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Abstract—This paper focuses on commonalities and 

differences between the two mixed-signal hardware description 
languages VHDL-AMS and Verilog-AMS in the case of modeling 
heterogeneous or multi-discipline systems. The paper has two 
objectives. The first one consists of modeling the structure and 
the behavior of an airbag system using both the VHDL-AMS and 
the Verilog-AMS languages. Such a system encompasses several 
time abstractions (i.e. discrete-time and continuous-time), several 
disciplines, or energy domains (i.e., electrical, thermal, optical, 
mechanical, and chemical), and several continuous-time 
description formalisms (i.e., conservative-law and signal-flow 
descriptions). The second objective is to discuss the results of the 
proposed modeling process in terms of the descriptive 
capabilities of the VHDL-AMS and Verilog-AMS languages and 
of the generated simulation results. The tools used are Advance-
MS from Mentor Graphics for VHDL-AMS and AMS Simulator 
from Cadence Design Systems for Verilog-AMS. The paper 
shows that both languages offer effective means to describe and 
simulate multi-discipline systems, although using different 
descriptive approaches. It also highlights current tool limitations 
since full language definitions are not yet supported. 
 

Index Terms— VHDL-AMS, Verilog-AMS, Mixed-signal 
Simulation, Accelerometer, EKV MOS Model, Generalized 
Kirchhoff Laws, Optical link, Chemical system, Airbag, Thermo-
electrical Interactions 
 

I. INTRODUCTION 
or the past three decades, hardware description languages 
(HDLs) have been widely used to model and simulate 

systems belonging to various engineering fields, from digital 
and analog electronics to mechanics and chemistry. For a long 
time, all these fields have been completely separated, each 
scientific community having its own design methodologies, 
tools and idiosyncrasies. Dedicated HDLs supporting the 
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description and the simulation of the logical structure of a 
system belonging to a particular engineering domain were, and 
are still available. They allow the description of a system as a 
possibly hierarchical connection of predefined submodels, or 
primitives. For example, in the electrical/electronic domain, 
the SPICE simulator and all its derivatives allow the 
description of the netlist of a circuit using electrical primitives 
such as resistors, capacitors, sources and transistors. In an 
attempt to support the modeling and simulation of non-
electrical systems as well, several modeling methods using 
energy equivalences between the electrical domain and other 
domains such as mechanical, thermal or fluidic domains have 
been proposed [1][2][3]. 

With the advent of nano-technologies, the design of 
innovative integrated devices, like Micro-Opto-Electro-
Mechanical Systems (MOEMS), has shifted from vertical only 
to both vertical and horizontal integration. Using the benefit of 
all the experience acquired in incremental design, MOEMS 
design now involves strong “horizontal” interaction of 
different application-field parts on the very same chip (e.g., 
mechanical, electrical, thermal, fluidic parts), with partial 
close coupling between these fields. Neglecting the interaction 
effects or the cross coupling between parts may have 
disastrous consequences on the final design in terms of a loss 
in performance or an increase in design time. 

One way of addressing this issue is to use a consistent 
modeling and simulation framework that allows for the 
description of systems from different disciplines and for the 
description of interactions between these systems. This is 
where the VHDL-AMS HDL [4][5][6] and the Verilog-AMS 
HDL [7][8] come in as effective backbones of the 
aforementioned framework. 

In this paper, we therefore propose to compare the modeling 
power of these two HDLs. In order to illustrate this, we present 
a meaningful case study that consists in modeling the structure 
and the behavior of an airbag system using both the VHDL-
AMS and the Verilog-AMS languages. Such a system is well 
suited for our purpose as it encompasses several time 
abstractions (i.e. discrete-time and continuous-time), several 
disciplines, or energy domains (i.e., electrical, thermal, 
optical, mechanical, and chemical), and several continuous-
time description formalisms (i.e., conservative-law and signal-
flow descriptions). In addition, the case study allows us to 
highlight the key modeling capabilities offered by both analog 
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and mixed-signal HDLs in terms of expressive power and 
quality of simulation results. 

The paper does not intend to provide a complete 
presentation of the two languages. Rather, it focuses on 
specific analog and mixed-signal modeling and simulation 
aspects and on how the two design languages can actually 
address them. 

The paper is organized as follows. Section 2 introduces the 
context of the work, i.e. the modeling and simulation aspects 
that are addressed in the paper. It gives a short presentation of 
the VHDL-AMS and Verilog-AMS design languages. 
Section 3 presents a complete multi-discipline case study, 
consisting of an airbag system, and discusses selected VHDL-
AMS and Verilog-AMS models. Section 4 gives relevant 
simulation results obtained with the VHDL-AMS and the 
Verilog-AMS tools. Section 5 summarizes the insights we can 
learn from the case study. Finally, section 6 gives some 
conclusions. 

II. CONTEXT OF THE WORK 

A. Modeling and Simulation aspects 
Modeling is at the core of any design process. This task 

essentially consists in developing abstract descriptions of some 
physical reality in such a way that they are useful for the 
design process. Models may be used to validate characteristics 
of some part or of the whole of the designed system, e.g. its 
functionality or its performances. Such models are simulation 
models, or executable models that produce a response when 
acted upon by stimuli. These are the kind of models this paper 
is dealing with. To be complete, models may also be used as a 
support for a synthesis process, i.e., the progressive refinement 
process that starts from an abstract description of what the 
system should do and in which conditions, i.e. its 
specifications, and that ends when a detailed description of a 
realization that meets the specifications is obtained. 

Models may describe the behavior and/or the structure of 
the designed system at various levels of details, or levels of 
abstraction. Selecting the appropriate level is, on the one hand, 
a matter of compromise between model accuracy and model 
performance, and on the other hand, a means to cope with 
system complexity. Abstraction may be applied to different 
aspects of a model. One aspect is how time is considered. 
Time may be abstracted as pure causal effects, as synchronous 
cycles, as integer multiple values of a minimum resolution 
time (discrete time), or as real values (continuous time). 
Another aspect is how the values of model data are 
represented. They can be tokens that merely represent the 
existence or the absence of data at some point in time and at 
some place in the system, or they can be bits or bit words that 
represent logic information, or they can be real values. As a 
data abstraction level is usually related to a time abstraction 
level, this paper considers the so-called discrete-time models 
as models in which data is abstracted as logic functions of a 
discrete variable that represents the time, and the so-called 
continuous-time models in which the data is abstracted as real-

valued functions of a real-valued independent variable that 
represents the time [4]. Discrete-time behaviors are generally 
expressed as logical Boolean equations or as communicating 
processes that are triggered upon events, while continuous-
time behaviors are generally expressed as Differential 
Algebraic Equations (DAEs). For electrical systems, the term 
digital is more often used to denote a discrete-time 
characteristic and the term analog is more often used to denote 
a continuous-time characteristic. 

Hierarchy is also a means to cope with complexity by 
decomposing a complex behavior or structure into a set of 
smaller manageable pieces, the latter being possibly further 
recursively decomposed up to any appropriate level of 
deepness. Leaf components are those components that are at 
the deepest level of the hierarchy. 

Each decomposed model piece must therefore include 
additional information on how it relates to other pieces. In the 
case of a hierarchical structure, this amounts to define a set of 
interconnected components that communicate or share data 
through interface elements called ports. The nature of the ports 
may be abstracted either as directional signal-flows, for both 
discrete-time and continuous-time models, or as satisfying 
conservative-law relationships between quantities, for 
continuous-time models only. Conservative-law relationships 
assume the existence of two classes of specialized quantities, 
namely across quantities that represent an effort (e.g., a 
voltage for electrical systems or a velocity for mechanical 
systems), and through quantities that represent a flow (e.g., a 
current for electrical systems or a force for mechanical 
systems). They also state that so-called General Kirchhoff 
Potential Law (GPL) and General Kirchhoff Flow Law (GFL) 
are met. These two laws are essentially the Kirchhoff’s laws 
for electrical circuits generalized to any kind of conservative 
energy systems, e.g., mechanical, thermal, or fluidic systems.  

The interconnection of components in a level of hierarchy is 
done through nets that link two or more ports. The nature of a 
net is derived from the nature of the ports it links together, so 
it can be either a discrete-time (digital) net or a continuous-
time (analog) net. Nets only define topological relationships. 
Signals, as hierarchical collections of nets, are the model 
objects that actually carry data. This general definition models 
all kinds of physical quantities which are able to exchange 
energy or information between submodels [9] and should not 
be mistaken with the more specific VHDL definition of a 
signal. Depending on the nature of nets, signals may be either 
discrete-time (digital) or continuous-time (analog) signals. A 
mixed-signal model is a model that uses both discrete-time and 
continuous-time signals. 

The simulation of discrete-time models relies on event-
driven techniques for which the internal states of the model are 
only, and selectively, reevaluated when signals change their 
values. The reevaluation process includes the execution of 
Boolean functions or the execution of sequences of 
instructions. A so-called discrete-time (digital) simulation 
kernel is responsible for the management of the events and the 
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selective reevaluation of the model states. 
On the other hand, the simulation of continuous-time models 

uses a number of, usually numerical, techniques to solve the 
set of DAEs that come from the behavior of the system and its 
signal-flow or conservative-law connection semantics. The set 
of simulation techniques used form the so-called continuous-
time (analog) simulation kernel. As differential equations are 
discretized using a fixed or a variable time step, the true 
continuous-time behavior of the solutions is actually 
approximated as piecewise linear functions of time. The times 
at which the solutions are computed are called analog solution 
points or ASPs. The quality of the solution therefore depends 
on tolerances that define the discretization time step and other 
characteristic values related to the numerical techniques used 
[10]. Another important characteristic of the simulation of 
continuous-time models is that a consistent initial (quiescent) 
operating point is required. Without it, it is likely that 
inaccuracies or non-convergence issues will arise during the 
rest of the simulation.  

The simulation of mixed-signal models requires in addition 
mechanisms to convert between discrete and continuous 
representations of time and signal values, and a 
synchronization mechanism between the discrete-time and the 
continuous-time simulation kernels to handle mixed-signal 
interactions such as threshold crossings. Last but not least, a 
consistent quiescent operating point, this time possibly 
involving some discrete-time signals as well, is still required. 

A hardware description language (HDL) is a programming 
language for developing executable simulation models of 
hardware systems. In this paper, the considered hardware 
systems are not only electrical or electronic systems, but more 
generally heterogeneous systems. An HDL that can be used to 
describe models in several domains is said to be “multi-
disciplines” or “mixed-disciplines”. 

 

B. Two competitive Mixed-Signal HDLs 
VHDL-AMS is the result of an IEEE effort to extend the 

VHDL language to support the modeling and the simulation of 
analog and mixed-signal systems. The effort culminated in 
1999 with the release of the IEEE standard 1076.1-1999 [4]. 
Verilog-AMS, on the other hand, is intended to be an 
extension of the Verilog HDL language to also support the 
modeling and the simulation of analog and mixed-signal 
systems. Verilog is a digital HDL that has been released in 
1995 as IEEE standard 1365-1995. The Verilog-AMS 
language reference manual is currently being completed under 
the auspices of the Accellera consortium [11]. It has not been 
submitted yet to IEEE for standardization. 

Both the VHDL-AMS language and the Verilog-AMS 
language are mixed-signal HDLs. Both extend their respective 
digital HDL with new behavioral and structural language 
constructs and new simulation mechanisms. We give below a 
brief presentation of distinguished features of each language. 
More detailed insights will be given later when we discuss the 
case study. 

Each language supports continuous-time behavior, but uses 
different formulations. VHDL-AMS provides a notation for 
describing DAEs in a fairly general way. The == operator and 
the way the quantities (bound to ports or free) are declared 
allow the designer to write his equations mathematically, and 
both implicit and explicit formulations are supported. Verilog-
AMS provides a notation based on the so-called probe-source 
network formulation, that distinguishes between assignments 
of free quantities (with the operator =) and assignments of 
potential/flow quantities (with the operator <+) in the 
equations themselves with access functions. Both languages 
introduce the concept of a continuous-time, or analog, 
simulation kernel and both support the specification of initial 
conditions, the definition of piecewise-defined behavior (i.e., 
the definition of different regions of operations between which 
the model can dynamically switch during simulation), and can 
handle discontinuities. 

Each language supports the description of networks as 
conservative-law and signal-flow networks. As such, they 
support the description and the simulation of multi-discipline 
systems at these two levels of abstraction. VHDL-AMS does 
not provide any automatic mechanism to insert mixed-signal 
interfaces in a model, although it provides all the required 
language constructs to do it manually. Verilog-AMS supports 
the automatic insertion of so-called connect modules. 

Both languages have a canonical, tool independent, mixed-
signal simulation cycle that defines how to simulate a mixed-
signal description. VHDL-AMS has in addition a formal 
definition of how to initialize a mixed-signal model, while 
Verilog-AMS still lacks such a definition. Both languages 
support continuous-time analyses such as time-domain, DC, 
small-signal AC and noise analyses. 

Due to historical reasons, a continuous-time only, or analog 
only, subset of Verilog-AMS is defined and referred to as 
Verilog-A [12]. It is very likely that this subset will eventually 
disappear as tools will start to support the full Verilog-AMS 
language. There is no analog subset for VHDL-AMS. 

Verilog-AMS provides some kind of compatibility with the 
SPICE netlist format by defining so-called preferred primitive 
names, parameter names and port names for a limited number 
of SPICE elements. VHDL-AMS does not provide such kind 
of compatibility neither in the language definition nor in some 
standard library, although it has all the necessary language 
constructs to build a library of SPICE element models. 

VHDL-AMS provides a fairly generic support for defining 
tolerances. It allows for grouping models unknowns into 
classes of tolerances, each class being given a different name. 
The language does not define how the tolerance class names 
are mapped to actual simulator tolerance values, so the 
mapping is tool dependent. Verilog-AMS, on the other hand, 
does associate numerical tolerance values to the model 
unknowns using SPICE-like abstol and reltol tolerance 
specifications. 

Any VHDL-AMS design unit may be compiled separately 
and stored in a library. In addition, VHDL-AMS allows for a 
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clear separation between the interface of a model and its 
internal description and provides a mechanism to select the 
submodels to use through configuration. Both capabilities 
hence allow for much flexibility when it comes to model large 
complex hierarchical systems. Verilog-AMS models require 
that all textual information has to be available in the model to 
simulate, possibly by including it at appropriate places in the 
source code. 

The EDA tools used for implementing and simulating the 
models are Advance MS from Mentor Graphics for VHDL-
AMS models and AMS Simulator 2.0 from Cadence Design 
Systems for Verilog-AMS models. Both tools do not yet 
support the full language definitions so it is likely that the 
models presented in this paper could be written differently 
when the full power of each language becomes available. 

III. AIRBAG CASE STUDY 
This section describes the model of an airbag system [13] 

that mixes two time abstractions, namely discrete-time and 
continuous-time, five disciplines, namely mechanical, 
electrical, optical, thermal and chemical, and three connection 
semantics, namely conservative, continuous signal-flow, and 
digital signal-flow. 

A. Airbag system description 
Fig. 1 presents the synoptic view of the airbag system we 

are going to discuss. This figure acts as a reference throughout 
the rest of the paper. Each box references a submodel, with its 
name and its interface connectors. To each connector is 
associated a discipline, i.e. ME for Mechanical, EL for 
Electrical, TH for Thermal, OP for Optical, and a connection 
semantics, i.e. CS for Conservative-law, SF for Signal-Flow, 
and D for digital. For instance, the laser diode is a 
conservative system as far as its electrical and thermal 
behaviors are concerned, and a signal-flow model as far its 
optical behavior is concerned. 

From a physical point of view, the airbag, located in the 
steering wheel, has to be inflated when a major deceleration of 
the car occurs (usually more than 4 G). To protect the driver 
from the car wreck, the 60 liters of the airbag envelope have to 
be filled with inert gas (N2) in less than 5 milliseconds. Such a 
spectacular action can only be achieved by means of a violent 
chemical reaction which converts solid material into gas, 
initiated by the explosion of a propergol capsule, also located 
in the steering wheel. 

From a systemic and chronological point of view, the 
acceleration of the car is modeled as a 10 KHz sine wave, 
described in the submodel src_force in Fig. 1. Due to 
frictional resistance and structural elasticity, the resulting force 
applied to the seismic mass of the accelerometer is a damped 
sine-wave, with a peak amplitude that exceeds 4G in case of a 
front car impact. The src_volt submodels are used to 
supply the top and bottom electrodes of the electrical part of 
the acceleration sensor model, called accelerometer, with 
a 1 MHz sine-shaped signal. Thanks to the amplifier 

submodel, the middle electrode delivers an amplified 1 MHz 
sine-shaped signal which amplitude is proportional to the 
acceleration. This signal is then continuously compared to an 
acceleration threshold to detect the car impact condition thanks 
to the comparator submodel. When the car acceleration 
exceeds the airbag threshold, the comparator outputs a 1 MHz 
pulsed signal. To be sure that the airbag is not untimely 
triggered due to a spurious perturbation, 10 periods of the 
comparator output signal are counted up before the airbag 
collision signal is generated (10 periods means the acceleration 
must exceed the airbag threshold for more than 10 µs). This 
task is performed by the trigger submodel that also 
converts the digital collision information, a simple rising edge, 
into its analog equivalent. The trigger output is then inverted 
by means of the inverter submodel that is based on the 
EKV transistor model. The CMOS inverter drives a laser-
diode, described in the laser_diode submodel, which 
emits in turn the requested collision information (a falling 
edge) into an optical fiber, described in the xmedium 
submodel, as an emission of monochromatic light. The laser-
diode being a very temperature sensitive device located near 
the CMOS inverter, we seized the opportunity to introduce a 
thermal network, described in the th_network submodel, 
which models thermo-electronic interaction between electrical 
and optical devices. After a small delay due to light 
propagation through the optical fiber, a pin photo-diode, 
described in the photo_diode submodel, extracts the 
propagated information at the other extremity of the fiber and 
uses the falling edge to actually trigger the airbag chemical 
reaction. The triggering of the chemical reaction is described 
in the chemtrig submodel, which would be the place for 
modeling the propergol explosion in a more realistic model. 
For now, the falling edge of the triggering signal propagated 
through the optical fiber directly acts as a firing event for the 
chemical reactions. Last but not least, the airbag inflation is 
modeled as a thermo dynamical kinetic process described in 
the chemsys submodel. Considering the airbag as an 
adiabatic and isotherm system, the inert gas N2 needed to 
inflate the airbag follows the perfect gas law, and therefore the 
gas pressure and volume can be expressed in terms of 
evolution of the number of moles of N2 as a function of time, 
provided by a set of three chemical kinetic equations. 

Note that the medium used to propagate the command to 
inflate the airbag from the acceleration sensor to the actuator 
relies on the use of an optical fiber, which can not actually be 
found in any real car. However, in order to experience the 
modeling and signal-flow interconnecting capabilities of the 
studied HDLs, we made the assumption that the accelerometer 
sensor is located far from the airbag actuator. 

In the rest of the section, we compare the two HDLs on 
meaningful parts of source codes. Each comparison starts with 
a description of the modeled functionality. Then the two 
corresponding source codes that realize the functionality are 
presented and discussed. 
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Fig. 1.  Synoptic view of the airbag system. 
 

B. The accelerometer submodel 
The accelerometer submodel is an interesting example that 

mixes two disciplines, mechanics and electronics. The 
accelerometer is interfaced with the upstream acceleration 
stimulus sine-wave generator and with the downstream analog 
electrical comparator. Therefore, as both a mechanical and 
electrical device, the accelerometer is subject to conservative 
general Kirchhoff’s laws GPL and GFL that state energy 
conservation. 

The accelerometer has the structure presented in Fig. 2 [14]. 
 

 
 

Fig.  2. Synoptic view of the accelerometer. 
 
Acceleration sensing is performed in two steps. First, the car 

acceleration is transformed into a mechanical displacement, 
thanks to the use of a primary transducer composed of a 
pendulous or tethered seismic mass. Second, the mechanical 

displacement is converted into an electrical signal by a 
secondary transducer, which can rely on piezoelectric or 
capacitive properties. In the primary transducer, the micro 
flexural structure can be modeled as a damped harmonic 
oscillator, i.e., as a 2nd order differential equation such as: 

 

 
2

2
( ) d x dxF t M D kx

dt dt
= + +          (1) 

 
where F is the force applied to the seismic mass, x is the 
displacement of the mass M, D is the damping coefficient and 
k is the spring stiffness. The secondary transducer uses the 
seismic mass as the middle plate of a differential capacitance 
circuit. The displacement x of the seismic mass modifies the 
gap between plates and hence the differential capacitance 
values according to the following equations: 

 

 top bottom

A AC C
d x d x
ε ε= =
− +

        (2) 

 
where ε is the vacuum permittivity constant, A the surface of 
the capacitance plate, and d the initial gap between two plates. 
When a 1 MHz sine-shaped voltage is applied to the top and 
the bottom electrodes, the currents through the two 
capacitances follow the electro kinetic equations: 

 

 . .top bottom
top top bottom bottom

dV dVI C I C
dt dt

= =   (3) 
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(1) to (3) describe the overall ideal electro-mechanical 
behavior of the accelerometer. A more realistic model would 
include other effects such as nonlinear capacitors or 
electrostatic forces. 

 
1) VHDL-AMS description 

 
The VHDL-AMS source code of the accelerometer is given 

in Fig. 3. To implement the set of multi-discipline differential 
equations, one has to make reference to the definitions related 
to electrical and mechanical systems (lines 1 to 4). These 
packages contain all the information needed to declare the two 
conservative translational ports tmass and tmref (line 16), 
and the three electrical ports tetop, temid, and tebot 
(line 17) and to use physical constants such as EPS0, the 
permittivity of the vacuum (lines 36 and 37). The default 
values of generic parameters (lines 9 to 14) make use of 
predefined scale factors from the energy_systems 
package to improve readability. The name of the library 
ieee_proposed means that the definitions contained in 
these packages are not completely stable yet. They should be 
however defined as some IEEE standard in a near future. 

The model interface is described in the entity declaration 
(lines 6 to 18) and is decomposed into the specification of 
generic parameters (lines 8 to 14) and of the interface ports 
(lines 16 and 17). The generic parameters make the submodel 
reusable in other models than only the airbag system model. 
The actual values of mechanical and geometrical parameters 
may be changed for each specific instance of the accelerometer 
model. The port interface defines conservative-law mechanical 
and electrical connection points or terminals. 

The accelerometer behavior is defined in a separate 
architecture body called bhv (lines 20 to 41). Lines 22 to 28 
declare quantities, which correspond in VHDL-AMS to the 
unknowns of the system of equations to be solved by the 
analog solver. In the lines 22 to 24, a number of branch 
quantities are declared. Branch quantities are defined between 
two ports (terminal in VHDL-AMS) and represent it’s across 
or through aspects. The first across/through set of branch 
quantities (line 22) belongs to the mechanical discipline, while 
the other two sets belong to the electrical discipline. These 
quantities are used to express equations (1) to (3). Then, a 
number of so-called free quantities, that is quantities not 
bound to any terminal, are declared (lines 26 to 28). These 
quantities are mainly used to break down complex 
relationships into more manageable and understandable pieces. 

VHDL-AMS provides a fairly general notation for 
expressing DAEs based on the so-called simultaneous 
statements. In essence, simultaneous statements denote the 
constitutive equations in a model that will be gathered into a 
system of equations to be solved. From the user viewpoint, 
VHDL-AMS does not make any difference between explicit 
and implicit equations. The simple simultaneous statement 
simply states that, once the values of the unknowns (quantities) 
are computed at some time point, the evaluation of the left 

hand side expression of the “==” statement   minus the right 
hand side expression  gives a value close to zero, within the 
defined tolerances.  

The accelerometer behavior is described using eight 
simultaneous statements (lines 31 to 40). Note the use of the 
'dot attribute to denote a first order time derivative of the 
quantity prefix. One could have rather selected the velocity as 
the across mechanical quantity instead of the position, but this 
would have enforced writing (1) with an integral term. Also, 
the use of the intermediate quantity cd_vel to hold the 
velocity allows to only use first order time derivatives. This is 
usually preferred as higher order time derivatives are usually 
computed with less accuracy. Anyway, the notation 
cd_pos'dot'dot is perfectly legal. As one can see, the 
VHDL-AMS equations of lines 31 to 40 perfectly match the 
physical equations (1) to (3). 

 
(1) library ieee_proposed; 
(2)     use ieee_proposed.energy_systems.all; 
(3)     use ieee_proposed.electrical_systems.all; 
(4)     use ieee_proposed.mechanical_systems.all; 
(5)  
(6) entity cap_sensor is 
(7)    generic ( 
(8)       -- mechanical properties 
(9)       M : mass      := 0.16*NANO;              -- seismic mass 
(10)       D : damping   := 4.0*MICRO;              -- damping coefficient 
(11)       K : stiffness := 2.6455;                 -- spring stiffness 
(12)       -- geometrical properties 
(13)       A : real      := 2.0*MICRO*110.0*MICRO;  -- capacitor area 
(14)       D0: real      := 1.5*MICRO);             -- initial position 
(15)   port ( 
(16)       terminal tmass, tmref       : translational; 
(17)       terminal tetop, temid, tebot: electrical); 
(18) end entity cap_sensor; 
(19)  
(20) architecture bhv of cap_sensor is 
(21)    -- branch quantities 
(22)    quantity cd_pos across cd_force through tmass to tmref; 
(23)    quantity vtm    across itm      through tetop to temid; 
(24)    quantity vbm    across ibm      through tebot to temid; 
(25)    -- free quantities 
(26)    quantity cd_vel: velocity;        -- comb drive velocity 
(27)    quantity dtm, dbm: displacement;  -- comb drive displacements 
(28)    quantity ctm, cbm: capacitance;   -- capacitances 
(29) begin 
(30)    -- compute displacement of comb drive 
(31)    cd_vel == cd_pos'dot; 
(32)    cd_force == K*cd_pos + D*cd_vel + M*cd_vel'dot; 
(33)    dtm == D0 + cd_pos; 
(34)    dbm == D0 - cd_pos; 
(35)    -- compute change in capacitances 
(36)    ctm == A*EPS0/dtm; 
(37)    cbm == A*EPS0/dbm; 
(38)    -- compute generated current 
(39)    itm == ctm*vtm'dot; 
(40)    ibm == cbm*vbm'dot; 
(41) end architecture bhv; 

  
Fig.  3. VHDL-AMS model of the accelerometer. 
 
 

2) Verilog-AMS description 
 
The Verilog-AMS source code for the accelerometer is 
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given in Fig. 4. The first two lines include statements that 
define the kinematic and electrical disciplines as well 
as physical constants such as P_EPS0, the permittivity of 
vacuum. As the constant is defined as a macro in the 
“constants.h” file, it has to be used with the back tick 
prefix, as shown in lines 33 and 34. 

The model interface and the model body are included in the 
same module statement. The interface ports are defined in 
three steps: the port names (line 4), the port directions (line 6), 
and the port disciplines (lines 8 to 11). As all interface ports 
belong to a discipline, they are declared of mode inout (this 
declaration is not actually required as inout is the default 
mode). The default values of generic parameters (lines 14 to 
19) make use of predefined scale factors to improve 
readability. Verilog-AMS is case sensitive so the “m” scale 
factor means  10-3 while the “M” scale factor means 106! Lines 
19 and 20 declare a number of real variables that hold 
intermediate results.  

Verilog-AMS encapsulates the description of continuous-
time behavior in so-called analog blocks. The language 
imposes to have only one analog block in a module. For that 
reason, the accelerometer behavior is defined in a single 
analog statement containing a sequence of several 
statements (lines 24 to 42). All the statements are executed 
sequentially, and their order is relevant. The contribution 
statements that define the currents in the capacitors have to be 
at the end of the block (lines 40 and 41) otherwise the current 
values would not be correct. Simple assignments to integer or 
real variables are achieved using the “=” sign, while two forms 
for expressing continuous-time behavior are provided.  

The first form, used in this submodel, is the so-called 
contribution statement, with the contribution operator “<+” 
that may only affect quantities referred to by access functions. 
The second (implicit) form is called indirect branch 
assignment and allows for describing equations using the state-
space formulation. 

In the model, it is possible to use the contribution statement 
since all equations may be written in explicit form. The access 
functions for the kinematic discipline are “Pos” for the 
potential/across quantity and “F” for the flow/through 
quantity. There is also a kinematic_v discipline available 
where the potential/across quantity is a velocity, but the model 
uses the position instead for the same reasons mentioned in the 
description of the VHDL-AMS model. Quantities like 
“V(tetop, temid)” (a potential) are qualified as probes, 
as they appear at the right-hand side of the contribution 
statement, while other quantities, such as “I(tetop, 
temid)” (a flow) would have been qualified as sources as 
they appear on the left-hand side. The same quantity cannot be 
both a source and a probe. The “<+” sign also clearly indicates 
that the operation is additive. The ddt operator computes the 
first order time derivative of an expression. This contrasts with 
the VHDL-AMS 'dot attribute that can only be applied to a 
quantity. There are however two restrictions imposed by the 
Cadence implementation on the use of the ddt operator. First, 

nesting ddt operators is not allowed and second, this operator 
may only be applied to nodes. This forces to declare additional 
nodes in the model (lines 10 and 11) and to add contribution 
statements (lines 26 to 29, and 36 to 41). It is not clear, 
though, whether these restrictions are fundamental to the 
Verilog-AMS language definition or only a consequence of the 
Cadence implementation. 

 
 

(1) `include "disciplines.h" 
(2) `include "constants.h" 
(3)  
(4) module cap_sensor (tmass, tmref, tetop, temid, tebot); 
(5)  
(6)    inout tmass, tmref, tetop, temid, tebot; 
(7)  
(8)    kinematic tmass, tmref; 
(9)    electrical tetop, temid, tebot; 
(10)    electrical cd_vel, cd_accel; 
(11)    electrical vdiff_tm, vdiff_bm, vdiff_dtm, vdiff_dbm; 
(12)  
(13)    // mechanical properties 
(14)    parameter real M  = 0.16n;    // seismic mass 
(15)    parameter real D  = 4u;       // damping coefficient 
(16)    parameter real K  = 2.6455;   // spring stiffness 
(17)    // geometrical properties 
(18)    parameter real A  = 220f;     // capacitor area 
(19)    parameter real D0 = 1.5u;     // initial position 
(20)  
(21)    real cd_pos; 
(22)    real dtm, dbm, ctm, cbm; 
(23)  
(24)    analog begin 
(25)       // compute displacement of comb drive 
(26)       cd_pos = Pos(tmass); 
(27)       V(cd_vel) <+ ddt(Pos(tmass)); 
(28)       V(cd_accel) <+ ddt(V(cd_vel)); 
(29)       F(tmass, tmref) <+ K*cd_pos + D*V(cd_vel) + M*V(cd_accel); 
(30)       dtm = D0 + cd_pos; 
(31)       dbm = D0 - cd_pos; 
(32)       // compute change in capacitances 
(33)       ctm = A*`P_EPS0/dtm; 
(34)       cbm = A*`P_EPS0/dbm; 
(35)       // compute generated current 
(36)       V(vdiff_tm) <+ V(tetop, temid); 
(37)       V(vdiff_bm) <+ V(tebot, temid); 
(38)       V(vdiff_dtm) <+ ddt(V(tetop, temid)); 
(39)       V(vdiff_dbm) <+ ddt(V(tebot, temid)); 
(40)       I(tetop, temid) <+ ctm*V(vdiff_dtm); 
(41)       I(tebot, temid) <+ cbm*V(vdiff_dbm); 
(42)    end 
(43)  
(44) endmodule // cap_sensor 

 
Fig.  4. Verilog-AMS model of the accelerometer. 
 

 

C. The trigger submodel 
The trigger submodel has mostly a digital behavior that can 

be conceptually modeled as a single process, sensitive to the 
digital comparator output changes. As the output signal has to 
be analog for interconnection reasons with the CMOS inverter 
based on EKV MOST models, some D/A interface must be 
provided in the model. A 50 KHz clock, internal to the trigger 
submodel, serves as a duty cycle and is anded with the 
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comparator output signal, according to Fig. 5, to count up to 
10 periods. When 10 periods have been counted up, the 
collision output signal toggles. 

 

 
 

Fig.  5. Counting 10 pulses of the comparator to produce  
the collision signal. 
 
 

1) VHDL-AMS Description 
 
The VHDL-AMS source code for the trigger is given in Fig. 

6. The model first references predefined packages that include 
the definitions of the logic value system to be used for digital 
signals, essentially the std_logic type, and the definitions 
related to the electrical discipline, essentially the 
electrical nature (lines 1 to 5). 

The model interface declares both event-driven (line 15) 
and continuous-time (line 16) ports. The latter functionally 
represent model outputs, although nothing in the interface 
declaration actually stresses that. 

The trigger behavior is defined in a separate architecture 
body called bhv (lines 20 to 47). Local declarations include 
the digital internal clock signal intclk (line 22), the 
discrete-time representation of the output (line 23) and two 
branch quantities that represent an ideal source connected to 
the terminal ports tp and tm (line 25). The model body is 
decomposed in two concurrent processes and one simultaneous 
statement. The first process (line 29) generates the internal 
clock, the second process (lines 31 to 43) is sensitive to an 
event on either the internal clock or on the digital input din 
and counts until it reaches the requested number of pulses. 
Then, the discrete-time signal sout is inverted. The use of 
this real-valued signal is useful to detect the triggering event 
accurately. The simultaneous statement (line 45) defines the 
ideal source as a voltage source whose value is the analog 
equivalent of the internal signal sout, but with ramping 
transitions between states. The rise and fall times of the ramps 
are identical and are defined by the generic parameter TT. 
Note that it is very important to define a non-default initial 
value for signal sout to avoid convergence problems during 
the computation of the quiescent point of the model. In fact, a 
real-valued signal object gets a default initial value of 
real'left, that is the largest negative floating-point value, 
and this is usually not a good value to start iterations at DC. 
This explains why the signal sout has an initial value of 0.0 
(line 23). As a general rule, all real-valued signals involved in 

simultaneous statements should have a non-default value equal 
to 0.0 or any other meaningful value. 

 
(1) library ieee; 
(2)     use ieee.std_logic_1164.all; 
(3)  
(4) library ieee_proposed; 
(5)     use ieee_proposed.electrical_systems.all; 
(6)  
(7) entity trigger is 
(8)    generic ( 
(9)       VOAMPL : voltage := 2.5;      -- output voltage amplitude 
(10)       ICLKPER: time    := 20 us;    -- internal clock period 
(11)       NPULSES: natural := 10;       -- #pulses to count 
(12)       TT     : real    := 100.0e-9  -- output transition time 
(13)    ); 
(14)    port ( 
(15)       signal   din   : in std_logic; 
(16)       terminal tp, tm: electrical 
(17)    ); 
(18) end entity trigger; 
(19)  
(20) architecture bhv of trigger is 
(21)  
(22)    signal intclk: std_logic := '0'; 
(23)    signal sout  : real := 0.0; 
(24)  
(25)    quantity vout across iout through tp to tm; 
(26)  
(27) begin 
(28)  
(29)    iclkgen: intclk <= not intclk after ICLKPER/2; 
(30)  
(31)    process 
(32)       variable count: natural := 0; 
(33)    begin 
(34)       wait on din, intclk; 
(35)       if din'event and din = '1' and intclk = '1' then 
(36)          count := count + 1; 
(37)          if count = NPULSES then 
(38)             sout <= 1.0 - sout; 
(39)          end if; 
(40)       end if; 
(41)       if intclk'event and intclk = '0' then  -- reset 
(42)          count := 0; 
(43)       end if; 
(44)    end process; 
(45)    vout == VOAMPL*sout'ramp(TT); 
(46)  
(47) end architecture bhv; 

 
Fig.  6. VHDL-AMS model of the trigger. 

 
 

2) Verilog-AMS Description 
 
The Verilog-AMS source code for the trigger is given in 

Fig. 7. The model starts with a timescale directive which 
defines the time unit and the time precision used in the model. 
In our case, the internal clock period ICLKPER  is defined as 
a multiple of 100 ns, while the time precision is 1 ns. A second 
include statement essentially makes the definition of the 
electrical discipline available to the model. 

The model interface declares both event-driven (lines 5 and 
7) and continuous-time (lines 6 and 8) ports. The discipline of 
the digital port din is actually implicitly defined as being 
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logic through the wire net type. Then come a number of 
generic parameters whose actual values may be changed for 
each instance of the model (lines 10 to 13), and a number of 
local declarations (lines 15 to 17). One can see that there is no 
real difference between variables and signals in Verilog-AMS. 
The reg type variables have logic values (namely 0, 1, X or 
Z) and may only be assigned from within a process. 

The model body is decomposed into three processes and 
one analog statement. The initial process (lines 19 to 23) 
is executed only once at the beginning of the simulation to 
initialize some objects, while the two other always processes 
(lines 25 and 27 to 34) execute cyclically as soon as an event 
occurs on sensitive signals, namely intclk for the first one 
and din and intclk for the second one. One process is 
dedicated to the internal clock generation (line 25) and the 
other process actually counts the number of input pulses and 
triggers the output signal when the requested number of pulses 
is reached. As the output port tp is in the continuous-time 
domain, some D/A interface must be used to convert the 
internal digital variable sout that exhibits steep transitions to 
an analog equivalent that does not. This is done with an analog 
process (lines 36) that uses the transition filter to 
generate ramps on the output voltage. The rise and fall times 
are identical and are controlled by the parameter TT. 

 
(1) `timescale 100ns/1ns  
(2) `include "disciplines.h" 
(3)  
(4) module trigger (din, tp); 
(5)    input din; 
(6)    inout tp; 
(7)    wire din; 
(8)    electrical tp; 
(9)  
(10)    parameter real VOAMPL  = 2.5;  // output voltage amplitude 
(11)    parameter      ICLKPER = 200;  // internal clock period 
(12)    parameter real NPULSES = 10;   // #pulses to count 
(13)    parameter real TT      = 100n; // output transition time 
(14)  
(15)    reg intclk; 
(16)    integer count; 
(17)    real sout; 
(18)  
(19)    initial begin 
(20)       intclk = 0; 
(21)       count = 0; 
(22)       sout = 0; 
(23)    end 
(24)  
(25)    always #(ICLKPER/2) intclk = !intclk; 
(26)  
(27)    always @(posedge din or negedge intclk) 
(28)    begin 
(29)       if ((din == 1) && (intclk == 1)) begin 
(30)          count = count + 1; 
(31)          if (count == NPULSES) sout = 1.0 - sout; 
(32)       end 
(33)       else if (intclk == 0) count = 0; 
(34)    end 
(35)  
(36)    analog V(tp) <+ VOAMPL*transition(sout, 0, TT); 
(37)  
(38) endmodule // trigger 

 

Fig.  7. Verilog-AMS model of the trigger. 

D. The CMOS inverter submodel 
The CMOS inverter is composed of one nMOS and one 

pMOS transistor and is connected to its direct environment as 
shown in Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.  8. The CMOS inverter and its direct environment. 
 
 
In the airbag system, the nMOS transistor has electrical 

connections with the trigger output, with the pMOS transistor 
to form the inverter, and with the laser diode. When located on 
the same substrate, thermo-electronic interactions take place 
between these devices. Heat diffusion through the 
corresponding materials can be modeled by different means 
[15][16]. In our model, we do this by sourcing dissipated 
power into a thermal RC network [16], which represents the 
material properties of the different layers (thermal resistances 
and capacitances of the heat sink and the package). The 
thermal network is composed of thermal capacitors, resistors 
and an ambient temperature generator. All the devices are 
thermally interconnected through coupling thermal resistances: 
RNLed, RPLed, and RNP. 

The pMOS and nMOS transistor behaviors are described 
using the EKV MOST model, an accurate analytical model for 
deep submicron designs [17][18]. It is a charge-based compact 
model that consistently describes effects on charges, 
transcapacitances, drain current and transconductances in all 
regions of operation of the MOSFET transistor (weak, 
moderate, strong inversion) as well as conduction to 
saturation. The modeled effects include all the essential effects 
present in sub micron technologies. Several electrical 
parameters are highly dependent on temperature, namely the 
threshold voltage, the mobility, the thermal voltage, etc... 
Their respective temperature variations are taken into account 
by appropriate coefficients in the model equations [19]. 

 
1) VHDL-AMS Description 
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The VHDL-AMS source code for the CMOS inverter is 
given in Fig. 9. It is a structural model that instantiates two 
components: one pMOS transistor called PMOS (lines 22 to 
36) and one nMOS transistor called NMOS (lines 38 to 52). 
Both the generic parameters and the port associations use the 
named association mechanism for improved readability. 

It is possible to develop a single transistor model that is 
valid for both pMOS and nMOS transistors. The trick is to 
change signs of quantities and parameters appropriately. In this 
paper, we present a simplified version of the EKV MOST 
model as the full version would have needed several pages of 
code. Fig. 10 gives the simplified VHDL-AMS model of one 
transistor. The MTYP generic parameter allows for defining the 
type of the MOS transistor and also the sign of some relevant 
voltages and parameters (defined in line 8, used in lines 54 and 
68). Note that some actual parameters in the MOS instances 
must anyway have the right sign (e.g., VT0 in Fig. 10). The 
interface ports are the four standard electrical pins of a 
MOSFET transistor, plus an additional thermal pin to account 
for dynamic thermal exchanges between the transistor and its 
environment (line 25). The order in which terminals are 
specified in a branch quantity declaration defines the direction 
of the flow. Considering the thermal port, the temperature 
temp is measured between the port and the thermal reference 
(line 39), while the heat gpower is flowing out the device 
from the thermal reference to the port (line 38). This way, the 
thermal interaction is really bi-directional and the self-heating 
behavior of the device is properly taken into account (line 69). 

The electrical behavior of the EKV MOST model is actually 
procedural so it is more efficient to use the sequential 
statements proposed by VHDL-AMS. The simultaneous 
procedural statement could be used, but, as it is not yet 
supported in the Mentor tool, we use a function instead, 
namely the f_id function, to implement the computation of 
the drain current (lines 47 to 65). The equation of the drain 
current is then implemented in a single simultaneous statement 
with the appropriate signs for the function arguments to 
account for the actual model type (line 68). Note that all 
terminal potentials are defined relatively to the bulk terminal, a 
specificity of the EKV MOST model. 

 
(1) library ieee_proposed; 
(2)     use ieee_proposed.energy_systems.all; 
(3)     use ieee_proposed.electrical_systems.all; 
(4)     use ieee_proposed.thermal_systems.all; 
(5)  
(6) entity cmos_inv is 
(7)    generic ( 
(8)       WN: real := 15.0*MICRO; 
(9)       LN: real := 0.15*MICRO; 
(10)       WP: real := 15.0*MICRO; 
(11)       LP: real := 0.15*MICRO 
(12)    ); 
(13)    port ( 
(14)       terminal tin, tout, tvdd, tvss: electrical; 
(15)       terminal tjn, tjp             : thermal 
(16)    ); 
(17) end entity cmos_inv; 
(18)  
(19) architecture str of cmos_inv is 

(20)  
(21) begin 
(22)    PMOS: entity work.mos(ekv_simple) 
(23)             generic map ( 
(24)                MTYP => -1.0, 
(25)                WEFF => WP, 
(26)                LEFF => LP, 
(27)                VT0  => -0.4, 
(28)                TCV  => -1.5*MILLI 
(29)             ) 
(30)             port map ( 
(31)                td => tout, 
(32)                tg => tin, 
(33)                ts => tvdd, 
(34)                tb => tvdd, 
(35)                tj => tjp 
(36)             ); 
(37)  
(38)    NMOS: entity work.mos(ekv_simple) 
(39)             generic map ( 
(40)                MTYP => 1.0, 
(41)                WEFF => WN, 
(42)                LEFF => LN, 
(43)                VT0  => 0.4, 
(44)                TCV  => 1.5*MILLI 
(45)             ) 
(46)             port map ( 
(47)                td => tout, 
(48)                tg => tin, 
(49)                ts => tvss, 
(50)                tb => tvss, 
(51)                tj => tjn 
(52)             ); 
(53) end architecture str; 

 
Fig.  9. VHDL-AMS structural model of the CMOS 

inverter. 
 
(1) library ieee; use ieee.math_real.all; 
(2) library ieee_proposed; 
(3)     use ieee_proposed.energy_systems.all; 
(4)     use ieee_proposed.electrical_systems.all; 
(5)     use ieee_proposed.thermal_systems.all; 
(6) entity mos is 
(7)    generic ( 
(8)       MTYP : real := 1.0;          -- NMOS: 1.0, PMOS: -1.0 
(9)       -- geometrical parameters 
(10)       WEFF : real := 1.0*MICRO;    -- effective channel width 
(11)       LEFF : real := 0.15*MICRO;   -- effective channel length 
(12)       -- threshold voltage and substrate body effect parameters 
(13)       VT0  : real := 0.4;          -- long channel thresh. voltage (NMOS!) 
(14)       PHI  : real := 0.97;         -- bulk Fermi potential 
(15)       GMA: real := 0.71;         -- body effect parameter 
(16)       -- mobility parameters 
(17)       KP   : real := 453.0*MICRO;  -- transconductance parameter 
(18)       THETA: real := 50.0*MILLI;   -- mobility reduction coefficient 
(19)       -- temperature coefficients 
(20)       TCV  : real := 1.5*MILLI;    -- temp. coef, of thres. voltage 
(21)       BEX  : real := -1.5          -- temp. coef. of trans. parameter 
(22)    ); 
(23)    port ( 
(24)       terminal td, tg, ts, tb: electrical; 
(25)       terminal tj            : thermal 
(26)    ); 
(27) end entity mos; 
(28)  
(29) architecture ekv_simple of mos is 
(30)    constant KOQ    : real := K/Q; 
(31)    constant TEMPREF: real := 300.15; 
(32)    -- electrical branch quantities 
(33)    quantity vg across tg to tb; 
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(34)    quantity vd across td to tb; 
(35)    quantity vs across ts to tb; 
(36)    quantity ids through td to ts; 
(37)    -- thermal branch quantities 
(38)    quantity gpower through thermal_ref to tj; 
(39)    quantity temp   across  tj to thermal_ref; 
(40)  
(41)    function i_v (constant v: real) return real is 
(42)       variable x: real; 
(43)    begin 
(44)       return (log(1.0 + 0.5*exp(v)))**2; 
(45)    end function i_v; 
(46)  
(47)    function f_id (temp, vg, vs, vd: real) return real is 
(48)       variable id, vt, ratio, eg, egref: real; 
(49)       variable vto_th, kp_th: real; 
(50)       variable vgprime_0, vgprime, vp, iff, irr, beta, n: real; 
(51)    begin 
(52)       vt := KOQ*temp + 1.0e-6; 
(53)       ratio := abs(temp/TEMPREF + 1.0e-6); 
(54)       vto_th := MTYP*(VT0 - TCV*(temp - TEMPREF)); 
(55)       kp_th := KP*(ratio**BEX); 
(56)       vgprime_0 := vg - vto_th + PHI + GMA*sqrt(PHI); 
(57)       vgprime:=0.5*(vgprime_0+sqrt(vgprime_0*vgprime_0+1.0e-3)); 
(58)       vp := vgprime - PHI 
(59)  - GMA*(sqrt(vgprime + 0.25*GMA*GMA) - 0.5*GMA); 
(60)       iff := i_v((vp - vs)/vt); 
(61)       irr := i_v((vp - vd)/vt); 
(62)       beta := kp_th*(WEFF/LEFF)*(1.0/(1.0 + THETA*vp)); 
(63)       n := 1.0; 
(64)       return 2.0*n*beta*vt*vt*(iff - irr) + 1.0e-10; 
(65)    end function f_id; 
(66)  
(67) begin 
(68)    ids == MTYP*f_id(temp, MTYP*vg, MTYP*vs, MTYP*vd); 
(69)    gpower == abs(ids*(vd - vs)); 
(70) end architecture ekv_simple; 

 
Fig. 10. VHDL-AMS model of a simple EKV MOS model. 
 

 
2) Verilog-AMS Description 

 
The Verilog-AMS source code for the CMOS inverter is 

given in Fig. 11. It is also a structural model that instantiates 
two MOSFET transistor components. Both the generic 
parameter and the port associations use the named association 
mechanism for improved readability. Note that the include 
statement in line 3 should be typically inserted in the top-level 
model of the airbag system only. Including the same file in 
several places is a common mistake and compiler directives 
are usually included to prevent this. 

Fig. 12 gives the Verilog-AMS model of the simplified 
EKV MOST model. The use of an analog block is natural here 
as the EKV model is inherently procedural (lines 32 to 53). 
Local variables to hold terminal voltages are used in the block 
(lines 33 to 35). This is done to avoid scattering access 
functions throughout the code and also to use the right signs 
depending on the MOS type. A utility macro “I_V” is defined 
to realize a smooth interpolation function (line 4). The macro 
is expanded in-line in the code with the appropriate parameter 
substitution (lines 45 and 46). Note the use of the predefined 
limexp function, which implements an exponential function 
whose value is limited during the solution iterations. This is 

very useful to prevent arithmetic overflow in intermediate 
computations that may typically occurs in semiconductor 
models. At the end of the analog block, the computed drain 
current id is assigned as a flow contribution between the td 
and ts electrical terminals (line 50), and the self-heating heat 
is assigned as a flow contribution to the thermal terminal tj 
through the Pwr()access function (line 52). The flow is 
defined from the thermal ground, as declared in lines 9 and 10 
to the terminal tj. 

 
(1) `include "disciplines.h" 
(2)  
(3) `include "mos_ekv_simple.v" 
(4)  
(5) module cmos_inv (tin, tout, tjn, tjp, tvdd, tvss); 
(6)  
(7)    inout tin, tout, tjn, tjp, tvdd, tvss; 
(8)    electrical tin, tout, tvdd, tvss; 
(9)    thermal tjn, tjp; 
(10)  
(11)    parameter real WP = 60u; 
(12)    parameter real WN = 30u; 
(13)    parameter real LP = 0.15u; 
(14)    parameter real LN = 0.15u; 
(15)  
(16)    mos_ekv           #(.MTYP(-1.0), 
(17)                        .WEFF(WP), 
(18)                        .LEFF(LP), 
(19)                        .VT0(-0.4), 
(20)                        .TCV(-1.5m)) 
(21)                mp    (.td(tout), 
(22)                       .tg(tin), 
(23)                       .ts(tvdd), 
(24)                       .tb(tvdd), 
(25)                       .tj(tjp)); 
(26)  
(27)    mos_ekv           #(.MTYP(1.0), 
(28)                        .WEFF(WN), 
(29)                        .LEFF(LN), 
(30)                        .VT0(0.4), 
(31)                        .TCV(1.5m)) 
(32)                mn    (.td(tout), 
(33)                       .tg(tin), 
(34)                       .ts(tvss), 
(35)                       .tb(tvss), 
(36)                       .tj(tjn)); 
(37) endmodule // cmos_inv 
 
Fig.  11. Verilog-AMS structural model of the CMOS inverter. 
 
(1) `include "disciplines.h" 
(2) `include "constants.h" 
(3)  
(4) `define I_V(v) pow(ln(1.0 + 0.5*limexp(v)),2) 
(5)  
(6) module mos_ekv (td, tg, ts, tb, tj); 
(7)    inout td, tg, ts, tb, tj; 
(8)    electrical td, tg, ts, tb; 
(9)    thermal tj, th_gnd; 
(10)    ground th_gnd; 
(11)  
(12)    parameter real MTYP  = 1.0;      // NMOS: 1.0, PMOS: -1.0 
(13)    // geometrical parameters 
(14)    parameter real WEFF  = 1.0e-6;   // effective channel width 
(15)    parameter real LEFF  = 0.15e-6;  // effective channel length 
(16)    // threshold voltage and substrate body effect parameters 
(17)    parameter real VT0   = 0.4;      // long channel threshold voltage 
(18)    parameter real PHI   = 0.97;     // bulk Fermi potential 
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(19)    parameter real GMA = 0.71;     // body effect parameter 
(20)    // mobility parameters 
(21)    parameter real KP    = 453.0e-6; // transconductance parameter 
(22)    parameter real THETA = 50.0e-3;  // mobility reduction coefficient 
(23)    // temperature coefficients 
(24)    parameter real TCV   = 1.5e-3;   // temp. coef, of threshold voltage 
(25)    parameter real BEX   = -1.5;     // temp. coef. of transcond. param. 
(26)  
(27)    real vt, temp, tempref, ratio, eg, egref; 
(28)    real vto_th, kp_th, vgprime_0, vgprime, vp; 
(29)    real vg, vs, vd; 
(30)    real iff, irr, beta, n, id, gpower; 
(31)  
(32)    analog begin 
(33)       vg = MTYP*V(tg, tb); 
(34)       vs = MTYP*V(ts, tb); 
(35)       vd = MTYP*V(td, tb); 
(36)       tempref = 300.15; temp = Temp(tj); 
(37)       vt = `P_K*temp/`P_Q + 1.0e-6; 
(38)       ratio = abs(temp/tempref + 1.0e-6); 
(39)       vto_th = MTYP*(VT0 - TCV*(temp - tempref)); 
(40)       kp_th = KP*pow(ratio,BEX); 
(41)       vgprime_0 = vg - vto_th + PHI + GMA*sqrt(PHI); 
(42)       vgprime =0.5*(vgprime_0+sqrt(vgprime_0*vgprime_0+1.0e-3)); 
(43)       vp = vgprime - PHI 
(44)            - GMA*(sqrt(vgprime + 0.25*GMA*GMA) - 0.5*GMA); 
(45)       iff = `I_V((vp - vs)/vt); 
(46)       irr = `I_V((vp - vd)/vt); 
(47)       beta = kp_th*(WEFF/LEFF)*(1.0/(1.0 + THETA*vp)); 
(48)       n = 1.0; 
(49)       id = MTYP*2.0*n*beta*vt*vt*(iff - irr) + 1.0e-10; 
(50)       I(td, ts) <+ id; 
(51)       gpower = abs(id*(vd - vs)); 
(52)       Pwr(th_gnd, tj) <+ abs(id*(vd - vs)); 
(53)    end 
(54) endmodule // mos_ekv 

 
Fig. 12. Verilog-AMS model of a simple EKV MOS model 
 

E. The optical link submodel 
An optical fiber provides numerous advantages over 

electrical interconnection: signals degrade less, there is less 
interference, and lower-power transmitters can be used instead 
of the high-voltage electrical transmitters needed for copper 
wire. From a modeling point of view, optical fibers obey 
signal-flow rules. An optical fiber is a device with infinite 
input impedance, and null output impedance, and its dynamic 
characteristics do not depend on the applied load. Moreover, 
the quantity of light produced by a laser diode remains the 
same, whatever the number of optical fibers connected to it. 
To put emphasis on the solutions provided by VHDL-AMS 
and Verilog-AMS to deal with signal-flow modeling, we now 
detail how the negative edge of the collision signal is 
converted into monochromatic light, propagated with the 
optical fiber transmission medium, and converted back into an 
electrical signal with a photodiode. 

From an electrical point of view, the anode of the laser 
diode is electrically connected to a current limiting resistor, 
which other end is connected to the inverter output, as shown 
in Fig. 13 [20]. The cathode is directly connected to electrical 
ground. The intrinsic behavior of the diode is modeled by the 
classical equation for which the current is exponentially 
dependent on the potential Vd  [21]. If necessary, series and 

leakage resistors could also be added, for improved modeling 
accuracy. 
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Fig.  13. The optical link. 
 
From an optical point of view [20], the laser diode aims at 

producing light with controlled light power in relation to its 
forward current and wavelength. To obtain the laser effect, the 
laser diode needs a threshold current Ith which is temperature 
dependent. If the forward current is less than the threshold 
current, no light is emitted. If the forward current is higher 
then the relation between the light output power and the 
forward current is linear with a ratio slope η. The dynamic 
behavior of the laser diode is assumed to be the response as a 
first order low pass filter with time constant τ as formulated in 
the following Laplace transfer function: 

 

 
1

1
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L
L sτ

=
+ ⋅

               (4) 

 
where Lin is the light power calculated. Lout gives the output 
power. The laser diode is very sensitive to temperature, and 
the ratio between absorbed power and emitted light power is 
low. The exceeding power is transformed into heat. To model 
the temperature evolution, we have added a thermal terminal to 
the laser diode so that the temperature of the device can 
change with the variation of the output value. We assume a 
linear variation of Ith and η with respect to the temperature as a 
good approximation within an appropriate temperature interval 
(about 70°C). 

A more accurate model would take into account the 
produced wavelength, electromagnetic modes and the 
associated opto-geometrical aspects [22]. 

The transmission medium is assumed to be ideal, i.e. no 
geometrical/electromagnetic or dispersion effects are taken 
into account. Only a pure delay and a reduction coefficient are 
considered here. 

The photodiode model [20] contains an input connector for 
light, two electrical terminals (anode and cathode) and a 
thermal terminal dedicated to thermodynamical exchanges 
with other devices in the transmission receiver. The 
photodiode is a device that generates a current when it receives 
light on its input signal-flow connector. The photo-current is 
globally proportional to light intensity, but it is modified by 
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three factors: the dark current (sensitive to temperature), the 
diffusion capacitance of the diode and the leaking resistance, 
as stated in Fig. 14. When the photodiode is polarized in 
reverse mode it can be modeled as a current generator Ip in 
parallel with the diffusion capacitance Cd and the leak resistor. 
The current Ip is proportional to the optical power received by 
the photodiode and has an offset current Idark called the dark 
current. The temperature dependency of the dark current is 
also taken into account. More accurate models of photodiodes 
can be found in [23][24]. 

 

 
 

Fig.  14. The photo-diode model. 
 
 

1) VHDL-AMS Description 
 
The VHDL-AMS source code for the laser diode is given in 

Fig. 15. The model interface has two electrical ports, namely 
the anode and the cathode (line 19), one thermal port (line 20) 
and one signal-flow port (line 21), which receives the light 
emitted by the laser-diode. The signal-flow port is realized by 
an interface quantity. In the model body, the function 
idval() computes the diode current as a function of the 
temperature (lines 34 to 39), and the function lightpwr 
calculates the emitted light power as a function of the 
temperature and the diode current (lines 41 to 52). The diode 
current, the temperature sensitivity of the current threshold Ith 
and the ratio slope η are therefore easily implemented (lines 
45 and 46). For (4), the model uses the predefined attribute 
'ltf to define a Laplace transfer function and to apply it to 
the lpwr quantity (line 58). The arguments of the attribute are 
the numerator and denominator coefficients of the transfer 
function indexed by their order in the respective polynomials. 
Here again, the named association mechanism, e.g., “0 => 
1.0”, improves the readability of the model. 

The VHDL-AMS model of the transmission medium is 
given in Fig. 16. The model interface is purely of the signal-
flow kind, with an input and an output quantity ports (lines 10 
and 11). The model is very simple as it only delays the input 
with some possible attenuation (line 19). It is legally possible 
to write it as a single statement, but the Mentor tool does not 
yet support the application of the 'delayed attribute to a 
quantity port. 

The VHDL-AMS model of the photo-diode is given in 
Fig. 17. As for the laser diode model, the model interface 
includes one signal-flow port for the light input, two electrical 
ports for the anode and the cathode, and one thermal port for 
the thermal interactions (lines 19 to 21). The model body 

implements the temperature dependency of the dark current 
and the model of Fig. 14. If the temperature aspects were 
neglected, it could have been possible to avoid the declaration 
of the free quantities idark, ip, ic, and ir (line 32) and to 
declare them as through branch quantities at line 27 with the 
quantity id removed. The sum, currently expressed as an 
explicit statement (line 42), could have therefore been implicit 
thanks to the branch quantity declaration. 

 
(1) library ieee; 
(2)     use ieee.math_real.all; 
(3)  
(4) library ieee_proposed; 
(5)     use ieee_proposed.energy_systems.all; 
(6)     use ieee_proposed.electrical_systems.all; 
(7)     use ieee_proposed.thermal_systems.all; 
(8)  
(9) entity laser_diode is 
(10)    generic ( 
(11)       IRR     : real := 1.0*PICO;  -- inverse diode current 
(12)       ITH0    : real := 10.0*MILLI;  -- current thres. at ambient temp. 
(13)       TAU     : real := 0.3*NANO;  -- output light time constant 
(14)       ETA0    : real := 0.32;  -- prop. coefficient at ambient temp. 
(15)       ITHSFT: real := 0.1*MILLI;   -- temp. sensitivity of current thres. 
(16)       ETASFT: real := 2.0*MILLI  -- temp. sensitivity of prop. coeff. 
(17)    ); 
(18)    port ( 
(19)       terminal tan, tca: electrical; 
(20)       terminal tj      : thermal; 
(21)       quantity olight  : out real 
(22)    ); 
(23) end entity laser_diode; 
(24)  
(25) architecture bhv of laser_diode is 
(26)  
(27)    quantity vd across id through tan to tca; 
(28)  
(29)    quantity power through thermal_ref to tj; 
(30)    quantity temp  across  tj          to thermal_ref; 
(31)  
(32)    quantity lpwr: real; 
(33)  
(34)    function idval (temp, vd: real) return real is 
(35)       variable vt: real; 
(36)    begin 
(37)       vt := K*temp/Q; 
(38)       return IRR*(exp(vd/(2.0*vt + 1.0e-20) - 1.0)); 
(39)    end function idval; 
(40)  
(41)    function lightpwr (temp, id: real) return real is 
(42)       variable tempc, ith_eff, eta_eff: real; 
(43)    begin 
(44)       tempc := temp - 273.0; 
(45)       ith_eff := ITH0 + ITHSFT*tempc; 
(46)       eta_eff := ETA0 + ETASFT*tempc; 
(47)       if id > ith_eff then 
(48)          return eta_eff*(id - ith_eff); 
(49)       else 
(50)          return 0.0; 
(51)       end if; 
(52)    end function lightpwr; 
(53)  
(54) begin 
(55)    id == idval(temp, vd); 
(56)    power == id*vd; 
(57)    lpwr == lightpwr(temp, id); 
(58)    olight == lpwr'ltf((0 => 1.0), (0 => 1.0, 1 => TAU)); 
(59) end architecture bhv; 
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Fig.  15. VHDL-AMS model of the laser diode. 
 
 

(1) library ieee_proposed; 
(2)     use ieee_proposed.energy_systems.all; 
(3)  
(4) entity xmedium is 
(5)    generic ( 
(6)       XDEL : real := 5.0*NANO;  -- transmission delay 
(7)       XCOEF: real := 0.5        -- reduction coefficient 
(8)    ); 
(9)    port ( 
(10)       quantity lin : in  real; 
(11)       quantity lout: out real 
(12)    ); 
(13) end entity xmedium; 
(14)  
(15) architecture ideal of xmedium is 
(16)    quantity qin: real; 
(17) begin 
(18)    qin == lin;  -- 'delayed on port qties not yet supported 
(19)    lout == XCOEF*qin'delayed(XDEL); 
(20) end architecture ideal; 

 
Fig.  16. VHDL-AMS model of the transmission medium. 
 

(1) library ieee; 
(2)     use ieee.math_real.all; 
(3)  
(4) library ieee_proposed; 
(5)     use ieee_proposed.energy_systems.all; 
(6)     use ieee_proposed.electrical_systems.all; 
(7)     use ieee_proposed.thermal_systems.all; 
(8)  
(9) entity photo_diode is 
(10)    generic ( 
(11)       CD         : real := 1.0*PICO; -- diffusion capacitance 
(12)       RLEAK      : real := 1.0*MEGA; -- leakage resistance 
(13)       SENSITIVITY: real := 0.13;     -- diode sensitivity 
(14)       IDARK0     : real := 1.0*NANO; -- dark current at nominal temp. 
(15)       IDARK_DT   : real := 45.0;     -- temperature variation 
(16)       COOLINGG   : real := 1.0*MILLI –- cooling conductance 
(17)    ); 
(18)    port ( 
(19)       quantity ilight  : in real; 
(20)       terminal tan, tca: electrical; 
(21)       terminal tj      : thermal 
(22)    ); 
(23) end entity photo_diode; 
(24)  
(25) architecture bhv of photo_diode is 
(26)  
(27)    quantity vd across id through tan to tca; 
(28)  
(29)    quantity power through thermal_ref to tj; 
(30)    quantity temp  across tj to thermal_ref; 
(31)  
(32)    quantity tempc, idark, ip, ic, ir: real; 
(33)  
(34) begin 
(35)    tempc == temp - 273.0; 
(36)  
(37)    ir == vd/RLEAK; 
(38)  
(39)    idark == IDARK0; 
(40)    ic == CD*vd'dot; 
(41)    ip == -SENSITIVITY*ilight; 
(42)    id == idark + ip + ic + ir; 
(43)  
(44)    power == abs(id*vd) + (tempc*COOLINGG - ilight); 
(45)  

(46) end architecture bhv; 
 
Fig.  17. VHDL-AMS model of the photo-diode. 
 
 

2) Verilog-AMS Description 
 
The Verilog-AMS source code for the laser diode is given 

in Fig. 18. The model interface has two electrical ports tano 
and tcat, one thermal port tj and one optical port olight 
(lines 4 to 9). Verilog-AMS uses a simplified discipline 
definition for modeling signal-flow ports. Since there is no 
predefined signal-flow optical discipline in the 
disciplines.h file, we have to define our own in the 
model. The following code gives the discipline definition: 

nature Illuminance 

   units  = "Cd"; 

   access = LP; 

`ifdef CHARGE_ABSTOL 

   abstol = `CHARGE_ABSTOL; 

`else 

   abstol = 1e-14; 

`endif 

endnature 

 

discipline optical_sf 

   potential Illuminance; 

enddiscipline 

 
The optical_sf discipline definition is stored in a file 

named optical_sf.v, which is included in the top-level 
airbag system model since three models are using the 
discipline. Light is then described by a potential 
(Illuminance) and managed by the access function LP(). 
In the model body, one can notice the call to the cross 
function without the execution of any related statement 
(line 30). The goal is to force the analog simulation kernel to 
have a simulation point inserted at the time of the crossing and 
then to accurately switch between the two possible expressions 
for the lightpwr variable (lines 31 and 32). The 
contribution to the light output is expressed through the 
Laplace filter laplace_nd as given by (4) (line 34).  

The Verilog-AMS model of the transmission medium is 
given in Fig. 19. The model interface is purely signal-flow 
(lines 1 to 4) and the model body makes use of the predefined 
function transition to implement the fiber delay (line 9). 
Verilog-AMS does also support the function absdelay but it 
is not used here as it would force too many simulation 
timepoints. It has to be noted, however, that the transition 
function is used without rise or fall times to again avoid too 
many simulation time points. The price to pay is a less 
accurate output waveform, although still meaningful at the 
system level. 

The Verilog-AMS model of the photo-diode is given in 
Fig. 20. As for the laser diode model, the model interface 
includes one signal-flow port for the light input, two electrical 
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ports for the anode and the cathode, and one thermal port for 
the thermal interactions (lines 1 to 8). The model body 
implements the temperature dependency of the dark current 
and the model of Fig. 14. Instead of using the variable id in 
line 25, it could have been possible to use the contribution 
operator <+ four times in a row. 

 
(1) `include "disciplines.h" 
(2) `include "constants.h" 
(3)  
(4) module laser_diode (tano, tcat, tj, olight); 
(5)  
(6)    inout tano, tcat, tj, olight; 
(7)    electrical tano, tcat; 
(8)    thermal tj; 
(9)    optical_sf olight; 
(10)  
(11)    parameter real IR       = 1p;    // inverse diode current 
(12)    parameter real ITH      = 10m;   // current thresh. at ambient temp. 
(13)    parameter real TAU      = 0.3n;  // output light time constant 
(14)    parameter real ETA      = 0.32;  // prop. coeff. at ambient temp. 
(15)    parameter real ITHSFT = 0.1m;  // temp. sens. of current thresh. 
(16)    parameter real ETASFT = 2.0m;  // temp. sensitivity of prop. coeff. 
(17)  
(18)    real vd, id, vt; 
(19)    real tempc, ith_eff, eta_eff, lightpwr; 
(20)  
(21)    analog begin 
(22)       tempc = Temp(tj) - 273.0; 
(23)       ith_eff = ITH + ITHSFT*tempc; 
(24)       eta_eff = ETA + ETASFT*tempc; 
(25)  
(26)       vt = `P_K*Temp(tj)/`P_Q; 
(27)       vd = V(tano, tcat); 
(28)       id = IR*(limexp(vd/(2.0*vt + 1.0e-20) - 1.0)); 
(29)  
(30)       @(cross(id - ith_eff, 0));  // enforces a time point at crossing 
(31)       if (id > ith_eff) lightpwr = eta_eff*(id - ith_eff); 
(32)       else              lightpwr = 0.0; 
(33)  
(34)       LP(olight)    <+ laplace_nd(lightpwr, {1}, {1, TAU}); 
(35)       I(tano, tcat) <+ id; 
(36)       Pwr(tj)       <+ id*vd; 
(37)    end 
(38)  
(39) endmodule // laser_diode 

 
Fig.  18. Verilog-AMS model of the laser diode. 
 

(1) module xmedium (lin, lout); 
(2)  
(3)    inout lin, lout; 
(4)    optical_sf lin, lout; 
(5)  
(6)    parameter real XDEL  = 5n;    // transmission delay 
(7)    parameter real XCOEF = 0.5;   // reduction coefficient 
(8)  
(9)    analog LP(lout) <+ XCOEF*transition(LP(lin), XDEL); 
(10)  
(11) endmodule // xmedium 

 
Fig.  19. Verilog-AMS model of the transmission medium. 
 

(1) `include "disciplines.h" 
(2)  
(3) module photo_diode (ilight, tano, tcat, tj); 
(4)  
(5)    inout ilight, tano, tcat, tj; 

(6)    electrical tano, tcat; 
(7)    thermal tj; 
(8)    optical_sf ilight; 
(9)  
(10)    parameter real CD          = 1p;    // diffusion capacitance 
(11)    parameter real RLEAK       = 1M;    // leakage resistance 
(12)    parameter real SENSITIVITY = 0.13;  // diode sensitivity 
(13)    parameter real IDARK0      = 1n;    // dark current at nominal temp. 
(14)    parameter real IDARK_DT    = 45.0;  // temperature variation 
(15)    parameter real COOLINGG    = 1m;    // cooling conductance 
(16)  
(17)    real tempc, ir, ic, ip, idark, id; 
(18)  
(19)    analog begin 
(20)       tempc = Temp(tj) - 273.0; 
(21)       ir = V(tano, tcat)/RLEAK; 
(22)       ic = CD*ddt(V(tano, tcat)); 
(23)       ip = -SENSITIVITY*LP(ilight); 
(24)       idark = IDARK0*pow(10.0,(tempc/IDARK_DT)); 
(25)       id = ir + ic + ip + idark; 
(26)       I(tano, tcat) <+ id; 
(27)       Pwr(tj) <+ tempc*COOLINGG - LP(ilight); 
(28)       Pwr(tj) <+ abs(id)*V(tano, tcat); 
(29)    end 
(30)  
(31) endmodule // photo_diode 

 
Fig.  20. Verilog-AMS model of the photo-diode. 
 

F. The chemical reaction submodel 
Literature on airbag technology state that three concurrent 

chemical reactions (step reactions) take place at the same time, 
once the propergol capsule has been ignited, namely: 

 
3 22 2 3NaN Na N→ +  (5) 

3 2 2 210 2 5Na KNO K O Na O N+ → + +  (6) 

2 2 2 2 2 4K O Na O SiO K Na SiO+ + →  (7) 
 
 (5) states that, when the capsule blasts, molecules of 

sodium azide NaN3 are totally transformed into Sodium Na 
and Azote gas N2. The Azote gas inflates the airbag envelope 
as requested, but sodium azide is highly toxic and ignites when 
mixed with water. The chemical reaction (5) has to be 
performed in less than 5 milliseconds. (6) acts as a sodium 
neutralizer, as it reacts with potassium nitrate KNO3 to 
produce more N2 and some moles of potassium oxide K20 and 
sodium oxide Na2O. (7) states that the two latter chemical 
products reacts with silicon dioxide to form a specified 
quantity of alkaline silicate K2Na2SiO4, which is nothing more 
than a harmless glass powder. 

“For the three reactions to occur, the reactants must meet at 
one place at one time. The probability of a reactant to be at 
any given place is proportional to its concentration, and the 
probabilities of the different reactants are stochastically 
independent of each other” [25]. The equation set (5)-(7) can 
be rewritten to introduce the necessary time parameter. Using 
the Van’t Hoff theory on kinetic equations on the equation set 
with appropriate stoichiometric coefficients, we get the 
following reaction rate equations with eight unknowns 
representing the concentration of chemical products over time: 
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[ ]2 2 4
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d K Na SiO
k K O Na O SiO

dt
= ⋅ ⋅ ⋅  (15) 

 
k1 to k3 represent probability constants, so called reaction rate 
constants. 

This chemical model expects NaN3 to exponentially 
decrease with time, and N2 gas to increase, in order to inflate 
the airbag. The Na should first increase with the first reaction 
of (5) and then decrease with the second reaction of (6). 
However, Na should never grow too much. 

Like the other models in the airbag system, the chemical 
reaction kinetics is only roughly described by the eight 
equations (8)-(15). This is because our chemical model is the 
direct emanation of our “macroscopic” vision of chemistry as 
engineers with a standard EECS curriculum. As stated by [25], 
“literature on chemical reaction kinetics concentrates on molar 
concentrations and their time derivative exclusively, and it 
ignores the energy and its conservation entirely. Many 
references on the subject do not introduce the chemical 
potential as a system property at all”. 

 
1) VHDL-AMS Description 

 
The VHDL-AMS model of the chemsys block that 

realizes the chemical reactions is given in Fig. 21. The model 
interface only includes a single digital signal strig that 
represents the trigger signal that will initiate the reactions (line 
11). The model body implements the equation set (8)-(15) 
(lines 26 to 37). In lines 39 to 46, the model defines the initial 
conditions that have to hold before the trigger signal becomes 
active. The break statement on line 23 notifies the analog 
simulation kernel when an event on the discrete-time trigger 
signal occurs, therefore forcing an analog simulation point at 
the time of the event. This allows the simulator to compute a 
smooth transition between the two regions of operations of the 
model that are defined by the if statement (lines 25 to 47). 

 
(1) library ieee; 
(2)     use ieee.std_logic_1164.all; 
(3)  
(4) entity chemsys is 

(5)    generic ( 
(6)       K1: real := 14000.0;  -- reaction rate for eq.(5) 
(7)       K2: real := 1.0;      -- reaction rate for eq.(6)  
(8)       K3: real := 1.0       -- reaction rate for eq.(7) 
(9)    ); 
(10)    port ( 
(11)       signal strig: in std_logic 
(12)    ); 
(13) end entity chemsys; 
(14)  
(15) architecture bhv of chemsys is 
(16)    
(17)    -- chemical concentrations 
(18)    quantity cNaN3,cNa,cN2,cKNO3, cK2O, cNa2O, cSiO2, 
(19)             cK2Na2SiO4: real; 
(20)  
(21) begin 
(22)  
(23)    break on strig; 
(24)  
(25)    if strig = '1' use 
(26)       cNaN3'dot == -2.0*K1*(cNaN3**2); 
(27)       cNa'dot   == 2.0*K1*(cNaN3**2) –  
(28)           10.0*K2*(cNa**10)*(cKNO3**2); 
(29)       cN2'dot   == 3.0*K1*(cNaN3**2) +  
(30)           K2*(cNa**10)*(cKNO3**2); 
(31)       cKNO3'dot == -2.0*K2*(cNa**10)*(cKNO3**2); 
(32)       cK2O'dot  == K2*(cNa**10)*(cKNO3**2) –  
(33)           K3*cK2O*cNa2O*cSiO2; 
(34)       cNa2O'dot == 5.0*K2*(cNa**10)*(cKNO3**2) –  
(35)           K3*cK2O*cNa2O*cSiO2; 
(36)       cSiO2'dot == -K3*cK2O*cNa2O*cSiO2; 
(37)       cK2Na2SiO4'dot == K3*cK2O*cNa2O*cSiO2; 
(38)    else 
(39)       cNaN3      == 5.0/3.0; 
(40)       cKNO3      == 1.0/3.0; 
(41)       cN2        == 0.0; 
(42)       cNa        == 0.0; 
(43)       cK2O       == 0.0; 
(44)       cNa2O      == 0.0; 
(45)       cSiO2      == 1.0/6.0; 
(46)       cK2Na2SiO4 == 0.0; 
(47)    end use; 
(48)  
(49) end architecture bhv; 

 
Fig.  21. VHDL-AMS model of the chemical system. 
 
 

2) Verilog-AMS Description 
 
The Verilog-AMS model of the chemsys block that 

realizes the chemical reactions is given in Fig. 22. The model 
interface only includes a single digital signal strig that 
represents the trigger signal that will initiate the reactions (line 
13). The model body implements the equation set (8)-(15) 
(lines 24 to 48) in their integral form using the predefined 
analog operator idt. This form is preferred as the idt 
operator provides a way to specify a reset condition, which in 
the model is handled by the value of the digital signal strig. 
The indirect branch assignment also offered by Verilog-AMS 
is not appropriate here as we need to trigger the integration at 
some point in time. When the signal strig has a nonzero 
value, the operator returns the initial value specified as the 
second argument. The integration therefore starts when the 
signal value becomes zero. Another point is the definition of 
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the chemical signal-flow discipline chem_sf and its 
associated nature ChemQ that is required to declare the 
quantities to integrate. It is not allowed to use real variables for 
that purpose. 

 
(1) nature ChemQ 
(2)    units  = "-"; 
(3)    access = CH; 
(4)    abstol = 1e-14; 
(5) endnature 
(6)  
(7) discipline chem_sf 
(8)    potential ChemQ; 
(9) enddiscipline 
(10)  
(11) module chemsys (strig); 
(12)  
(13)    input strig; 
(14)  
(15)    parameter real K1 = 14000.0;  // reaction rate for eq. (5) 
(16)    parameter real K2 = 1.0;      // reaction rate for eq. (6) 
(17)    parameter real K3 = 1.0;      // reaction rate for eq. (7) 
(18)  
(19)    // chemical concentrations 
(20) chem_sf cNaN3,cNa,cN2,cKNO3,cK2O,cNa2O, cSiO2, 
(21)                cK2Na2SiO4; 
(22)  
(23)    analog begin 
(24)       CH(cNaN3) <+ idt(-2.0*K1*pow(CH(cNaN3),2),  
(25)                          5.0/3.0, !strig); 
(26)       CH(cNa)   <+ idt(2.0*K1*pow(CH(cNaN3),2) 
(27)                         -10.0*K2*pow(CH(cNa),10)*pow(CH(cKNO3),2), 
(28)                         0.0, !strig); 
(29)       CH(cN2)   <+ idt(3.0*K1*pow(CH(cNaN3),2)  
(30)                         + K2*pow(CH(cNa),10)*pow(CH(cKNO3),2), 
(31)                         0.0, !strig); 
(32)       CH(cKNO3) <+ idt(-2.0*K2*pow(CH(cNa),10)* 
(33)                         pow(CH(cKNO3),2), 
(34)                         1.0/3.0, !strig); 
(35)       CH(cK2O)  <+ idt(K2*pow(CH(cNa),10)* 
(36)                         pow(CH(cKNO3),2) 
(37)                         - K3*CH(cK2O)*CH(cNa2O)*CH(cSiO2),  
(38)                         0.0, !strig); 
(39)       CH(cNa2O) <+ idt(5.0*K2*pow(CH(cNa),10)* 
(40)                         pow(CH(cKNO3),2) 
(41)                         - K3*CH(cK2O)*CH(cNa2O) *CH(cSiO2), 
(42)                         0.0, !strig); 
(43)       CH(cSiO2) <+ idt(-K3*CH(cK2O)*CH(cNa2O)* 
(44)                         CH(cSiO2), 
(45)                         1.0/6.0, !strig); 
(46)       CH(cK2Na2SiO4) <+ idt(K3*CH(cK2O)* 
(47)                         CH(cNa2O)*CH(cSiO2), 
(48)                          0.0, !strig); 
(49)    end 
(50) endmodule  // chemsys 

 
Fig.  22. Verilog-AMS model of the chemical system. 
 

IV. SIMULATION RESULTS 
As is, the airbag system model can be used to obtain 

numerous valuable simulation results. This section presents 
only a small set of result examples. 

 

A. Mechanical-Electrical Interactions 
Fig. 23 presents a screen dump of the VHDL-AMS 

simulation. Fig. 24 presents similar results obtained with the 
corresponding Verilog-AMS model. The upper plot represents 
the simulated acceleration of the seismic mass and the lower 
plot shows the proportional evolution of the amplitude at the 
accelerometer output. Chronograms at the bottom of the  
figure also show the digital output of the comparator. While 
the acceleration amplitude exceeds a given threshold, the 
comparator output d toggles at a frequency of 1 MHz. When 
10 pulses have been reached, the chtrig signal is asserted 
and the chemical reaction is initiated. 

 

 
 
Fig.  23. Mechanical-electrical interactions (VHDL-AMS). 
 

 
 
Fig.  24.  Mechanical-electrical interactions (Verilog-AMS). 
 

B. Electrical-Thermal Interactions 
Fig. 25 details the simulation results, obtained with 

Advance-MS, of the thermal coupling between the n-MOST 
and the p-MOST when the inverter is stimulated by a square 
wave stimulus and connected to the thermal RC networks 
given in Fig. 8 [17]. The thermal network represents the 
thermal constants of the various material layers, and the values 
of the capacitances and resistances have been deliberately 
oversized to highlight the thermal effects. The figure shows the 
temperature evolution in the inverter for two different values 
of RNP. As expected, for small values of RNP, the temperatures 
in the N and P transistors are tightly linked (curves 1 and 2 in 
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the figure). For higher values, the temperature evolution of 
each transistor becomes more and more decoupled (curves 3 
and 4 in the figure). The dissipated power is produced during 
transitions, as expected. 
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Fig. 25. Thermal coupling between the nMOST and 
pMOST for different values of coupling [17]. 

 

C. Electrical-Optical Interactions 
Fig. 26 shows the falling edge of the collision signal 

generated by the CMOS inverter, transformed into light and 
propagated through the optical fiber, with the appropriate 
delay and reduction coefficient. The plot has been extracted 
from an Advance-MS simulation. 
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Fig. 26. Propagation delay in the transmission medium 

(Advance-MS). 

D. Chemical Reactions 
Fig. 27 shows typical chemical kinetic reaction behaviors 

from the VHDL-AMS model. Reactive chemical product 
concentration of NaN3 decreases exponentially with time, and 
one can see that the 2.5 moles of N2, providing the 60 liters of 
necessary gas according to the perfect gas law, are generated 
in less than 5 milliseconds. The volatile sodium Na is instantly 
generated when the airbag inflation order is triggered, and then 
decreases during the sodium neutralization phase. The time 
scale of this plot should also be noticed: all the mechanical-
electrical-optical signal transmission time is negligible 

compared to the time needed to inflate the airbag. 
 

 
Fig. 27.  Chemical reactions (Advance-MS). 

 

E. Global System Behavior 

 
Fig. 28. Airbag system model simulation results (Advance-

MS). 
Fig. 28 and Fig. 29 give a snapshot of the behavior of the 

whole airbag system, obtained with the VHDL-AMS and the 
Verilog-AMS model, respectively.  

 
From top to bottom, we find successively the chronograms 

for the acceleration stimulus of the exciting the seismic mass 
tmass, the amplified modulated accelerometer output signal 
tsensa, the comparator output scomp, the trigger signal 
ttrig, the propagated light light_prop, the photo-diode 
output signal tabag, the chemical reaction trigger signal 
chtrig and the evolutions of the concentrations of the NaN3, 
N2 and Na elements. 

 



Paper #1446 
 

19

 

 
 
Fig. 29.  Airbag system model simulation results (Cadence). 

 

V. DISCUSSION 
The various models of the airbag system developed in the 

paper are neither complete nor accurate. The activity of 
modeling is mostly directed by which aspects of a physical 
behavior have to be taken into account and how a particular 
modeling notation, e.g. a hardware description language, can 
actually express these aspects properly through simulation. 
Additionally, the development of a complete model of the 
airbag system is beyond the scope of the paper. All the models 
discussed in this paper are kept intentionally simple to avoid 
hiding key aspects in too many lines of code. All the models of 
Fig. 1 have been designed and simulated with appropriate 
stimuli in both languages and concordant results have been 
obtained (cf. Figs 28 and 29). Not all the models have been 
discussed in the paper, but the full set of VHDL-AMS and 
Verilog-AMS models, including test benches and appropriate 
simulation control commands, are available [26].  

In section 2.2, we listed a number of distinguished features 
of the VHDL-AMS and the Verilog-AMS languages to give a 
first insight into how each of them could support the 
development of models of mixed-signal and multi-discipline 
systems. Now we went through the example of modeling an 
airbag system, we can expand the list further. Table I gathers a 
number of feature classes and indicates how each language 
actually supports the features in each class. Some items have 
further associated notes that are given below the table to avoid 
cluttering the table too much. 

The paper shows that the same complex system can be 
successfully modeled with both HDLs. Some workarounds 
have been however required to address the partial support of 
the languages in current tools, although the alternative 
solutions worked as well. For instance, the procedural 
construct of VHDL-AMS is not yet supported by Advance 
MS. The model of the EKV MOSFET (section 3.4) could have 
been more naturally described without using functions. 

The main difference between the two HDLs is the way 
equations are handled. On the one hand, sequencing the 

equations is mandatory in Verilog-AMS, because the language 
forces the designer to use sequential statements in an analog 
block, and because only certain forms of implicit equations are 
supported. On the other hand, in VHDL-AMS, sequencing the 
equations is a transparent task thanks to the powerful notation 
for equations provided by simultaneous statements. Verilog-
AMS models have to be coded with a nodal formulation in 
mind and therefore fit better with current simulator 
implementations. In the same context, Verilog-AMS allows 
only one analog block per module, while any number of 
concurrent and simultaneous statements can cohabit in a single 
VHDL-AMS architecture. This reinforces the more circuit 
level approach of Verilog-AMS where each behavioural 
module is basically seen as a leaf cell which has to be 
hierarchically connected in some upper level. VHDL-AMS 
also supports this approach, while providing more degrees of 
freedom when writing complex DAEs. It should be noted, 
however, that this feature might be less efficiently handled in 
current VHDL-AMS simulators that are still built on circuit 
simulators. What would be ideally needed is an efficient blend 
of an event-driven/circuit simulator and a, possibly symbolic 
and numerical, equation solver. The model writer would then 
be free to select the most appropriate method to describe 
equations. Last, but not least, one should not forget the 
mandatory need for event-driven modeling capabilities, not 
only to describe the event-driven/logic part of the system, bus 
also to simplify some analog parts and/or make their 
simulation more efficient. 

Probably the chemical subsystem used in the airbag system 
exemplifies many of the modeling issues one has to deal with 
when addressing multi-discipline systems. In section 3.6, we 
deliberately used a macroscopic approach that does not fully 
take all physical aspects into account. If we consider the same 
chemical reactions from a microscopic viewpoint, things 
appear totally different. Chemistry turns into thermodynamics, 
and the equations (5)-(7) concerning mass transfer only are 
replaced by equations concerning the couple mass/energy. As 
a consequence, the chemical submodel involves more 
elements, interactions between these elements take place at a 
very low level, and conservative laws pervade the previous 
signal-flow approach. For each chemical reactant, “two 
different goods are actually traded, namely, mass and energy” 
[25] and the GKLs apply. [25] details perfectly this process, 
and shows how the chemical potential [J mole-1] and the molar 
flow [mole sec-1] can respectively be defined as effort and flow 
quantity for each reactant. The product of the two quantities 
has the dimension of a chemical power. Drawing an analogy 
with the electrical domain, reactants and products are modeled 
by capacitive sources, one for each chemical species, where 
moles accumulate like charges. The reaction equations are 
modeled by multi-port transformers with transform ratios 
determined by stoichiometric coefficients (also represented by 
transformers), which balance and redistribute chemical power 
between the chemical species. All these elements are 
interconnected and yield a chemical network isomorphic to the 
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electrical or thermal networks described in the paper. [9] 
defines this approach as object-oriented modeling, i.e. “the 
construction of strictly hierarchical, modular models. Each 
terminal element has its own implemented sequential 
algorithm. Setting up the equations describing the whole 
system is the task of the simulator. All elements communicate 
via message passing, coordinate their behavior, and so the 
simulation of the entire system is carried out”. [25] [27] also 
propose to use bond graphs for that purpose, but they are too 
complicated most of the time. Our experience on this chemical 

issue shows that this phenomenological approach, while 
elegant and consistent, hides lots of difficulties: a thorough 
methodological background is needed to design the leaf 
submodels because the reasons for analogies between physical 
theories [28] are not always simple to understand. 
 
 
 
 

 

Feature class Feature VHDL-AMS Verilog-AMS 

Definition IEEE Std 1076.1-1999 
Strict extension to IEEE Std 1076 (VHDL) 

Accellera standard version 2.1 (January 
2003) 
Extension to IEEE Std 1364 (Verilog 
HDL) 

Inheritance Ada-like 
Case insensitive 

C-like 
Case sensitive 

Modularity Separation of external/interface views 
(entities) and internal views (architectures), 
packages, configurations 

Modules include both external/interface 
and internal views. Include files for shared 
definitions 

Genericity Parameters, generate statements1 
Library 
management 

Yes (pre-compiled design units) No 

Language 
aspects 

Analog subset No2 Yes (limited support of SPICE primitives) 
Event-driven and continuous 
Conservative and non conservative (signal-flow) 

Ports 

Continuous ports are modeless Continuous ports are of mode inout 
Composition Hierarchical instantiation of components 

Natures define energy domains, subtypes 
define nature attributes; no predefined 
natures. 

Disciplines define energy domains, natures 
define discipline attributes; predefined set 
of disciplines 

Expression of 
structure 

Conservative 
semantics 

Terminal and branch quantities Access functions and named branches 
Objects Terminals, quantities, signals, variables, 

constants 
Variables, wires, registers 

Concurrent, sequential, continuous (simultaneous and procedural) Statements 
Continuous statements can be freely mixed 
with concurrent statements 

Continuous statements have to be grouped 
in an analog block. Only one analog block 
per module 

Explicit and implicit form of equations4 
supported 
 
Simultaneous5 and procedural6 
formulations 
Derivative attribute ‘dot only possible on 
quantities. Attribute can be chained for 
higher order derivatives7 
 
Mathematical functions defined in 
separate standard IEEE 1076.2 

Explicit form of equations supported; 
limited support of implicit form of 
equations8 
Procedural formulation 
 
Derivative operator ddt may be applied to 
expressions. Operator cannot be chained 
for higher order derivative; must declare 
local nodes9 
Pre-defined mathematical functions 

Expression of 
DAEs3 

Piecewise defined behavior supported10 
 
 

Expression of 
behavior 

Discontinuity Discontinuities must be explicitly announced in the model 
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Feature class Feature VHDL-AMS Verilog-AMS 

 handling User-defined re-initialization after 
discontinuity supported 

Order of discontinuity may be specified 

Energy 
domains 

Natures define energy domains and 
subtypes define nature attributes. No 
predefined natures11 
Branch quantities12 

Disciplines define energy domains and 
natures define discipline attributes. Pre-
defined set of disciplines. 
Access functions and branch objects13 

Conservative 
semantics 

Formulation Equation-oriented formulation with 
simultaneous statements14 
 
No specific circuit graph representation 
enforced 

Circuit-oriented formulation with probe 
and source branches15 and additive 
contribution statements16 
Nodal formulation enforced 

Model 
interface 

Directional interface (free) quantities17 Module ports associated to a discipline 
with only one nature (signal-flow 
discipline) 
Signal-flow ports are interpreted as 
grounded potential probes or sources 

Signal-flow 
semantics 

Functional 
blocks 

Laplace and z transforms18 

Interfaces A/D and D/A interface language attributes 
('ramp, 'slew, 'above) 
No direct port association19 

A/D and D/A interface language filters and 
event detectors 
Automatic insertion of connect modules 
(infra- or inter-disciplines) 

Mixed-signal 
aspects 

Behavioral 
interaction 

Access of discrete signals in continuous 
context 
Access of continuous quantities in discrete 
context 

Access of discrete nets and variables in 
continuous context 
Access of continuous nets and variables in 
discrete context 

Solvability Solvability check done at design unit 
level20 

No solvability checks 

Timestep Timestep size may be bounded 

Simulation 
controls 

Tolerances Generic string annotation not formally 
linked to simulator21 

SPICE-like tolerances defined in natures 

Tool used  Mentor AdvanceMS 1.5 
Full IEEE 1076.1 standard not yet 
supported22 

Cadence AMS Simulator 2.0 
Proprietary implementation of a standard 
in development 

 
 
1 Generate statements offer macro-like capabilities in the text of the model. Verilog-AMS also supports pre-processing directives.  
2 It is possible to develop packages to support SPICE level modeling. No standard packages are existing yet. 
3 DAE = Differential Algebraic Equations. 
4 An equation in the explicit form looks roughly like an assignment, e.g. x = f(y,z), while an equation in the implicit form typically 
requires iterations to compute the unknowns, e.g. x = f(x,y,z). 
5 Simultaneous statements are basically equations that may be given in any order in the model. 
6 Procedural statements have to be given in a particular order. The VHDL-AMS tool used did not support simultaneous 
procedural statements yet, so we used functions instead. 
7 To maintain good numerical accuracy it is recommended to hold higher order derivatives in local quantities and to only use first 
order derivatives. 
8 An equation in explicit form is written with the contribution statement, while an equation in implicit form requires a special 
syntax with limitations. Only state-based equations may be expressed in implicit form. 
9 It is not clear whether this is a limitation of the tool or of the language definition. The net effect is to clutter the model with 
unnecessary node declarations and contribution statements. 
10 Continuous behavior can be defined by regions of operation. 
11 A draft VHDL-AMS standard package for multiple energy domain support is currently under IEEE ballot. 
12 The direction of the flow in the branch and of the potential difference is defined in the branch quantity declaration. 
13 As access functions may be scattered throughout the whole model, it is recommended to hold probe branches in local variables 
at the beginning of the analog block. 
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14 Quantities are the unknowns. As far as the language is defined, the order in which the simultaneous statements is not important. 
We anyway faced some non-convergence issues with "misplaced" simultaneous statements (tool issue). 
15 Roughly speaking, probe branches measure some voltage or current, while source branches generate some voltage or current. 
16 The order in which the contribution statements are given is important. 
17 Direction is used for solvability checks. 
18 Verilog-AMS offers more variants than VHDL-AMS. 
19 It is not allowed to associate formal and actual ports of different natures or types. Explicit interface code has to be added in the 
model when pre-defined attributes are not enough. It is also expected that tools may help in inserting proper interface code when 
working at schematic level. 
20 This basically checks that there is an equal number of unknowns and of equations. Although the rules that define what is 
considered as an unknown and what is considered as an equation are clearly defined in the language reference manual, it may 
become pretty hard to figure out what is missing when a complex model such as the full EKV MOS model (with more than 100 
quantities) does not comply with the solvability condition. In addition, the current implementation of the Mentor tool imposes to 
have the same number of simple simultaneous statements in each branch of a conditional or selective simultaneous statement. 
21 Current VHDL-AMS simulators are using their own tolerances that may be set in the tool’s environment. 
22 Full digital VHDL 1076 support requires coupling with Modelsim simulator. 
 

Table I.  Key features of VHDL-AMS and Verilog-AMS. 
 
 
 

VI. CONCLUSION 
In this paper, the VHDL-AMS and Verilog-AMS 

languages have been compared and contrasted in an 
objective manner. A complex case study has been used as a 
representative mixed-signal issue and solution to 
demonstrate some language similarities and differences, and 
indicated that the system modeled in one language can also 
be modeled in the other, although with different coding 
techniques that are not only related to syntax. 

Whatever the state of the language, standard or not, all-
defined mixed-signal capabilities are not yet implemented 
or still subject to interpretation. Anyway, we hope that tool 
limitations will be progressively removed so the model 
writer has access to the real expressive powers of both 
languages.  

Therefore, the choice of the language is mostly guided by 
the idiosyncrasies of the developing team, the EDA tool 
suite available, and commercial and time to market issues. 
VHDL-AMS can operate at various levels of abstraction. 
Both VHDL-AMS and Verilog-AMS prove their efficiency 
at the circuit-level. At this level, however, solid knowledge 
on analogies between physical theories is required [25]. 

As systems on chips (SoC) more and more include 
analog, RF and non-electrical parts (not to mention the 
growing importance of embedded software), it is possible 
that models written in VHDL-AMS or Verilog-AMS 
become too low-level and their relative simulators too slow 
for validating a complete system. An ongoing effort is for 
example intending to enhance SystemC to support the 
description and the simulation of continuous-time, and a 
fortiori mixed-signal and multi-discipline, systems [29]. A 
seamless path to VHDL-AMS or Verilog-AMS modeling 
levels will have anyway to be provided to keep a link to 
more physical design aspects. 
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