100 100* 100* 100 100

Fold 4 26 99 0 0 100 100 100* 100* 100 100

Fold 5 20 105 0 0 100 100 100* 100* 100 100

Overlapped

COVID-19 124 500 0 1 99.20 100 100 99.60

No-findings 500 124 1 0 100 99.20 99.80 99.90

Average 99.60 99.60 99.90 99.75 99.84 99.60

VGG19 Fold 1 23 100 0 2 92 100 98* 98* 98.40 96

Fold 2 24 100 0 1 96 100 99* 99* 99.20 98

Fold 3 25 100 0 0 100 100 100* 100* 100 100

Fold 4 21 100 0 4 84 100 97* 97* 96.80 92

Fold 5 23 100 0 2 92 100 98* 98* 98.40 96

Overlapped

COVID-19 116 500 0 9 92.80 100 100 96.26

No-findings 500 116 9 0 100 92.8 98.23 99.10

Average 96.40 96.40 99.11 97.68 98.56 96.40

Cascade VGG19 Fold 1 16 106 1 2 94 98 98* 98* 97.60 98

Fold 2 27 96 2 0 93 100 98* 98* 98.40 99.78

Fold 3 25 99 1 0 96 100 99* 99* 99.20 99.80

Fold 4 30 95 0 0 100 100 100* 100* 100 100

Fold 5 23 102 0 0 100 100 100* 100* 100 100

Overlapped

COVID-19 121 498 4 2 96.80 99.60 98.37 97.58

No-findings 498 121 2 4 99.60 96.80 99.20 99.40

Average 98.20 98.20 98.79 98.49 99.04 99.52

*Weighted average
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96.56% and 98.61%, respectively, for VGGCOV19-NET.

These results prove that the YOLO-aided Cascade archi-

tecture increases the classification performance.

5 Discussion

The accuracy values of the models are shown compara-

tively in Fig. 10 for binary and multi-class classifications.

As can be seen in this figure, the classification performance

of Cascade VGGCOV19-NET is higher than that of the

other models for both multi-class and binary classifications.

Moreover, the Cascade VGGCOV19-NET model generally

predicts COVID-19 at high ratios.

For the Cascade VGGCOV19-NET model to have high

accuracy values in binary and multi-class classification is

an indicator that the model has been structured well. Fur-

thermore, the Cascade VGGCOV19-NET model classifies

COVID-19 correctly by 98.40% (R = 0.9840) in the multi-

class classification in which there are three categories. This

ratio is lower in the VGGCOV19-NET model (R = 0.9280)

than the Cascade VGGCOV19-NET model. The fact that

the recall parameter is high in the Cascade VGGCOV19-

NET model proves that they can correctly distinguish

COVID-19 patients from pneumonia patients and no-find-

ings patients at a high ratio. In addition, the fact that

making some changes to the original VGG CNN archi-

tecture increases the model performance is also shown in

Fig. 9 ROC curves of the models for binary classification a ROC curve of the VGGCOV19-NET model, b ROC curve of the Cascade

VGGCOV19-NET model, c ROC curve of the VGG19 model, d ROC curve of the Cascade VGG19 model
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this study. Similarly, it also revealed that instead of using

pre-trained CNN models alone, the formation of a Cascade

structure via feeding with algorithms such as the YOLO

detection algorithm increases the classification perfor-

mance. A comparison of the model performance attained in

this study to previous studies is also important. These

results are given in Table 4.

According to this table, the classification performance of

this study is higher than other studies in the literature both

for binary and three-class classifications. DarkCovidNet

developed by Ozturk et al. [9] correctly classified the

binary class with an accuracy of 98.08% and three-class by

87.02%. DarkCovidNet is based on DarkNet architecture

where fewer layers and filters are used. The data set used in

that study is the same as the one used in our study. The

classification performance of Cascade VGGCOV19-NET

and Cascade VGG19 developed in our study is very much

higher than that of DarkCovidNet. This performance dif-

ference is approximately 9.5% for the three-class classifi-

cation and 1.28% in the binary classification. There are two

studies [11, 37] showing the closest performance to Cas-

cade VGGCOV19-NET and Cascade VGG19 among other

studies using different data sets for binary classification.

The accuracy values of both studies are 99%. While the

first of these studies [11] performed the classification

process with a new Xception CNN architecture-based CNN

model on 284 COVID-19 positive and 310 normal X-ray

images, the second [37] performed the classification pro-

cess using pre-trained CNN InceptionV3 architecture and

the transfer learning approach on 160 COVID-19 (?) and

160 normal X-ray images. There are also studied in the

literature classifying three classes. Khan et al. [11]

classified three classes with a new Xception CNN archi-

tecture-based CNN model with an accuracy ratio of 95%,

Ahammed et al. [34] classified three classes with the deep

CNN model they created with accuracy of 94%, Apos-

tolopoulos and Mpesiana [35] classified three classes with

the pre-trained VGG19 architecture with accuracy of

93.48%, Aslan et al. [30] classified three classes with the

hybrid CNN architecture with accuracy of 98.70%, Hira

et al. [31] classified three classes with the specially

ResNeXt-50 with accuracy of 97.55%, and Wang et al. [29]

classified three classes with the deep CNN model they

called COVID-Net with an accuracy of 93.3%. The Cas-

cade VGGCOV19-Net model suggested in our study clas-

sify three classes with accuracy higher than these studies,

except for two studies [30, 31].

Furthermore, there are two studies using the YOLO

architecture in the literature. Nigam et al. [62] tried to

detect COVID-19 from X-ray images. They obtained the

highest classification performance for three-class classifi-

cation in the EfficientNet model with 93.48%. First, X-ray

images are given to the YOLO algorithm in this study to

determine the lung zone as in our study. Then, these images

are classified with pre-trained CNN models. The data set

used in the study is a large data set. However, the classi-

fication accuracy is lower than our study. Furthermore, it

could not be demonstrated whether the YOLO-based model

affected the performance as the study was not conducted on

raw images. Al-antari et al. [61] tried to detect nine lung

diseases including COVID-19 and pneumonia. Unlike our

study, they only used the YOLO detection algorithm

through X-ray images whose ground truth was labeled. The

average detection accuracy for all classes was 90.67%.

Fig. 10 Comparison of the

accuracy values of the models
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Table 4 Comparison of the recommended VGGCOV19-NET COVID-19 diagnosis method with other CNN methods developed using radiology

images

Study Type

of

images

Number of

cases

Method used Segmentation

or location

attention

Accuracy

(%)

Remarks

Ozturk et al. [9] Chest

X-ray

500 No-

findings

DarkCovidNet – 98.08 Although the same data set as our study

was used, the classification

performance is significantly lower for

three-class classification
125

COVID-19

(?)

500 No-

findings

87.02

500

Pneumonia

125

COVID-19

(?)

Hemdan et al.

[16]

Chest

X-ray

25 COVID-

19 (?)

VGG19 and

DenseNet201

– 90 The number of COVID-19 X-ray images

in the data set is very low. Only binary

classification was performed and the

classification performance is

considerably low

25 Normal

Wang et al. [29] Chest

X-ray

358

COVID-19

(?)

COVID-Net – 93.3 They reduced the computational

complexity with the CNN architecture

where they used 1 9 1 convolution

blocks. The accuracy value is lower

compared to our study and the

sensitivity value needs improving

5538

Pneumonia

8066

Normal

Khan et al. [11] Chest

X-ray

284

COVID-19

(?)

CoroNet based on pre-

trained Xception CNN

– 95 The classification performance is

relatively lower for three-class

classification

657

Pneumonia

310 Normal

284

COVID-19

(?)

99

310 Normal

Medhi et al.

[32]

Chest

X-ray

More than

150

COVID-19

(?)

CNN – 93 The data set is not clear. They used the

CNN model they had developed

themselves. They did not apply the pre-

trained models. Furthermore, the binary

classification performance is low

Harit et al. [33] Chest

X-ray

46 COVID-

19 (?)

ResNet50 – 94 The data set is very small. Moreover, the

classification for binary class is

considerably low. Only the ResNet50

pre-trained model was applied
41 normal

Ahammed et al.

[34]

Chest

X-ray

219

COVID-19

(?)

CNN, ResNet50,

VGG16,

InceptionV3and

traditional machine

learning methods

– 94 They attained the highest performance

with the CNN developed by

themselves. Low performance was

attained with traditional methods.

Classification accuracy is relatively low
1345 Viral

pneumonia

1341

Normal
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Table 4 (continued)

Study Type

of

images

Number of

cases

Method used Segmentation

or location

attention

Accuracy

(%)

Remarks

Apostolopoulos

and Mpesiana

[35]

Chest

X-ray

224

COVID-19

(?)

VGG19 – 93.48 The VGG19 pre-trained CNN

architecture was used in raw form

without being modified. The

classification performance is

significantly lower compared to our

study especially for three-class

classification

700

Pneumonia

504 Healthy

224

COVID-19

(?)

98.75

504 Healthy

Narin et al. [36] Chest

X-ray

50 COVID-

19 (?)

ResNet50 and deep

CNN

– 98 Only binary classification was performed

in the study and the number of X-ray

images in the data set is very low50 COVID-

19 (-)

Ouchicha et al.

[17]

Chest

X-ray

219

COVID-19

CNN based on ResNet – 96.69 A new CNN model based on the ResNet

model was proposed. Although the

classification performance for three-

class classification is higher than other

studies, it is lower than the performance

in our study. Also other SoTA models

could have been applied in the study

1341 normal

1345 viral

pneumonia

Benbrahim et al.

[37]

Chest

X-ray

160

COVID-19

(?)

InceptionV3 and

ResNet50

– 99 Only binary classification was made. The

classification performance is good.

However, the data set is considerably

small160 Normal

Al-antari et al.

[61]

Chest

X-ray

326

COVID-19

YOLO YOLO

detection

algorithm

90.67 Detection was made using the YOLO

algorithm. Unlike our study, no cascade

structure fed by YOLO was used. The

classification performance is low
120

Pneumonia

866 other

seven lung

diseases

Nigam et al.

[62]

Chest

X-ray

5634

COVID-19

VGG16, DenseNet121,

Xception, NASNet

and EfficientNet

YOLO

detection

algorithm

93.48 A cascade structure fed by YOLO was

used as a method as in our study.

However, the classification

performance is lower. The impact of

YOLO could not be revealed as the

performances of models not fed with

YOLO were not included in the study

6000

Normal

5000 Others

Aslan et al. [30] Chest

X-ray

1095

COVID-19

(?)

Hybrid CNN based on

AlexNet

ANN-based

automatic

lung

segmentation

98.70 ANN-based chest zone segmentation was

performed, and the images were given

as input to the AlexNet-based hybrid

CNN. It is similar to our study as a

cascade model was used. The

classification performance is slightly

higher than our study. However, data

augmentation was carried out in the

study. Data augmentation is not

regarded as a good practice in medical

imaging

1345

Pneumonia

1341

Normal
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There are also studies [38–40, 63, 64] diagnosing

COVID-19 using chest CT in the literature. One of these

studies [64] states that mobile devices have limited storage

and calculating capacity and suggests an architecture

including robot, edge, and cloud layers so that deep

learning applications can be run on mobile devices. They

detected COVID-19 from CT images using DenseNet169

on this architecture. The accuracy values in these studies

are relatively lower than those of studies conducted using

X-rays. As specified by Ozturk et al. [9], CT is very costly

and not easily accessible because scanners are only avail-

able in major health centers. When compared to X-rays, CT

Table 4 (continued)

Study Type

of

images

Number of

cases

Method used Segmentation

or location

attention

Accuracy

(%)

Remarks

Hira et al.[31] Chest

X-ray

224

COVID-19

(?)

Se-ResNeXt-50 – 97.55 Classification was carried out with nine

pre-trained CNN models (AlexNet,

GoogleNet, ResNet-50, Se-ResNet-50,

DenseNet121, Inception V4, Inception

ResNet V2, ResNeXt-50, and Se-

ResNeXt-50). The highest classification

performance was attained with Se-

ResNeXt-50. The classification

performance is slightly higher than our

study

700

Pneumonia

504 Normal

Butt et al. [38] Chest

CT

219

COVID-19

(?)

RESNET – 86.7 The data sets used in these studies consist

of CT images, and the classification

performances are considerably lower

than our study224

Pneumonia

175 Healthy

people

Ying et al. [39] Chest

CT

777

COVID-19

(?)

DRE-NET – 94

708 Healthy

Zheng et al. [40] Chest

CT

313

COVID-19

(?)

DECOVNET - 90.1

229

COVID-19

(-)

Xu et al. [63] Chest

CT

219

COVID-19

(?)

ResNet-18 ? location

based attention

Image patch

vote and

Noisy-OR

Bayesian

function

86.7

224

Pneumonia

175 Healthy

Proposed study Chest

X-ray

500 No-

Findings

Cascade VGGCOV19-

NET

99.84

125

COVID-19

(?)

500 No-

Findings

97.16

500

Pneumonia

125

COVID-19

(?)

Bold values indicate the results obtained in this study
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causes higher radiation amounts in the patients. Conse-

quently, we recommend using a deep learning model with

X-ray images because they are more accessible than CT

with lower radiation dosages.

Because X-ray radiographies are easily accessible, they

are commonly used for the diagnosis of COVID-19 in

health centers worldwide. The Cascade VGGCOV19-NET

model can be used as auxiliary tool in the diagnosis of

COVID-19 in a much shorter period than X-ray radiogra-

phies. The main advantages of this model are as follows:

• They classify chest X-ray images that can be very

easily, rapidly, and smoothly attained from any hospital

without needing extra feature extraction methods.

• They generally have higher classification performance

than the other studies in the literature.

• As in some studies in the literature, the original state-of-

the-art CNN architecture was not used. VGG19 CNN

architecture has been modified and its classification

performance increased.

• New Cascade VGGCOV19-NET model based on the

YOLOv3 detection algorithm and the VGG19 pre-

trained CNN architecture has increased the classifica-

tion performance and guided future studies.

• They are able to correctly distinguish COVID-19 at

higher ratios than pneumonia and no-findings.

Cascade VGGCOV19-NET detects COVID-19 in min-

utes and at a high accuracy rate. For this reason, it can be used

in areas where there is a shortage of specialist doctors and

radiologists. In addition, even in small healthcare facilities

where only an X-ray device is available, patients can be

diagnosed using the model and those who are positive for

COVID referred to more advanced health centers for

immediate treatment. Another advantage of the model in

application is that it prevents patients who are detected

negatively from entering PCR tests. Thus, unnecessary

clutter in health centers can be avoided. The trained Cascade

VGGCOV19-NET model is saved in the computer envi-

ronment. After a simple interface is designed for the model,

the X-ray image can be easily loaded into the system and

results obtained very quickly. Also, X-ray images can be

rapidly transferred to the physician’s computer without the

need for additional procedures. All the physician need do is

upload the X-ray image to the system with a few mouse

clicks to see the result. From this point of view, Cascade

VGGCOV19-NET can easily be used for pre-diagnosis.

6 Conclusion

In this study, the deep CNN model modified VGG19

architecture-based VGGCOV19-NET was presented to

diagnose COVID-19 cases from chest X-ray images. In

addition, we created the Cascade VGGCOV19-NET model

by feeding this model with the YOLOv3 algorithm. The

VGGCOV19-NET model performs the binary class and

multi-class classification tasks with an accuracy of 98.72%

and 88.89%, respectively. These accuracy values are

99.84% and 97.16%, respectively, in the Cascade

VGGCOV19-NET model. Feeding VGGCOV19-NET with

the YOLOv3 algorithm increases the classification perfor-

mance. Moreover, it decreases the training and test time by

approximately 70% in the binary classification and by 60%

in the multi-class classification. The Cascade VGGCOV19-

NET is an important and original model that detects

COVID-19 with high accuracy that will lead to future

studies. This model automatically detects COVID-19 with

high accuracy from X-ray images, which are widely used

and easily accessible for the diagnosis of COVID-19 in

health centers worldwide. Conventional pneumonia has

great similarities with COVID-19, and there is a severe

shortage of specialists. For this reason, Cascade

VGGCOV19-NET, an artificial intelligence-supported

automatic detection system, is especially important in

detecting COVID-19. The Cascade VGGCOV19-NET

model is a tool that can assist doctors by diagnosing

COVID-19 rapidly and easily at low cost. In addition, the

YOLO-supported COVID-19 detection method proposed in

this study can be applied to various fields, such as tumor

detection from brain images, skin cancer detection, and

implant-type detection from implant images.

One limitation of the study is the use of a limited

number of COVID-19 X-ray images. As medical images

for COVID are obtained from local hospitals, it is very

difficult to obtain various data sets for such studies con-

ducted with CNN. The number of data sets in the literature

was not enough when we initiated this study. Furthermore,

we could not use data augmentation as it is not regarded as

a good practice in medical imaging. Another limitation of

the study is that the proposed cascade method was used

only on X-ray images. On the other hand, it is thought that

the proposed cascade method could successfully classify

CT images. In a future study, we will try to detect COVID-

19 through different CNN models on a very large mixed

data set by adding other open-source X-ray and computed

tomography images in the literature to the X-ray images

data set used in this study. Another limitation of the study

is that the chest zone was determined only as a quadrant

with the YOLO algorithm. In particular, the three-class

classification performance can increase if the right and left

lung zones are segmented using image processing tech-

niques. This segmentation will be carried out as a future

study, and the results will be compared with the YOLO-

based model. Moreover, another limitation of the study is

that only the VGG19 SoTA (state-of-the-art) model was

used. Therefore, SoTA models such as EfficientNet,
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ResNet, MobileNet, Densenet169, and Inceptionv3 fed

with YOLO can be used to improve the performance of the

COVID diagnosis system.
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