
Paper #1446

1

Abstract—This paper focuses on commonalities and

differences between the two mixed-signal hardware description
languages VHDL-AMS and Verilog-AMS in the case of modeling
heterogeneous or multi-discipline systems. The paper has two
objectives. The first one consists of modeling the structure and
the behavior of an airbag system using both the VHDL-AMS and
the Verilog-AMS languages. Such a system encompasses several
time abstractions (i.e. discrete-time and continuous-time), several
disciplines, or energy domains (i.e., electrical, thermal, optical,
mechanical, and chemical), and several continuous-time
description formalisms (i.e., conservative-law and signal-flow
descriptions). The second objective is to discuss the results of the
proposed modeling process in terms of the descriptive
capabilities of the VHDL-AMS and Verilog-AMS languages and
of the generated simulation results. The tools used are Advance-
MS from Mentor Graphics for VHDL-AMS and AMS Simulator
from Cadence Design Systems for Verilog-AMS. The paper
shows that both languages offer effective means to describe and
simulate multi-discipline systems, although using different
descriptive approaches. It also highlights current tool limitations
since full language definitions are not yet supported.

Index Terms— VHDL-AMS, Verilog-AMS, Mixed-signal
Simulation, Accelerometer, EKV MOS Model, Generalized
Kirchhoff Laws, Optical link, Chemical system, Airbag, Thermo-
electrical Interactions

I. INTRODUCTION
or the past three decades, hardware description languages
(HDLs) have been widely used to model and simulate

systems belonging to various engineering fields, from digital
and analog electronics to mechanics and chemistry. For a long
time, all these fields have been completely separated, each
scientific community having its own design methodologies,
tools and idiosyncrasies. Dedicated HDLs supporting the

Manuscript received June 6, 2002.
F. Pêcheux is with the LIP6 Integrated Systems Architecture Department,

Université Pierre et Marie Curie, 12, rue Cuvier, 75252 Paris Cedex 05,
France (phone: 00-33-1-4427-6528; fax: 00-33-1-4427-7280; e-mail:
francois.pecheux@lip6.fr).

C. Lallement, is with the ERM-PHASE/ENSPS Laboratory, Pôle API, Bld
S. Brant, BP. 10413, F-67412 Illkirch Cedex, France (e-mail:
christophe.lallement@ensps.u-strasbg.fr).

A. Vachoux is with the LSM Microelectronic Systems Laboratory, Ecole
Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland (e-
mail: alain.vachoux@epfl.ch).

description and the simulation of the logical structure of a
system belonging to a particular engineering domain were, and
are still available. They allow the description of a system as a
possibly hierarchical connection of predefined submodels, or
primitives. For example, in the electrical/electronic domain,
the SPICE simulator and all its derivatives allow the
description of the netlist of a circuit using electrical primitives
such as resistors, capacitors, sources and transistors. In an
attempt to support the modeling and simulation of non-
electrical systems as well, several modeling methods using
energy equivalences between the electrical domain and other
domains such as mechanical, thermal or fluidic domains have
been proposed [1][2][3].

With the advent of nano-technologies, the design of
innovative integrated devices, like Micro-Opto-Electro-
Mechanical Systems (MOEMS), has shifted from vertical only
to both vertical and horizontal integration. Using the benefit of
all the experience acquired in incremental design, MOEMS
design now involves strong “horizontal” interaction of
different application-field parts on the very same chip (e.g.,
mechanical, electrical, thermal, fluidic parts), with partial
close coupling between these fields. Neglecting the interaction
effects or the cross coupling between parts may have
disastrous consequences on the final design in terms of a loss
in performance or an increase in design time.

One way of addressing this issue is to use a consistent
modeling and simulation framework that allows for the
description of systems from different disciplines and for the
description of interactions between these systems. This is
where the VHDL-AMS HDL [4][5][6] and the Verilog-AMS
HDL [7][8] come in as effective backbones of the
aforementioned framework.

In this paper, we therefore propose to compare the modeling
power of these two HDLs. In order to illustrate this, we present
a meaningful case study that consists in modeling the structure
and the behavior of an airbag system using both the VHDL-
AMS and the Verilog-AMS languages. Such a system is well
suited for our purpose as it encompasses several time
abstractions (i.e. discrete-time and continuous-time), several
disciplines, or energy domains (i.e., electrical, thermal,
optical, mechanical, and chemical), and several continuous-
time description formalisms (i.e., conservative-law and signal-
flow descriptions). In addition, the case study allows us to
highlight the key modeling capabilities offered by both analog

VHDL-AMS and Verilog-AMS as Alternative
Hardware Description Languages for Efficient

Modeling of Multi-Discipline Systems
F. Pêcheux, C. Lallement, Member, IEEE, and A. Vachoux, Member, IEEE

F

Paper #1446

2

and mixed-signal HDLs in terms of expressive power and
quality of simulation results.

The paper does not intend to provide a complete
presentation of the two languages. Rather, it focuses on
specific analog and mixed-signal modeling and simulation
aspects and on how the two design languages can actually
address them.

The paper is organized as follows. Section 2 introduces the
context of the work, i.e. the modeling and simulation aspects
that are addressed in the paper. It gives a short presentation of
the VHDL-AMS and Verilog-AMS design languages.
Section 3 presents a complete multi-discipline case study,
consisting of an airbag system, and discusses selected VHDL-
AMS and Verilog-AMS models. Section 4 gives relevant
simulation results obtained with the VHDL-AMS and the
Verilog-AMS tools. Section 5 summarizes the insights we can
learn from the case study. Finally, section 6 gives some
conclusions.

II. CONTEXT OF THE WORK

A. Modeling and Simulation aspects
Modeling is at the core of any design process. This task

essentially consists in developing abstract descriptions of some
physical reality in such a way that they are useful for the
design process. Models may be used to validate characteristics
of some part or of the whole of the designed system, e.g. its
functionality or its performances. Such models are simulation
models, or executable models that produce a response when
acted upon by stimuli. These are the kind of models this paper
is dealing with. To be complete, models may also be used as a
support for a synthesis process, i.e., the progressive refinement
process that starts from an abstract description of what the
system should do and in which conditions, i.e. its
specifications, and that ends when a detailed description of a
realization that meets the specifications is obtained.

Models may describe the behavior and/or the structure of
the designed system at various levels of details, or levels of
abstraction. Selecting the appropriate level is, on the one hand,
a matter of compromise between model accuracy and model
performance, and on the other hand, a means to cope with
system complexity. Abstraction may be applied to different
aspects of a model. One aspect is how time is considered.
Time may be abstracted as pure causal effects, as synchronous
cycles, as integer multiple values of a minimum resolution
time (discrete time), or as real values (continuous time).
Another aspect is how the values of model data are
represented. They can be tokens that merely represent the
existence or the absence of data at some point in time and at
some place in the system, or they can be bits or bit words that
represent logic information, or they can be real values. As a
data abstraction level is usually related to a time abstraction
level, this paper considers the so-called discrete-time models
as models in which data is abstracted as logic functions of a
discrete variable that represents the time, and the so-called
continuous-time models in which the data is abstracted as real-

valued functions of a real-valued independent variable that
represents the time [4]. Discrete-time behaviors are generally
expressed as logical Boolean equations or as communicating
processes that are triggered upon events, while continuous-
time behaviors are generally expressed as Differential
Algebraic Equations (DAEs). For electrical systems, the term
digital is more often used to denote a discrete-time
characteristic and the term analog is more often used to denote
a continuous-time characteristic.

Hierarchy is also a means to cope with complexity by
decomposing a complex behavior or structure into a set of
smaller manageable pieces, the latter being possibly further
recursively decomposed up to any appropriate level of
deepness. Leaf components are those components that are at
the deepest level of the hierarchy.

Each decomposed model piece must therefore include
additional information on how it relates to other pieces. In the
case of a hierarchical structure, this amounts to define a set of
interconnected components that communicate or share data
through interface elements called ports. The nature of the ports
may be abstracted either as directional signal-flows, for both
discrete-time and continuous-time models, or as satisfying
conservative-law relationships between quantities, for
continuous-time models only. Conservative-law relationships
assume the existence of two classes of specialized quantities,
namely across quantities that represent an effort (e.g., a
voltage for electrical systems or a velocity for mechanical
systems), and through quantities that represent a flow (e.g., a
current for electrical systems or a force for mechanical
systems). They also state that so-called General Kirchhoff
Potential Law (GPL) and General Kirchhoff Flow Law (GFL)
are met. These two laws are essentially the Kirchhoff’s laws
for electrical circuits generalized to any kind of conservative
energy systems, e.g., mechanical, thermal, or fluidic systems.

The interconnection of components in a level of hierarchy is
done through nets that link two or more ports. The nature of a
net is derived from the nature of the ports it links together, so
it can be either a discrete-time (digital) net or a continuous-
time (analog) net. Nets only define topological relationships.
Signals, as hierarchical collections of nets, are the model
objects that actually carry data. This general definition models
all kinds of physical quantities which are able to exchange
energy or information between submodels [9] and should not
be mistaken with the more specific VHDL definition of a
signal. Depending on the nature of nets, signals may be either
discrete-time (digital) or continuous-time (analog) signals. A
mixed-signal model is a model that uses both discrete-time and
continuous-time signals.

The simulation of discrete-time models relies on event-
driven techniques for which the internal states of the model are
only, and selectively, reevaluated when signals change their
values. The reevaluation process includes the execution of
Boolean functions or the execution of sequences of
instructions. A so-called discrete-time (digital) simulation
kernel is responsible for the management of the events and the

Paper #1446

3

selective reevaluation of the model states.
On the other hand, the simulation of continuous-time models

uses a number of, usually numerical, techniques to solve the
set of DAEs that come from the behavior of the system and its
signal-flow or conservative-law connection semantics. The set
of simulation techniques used form the so-called continuous-
time (analog) simulation kernel. As differential equations are
discretized using a fixed or a variable time step, the true
continuous-time behavior of the solutions is actually
approximated as piecewise linear functions of time. The times
at which the solutions are computed are called analog solution
points or ASPs. The quality of the solution therefore depends
on tolerances that define the discretization time step and other
characteristic values related to the numerical techniques used
[10]. Another important characteristic of the simulation of
continuous-time models is that a consistent initial (quiescent)
operating point is required. Without it, it is likely that
inaccuracies or non-convergence issues will arise during the
rest of the simulation.

The simulation of mixed-signal models requires in addition
mechanisms to convert between discrete and continuous
representations of time and signal values, and a
synchronization mechanism between the discrete-time and the
continuous-time simulation kernels to handle mixed-signal
interactions such as threshold crossings. Last but not least, a
consistent quiescent operating point, this time possibly
involving some discrete-time signals as well, is still required.

A hardware description language (HDL) is a programming
language for developing executable simulation models of
hardware systems. In this paper, the considered hardware
systems are not only electrical or electronic systems, but more
generally heterogeneous systems. An HDL that can be used to
describe models in several domains is said to be “multi-
disciplines” or “mixed-disciplines”.

B. Two competitive Mixed-Signal HDLs
VHDL-AMS is the result of an IEEE effort to extend the

VHDL language to support the modeling and the simulation of
analog and mixed-signal systems. The effort culminated in
1999 with the release of the IEEE standard 1076.1-1999 [4].
Verilog-AMS, on the other hand, is intended to be an
extension of the Verilog HDL language to also support the
modeling and the simulation of analog and mixed-signal
systems. Verilog is a digital HDL that has been released in
1995 as IEEE standard 1365-1995. The Verilog-AMS
language reference manual is currently being completed under
the auspices of the Accellera consortium [11]. It has not been
submitted yet to IEEE for standardization.

Both the VHDL-AMS language and the Verilog-AMS
language are mixed-signal HDLs. Both extend their respective
digital HDL with new behavioral and structural language
constructs and new simulation mechanisms. We give below a
brief presentation of distinguished features of each language.
More detailed insights will be given later when we discuss the
case study.

Each language supports continuous-time behavior, but uses
different formulations. VHDL-AMS provides a notation for
describing DAEs in a fairly general way. The == operator and
the way the quantities (bound to ports or free) are declared
allow the designer to write his equations mathematically, and
both implicit and explicit formulations are supported. Verilog-
AMS provides a notation based on the so-called probe-source
network formulation, that distinguishes between assignments
of free quantities (with the operator =) and assignments of
potential/flow quantities (with the operator <+) in the
equations themselves with access functions. Both languages
introduce the concept of a continuous-time, or analog,
simulation kernel and both support the specification of initial
conditions, the definition of piecewise-defined behavior (i.e.,
the definition of different regions of operations between which
the model can dynamically switch during simulation), and can
handle discontinuities.

Each language supports the description of networks as
conservative-law and signal-flow networks. As such, they
support the description and the simulation of multi-discipline
systems at these two levels of abstraction. VHDL-AMS does
not provide any automatic mechanism to insert mixed-signal
interfaces in a model, although it provides all the required
language constructs to do it manually. Verilog-AMS supports
the automatic insertion of so-called connect modules.

Both languages have a canonical, tool independent, mixed-
signal simulation cycle that defines how to simulate a mixed-
signal description. VHDL-AMS has in addition a formal
definition of how to initialize a mixed-signal model, while
Verilog-AMS still lacks such a definition. Both languages
support continuous-time analyses such as time-domain, DC,
small-signal AC and noise analyses.

Due to historical reasons, a continuous-time only, or analog
only, subset of Verilog-AMS is defined and referred to as
Verilog-A [12]. It is very likely that this subset will eventually
disappear as tools will start to support the full Verilog-AMS
language. There is no analog subset for VHDL-AMS.

Verilog-AMS provides some kind of compatibility with the
SPICE netlist format by defining so-called preferred primitive
names, parameter names and port names for a limited number
of SPICE elements. VHDL-AMS does not provide such kind
of compatibility neither in the language definition nor in some
standard library, although it has all the necessary language
constructs to build a library of SPICE element models.

VHDL-AMS provides a fairly generic support for defining
tolerances. It allows for grouping models unknowns into
classes of tolerances, each class being given a different name.
The language does not define how the tolerance class names
are mapped to actual simulator tolerance values, so the
mapping is tool dependent. Verilog-AMS, on the other hand,
does associate numerical tolerance values to the model
unknowns using SPICE-like abstol and reltol tolerance
specifications.

Any VHDL-AMS design unit may be compiled separately
and stored in a library. In addition, VHDL-AMS allows for a

Paper #1446

4

clear separation between the interface of a model and its
internal description and provides a mechanism to select the
submodels to use through configuration. Both capabilities
hence allow for much flexibility when it comes to model large
complex hierarchical systems. Verilog-AMS models require
that all textual information has to be available in the model to
simulate, possibly by including it at appropriate places in the
source code.

The EDA tools used for implementing and simulating the
models are Advance MS from Mentor Graphics for VHDL-
AMS models and AMS Simulator 2.0 from Cadence Design
Systems for Verilog-AMS models. Both tools do not yet
support the full language definitions so it is likely that the
models presented in this paper could be written differently
when the full power of each language becomes available.

III. AIRBAG CASE STUDY
This section describes the model of an airbag system [13]

that mixes two time abstractions, namely discrete-time and
continuous-time, five disciplines, namely mechanical,
electrical, optical, thermal and chemical, and three connection
semantics, namely conservative, continuous signal-flow, and
digital signal-flow.

A. Airbag system description
Fig. 1 presents the synoptic view of the airbag system we

are going to discuss. This figure acts as a reference throughout
the rest of the paper. Each box references a submodel, with its
name and its interface connectors. To each connector is
associated a discipline, i.e. ME for Mechanical, EL for
Electrical, TH for Thermal, OP for Optical, and a connection
semantics, i.e. CS for Conservative-law, SF for Signal-Flow,
and D for digital. For instance, the laser diode is a
conservative system as far as its electrical and thermal
behaviors are concerned, and a signal-flow model as far its
optical behavior is concerned.

From a physical point of view, the airbag, located in the
steering wheel, has to be inflated when a major deceleration of
the car occurs (usually more than 4 G). To protect the driver
from the car wreck, the 60 liters of the airbag envelope have to
be filled with inert gas (N2) in less than 5 milliseconds. Such a
spectacular action can only be achieved by means of a violent
chemical reaction which converts solid material into gas,
initiated by the explosion of a propergol capsule, also located
in the steering wheel.

From a systemic and chronological point of view, the
acceleration of the car is modeled as a 10 KHz sine wave,
described in the submodel src_force in Fig. 1. Due to
frictional resistance and structural elasticity, the resulting force
applied to the seismic mass of the accelerometer is a damped
sine-wave, with a peak amplitude that exceeds 4G in case of a
front car impact. The src_volt submodels are used to
supply the top and bottom electrodes of the electrical part of
the acceleration sensor model, called accelerometer, with
a 1 MHz sine-shaped signal. Thanks to the amplifier

submodel, the middle electrode delivers an amplified 1 MHz
sine-shaped signal which amplitude is proportional to the
acceleration. This signal is then continuously compared to an
acceleration threshold to detect the car impact condition thanks
to the comparator submodel. When the car acceleration
exceeds the airbag threshold, the comparator outputs a 1 MHz
pulsed signal. To be sure that the airbag is not untimely
triggered due to a spurious perturbation, 10 periods of the
comparator output signal are counted up before the airbag
collision signal is generated (10 periods means the acceleration
must exceed the airbag threshold for more than 10 µs). This
task is performed by the trigger submodel that also
converts the digital collision information, a simple rising edge,
into its analog equivalent. The trigger output is then inverted
by means of the inverter submodel that is based on the
EKV transistor model. The CMOS inverter drives a laser-
diode, described in the laser_diode submodel, which
emits in turn the requested collision information (a falling
edge) into an optical fiber, described in the xmedium
submodel, as an emission of monochromatic light. The laser-
diode being a very temperature sensitive device located near
the CMOS inverter, we seized the opportunity to introduce a
thermal network, described in the th_network submodel,
which models thermo-electronic interaction between electrical
and optical devices. After a small delay due to light
propagation through the optical fiber, a pin photo-diode,
described in the photo_diode submodel, extracts the
propagated information at the other extremity of the fiber and
uses the falling edge to actually trigger the airbag chemical
reaction. The triggering of the chemical reaction is described
in the chemtrig submodel, which would be the place for
modeling the propergol explosion in a more realistic model.
For now, the falling edge of the triggering signal propagated
through the optical fiber directly acts as a firing event for the
chemical reactions. Last but not least, the airbag inflation is
modeled as a thermo dynamical kinetic process described in
the chemsys submodel. Considering the airbag as an
adiabatic and isotherm system, the inert gas N2 needed to
inflate the airbag follows the perfect gas law, and therefore the
gas pressure and volume can be expressed in terms of
evolution of the number of moles of N2 as a function of time,
provided by a set of three chemical kinetic equations.

Note that the medium used to propagate the command to
inflate the airbag from the acceleration sensor to the actuator
relies on the use of an optical fiber, which can not actually be
found in any real car. However, in order to experience the
modeling and signal-flow interconnecting capabilities of the
studied HDLs, we made the assumption that the accelerometer
sensor is located far from the airbag actuator.

In the rest of the section, we compare the two HDLs on
meaningful parts of source codes. Each comparison starts with
a description of the modeled functionality. Then the two
corresponding source codes that realize the functionality are
presented and discussed.

Paper #1446

5

Fig. 1. Synoptic view of the airbag system.

B. The accelerometer submodel
The accelerometer submodel is an interesting example that

mixes two disciplines, mechanics and electronics. The
accelerometer is interfaced with the upstream acceleration
stimulus sine-wave generator and with the downstream analog
electrical comparator. Therefore, as both a mechanical and
electrical device, the accelerometer is subject to conservative
general Kirchhoff’s laws GPL and GFL that state energy
conservation.

The accelerometer has the structure presented in Fig. 2 [14].

Fig. 2. Synoptic view of the accelerometer.

Acceleration sensing is performed in two steps. First, the car

acceleration is transformed into a mechanical displacement,
thanks to the use of a primary transducer composed of a
pendulous or tethered seismic mass. Second, the mechanical

displacement is converted into an electrical signal by a
secondary transducer, which can rely on piezoelectric or
capacitive properties. In the primary transducer, the micro
flexural structure can be modeled as a damped harmonic
oscillator, i.e., as a 2nd order differential equation such as:

2

2
() d x dxF t M D kx

dt dt
= + + (1)

where F is the force applied to the seismic mass, x is the
displacement of the mass M, D is the damping coefficient and
k is the spring stiffness. The secondary transducer uses the
seismic mass as the middle plate of a differential capacitance
circuit. The displacement x of the seismic mass modifies the
gap between plates and hence the differential capacitance
values according to the following equations:

 top bottom

A AC C
d x d x
ε ε= =
− +

 (2)

where ε is the vacuum permittivity constant, A the surface of
the capacitance plate, and d the initial gap between two plates.
When a 1 MHz sine-shaped voltage is applied to the top and
the bottom electrodes, the currents through the two
capacitances follow the electro kinetic equations:

 . .top bottom
top top bottom bottom

dV dVI C I C
dt dt

= = (3)

Paper #1446

6

(1) to (3) describe the overall ideal electro-mechanical
behavior of the accelerometer. A more realistic model would
include other effects such as nonlinear capacitors or
electrostatic forces.

1) VHDL-AMS description

The VHDL-AMS source code of the accelerometer is given

in Fig. 3. To implement the set of multi-discipline differential
equations, one has to make reference to the definitions related
to electrical and mechanical systems (lines 1 to 4). These
packages contain all the information needed to declare the two
conservative translational ports tmass and tmref (line 16),
and the three electrical ports tetop, temid, and tebot
(line 17) and to use physical constants such as EPS0, the
permittivity of the vacuum (lines 36 and 37). The default
values of generic parameters (lines 9 to 14) make use of
predefined scale factors from the energy_systems
package to improve readability. The name of the library
ieee_proposed means that the definitions contained in
these packages are not completely stable yet. They should be
however defined as some IEEE standard in a near future.

The model interface is described in the entity declaration
(lines 6 to 18) and is decomposed into the specification of
generic parameters (lines 8 to 14) and of the interface ports
(lines 16 and 17). The generic parameters make the submodel
reusable in other models than only the airbag system model.
The actual values of mechanical and geometrical parameters
may be changed for each specific instance of the accelerometer
model. The port interface defines conservative-law mechanical
and electrical connection points or terminals.

The accelerometer behavior is defined in a separate
architecture body called bhv (lines 20 to 41). Lines 22 to 28
declare quantities, which correspond in VHDL-AMS to the
unknowns of the system of equations to be solved by the
analog solver. In the lines 22 to 24, a number of branch
quantities are declared. Branch quantities are defined between
two ports (terminal in VHDL-AMS) and represent it’s across
or through aspects. The first across/through set of branch
quantities (line 22) belongs to the mechanical discipline, while
the other two sets belong to the electrical discipline. These
quantities are used to express equations (1) to (3). Then, a
number of so-called free quantities, that is quantities not
bound to any terminal, are declared (lines 26 to 28). These
quantities are mainly used to break down complex
relationships into more manageable and understandable pieces.

VHDL-AMS provides a fairly general notation for
expressing DAEs based on the so-called simultaneous
statements. In essence, simultaneous statements denote the
constitutive equations in a model that will be gathered into a
system of equations to be solved. From the user viewpoint,
VHDL-AMS does not make any difference between explicit
and implicit equations. The simple simultaneous statement
simply states that, once the values of the unknowns (quantities)
are computed at some time point, the evaluation of the left

hand side expression of the “==” statement minus the right
hand side expression gives a value close to zero, within the
defined tolerances.

The accelerometer behavior is described using eight
simultaneous statements (lines 31 to 40). Note the use of the
'dot attribute to denote a first order time derivative of the
quantity prefix. One could have rather selected the velocity as
the across mechanical quantity instead of the position, but this
would have enforced writing (1) with an integral term. Also,
the use of the intermediate quantity cd_vel to hold the
velocity allows to only use first order time derivatives. This is
usually preferred as higher order time derivatives are usually
computed with less accuracy. Anyway, the notation
cd_pos'dot'dot is perfectly legal. As one can see, the
VHDL-AMS equations of lines 31 to 40 perfectly match the
physical equations (1) to (3).

(1) library ieee_proposed;
(2) use ieee_proposed.energy_systems.all;
(3) use ieee_proposed.electrical_systems.all;
(4) use ieee_proposed.mechanical_systems.all;
(5)
(6) entity cap_sensor is
(7) generic (
(8) -- mechanical properties
(9) M : mass := 0.16*NANO; -- seismic mass
(10) D : damping := 4.0*MICRO; -- damping coefficient
(11) K : stiffness := 2.6455; -- spring stiffness
(12) -- geometrical properties
(13) A : real := 2.0*MICRO*110.0*MICRO; -- capacitor area
(14) D0: real := 1.5*MICRO); -- initial position
(15) port (
(16) terminal tmass, tmref : translational;
(17) terminal tetop, temid, tebot: electrical);
(18) end entity cap_sensor;
(19)
(20) architecture bhv of cap_sensor is
(21) -- branch quantities
(22) quantity cd_pos across cd_force through tmass to tmref;
(23) quantity vtm across itm through tetop to temid;
(24) quantity vbm across ibm through tebot to temid;
(25) -- free quantities
(26) quantity cd_vel: velocity; -- comb drive velocity
(27) quantity dtm, dbm: displacement; -- comb drive displacements
(28) quantity ctm, cbm: capacitance; -- capacitances
(29) begin
(30) -- compute displacement of comb drive
(31) cd_vel == cd_pos'dot;
(32) cd_force == K*cd_pos + D*cd_vel + M*cd_vel'dot;
(33) dtm == D0 + cd_pos;
(34) dbm == D0 - cd_pos;
(35) -- compute change in capacitances
(36) ctm == A*EPS0/dtm;
(37) cbm == A*EPS0/dbm;
(38) -- compute generated current
(39) itm == ctm*vtm'dot;
(40) ibm == cbm*vbm'dot;
(41) end architecture bhv;

Fig. 3. VHDL-AMS model of the accelerometer.

2) Verilog-AMS description

The Verilog-AMS source code for the accelerometer is

Paper #1446

7

given in Fig. 4. The first two lines include statements that
define the kinematic and electrical disciplines as well
as physical constants such as P_EPS0, the permittivity of
vacuum. As the constant is defined as a macro in the
“constants.h” file, it has to be used with the back tick
prefix, as shown in lines 33 and 34.

The model interface and the model body are included in the
same module statement. The interface ports are defined in
three steps: the port names (line 4), the port directions (line 6),
and the port disciplines (lines 8 to 11). As all interface ports
belong to a discipline, they are declared of mode inout (this
declaration is not actually required as inout is the default
mode). The default values of generic parameters (lines 14 to
19) make use of predefined scale factors to improve
readability. Verilog-AMS is case sensitive so the “m” scale
factor means 10-3 while the “M” scale factor means 106! Lines
19 and 20 declare a number of real variables that hold
intermediate results.

Verilog-AMS encapsulates the description of continuous-
time behavior in so-called analog blocks. The language
imposes to have only one analog block in a module. For that
reason, the accelerometer behavior is defined in a single
analog statement containing a sequence of several
statements (lines 24 to 42). All the statements are executed
sequentially, and their order is relevant. The contribution
statements that define the currents in the capacitors have to be
at the end of the block (lines 40 and 41) otherwise the current
values would not be correct. Simple assignments to integer or
real variables are achieved using the “=” sign, while two forms
for expressing continuous-time behavior are provided.

The first form, used in this submodel, is the so-called
contribution statement, with the contribution operator “<+”
that may only affect quantities referred to by access functions.
The second (implicit) form is called indirect branch
assignment and allows for describing equations using the state-
space formulation.

In the model, it is possible to use the contribution statement
since all equations may be written in explicit form. The access
functions for the kinematic discipline are “Pos” for the
potential/across quantity and “F” for the flow/through
quantity. There is also a kinematic_v discipline available
where the potential/across quantity is a velocity, but the model
uses the position instead for the same reasons mentioned in the
description of the VHDL-AMS model. Quantities like
“V(tetop, temid)” (a potential) are qualified as probes,
as they appear at the right-hand side of the contribution
statement, while other quantities, such as “I(tetop,
temid)” (a flow) would have been qualified as sources as
they appear on the left-hand side. The same quantity cannot be
both a source and a probe. The “<+” sign also clearly indicates
that the operation is additive. The ddt operator computes the
first order time derivative of an expression. This contrasts with
the VHDL-AMS 'dot attribute that can only be applied to a
quantity. There are however two restrictions imposed by the
Cadence implementation on the use of the ddt operator. First,

nesting ddt operators is not allowed and second, this operator
may only be applied to nodes. This forces to declare additional
nodes in the model (lines 10 and 11) and to add contribution
statements (lines 26 to 29, and 36 to 41). It is not clear,
though, whether these restrictions are fundamental to the
Verilog-AMS language definition or only a consequence of the
Cadence implementation.

(1) `include "disciplines.h"
(2) `include "constants.h"
(3)
(4) module cap_sensor (tmass, tmref, tetop, temid, tebot);
(5)
(6) inout tmass, tmref, tetop, temid, tebot;
(7)
(8) kinematic tmass, tmref;
(9) electrical tetop, temid, tebot;
(10) electrical cd_vel, cd_accel;
(11) electrical vdiff_tm, vdiff_bm, vdiff_dtm, vdiff_dbm;
(12)
(13) // mechanical properties
(14) parameter real M = 0.16n; // seismic mass
(15) parameter real D = 4u; // damping coefficient
(16) parameter real K = 2.6455; // spring stiffness
(17) // geometrical properties
(18) parameter real A = 220f; // capacitor area
(19) parameter real D0 = 1.5u; // initial position
(20)
(21) real cd_pos;
(22) real dtm, dbm, ctm, cbm;
(23)
(24) analog begin
(25) // compute displacement of comb drive
(26) cd_pos = Pos(tmass);
(27) V(cd_vel) <+ ddt(Pos(tmass));
(28) V(cd_accel) <+ ddt(V(cd_vel));
(29) F(tmass, tmref) <+ K*cd_pos + D*V(cd_vel) + M*V(cd_accel);
(30) dtm = D0 + cd_pos;
(31) dbm = D0 - cd_pos;
(32) // compute change in capacitances
(33) ctm = A*`P_EPS0/dtm;
(34) cbm = A*`P_EPS0/dbm;
(35) // compute generated current
(36) V(vdiff_tm) <+ V(tetop, temid);
(37) V(vdiff_bm) <+ V(tebot, temid);
(38) V(vdiff_dtm) <+ ddt(V(tetop, temid));
(39) V(vdiff_dbm) <+ ddt(V(tebot, temid));
(40) I(tetop, temid) <+ ctm*V(vdiff_dtm);
(41) I(tebot, temid) <+ cbm*V(vdiff_dbm);
(42) end
(43)
(44) endmodule // cap_sensor

Fig. 4. Verilog-AMS model of the accelerometer.

C. The trigger submodel
The trigger submodel has mostly a digital behavior that can

be conceptually modeled as a single process, sensitive to the
digital comparator output changes. As the output signal has to
be analog for interconnection reasons with the CMOS inverter
based on EKV MOST models, some D/A interface must be
provided in the model. A 50 KHz clock, internal to the trigger
submodel, serves as a duty cycle and is anded with the

Paper #1446

8

comparator output signal, according to Fig. 5, to count up to
10 periods. When 10 periods have been counted up, the
collision output signal toggles.

Fig. 5. Counting 10 pulses of the comparator to produce
the collision signal.

1) VHDL-AMS Description

The VHDL-AMS source code for the trigger is given in Fig.

6. The model first references predefined packages that include
the definitions of the logic value system to be used for digital
signals, essentially the std_logic type, and the definitions
related to the electrical discipline, essentially the
electrical nature (lines 1 to 5).

The model interface declares both event-driven (line 15)
and continuous-time (line 16) ports. The latter functionally
represent model outputs, although nothing in the interface
declaration actually stresses that.

The trigger behavior is defined in a separate architecture
body called bhv (lines 20 to 47). Local declarations include
the digital internal clock signal intclk (line 22), the
discrete-time representation of the output (line 23) and two
branch quantities that represent an ideal source connected to
the terminal ports tp and tm (line 25). The model body is
decomposed in two concurrent processes and one simultaneous
statement. The first process (line 29) generates the internal
clock, the second process (lines 31 to 43) is sensitive to an
event on either the internal clock or on the digital input din
and counts until it reaches the requested number of pulses.
Then, the discrete-time signal sout is inverted. The use of
this real-valued signal is useful to detect the triggering event
accurately. The simultaneous statement (line 45) defines the
ideal source as a voltage source whose value is the analog
equivalent of the internal signal sout, but with ramping
transitions between states. The rise and fall times of the ramps
are identical and are defined by the generic parameter TT.
Note that it is very important to define a non-default initial
value for signal sout to avoid convergence problems during
the computation of the quiescent point of the model. In fact, a
real-valued signal object gets a default initial value of
real'left, that is the largest negative floating-point value,
and this is usually not a good value to start iterations at DC.
This explains why the signal sout has an initial value of 0.0
(line 23). As a general rule, all real-valued signals involved in

simultaneous statements should have a non-default value equal
to 0.0 or any other meaningful value.

(1) library ieee;
(2) use ieee.std_logic_1164.all;
(3)
(4) library ieee_proposed;
(5) use ieee_proposed.electrical_systems.all;
(6)
(7) entity trigger is
(8) generic (
(9) VOAMPL : voltage := 2.5; -- output voltage amplitude
(10) ICLKPER: time := 20 us; -- internal clock period
(11) NPULSES: natural := 10; -- #pulses to count
(12) TT : real := 100.0e-9 -- output transition time
(13));
(14) port (
(15) signal din : in std_logic;
(16) terminal tp, tm: electrical
(17));
(18) end entity trigger;
(19)
(20) architecture bhv of trigger is
(21)
(22) signal intclk: std_logic := '0';
(23) signal sout : real := 0.0;
(24)
(25) quantity vout across iout through tp to tm;
(26)
(27) begin
(28)
(29) iclkgen: intclk <= not intclk after ICLKPER/2;
(30)
(31) process
(32) variable count: natural := 0;
(33) begin
(34) wait on din, intclk;
(35) if din'event and din = '1' and intclk = '1' then
(36) count := count + 1;
(37) if count = NPULSES then
(38) sout <= 1.0 - sout;
(39) end if;
(40) end if;
(41) if intclk'event and intclk = '0' then -- reset
(42) count := 0;
(43) end if;
(44) end process;
(45) vout == VOAMPL*sout'ramp(TT);
(46)
(47) end architecture bhv;

Fig. 6. VHDL-AMS model of the trigger.

2) Verilog-AMS Description

The Verilog-AMS source code for the trigger is given in

Fig. 7. The model starts with a timescale directive which
defines the time unit and the time precision used in the model.
In our case, the internal clock period ICLKPER is defined as
a multiple of 100 ns, while the time precision is 1 ns. A second
include statement essentially makes the definition of the
electrical discipline available to the model.

The model interface declares both event-driven (lines 5 and
7) and continuous-time (lines 6 and 8) ports. The discipline of
the digital port din is actually implicitly defined as being

Paper #1446

9

logic through the wire net type. Then come a number of
generic parameters whose actual values may be changed for
each instance of the model (lines 10 to 13), and a number of
local declarations (lines 15 to 17). One can see that there is no
real difference between variables and signals in Verilog-AMS.
The reg type variables have logic values (namely 0, 1, X or
Z) and may only be assigned from within a process.

The model body is decomposed into three processes and
one analog statement. The initial process (lines 19 to 23)
is executed only once at the beginning of the simulation to
initialize some objects, while the two other always processes
(lines 25 and 27 to 34) execute cyclically as soon as an event
occurs on sensitive signals, namely intclk for the first one
and din and intclk for the second one. One process is
dedicated to the internal clock generation (line 25) and the
other process actually counts the number of input pulses and
triggers the output signal when the requested number of pulses
is reached. As the output port tp is in the continuous-time
domain, some D/A interface must be used to convert the
internal digital variable sout that exhibits steep transitions to
an analog equivalent that does not. This is done with an analog
process (lines 36) that uses the transition filter to
generate ramps on the output voltage. The rise and fall times
are identical and are controlled by the parameter TT.

(1) `timescale 100ns/1ns
(2) `include "disciplines.h"
(3)
(4) module trigger (din, tp);
(5) input din;
(6) inout tp;
(7) wire din;
(8) electrical tp;
(9)
(10) parameter real VOAMPL = 2.5; // output voltage amplitude
(11) parameter ICLKPER = 200; // internal clock period
(12) parameter real NPULSES = 10; // #pulses to count
(13) parameter real TT = 100n; // output transition time
(14)
(15) reg intclk;
(16) integer count;
(17) real sout;
(18)
(19) initial begin
(20) intclk = 0;
(21) count = 0;
(22) sout = 0;
(23) end
(24)
(25) always #(ICLKPER/2) intclk = !intclk;
(26)
(27) always @(posedge din or negedge intclk)
(28) begin
(29) if ((din == 1) && (intclk == 1)) begin
(30) count = count + 1;
(31) if (count == NPULSES) sout = 1.0 - sout;
(32) end
(33) else if (intclk == 0) count = 0;
(34) end
(35)
(36) analog V(tp) <+ VOAMPL*transition(sout, 0, TT);
(37)
(38) endmodule // trigger

Fig. 7. Verilog-AMS model of the trigger.

D. The CMOS inverter submodel
The CMOS inverter is composed of one nMOS and one

pMOS transistor and is connected to its direct environment as
shown in Fig. 8.

Fig. 8. The CMOS inverter and its direct environment.

In the airbag system, the nMOS transistor has electrical

connections with the trigger output, with the pMOS transistor
to form the inverter, and with the laser diode. When located on
the same substrate, thermo-electronic interactions take place
between these devices. Heat diffusion through the
corresponding materials can be modeled by different means
[15][16]. In our model, we do this by sourcing dissipated
power into a thermal RC network [16], which represents the
material properties of the different layers (thermal resistances
and capacitances of the heat sink and the package). The
thermal network is composed of thermal capacitors, resistors
and an ambient temperature generator. All the devices are
thermally interconnected through coupling thermal resistances:
RNLed, RPLed, and RNP.

The pMOS and nMOS transistor behaviors are described
using the EKV MOST model, an accurate analytical model for
deep submicron designs [17][18]. It is a charge-based compact
model that consistently describes effects on charges,
transcapacitances, drain current and transconductances in all
regions of operation of the MOSFET transistor (weak,
moderate, strong inversion) as well as conduction to
saturation. The modeled effects include all the essential effects
present in sub micron technologies. Several electrical
parameters are highly dependent on temperature, namely the
threshold voltage, the mobility, the thermal voltage, etc...
Their respective temperature variations are taken into account
by appropriate coefficients in the model equations [19].

1) VHDL-AMS Description

G

D

BS

G

D

S B

A

C

R

N-MOST
RC Network

Laser Diode
RC Network

P-MOST
RC Network

RNLed

RPLedRNP

TJ TJ

TJ

Digital
information

EKV N-MOST

EKV P-MOST

Laser Diode

Lout

Lin

Paper #1446

10

The VHDL-AMS source code for the CMOS inverter is
given in Fig. 9. It is a structural model that instantiates two
components: one pMOS transistor called PMOS (lines 22 to
36) and one nMOS transistor called NMOS (lines 38 to 52).
Both the generic parameters and the port associations use the
named association mechanism for improved readability.

It is possible to develop a single transistor model that is
valid for both pMOS and nMOS transistors. The trick is to
change signs of quantities and parameters appropriately. In this
paper, we present a simplified version of the EKV MOST
model as the full version would have needed several pages of
code. Fig. 10 gives the simplified VHDL-AMS model of one
transistor. The MTYP generic parameter allows for defining the
type of the MOS transistor and also the sign of some relevant
voltages and parameters (defined in line 8, used in lines 54 and
68). Note that some actual parameters in the MOS instances
must anyway have the right sign (e.g., VT0 in Fig. 10). The
interface ports are the four standard electrical pins of a
MOSFET transistor, plus an additional thermal pin to account
for dynamic thermal exchanges between the transistor and its
environment (line 25). The order in which terminals are
specified in a branch quantity declaration defines the direction
of the flow. Considering the thermal port, the temperature
temp is measured between the port and the thermal reference
(line 39), while the heat gpower is flowing out the device
from the thermal reference to the port (line 38). This way, the
thermal interaction is really bi-directional and the self-heating
behavior of the device is properly taken into account (line 69).

The electrical behavior of the EKV MOST model is actually
procedural so it is more efficient to use the sequential
statements proposed by VHDL-AMS. The simultaneous
procedural statement could be used, but, as it is not yet
supported in the Mentor tool, we use a function instead,
namely the f_id function, to implement the computation of
the drain current (lines 47 to 65). The equation of the drain
current is then implemented in a single simultaneous statement
with the appropriate signs for the function arguments to
account for the actual model type (line 68). Note that all
terminal potentials are defined relatively to the bulk terminal, a
specificity of the EKV MOST model.

(1) library ieee_proposed;
(2) use ieee_proposed.energy_systems.all;
(3) use ieee_proposed.electrical_systems.all;
(4) use ieee_proposed.thermal_systems.all;
(5)
(6) entity cmos_inv is
(7) generic (
(8) WN: real := 15.0*MICRO;
(9) LN: real := 0.15*MICRO;
(10) WP: real := 15.0*MICRO;
(11) LP: real := 0.15*MICRO
(12));
(13) port (
(14) terminal tin, tout, tvdd, tvss: electrical;
(15) terminal tjn, tjp : thermal
(16));
(17) end entity cmos_inv;
(18)
(19) architecture str of cmos_inv is

(20)
(21) begin
(22) PMOS: entity work.mos(ekv_simple)
(23) generic map (
(24) MTYP => -1.0,
(25) WEFF => WP,
(26) LEFF => LP,
(27) VT0 => -0.4,
(28) TCV => -1.5*MILLI
(29))
(30) port map (
(31) td => tout,
(32) tg => tin,
(33) ts => tvdd,
(34) tb => tvdd,
(35) tj => tjp
(36));
(37)
(38) NMOS: entity work.mos(ekv_simple)
(39) generic map (
(40) MTYP => 1.0,
(41) WEFF => WN,
(42) LEFF => LN,
(43) VT0 => 0.4,
(44) TCV => 1.5*MILLI
(45))
(46) port map (
(47) td => tout,
(48) tg => tin,
(49) ts => tvss,
(50) tb => tvss,
(51) tj => tjn
(52));
(53) end architecture str;

Fig. 9. VHDL-AMS structural model of the CMOS

inverter.

(1) library ieee; use ieee.math_real.all;
(2) library ieee_proposed;
(3) use ieee_proposed.energy_systems.all;
(4) use ieee_proposed.electrical_systems.all;
(5) use ieee_proposed.thermal_systems.all;
(6) entity mos is
(7) generic (
(8) MTYP : real := 1.0; -- NMOS: 1.0, PMOS: -1.0
(9) -- geometrical parameters
(10) WEFF : real := 1.0*MICRO; -- effective channel width
(11) LEFF : real := 0.15*MICRO; -- effective channel length
(12) -- threshold voltage and substrate body effect parameters
(13) VT0 : real := 0.4; -- long channel thresh. voltage (NMOS!)
(14) PHI : real := 0.97; -- bulk Fermi potential
(15) GMA: real := 0.71; -- body effect parameter
(16) -- mobility parameters
(17) KP : real := 453.0*MICRO; -- transconductance parameter
(18) THETA: real := 50.0*MILLI; -- mobility reduction coefficient
(19) -- temperature coefficients
(20) TCV : real := 1.5*MILLI; -- temp. coef, of thres. voltage
(21) BEX : real := -1.5 -- temp. coef. of trans. parameter
(22));
(23) port (
(24) terminal td, tg, ts, tb: electrical;
(25) terminal tj : thermal
(26));
(27) end entity mos;
(28)
(29) architecture ekv_simple of mos is
(30) constant KOQ : real := K/Q;
(31) constant TEMPREF: real := 300.15;
(32) -- electrical branch quantities
(33) quantity vg across tg to tb;

Paper #1446

11

(34) quantity vd across td to tb;
(35) quantity vs across ts to tb;
(36) quantity ids through td to ts;
(37) -- thermal branch quantities
(38) quantity gpower through thermal_ref to tj;
(39) quantity temp across tj to thermal_ref;
(40)
(41) function i_v (constant v: real) return real is
(42) variable x: real;
(43) begin
(44) return (log(1.0 + 0.5*exp(v)))**2;
(45) end function i_v;
(46)
(47) function f_id (temp, vg, vs, vd: real) return real is
(48) variable id, vt, ratio, eg, egref: real;
(49) variable vto_th, kp_th: real;
(50) variable vgprime_0, vgprime, vp, iff, irr, beta, n: real;
(51) begin
(52) vt := KOQ*temp + 1.0e-6;
(53) ratio := abs(temp/TEMPREF + 1.0e-6);
(54) vto_th := MTYP*(VT0 - TCV*(temp - TEMPREF));
(55) kp_th := KP*(ratio**BEX);
(56) vgprime_0 := vg - vto_th + PHI + GMA*sqrt(PHI);
(57) vgprime:=0.5*(vgprime_0+sqrt(vgprime_0*vgprime_0+1.0e-3));
(58) vp := vgprime - PHI
(59) - GMA*(sqrt(vgprime + 0.25*GMA*GMA) - 0.5*GMA);
(60) iff := i_v((vp - vs)/vt);
(61) irr := i_v((vp - vd)/vt);
(62) beta := kp_th*(WEFF/LEFF)*(1.0/(1.0 + THETA*vp));
(63) n := 1.0;
(64) return 2.0*n*beta*vt*vt*(iff - irr) + 1.0e-10;
(65) end function f_id;
(66)
(67) begin
(68) ids == MTYP*f_id(temp, MTYP*vg, MTYP*vs, MTYP*vd);
(69) gpower == abs(ids*(vd - vs));
(70) end architecture ekv_simple;

Fig. 10. VHDL-AMS model of a simple EKV MOS model.

2) Verilog-AMS Description

The Verilog-AMS source code for the CMOS inverter is

given in Fig. 11. It is also a structural model that instantiates
two MOSFET transistor components. Both the generic
parameter and the port associations use the named association
mechanism for improved readability. Note that the include
statement in line 3 should be typically inserted in the top-level
model of the airbag system only. Including the same file in
several places is a common mistake and compiler directives
are usually included to prevent this.

Fig. 12 gives the Verilog-AMS model of the simplified
EKV MOST model. The use of an analog block is natural here
as the EKV model is inherently procedural (lines 32 to 53).
Local variables to hold terminal voltages are used in the block
(lines 33 to 35). This is done to avoid scattering access
functions throughout the code and also to use the right signs
depending on the MOS type. A utility macro “I_V” is defined
to realize a smooth interpolation function (line 4). The macro
is expanded in-line in the code with the appropriate parameter
substitution (lines 45 and 46). Note the use of the predefined
limexp function, which implements an exponential function
whose value is limited during the solution iterations. This is

very useful to prevent arithmetic overflow in intermediate
computations that may typically occurs in semiconductor
models. At the end of the analog block, the computed drain
current id is assigned as a flow contribution between the td
and ts electrical terminals (line 50), and the self-heating heat
is assigned as a flow contribution to the thermal terminal tj
through the Pwr()access function (line 52). The flow is
defined from the thermal ground, as declared in lines 9 and 10
to the terminal tj.

(1) `include "disciplines.h"
(2)
(3) `include "mos_ekv_simple.v"
(4)
(5) module cmos_inv (tin, tout, tjn, tjp, tvdd, tvss);
(6)
(7) inout tin, tout, tjn, tjp, tvdd, tvss;
(8) electrical tin, tout, tvdd, tvss;
(9) thermal tjn, tjp;
(10)
(11) parameter real WP = 60u;
(12) parameter real WN = 30u;
(13) parameter real LP = 0.15u;
(14) parameter real LN = 0.15u;
(15)
(16) mos_ekv #(.MTYP(-1.0),
(17) .WEFF(WP),
(18) .LEFF(LP),
(19) .VT0(-0.4),
(20) .TCV(-1.5m))
(21) mp (.td(tout),
(22) .tg(tin),
(23) .ts(tvdd),
(24) .tb(tvdd),
(25) .tj(tjp));
(26)
(27) mos_ekv #(.MTYP(1.0),
(28) .WEFF(WN),
(29) .LEFF(LN),
(30) .VT0(0.4),
(31) .TCV(1.5m))
(32) mn (.td(tout),
(33) .tg(tin),
(34) .ts(tvss),
(35) .tb(tvss),
(36) .tj(tjn));
(37) endmodule // cmos_inv

Fig. 11. Verilog-AMS structural model of the CMOS inverter.

(1) `include "disciplines.h"
(2) `include "constants.h"
(3)
(4) `define I_V(v) pow(ln(1.0 + 0.5*limexp(v)),2)
(5)
(6) module mos_ekv (td, tg, ts, tb, tj);
(7) inout td, tg, ts, tb, tj;
(8) electrical td, tg, ts, tb;
(9) thermal tj, th_gnd;
(10) ground th_gnd;
(11)
(12) parameter real MTYP = 1.0; // NMOS: 1.0, PMOS: -1.0
(13) // geometrical parameters
(14) parameter real WEFF = 1.0e-6; // effective channel width
(15) parameter real LEFF = 0.15e-6; // effective channel length
(16) // threshold voltage and substrate body effect parameters
(17) parameter real VT0 = 0.4; // long channel threshold voltage
(18) parameter real PHI = 0.97; // bulk Fermi potential

Paper #1446

12

(19) parameter real GMA = 0.71; // body effect parameter
(20) // mobility parameters
(21) parameter real KP = 453.0e-6; // transconductance parameter
(22) parameter real THETA = 50.0e-3; // mobility reduction coefficient
(23) // temperature coefficients
(24) parameter real TCV = 1.5e-3; // temp. coef, of threshold voltage
(25) parameter real BEX = -1.5; // temp. coef. of transcond. param.
(26)
(27) real vt, temp, tempref, ratio, eg, egref;
(28) real vto_th, kp_th, vgprime_0, vgprime, vp;
(29) real vg, vs, vd;
(30) real iff, irr, beta, n, id, gpower;
(31)
(32) analog begin
(33) vg = MTYP*V(tg, tb);
(34) vs = MTYP*V(ts, tb);
(35) vd = MTYP*V(td, tb);
(36) tempref = 300.15; temp = Temp(tj);
(37) vt = `P_K*temp/`P_Q + 1.0e-6;
(38) ratio = abs(temp/tempref + 1.0e-6);
(39) vto_th = MTYP*(VT0 - TCV*(temp - tempref));
(40) kp_th = KP*pow(ratio,BEX);
(41) vgprime_0 = vg - vto_th + PHI + GMA*sqrt(PHI);
(42) vgprime =0.5*(vgprime_0+sqrt(vgprime_0*vgprime_0+1.0e-3));
(43) vp = vgprime - PHI
(44) - GMA*(sqrt(vgprime + 0.25*GMA*GMA) - 0.5*GMA);
(45) iff = `I_V((vp - vs)/vt);
(46) irr = `I_V((vp - vd)/vt);
(47) beta = kp_th*(WEFF/LEFF)*(1.0/(1.0 + THETA*vp));
(48) n = 1.0;
(49) id = MTYP*2.0*n*beta*vt*vt*(iff - irr) + 1.0e-10;
(50) I(td, ts) <+ id;
(51) gpower = abs(id*(vd - vs));
(52) Pwr(th_gnd, tj) <+ abs(id*(vd - vs));
(53) end
(54) endmodule // mos_ekv

Fig. 12. Verilog-AMS model of a simple EKV MOS model

E. The optical link submodel
An optical fiber provides numerous advantages over

electrical interconnection: signals degrade less, there is less
interference, and lower-power transmitters can be used instead
of the high-voltage electrical transmitters needed for copper
wire. From a modeling point of view, optical fibers obey
signal-flow rules. An optical fiber is a device with infinite
input impedance, and null output impedance, and its dynamic
characteristics do not depend on the applied load. Moreover,
the quantity of light produced by a laser diode remains the
same, whatever the number of optical fibers connected to it.
To put emphasis on the solutions provided by VHDL-AMS
and Verilog-AMS to deal with signal-flow modeling, we now
detail how the negative edge of the collision signal is
converted into monochromatic light, propagated with the
optical fiber transmission medium, and converted back into an
electrical signal with a photodiode.

From an electrical point of view, the anode of the laser
diode is electrically connected to a current limiting resistor,
which other end is connected to the inverter output, as shown
in Fig. 13 [20]. The cathode is directly connected to electrical
ground. The intrinsic behavior of the diode is modeled by the
classical equation for which the current is exponentially
dependent on the potential Vd [21]. If necessary, series and

leakage resistors could also be added, for improved modeling
accuracy.

A

C

R

TJ Transmission
medium

IP

Photo-Diode

Laser Diode

Lout

Lin Lout

Lin

Airbag
trigger

Emitter Receiver

Fig. 13. The optical link.

From an optical point of view [20], the laser diode aims at

producing light with controlled light power in relation to its
forward current and wavelength. To obtain the laser effect, the
laser diode needs a threshold current Ith which is temperature
dependent. If the forward current is less than the threshold
current, no light is emitted. If the forward current is higher
then the relation between the light output power and the
forward current is linear with a ratio slope η. The dynamic
behavior of the laser diode is assumed to be the response as a
first order low pass filter with time constant τ as formulated in
the following Laplace transfer function:

1

1
out

in

L
L sτ

=
+ ⋅

 (4)

where Lin is the light power calculated. Lout gives the output
power. The laser diode is very sensitive to temperature, and
the ratio between absorbed power and emitted light power is
low. The exceeding power is transformed into heat. To model
the temperature evolution, we have added a thermal terminal to
the laser diode so that the temperature of the device can
change with the variation of the output value. We assume a
linear variation of Ith and η with respect to the temperature as a
good approximation within an appropriate temperature interval
(about 70°C).

A more accurate model would take into account the
produced wavelength, electromagnetic modes and the
associated opto-geometrical aspects [22].

The transmission medium is assumed to be ideal, i.e. no
geometrical/electromagnetic or dispersion effects are taken
into account. Only a pure delay and a reduction coefficient are
considered here.

The photodiode model [20] contains an input connector for
light, two electrical terminals (anode and cathode) and a
thermal terminal dedicated to thermodynamical exchanges
with other devices in the transmission receiver. The
photodiode is a device that generates a current when it receives
light on its input signal-flow connector. The photo-current is
globally proportional to light intensity, but it is modified by

Paper #1446

13

three factors: the dark current (sensitive to temperature), the
diffusion capacitance of the diode and the leaking resistance,
as stated in Fig. 14. When the photodiode is polarized in
reverse mode it can be modeled as a current generator Ip in
parallel with the diffusion capacitance Cd and the leak resistor.
The current Ip is proportional to the optical power received by
the photodiode and has an offset current Idark called the dark
current. The temperature dependency of the dark current is
also taken into account. More accurate models of photodiodes
can be found in [23][24].

Fig. 14. The photo-diode model.

1) VHDL-AMS Description

The VHDL-AMS source code for the laser diode is given in

Fig. 15. The model interface has two electrical ports, namely
the anode and the cathode (line 19), one thermal port (line 20)
and one signal-flow port (line 21), which receives the light
emitted by the laser-diode. The signal-flow port is realized by
an interface quantity. In the model body, the function
idval() computes the diode current as a function of the
temperature (lines 34 to 39), and the function lightpwr
calculates the emitted light power as a function of the
temperature and the diode current (lines 41 to 52). The diode
current, the temperature sensitivity of the current threshold Ith
and the ratio slope η are therefore easily implemented (lines
45 and 46). For (4), the model uses the predefined attribute
'ltf to define a Laplace transfer function and to apply it to
the lpwr quantity (line 58). The arguments of the attribute are
the numerator and denominator coefficients of the transfer
function indexed by their order in the respective polynomials.
Here again, the named association mechanism, e.g., “0 =>
1.0”, improves the readability of the model.

The VHDL-AMS model of the transmission medium is
given in Fig. 16. The model interface is purely of the signal-
flow kind, with an input and an output quantity ports (lines 10
and 11). The model is very simple as it only delays the input
with some possible attenuation (line 19). It is legally possible
to write it as a single statement, but the Mentor tool does not
yet support the application of the 'delayed attribute to a
quantity port.

The VHDL-AMS model of the photo-diode is given in
Fig. 17. As for the laser diode model, the model interface
includes one signal-flow port for the light input, two electrical
ports for the anode and the cathode, and one thermal port for
the thermal interactions (lines 19 to 21). The model body

implements the temperature dependency of the dark current
and the model of Fig. 14. If the temperature aspects were
neglected, it could have been possible to avoid the declaration
of the free quantities idark, ip, ic, and ir (line 32) and to
declare them as through branch quantities at line 27 with the
quantity id removed. The sum, currently expressed as an
explicit statement (line 42), could have therefore been implicit
thanks to the branch quantity declaration.

(1) library ieee;
(2) use ieee.math_real.all;
(3)
(4) library ieee_proposed;
(5) use ieee_proposed.energy_systems.all;
(6) use ieee_proposed.electrical_systems.all;
(7) use ieee_proposed.thermal_systems.all;
(8)
(9) entity laser_diode is
(10) generic (
(11) IRR : real := 1.0*PICO; -- inverse diode current
(12) ITH0 : real := 10.0*MILLI; -- current thres. at ambient temp.
(13) TAU : real := 0.3*NANO; -- output light time constant
(14) ETA0 : real := 0.32; -- prop. coefficient at ambient temp.
(15) ITHSFT: real := 0.1*MILLI; -- temp. sensitivity of current thres.
(16) ETASFT: real := 2.0*MILLI -- temp. sensitivity of prop. coeff.
(17));
(18) port (
(19) terminal tan, tca: electrical;
(20) terminal tj : thermal;
(21) quantity olight : out real
(22));
(23) end entity laser_diode;
(24)
(25) architecture bhv of laser_diode is
(26)
(27) quantity vd across id through tan to tca;
(28)
(29) quantity power through thermal_ref to tj;
(30) quantity temp across tj to thermal_ref;
(31)
(32) quantity lpwr: real;
(33)
(34) function idval (temp, vd: real) return real is
(35) variable vt: real;
(36) begin
(37) vt := K*temp/Q;
(38) return IRR*(exp(vd/(2.0*vt + 1.0e-20) - 1.0));
(39) end function idval;
(40)
(41) function lightpwr (temp, id: real) return real is
(42) variable tempc, ith_eff, eta_eff: real;
(43) begin
(44) tempc := temp - 273.0;
(45) ith_eff := ITH0 + ITHSFT*tempc;
(46) eta_eff := ETA0 + ETASFT*tempc;
(47) if id > ith_eff then
(48) return eta_eff*(id - ith_eff);
(49) else
(50) return 0.0;
(51) end if;
(52) end function lightpwr;
(53)
(54) begin
(55) id == idval(temp, vd);
(56) power == id*vd;
(57) lpwr == lightpwr(temp, id);
(58) olight == lpwr'ltf((0 => 1.0), (0 => 1.0, 1 => TAU));
(59) end architecture bhv;

Paper #1446

14

Fig. 15. VHDL-AMS model of the laser diode.

(1) library ieee_proposed;
(2) use ieee_proposed.energy_systems.all;
(3)
(4) entity xmedium is
(5) generic (
(6) XDEL : real := 5.0*NANO; -- transmission delay
(7) XCOEF: real := 0.5 -- reduction coefficient
(8));
(9) port (
(10) quantity lin : in real;
(11) quantity lout: out real
(12));
(13) end entity xmedium;
(14)
(15) architecture ideal of xmedium is
(16) quantity qin: real;
(17) begin
(18) qin == lin; -- 'delayed on port qties not yet supported
(19) lout == XCOEF*qin'delayed(XDEL);
(20) end architecture ideal;

Fig. 16. VHDL-AMS model of the transmission medium.

(1) library ieee;
(2) use ieee.math_real.all;
(3)
(4) library ieee_proposed;
(5) use ieee_proposed.energy_systems.all;
(6) use ieee_proposed.electrical_systems.all;
(7) use ieee_proposed.thermal_systems.all;
(8)
(9) entity photo_diode is
(10) generic (
(11) CD : real := 1.0*PICO; -- diffusion capacitance
(12) RLEAK : real := 1.0*MEGA; -- leakage resistance
(13) SENSITIVITY: real := 0.13; -- diode sensitivity
(14) IDARK0 : real := 1.0*NANO; -- dark current at nominal temp.
(15) IDARK_DT : real := 45.0; -- temperature variation
(16) COOLINGG : real := 1.0*MILLI –- cooling conductance
(17));
(18) port (
(19) quantity ilight : in real;
(20) terminal tan, tca: electrical;
(21) terminal tj : thermal
(22));
(23) end entity photo_diode;
(24)
(25) architecture bhv of photo_diode is
(26)
(27) quantity vd across id through tan to tca;
(28)
(29) quantity power through thermal_ref to tj;
(30) quantity temp across tj to thermal_ref;
(31)
(32) quantity tempc, idark, ip, ic, ir: real;
(33)
(34) begin
(35) tempc == temp - 273.0;
(36)
(37) ir == vd/RLEAK;
(38)
(39) idark == IDARK0;
(40) ic == CD*vd'dot;
(41) ip == -SENSITIVITY*ilight;
(42) id == idark + ip + ic + ir;
(43)
(44) power == abs(id*vd) + (tempc*COOLINGG - ilight);
(45)

(46) end architecture bhv;

Fig. 17. VHDL-AMS model of the photo-diode.

2) Verilog-AMS Description

The Verilog-AMS source code for the laser diode is given

in Fig. 18. The model interface has two electrical ports tano
and tcat, one thermal port tj and one optical port olight
(lines 4 to 9). Verilog-AMS uses a simplified discipline
definition for modeling signal-flow ports. Since there is no
predefined signal-flow optical discipline in the
disciplines.h file, we have to define our own in the
model. The following code gives the discipline definition:

nature Illuminance

 units = "Cd";

 access = LP;

`ifdef CHARGE_ABSTOL

 abstol = `CHARGE_ABSTOL;

`else

 abstol = 1e-14;

`endif

endnature

discipline optical_sf

 potential Illuminance;

enddiscipline

The optical_sf discipline definition is stored in a file

named optical_sf.v, which is included in the top-level
airbag system model since three models are using the
discipline. Light is then described by a potential
(Illuminance) and managed by the access function LP().
In the model body, one can notice the call to the cross
function without the execution of any related statement
(line 30). The goal is to force the analog simulation kernel to
have a simulation point inserted at the time of the crossing and
then to accurately switch between the two possible expressions
for the lightpwr variable (lines 31 and 32). The
contribution to the light output is expressed through the
Laplace filter laplace_nd as given by (4) (line 34).

The Verilog-AMS model of the transmission medium is
given in Fig. 19. The model interface is purely signal-flow
(lines 1 to 4) and the model body makes use of the predefined
function transition to implement the fiber delay (line 9).
Verilog-AMS does also support the function absdelay but it
is not used here as it would force too many simulation
timepoints. It has to be noted, however, that the transition
function is used without rise or fall times to again avoid too
many simulation time points. The price to pay is a less
accurate output waveform, although still meaningful at the
system level.

The Verilog-AMS model of the photo-diode is given in
Fig. 20. As for the laser diode model, the model interface
includes one signal-flow port for the light input, two electrical

Paper #1446

15

ports for the anode and the cathode, and one thermal port for
the thermal interactions (lines 1 to 8). The model body
implements the temperature dependency of the dark current
and the model of Fig. 14. Instead of using the variable id in
line 25, it could have been possible to use the contribution
operator <+ four times in a row.

(1) `include "disciplines.h"
(2) `include "constants.h"
(3)
(4) module laser_diode (tano, tcat, tj, olight);
(5)
(6) inout tano, tcat, tj, olight;
(7) electrical tano, tcat;
(8) thermal tj;
(9) optical_sf olight;
(10)
(11) parameter real IR = 1p; // inverse diode current
(12) parameter real ITH = 10m; // current thresh. at ambient temp.
(13) parameter real TAU = 0.3n; // output light time constant
(14) parameter real ETA = 0.32; // prop. coeff. at ambient temp.
(15) parameter real ITHSFT = 0.1m; // temp. sens. of current thresh.
(16) parameter real ETASFT = 2.0m; // temp. sensitivity of prop. coeff.
(17)
(18) real vd, id, vt;
(19) real tempc, ith_eff, eta_eff, lightpwr;
(20)
(21) analog begin
(22) tempc = Temp(tj) - 273.0;
(23) ith_eff = ITH + ITHSFT*tempc;
(24) eta_eff = ETA + ETASFT*tempc;
(25)
(26) vt = `P_K*Temp(tj)/`P_Q;
(27) vd = V(tano, tcat);
(28) id = IR*(limexp(vd/(2.0*vt + 1.0e-20) - 1.0));
(29)
(30) @(cross(id - ith_eff, 0)); // enforces a time point at crossing
(31) if (id > ith_eff) lightpwr = eta_eff*(id - ith_eff);
(32) else lightpwr = 0.0;
(33)
(34) LP(olight) <+ laplace_nd(lightpwr, {1}, {1, TAU});
(35) I(tano, tcat) <+ id;
(36) Pwr(tj) <+ id*vd;
(37) end
(38)
(39) endmodule // laser_diode

Fig. 18. Verilog-AMS model of the laser diode.

(1) module xmedium (lin, lout);
(2)
(3) inout lin, lout;
(4) optical_sf lin, lout;
(5)
(6) parameter real XDEL = 5n; // transmission delay
(7) parameter real XCOEF = 0.5; // reduction coefficient
(8)
(9) analog LP(lout) <+ XCOEF*transition(LP(lin), XDEL);
(10)
(11) endmodule // xmedium

Fig. 19. Verilog-AMS model of the transmission medium.

(1) `include "disciplines.h"
(2)
(3) module photo_diode (ilight, tano, tcat, tj);
(4)
(5) inout ilight, tano, tcat, tj;

(6) electrical tano, tcat;
(7) thermal tj;
(8) optical_sf ilight;
(9)
(10) parameter real CD = 1p; // diffusion capacitance
(11) parameter real RLEAK = 1M; // leakage resistance
(12) parameter real SENSITIVITY = 0.13; // diode sensitivity
(13) parameter real IDARK0 = 1n; // dark current at nominal temp.
(14) parameter real IDARK_DT = 45.0; // temperature variation
(15) parameter real COOLINGG = 1m; // cooling conductance
(16)
(17) real tempc, ir, ic, ip, idark, id;
(18)
(19) analog begin
(20) tempc = Temp(tj) - 273.0;
(21) ir = V(tano, tcat)/RLEAK;
(22) ic = CD*ddt(V(tano, tcat));
(23) ip = -SENSITIVITY*LP(ilight);
(24) idark = IDARK0*pow(10.0,(tempc/IDARK_DT));
(25) id = ir + ic + ip + idark;
(26) I(tano, tcat) <+ id;
(27) Pwr(tj) <+ tempc*COOLINGG - LP(ilight);
(28) Pwr(tj) <+ abs(id)*V(tano, tcat);
(29) end
(30)
(31) endmodule // photo_diode

Fig. 20. Verilog-AMS model of the photo-diode.

F. The chemical reaction submodel
Literature on airbag technology state that three concurrent

chemical reactions (step reactions) take place at the same time,
once the propergol capsule has been ignited, namely:

3 22 2 3NaN Na N→ + (5)

3 2 2 210 2 5Na KNO K O Na O N+ → + + (6)

2 2 2 2 2 4K O Na O SiO K Na SiO+ + → (7)

 (5) states that, when the capsule blasts, molecules of

sodium azide NaN3 are totally transformed into Sodium Na
and Azote gas N2. The Azote gas inflates the airbag envelope
as requested, but sodium azide is highly toxic and ignites when
mixed with water. The chemical reaction (5) has to be
performed in less than 5 milliseconds. (6) acts as a sodium
neutralizer, as it reacts with potassium nitrate KNO3 to
produce more N2 and some moles of potassium oxide K20 and
sodium oxide Na2O. (7) states that the two latter chemical
products reacts with silicon dioxide to form a specified
quantity of alkaline silicate K2Na2SiO4, which is nothing more
than a harmless glass powder.

“For the three reactions to occur, the reactants must meet at
one place at one time. The probability of a reactant to be at
any given place is proportional to its concentration, and the
probabilities of the different reactants are stochastically
independent of each other” [25]. The equation set (5)-(7) can
be rewritten to introduce the necessary time parameter. Using
the Van’t Hoff theory on kinetic equations on the equation set
with appropriate stoichiometric coefficients, we get the
following reaction rate equations with eight unknowns
representing the concentration of chemical products over time:

Paper #1446

16

23
1 3

[] 2 []d NaN k NaN
dt

= − ⋅ ⋅ (8)

[] 2 10 2
1 3 2 32 [] 10 [] []

d Na
k NaN k Na KNO

dt
= ⋅ ⋅ − ⋅ ⋅ ⋅ (9)

[]2 2 10 2
1 3 2 33 [] [] []

d N
k NaN k Na KNO

dt
= ⋅ ⋅ + ⋅ ⋅ (10)

[] []23 10
2 32 []

d KNO
k Na KNO

dt
= − ⋅ ⋅ ⋅ (11)

[]2 10 2
2 3 3 2 2 2[] [] [] [] []

d K O
k Na KNO k K O Na O SiO

dt
= ⋅ ⋅ − ⋅ ⋅ ⋅ (12)

[]2 10 2
2 3 3 2 2 25 [] [] [] [] []

d Na O
k Na KNO k K O Na O SiO

dt
= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ (13)

[]2
3 2 2 2[] [] []

d SiO
k K O Na O SiO

dt
= − ⋅ ⋅ ⋅ (14)

[]2 2 4
3 2 2 2[] [] []

d K Na SiO
k K O Na O SiO

dt
= ⋅ ⋅ ⋅ (15)

k1 to k3 represent probability constants, so called reaction rate
constants.

This chemical model expects NaN3 to exponentially
decrease with time, and N2 gas to increase, in order to inflate
the airbag. The Na should first increase with the first reaction
of (5) and then decrease with the second reaction of (6).
However, Na should never grow too much.

Like the other models in the airbag system, the chemical
reaction kinetics is only roughly described by the eight
equations (8)-(15). This is because our chemical model is the
direct emanation of our “macroscopic” vision of chemistry as
engineers with a standard EECS curriculum. As stated by [25],
“literature on chemical reaction kinetics concentrates on molar
concentrations and their time derivative exclusively, and it
ignores the energy and its conservation entirely. Many
references on the subject do not introduce the chemical
potential as a system property at all”.

1) VHDL-AMS Description

The VHDL-AMS model of the chemsys block that

realizes the chemical reactions is given in Fig. 21. The model
interface only includes a single digital signal strig that
represents the trigger signal that will initiate the reactions (line
11). The model body implements the equation set (8)-(15)
(lines 26 to 37). In lines 39 to 46, the model defines the initial
conditions that have to hold before the trigger signal becomes
active. The break statement on line 23 notifies the analog
simulation kernel when an event on the discrete-time trigger
signal occurs, therefore forcing an analog simulation point at
the time of the event. This allows the simulator to compute a
smooth transition between the two regions of operations of the
model that are defined by the if statement (lines 25 to 47).

(1) library ieee;
(2) use ieee.std_logic_1164.all;
(3)
(4) entity chemsys is

(5) generic (
(6) K1: real := 14000.0; -- reaction rate for eq.(5)
(7) K2: real := 1.0; -- reaction rate for eq.(6)
(8) K3: real := 1.0 -- reaction rate for eq.(7)
(9));
(10) port (
(11) signal strig: in std_logic
(12));
(13) end entity chemsys;
(14)
(15) architecture bhv of chemsys is
(16)
(17) -- chemical concentrations
(18) quantity cNaN3,cNa,cN2,cKNO3, cK2O, cNa2O, cSiO2,
(19) cK2Na2SiO4: real;
(20)
(21) begin
(22)
(23) break on strig;
(24)
(25) if strig = '1' use
(26) cNaN3'dot == -2.0*K1*(cNaN3**2);
(27) cNa'dot == 2.0*K1*(cNaN3**2) –
(28) 10.0*K2*(cNa**10)*(cKNO3**2);
(29) cN2'dot == 3.0*K1*(cNaN3**2) +
(30) K2*(cNa**10)*(cKNO3**2);
(31) cKNO3'dot == -2.0*K2*(cNa**10)*(cKNO3**2);
(32) cK2O'dot == K2*(cNa**10)*(cKNO3**2) –
(33) K3*cK2O*cNa2O*cSiO2;
(34) cNa2O'dot == 5.0*K2*(cNa**10)*(cKNO3**2) –
(35) K3*cK2O*cNa2O*cSiO2;
(36) cSiO2'dot == -K3*cK2O*cNa2O*cSiO2;
(37) cK2Na2SiO4'dot == K3*cK2O*cNa2O*cSiO2;
(38) else
(39) cNaN3 == 5.0/3.0;
(40) cKNO3 == 1.0/3.0;
(41) cN2 == 0.0;
(42) cNa == 0.0;
(43) cK2O == 0.0;
(44) cNa2O == 0.0;
(45) cSiO2 == 1.0/6.0;
(46) cK2Na2SiO4 == 0.0;
(47) end use;
(48)
(49) end architecture bhv;

Fig. 21. VHDL-AMS model of the chemical system.

2) Verilog-AMS Description

The Verilog-AMS model of the chemsys block that

realizes the chemical reactions is given in Fig. 22. The model
interface only includes a single digital signal strig that
represents the trigger signal that will initiate the reactions (line
13). The model body implements the equation set (8)-(15)
(lines 24 to 48) in their integral form using the predefined
analog operator idt. This form is preferred as the idt
operator provides a way to specify a reset condition, which in
the model is handled by the value of the digital signal strig.
The indirect branch assignment also offered by Verilog-AMS
is not appropriate here as we need to trigger the integration at
some point in time. When the signal strig has a nonzero
value, the operator returns the initial value specified as the
second argument. The integration therefore starts when the
signal value becomes zero. Another point is the definition of

Paper #1446

17

the chemical signal-flow discipline chem_sf and its
associated nature ChemQ that is required to declare the
quantities to integrate. It is not allowed to use real variables for
that purpose.

(1) nature ChemQ
(2) units = "-";
(3) access = CH;
(4) abstol = 1e-14;
(5) endnature
(6)
(7) discipline chem_sf
(8) potential ChemQ;
(9) enddiscipline
(10)
(11) module chemsys (strig);
(12)
(13) input strig;
(14)
(15) parameter real K1 = 14000.0; // reaction rate for eq. (5)
(16) parameter real K2 = 1.0; // reaction rate for eq. (6)
(17) parameter real K3 = 1.0; // reaction rate for eq. (7)
(18)
(19) // chemical concentrations
(20) chem_sf cNaN3,cNa,cN2,cKNO3,cK2O,cNa2O, cSiO2,
(21) cK2Na2SiO4;
(22)
(23) analog begin
(24) CH(cNaN3) <+ idt(-2.0*K1*pow(CH(cNaN3),2),
(25) 5.0/3.0, !strig);
(26) CH(cNa) <+ idt(2.0*K1*pow(CH(cNaN3),2)
(27) -10.0*K2*pow(CH(cNa),10)*pow(CH(cKNO3),2),
(28) 0.0, !strig);
(29) CH(cN2) <+ idt(3.0*K1*pow(CH(cNaN3),2)
(30) + K2*pow(CH(cNa),10)*pow(CH(cKNO3),2),
(31) 0.0, !strig);
(32) CH(cKNO3) <+ idt(-2.0*K2*pow(CH(cNa),10)*
(33) pow(CH(cKNO3),2),
(34) 1.0/3.0, !strig);
(35) CH(cK2O) <+ idt(K2*pow(CH(cNa),10)*
(36) pow(CH(cKNO3),2)
(37) - K3*CH(cK2O)*CH(cNa2O)*CH(cSiO2),
(38) 0.0, !strig);
(39) CH(cNa2O) <+ idt(5.0*K2*pow(CH(cNa),10)*
(40) pow(CH(cKNO3),2)
(41) - K3*CH(cK2O)*CH(cNa2O) *CH(cSiO2),
(42) 0.0, !strig);
(43) CH(cSiO2) <+ idt(-K3*CH(cK2O)*CH(cNa2O)*
(44) CH(cSiO2),
(45) 1.0/6.0, !strig);
(46) CH(cK2Na2SiO4) <+ idt(K3*CH(cK2O)*
(47) CH(cNa2O)*CH(cSiO2),
(48) 0.0, !strig);
(49) end
(50) endmodule // chemsys

Fig. 22. Verilog-AMS model of the chemical system.

IV. SIMULATION RESULTS
As is, the airbag system model can be used to obtain

numerous valuable simulation results. This section presents
only a small set of result examples.

A. Mechanical-Electrical Interactions
Fig. 23 presents a screen dump of the VHDL-AMS

simulation. Fig. 24 presents similar results obtained with the
corresponding Verilog-AMS model. The upper plot represents
the simulated acceleration of the seismic mass and the lower
plot shows the proportional evolution of the amplitude at the
accelerometer output. Chronograms at the bottom of the
figure also show the digital output of the comparator. While
the acceleration amplitude exceeds a given threshold, the
comparator output d toggles at a frequency of 1 MHz. When
10 pulses have been reached, the chtrig signal is asserted
and the chemical reaction is initiated.

Fig. 23. Mechanical-electrical interactions (VHDL-AMS).

Fig. 24. Mechanical-electrical interactions (Verilog-AMS).

B. Electrical-Thermal Interactions
Fig. 25 details the simulation results, obtained with

Advance-MS, of the thermal coupling between the n-MOST
and the p-MOST when the inverter is stimulated by a square
wave stimulus and connected to the thermal RC networks
given in Fig. 8 [17]. The thermal network represents the
thermal constants of the various material layers, and the values
of the capacitances and resistances have been deliberately
oversized to highlight the thermal effects. The figure shows the
temperature evolution in the inverter for two different values
of RNP. As expected, for small values of RNP, the temperatures
in the N and P transistors are tightly linked (curves 1 and 2 in

Paper #1446

18

the figure). For higher values, the temperature evolution of
each transistor becomes more and more decoupled (curves 3
and 4 in the figure). The dissipated power is produced during
transitions, as expected.

300.0005

300.0004

300.0003

300.0002

300.0001

Tr
an

sis
to

r c
hi

p
te

m
pe

ra
tu

re
 [K

]

700x10
-9

 6005004003002001000

Time [s]

1.0x10
-3

0.8

0.6

0.4

0.2

0.0

D
issipated pow

er [W
]

 n- transistor (strong thermal coupling) (1)
 p- transistor (strong thermal coupling) (2)
 n- transistor (weak thermal coupling) (3)
 p- transistor (weak thermal coupling) (4)

power in a n-transistor

 1

 2

 3

 4

Fig. 25. Thermal coupling between the nMOST and
pMOST for different values of coupling [17].

C. Electrical-Optical Interactions
Fig. 26 shows the falling edge of the collision signal

generated by the CMOS inverter, transformed into light and
propagated through the optical fiber, with the appropriate
delay and reduction coefficient. The plot has been extracted
from an Advance-MS simulation.

3.0

2.5

2.0

1.5

1.0

0.5

0.0

D
ig

ita
l i

nf
or

m
at

io
n

[V
]

39.15x10
-6

 39.1439.1339.1239.1139.10

Time [s]

2.0

1.5

1.0

0.5

0.0

Inverter &
 transm

ission m
edium

 outputs [V
]

Delay

 Digital information
 Inverter output
 Transmission medium output

Fig. 26. Propagation delay in the transmission medium

(Advance-MS).

D. Chemical Reactions
Fig. 27 shows typical chemical kinetic reaction behaviors

from the VHDL-AMS model. Reactive chemical product
concentration of NaN3 decreases exponentially with time, and
one can see that the 2.5 moles of N2, providing the 60 liters of
necessary gas according to the perfect gas law, are generated
in less than 5 milliseconds. The volatile sodium Na is instantly
generated when the airbag inflation order is triggered, and then
decreases during the sodium neutralization phase. The time
scale of this plot should also be noticed: all the mechanical-
electrical-optical signal transmission time is negligible

compared to the time needed to inflate the airbag.

Fig. 27. Chemical reactions (Advance-MS).

E. Global System Behavior

Fig. 28. Airbag system model simulation results (Advance-

MS).
Fig. 28 and Fig. 29 give a snapshot of the behavior of the

whole airbag system, obtained with the VHDL-AMS and the
Verilog-AMS model, respectively.

From top to bottom, we find successively the chronograms

for the acceleration stimulus of the exciting the seismic mass
tmass, the amplified modulated accelerometer output signal
tsensa, the comparator output scomp, the trigger signal
ttrig, the propagated light light_prop, the photo-diode
output signal tabag, the chemical reaction trigger signal
chtrig and the evolutions of the concentrations of the NaN3,
N2 and Na elements.

Paper #1446

19

Fig. 29. Airbag system model simulation results (Cadence).

V. DISCUSSION
The various models of the airbag system developed in the

paper are neither complete nor accurate. The activity of
modeling is mostly directed by which aspects of a physical
behavior have to be taken into account and how a particular
modeling notation, e.g. a hardware description language, can
actually express these aspects properly through simulation.
Additionally, the development of a complete model of the
airbag system is beyond the scope of the paper. All the models
discussed in this paper are kept intentionally simple to avoid
hiding key aspects in too many lines of code. All the models of
Fig. 1 have been designed and simulated with appropriate
stimuli in both languages and concordant results have been
obtained (cf. Figs 28 and 29). Not all the models have been
discussed in the paper, but the full set of VHDL-AMS and
Verilog-AMS models, including test benches and appropriate
simulation control commands, are available [26].

In section 2.2, we listed a number of distinguished features
of the VHDL-AMS and the Verilog-AMS languages to give a
first insight into how each of them could support the
development of models of mixed-signal and multi-discipline
systems. Now we went through the example of modeling an
airbag system, we can expand the list further. Table I gathers a
number of feature classes and indicates how each language
actually supports the features in each class. Some items have
further associated notes that are given below the table to avoid
cluttering the table too much.

The paper shows that the same complex system can be
successfully modeled with both HDLs. Some workarounds
have been however required to address the partial support of
the languages in current tools, although the alternative
solutions worked as well. For instance, the procedural
construct of VHDL-AMS is not yet supported by Advance
MS. The model of the EKV MOSFET (section 3.4) could have
been more naturally described without using functions.

The main difference between the two HDLs is the way
equations are handled. On the one hand, sequencing the

equations is mandatory in Verilog-AMS, because the language
forces the designer to use sequential statements in an analog
block, and because only certain forms of implicit equations are
supported. On the other hand, in VHDL-AMS, sequencing the
equations is a transparent task thanks to the powerful notation
for equations provided by simultaneous statements. Verilog-
AMS models have to be coded with a nodal formulation in
mind and therefore fit better with current simulator
implementations. In the same context, Verilog-AMS allows
only one analog block per module, while any number of
concurrent and simultaneous statements can cohabit in a single
VHDL-AMS architecture. This reinforces the more circuit
level approach of Verilog-AMS where each behavioural
module is basically seen as a leaf cell which has to be
hierarchically connected in some upper level. VHDL-AMS
also supports this approach, while providing more degrees of
freedom when writing complex DAEs. It should be noted,
however, that this feature might be less efficiently handled in
current VHDL-AMS simulators that are still built on circuit
simulators. What would be ideally needed is an efficient blend
of an event-driven/circuit simulator and a, possibly symbolic
and numerical, equation solver. The model writer would then
be free to select the most appropriate method to describe
equations. Last, but not least, one should not forget the
mandatory need for event-driven modeling capabilities, not
only to describe the event-driven/logic part of the system, bus
also to simplify some analog parts and/or make their
simulation more efficient.

Probably the chemical subsystem used in the airbag system
exemplifies many of the modeling issues one has to deal with
when addressing multi-discipline systems. In section 3.6, we
deliberately used a macroscopic approach that does not fully
take all physical aspects into account. If we consider the same
chemical reactions from a microscopic viewpoint, things
appear totally different. Chemistry turns into thermodynamics,
and the equations (5)-(7) concerning mass transfer only are
replaced by equations concerning the couple mass/energy. As
a consequence, the chemical submodel involves more
elements, interactions between these elements take place at a
very low level, and conservative laws pervade the previous
signal-flow approach. For each chemical reactant, “two
different goods are actually traded, namely, mass and energy”
[25] and the GKLs apply. [25] details perfectly this process,
and shows how the chemical potential [J mole-1] and the molar
flow [mole sec-1] can respectively be defined as effort and flow
quantity for each reactant. The product of the two quantities
has the dimension of a chemical power. Drawing an analogy
with the electrical domain, reactants and products are modeled
by capacitive sources, one for each chemical species, where
moles accumulate like charges. The reaction equations are
modeled by multi-port transformers with transform ratios
determined by stoichiometric coefficients (also represented by
transformers), which balance and redistribute chemical power
between the chemical species. All these elements are
interconnected and yield a chemical network isomorphic to the

Paper #1446

20

electrical or thermal networks described in the paper. [9]
defines this approach as object-oriented modeling, i.e. “the
construction of strictly hierarchical, modular models. Each
terminal element has its own implemented sequential
algorithm. Setting up the equations describing the whole
system is the task of the simulator. All elements communicate
via message passing, coordinate their behavior, and so the
simulation of the entire system is carried out”. [25] [27] also
propose to use bond graphs for that purpose, but they are too
complicated most of the time. Our experience on this chemical

issue shows that this phenomenological approach, while
elegant and consistent, hides lots of difficulties: a thorough
methodological background is needed to design the leaf
submodels because the reasons for analogies between physical
theories [28] are not always simple to understand.

Feature class Feature VHDL-AMS Verilog-AMS

Definition IEEE Std 1076.1-1999
Strict extension to IEEE Std 1076 (VHDL)

Accellera standard version 2.1 (January
2003)
Extension to IEEE Std 1364 (Verilog
HDL)

Inheritance Ada-like
Case insensitive

C-like
Case sensitive

Modularity Separation of external/interface views
(entities) and internal views (architectures),
packages, configurations

Modules include both external/interface
and internal views. Include files for shared
definitions

Genericity Parameters, generate statements1
Library
management

Yes (pre-compiled design units) No

Language
aspects

Analog subset No2 Yes (limited support of SPICE primitives)
Event-driven and continuous
Conservative and non conservative (signal-flow)

Ports

Continuous ports are modeless Continuous ports are of mode inout
Composition Hierarchical instantiation of components

Natures define energy domains, subtypes
define nature attributes; no predefined
natures.

Disciplines define energy domains, natures
define discipline attributes; predefined set
of disciplines

Expression of
structure

Conservative
semantics

Terminal and branch quantities Access functions and named branches
Objects Terminals, quantities, signals, variables,

constants
Variables, wires, registers

Concurrent, sequential, continuous (simultaneous and procedural) Statements
Continuous statements can be freely mixed
with concurrent statements

Continuous statements have to be grouped
in an analog block. Only one analog block
per module

Explicit and implicit form of equations4
supported

Simultaneous5 and procedural6
formulations
Derivative attribute ‘dot only possible on
quantities. Attribute can be chained for
higher order derivatives7

Mathematical functions defined in
separate standard IEEE 1076.2

Explicit form of equations supported;
limited support of implicit form of
equations8
Procedural formulation

Derivative operator ddt may be applied to
expressions. Operator cannot be chained
for higher order derivative; must declare
local nodes9
Pre-defined mathematical functions

Expression of
DAEs3

Piecewise defined behavior supported10

Expression of
behavior

Discontinuity Discontinuities must be explicitly announced in the model

Paper #1446

21

Feature class Feature VHDL-AMS Verilog-AMS

 handling User-defined re-initialization after
discontinuity supported

Order of discontinuity may be specified

Energy
domains

Natures define energy domains and
subtypes define nature attributes. No
predefined natures11
Branch quantities12

Disciplines define energy domains and
natures define discipline attributes. Pre-
defined set of disciplines.
Access functions and branch objects13

Conservative
semantics

Formulation Equation-oriented formulation with
simultaneous statements14

No specific circuit graph representation
enforced

Circuit-oriented formulation with probe
and source branches15 and additive
contribution statements16
Nodal formulation enforced

Model
interface

Directional interface (free) quantities17 Module ports associated to a discipline
with only one nature (signal-flow
discipline)
Signal-flow ports are interpreted as
grounded potential probes or sources

Signal-flow
semantics

Functional
blocks

Laplace and z transforms18

Interfaces A/D and D/A interface language attributes
('ramp, 'slew, 'above)
No direct port association19

A/D and D/A interface language filters and
event detectors
Automatic insertion of connect modules
(infra- or inter-disciplines)

Mixed-signal
aspects

Behavioral
interaction

Access of discrete signals in continuous
context
Access of continuous quantities in discrete
context

Access of discrete nets and variables in
continuous context
Access of continuous nets and variables in
discrete context

Solvability Solvability check done at design unit
level20

No solvability checks

Timestep Timestep size may be bounded

Simulation
controls

Tolerances Generic string annotation not formally
linked to simulator21

SPICE-like tolerances defined in natures

Tool used Mentor AdvanceMS 1.5
Full IEEE 1076.1 standard not yet
supported22

Cadence AMS Simulator 2.0
Proprietary implementation of a standard
in development

1 Generate statements offer macro-like capabilities in the text of the model. Verilog-AMS also supports pre-processing directives.
2 It is possible to develop packages to support SPICE level modeling. No standard packages are existing yet.
3 DAE = Differential Algebraic Equations.
4 An equation in the explicit form looks roughly like an assignment, e.g. x = f(y,z), while an equation in the implicit form typically
requires iterations to compute the unknowns, e.g. x = f(x,y,z).
5 Simultaneous statements are basically equations that may be given in any order in the model.
6 Procedural statements have to be given in a particular order. The VHDL-AMS tool used did not support simultaneous
procedural statements yet, so we used functions instead.
7 To maintain good numerical accuracy it is recommended to hold higher order derivatives in local quantities and to only use first
order derivatives.
8 An equation in explicit form is written with the contribution statement, while an equation in implicit form requires a special
syntax with limitations. Only state-based equations may be expressed in implicit form.
9 It is not clear whether this is a limitation of the tool or of the language definition. The net effect is to clutter the model with
unnecessary node declarations and contribution statements.
10 Continuous behavior can be defined by regions of operation.
11 A draft VHDL-AMS standard package for multiple energy domain support is currently under IEEE ballot.
12 The direction of the flow in the branch and of the potential difference is defined in the branch quantity declaration.
13 As access functions may be scattered throughout the whole model, it is recommended to hold probe branches in local variables
at the beginning of the analog block.

Paper #1446

22

14 Quantities are the unknowns. As far as the language is defined, the order in which the simultaneous statements is not important.
We anyway faced some non-convergence issues with "misplaced" simultaneous statements (tool issue).
15 Roughly speaking, probe branches measure some voltage or current, while source branches generate some voltage or current.
16 The order in which the contribution statements are given is important.
17 Direction is used for solvability checks.
18 Verilog-AMS offers more variants than VHDL-AMS.
19 It is not allowed to associate formal and actual ports of different natures or types. Explicit interface code has to be added in the
model when pre-defined attributes are not enough. It is also expected that tools may help in inserting proper interface code when
working at schematic level.
20 This basically checks that there is an equal number of unknowns and of equations. Although the rules that define what is
considered as an unknown and what is considered as an equation are clearly defined in the language reference manual, it may
become pretty hard to figure out what is missing when a complex model such as the full EKV MOS model (with more than 100
quantities) does not comply with the solvability condition. In addition, the current implementation of the Mentor tool imposes to
have the same number of simple simultaneous statements in each branch of a conditional or selective simultaneous statement.
21 Current VHDL-AMS simulators are using their own tolerances that may be set in the tool’s environment.
22 Full digital VHDL 1076 support requires coupling with Modelsim simulator.

Table I. Key features of VHDL-AMS and Verilog-AMS.

VI. CONCLUSION
In this paper, the VHDL-AMS and Verilog-AMS

languages have been compared and contrasted in an
objective manner. A complex case study has been used as a
representative mixed-signal issue and solution to
demonstrate some language similarities and differences, and
indicated that the system modeled in one language can also
be modeled in the other, although with different coding
techniques that are not only related to syntax.

Whatever the state of the language, standard or not, all-
defined mixed-signal capabilities are not yet implemented
or still subject to interpretation. Anyway, we hope that tool
limitations will be progressively removed so the model
writer has access to the real expressive powers of both
languages.

Therefore, the choice of the language is mostly guided by
the idiosyncrasies of the developing team, the EDA tool
suite available, and commercial and time to market issues.
VHDL-AMS can operate at various levels of abstraction.
Both VHDL-AMS and Verilog-AMS prove their efficiency
at the circuit-level. At this level, however, solid knowledge
on analogies between physical theories is required [25].

As systems on chips (SoC) more and more include
analog, RF and non-electrical parts (not to mention the
growing importance of embedded software), it is possible
that models written in VHDL-AMS or Verilog-AMS
become too low-level and their relative simulators too slow
for validating a complete system. An ongoing effort is for
example intending to enhance SystemC to support the
description and the simulation of continuous-time, and a
fortiori mixed-signal and multi-discipline, systems [29]. A
seamless path to VHDL-AMS or Verilog-AMS modeling
levels will have anyway to be provided to keep a link to
more physical design aspects.

VII. ACKNOWLEDGMENTS
The authors would like to express their thanks to Dr Y.

Leroy, Prof. A. Goltzené, Prof. B. Allard, Prof. F.E. Cellier,
and Prof. C. Fretigny for their help on modeling the
chemical reaction kinetics.

[1] N.R. Swart, A. Nathan, “Flow-Rate Microsensor Modeling and

Optimization using SPICE,” Sensors and Actuators, A34, pp. 109-122,
1992.

[2] N.R. Swart, A. Nathan, “Mixed-Mode Device Circuit Simulation of
Thermal-Based Microsensors,” Sensors and Materials, Vol. 6, No. 3, pp.
179-192, 1994.

[3] D. C. Hamill, “Lumped equivalent circuits of magnetic components: the
gyrator-capacitor approach,” Power Electronics, IEEE Transactions on,
Volume: 8 Issue: 2 , pp. 97-103, April 1993

[4] 1076.1-1999 IEEE Standard VHDL Analog and Mixed-Signal
Extensions Language Reference Manual, IEEE Press, ISBN 0-7381-
1640-8.

[5] P. Ashenden, G. D. Peterson, D. A. Teegarden, The System Designer's
Guide to VHDL-AMS, Morgan Kaufman Publishers, 2002.

[6] E. Christen, K. Bakalar, “VHDL-AMS-a hardware description language
for analog and mixed-signal applications,” IEEE Trans. on Circuits and
Systems, part II, Vol. 46 Issue: 10, pp. 1263 –1272, Oct. 1999.

[7] P. Frey, D. O'Riordan,“ Verilog-AMS: Mixed-signal simulation and
cross domain connect modules,” Proc. 2000 IEEE/ACM International
Workshop on Behavioral Modeling and Simulation (BMAS), 2000, pp.
103 –108.

[8] http://www.eda.org/verilog-ams/
[9] P. Schwarz, “Physically Oriented Modeling of Heterogeneous Systems,”

3rd IMACS Symposium of Mathematical Modelling (MATHMOD),
Wien, 2-4 Feb. 2000, pp. 309-318 (vol1).

[10] E. Christen, “Selected Topics in Mixed-Signal Simulation,” Proc. 2002
Forum on Specification and Design Languages (FDL), 2002.

[11] http://www.accellera.org/
[12] D. Fitzpatrick, I. Miller, Analog Behavioral Modeling with the Verilog-A

Language, Kluwer Academic Publishers, 1998.
[13] L. Zimmermann, J.Ph. Ebersohl, F. Le Hung, J.P. Berry, F. Baillieu, P.

Rey, B. Diem, S. Renard, and P. Caillat, “ Airbag application: a
microsystem including a silicon capacitive accelerometer, CMOS
switched capacitor electronics and true self-test capability,” Sensors and
Actuators A, 46-47, pp. 190-195, 1995.

[14] E. Christen, K. Bakalar, A. M. Dewey, E. Moser, “Tutorial 2: Analog
and Mixed-Signal Modeling Using the VHDL-AMS Language,” 36th
Design Automation Conference, New Orleans, June 21-25, 1999.

Paper #1446

23

[15] H. A. Mantooth, E. Christen, “Modeling and simulation of electrical and
thermal interaction,” Modeling in Analog design, Vol. 2, in series on
Current Issues in Electronic Modeling, Ch. 5, pp. 93-120, Eds: Jean-
Michel Bergé, et al., Kluwer Academic Publishers, 1995.

[16] C. Lallement, R. Bouchakour and T. Maurel, “One-dimensional
Analytical Modeling of the VDMOS Transistor Taking Into Account the
Thermoelectrical Interactions,” IEEE Transactions on Circuits and
Systems, Part. I, Vol. 44, N° 2, pp. 103-111, Feb. 1997.

[17] C. Lallement, F. Pêcheux, Y. Hervé, “A VHDL-AMS Case study: The
incremental Design of an Efficient 3rd generation MOS Model of Deep
Sub Micron Transistor,” SOC Design Methodologies, Ed. M. Robert, B.
Rouzeyre, C. Piguet, M.-L. Flottes, Kluwer Academic Publishers,
Boston, Hardbound (ISBN 1-4020-7148-5), pp. 349-360, July 2002

[18] M. Bucher, C. Enz, F. Krummenacher, J.-M. Sallèse, C. Lallement, A.-S.
Porret, “The EKV 3.0 Compact MOS Transistor Model : Accounting for
Deep-Submicron Aspects (invited paper),” International Workshop on
Compact Models, Modeling and Simulation of Microsystems (MSM
2002), pp. 670-673, San Juan, Puerto Rico, April 22-25, 2002.

[19] M. Bucher, C. Lallement, C. Enz, F. Théodoloz, K. Krummenacher,
“The EPFL-EKV MOSFET Model Equations for simulation, version
2.6,” http://legwww.epfl.ch/ekv/

[20] W. Uhring, Y. Hervé, F. Pêcheux, “Model of an instrumented
optoelectronic transmission system in HDL-A and VHDL-AMS,”
Proceedings of SPIE Vol. 3893, pp. 137–146, Design, Characterization,
and Packaging for MEMS and Microelectronics, Editor(s): B. Courtois,
S. N. Demidenko. Published: 10/1999.(ISBN 0-8194-3494-9)

[21] F. Pêcheux, C. Lallement, “VHDL-AMS and Verilog-AMS as
Competitive Solutions for the High Level Description of
Thermodynamical Interactions in Opto-Electronic Interconnection
Schemes,” FDL'02 (Forum on specifications & Design Languages),
France, September 2002

[22] T. Nagahori, K. Miyoshi, Y. Aizawa, Y. Kusachi, Y. Nukada, N. Kami,
and N. Suzuki, “An Analog Front-End Chip Set Employing an Electro-
Optical Mixed Design on SPICE for 5-Gb/s/ch Parallel Optical
Interconnection,” IEEE Journal Of Solid-State Circuits, Vol. 36, No. 12,
pp. 1984-1991, December 2001

[23] Wei-Jean Liu; Chen, O.T.-C.; Li-Kuo Dai; Ping-Kuo Weng; Kaung-Hsin
Huang; Far- Wen Jih, “A CMOS photodiode model,“ Behavioral
Modeling and Simulation, 2001. BMAS 2001. Proceedings of the Fifth
IEEE International Workshop on , 2001, pp. 102 –105

[24] Jau-Ji Jou; Cheng-Kuang Liu; Chien-Mei Hsiao; Huang-Hsiang Lin;
Hsiu-Chih Lee, “Time-delay circuit model of high-speed p-i-n
photodiodes,“ IEEE Photonics Technology Letters, Volume: 14, Issue: 4,
pp. 525 -527, April 2002

[25] F.E. Cellier, “Continuous System Modeling,” Springer-Verlag NY,
(ISBN 0-387-87502-0), 1991.

[26] http://lsmwww.epfl.ch/tcad_paper/.
[27] A. Blundell, “Bond Graphs for Modelling Engineering Systems,” Ellis

Horwood Publishers, Chichester, United Kingdom, and Halsted Press,
New-York, 1982.

[28] E. Tonti, “The reasons for analogies between physical theories,” Appl.
Math. Modeling 1(1976), 37-50.

[29] A. Vachoux et al., “Towards Analog and Mixed-Signal SOC Design
with SystemC-AMS,” Proceedings of the Second IEEE International
Workshop on Electronic Design, Test and Applications (DELTA 2004),
0-7695-2081-2/04, Feb. 2004.

François Pêcheux received in 1988 the M.S.
degree from Université Pierre et Marie Curie,
Paris, France, and the Ph.D. degree from the
same University in 1992, all in Computer
Science and Electrical Engineering. From 1991
to 1992, he worked as a research assistant in the
MASI Laboratory, Paris, France. He developed
several CAD tools and dedicated software for
the efficient modeling of macrocell generators.
In 1995, he joined the Ecole Nationale
Supérieure de Physique de Strasbourg (ENSPS),

Strasbourg, France as an Associate Professor, and the CNRS Laboratory
for Physics and Applications of Semiconductors (PHASE). He participated
in the development of several mixed-signal models for submicron devices,
taking into account physical interactions with their direct environment. In
September 2002, he joined back the LIP6 Laboratory, in the Integrated
Systems Department, Paris, France. His current researchs focus on
System-level modeling and the use of efficient principles, languages and
tools for integrating mixed-signal designs on chip.

Christophe Lallement (M’96) received the
M.S. degree from Science University of Nancy
I, France, in 1989, and the Ph.D. degree from
Ecole Nationale Supérieure des
Télécommunications (ENST), Paris, France, in
1993, all in engineering. From 1989 to 1993, he
was a research assistant with the Electronics
Department, ENST-Paris. From November 1994
to September 1997, he was a Postdoctoral
Research Scientist at the laboratory of
Electronics, Swiss Federal Institute of
Technology (EPFL), Lausanne, Switzerland,

working on the characterization and modeling of the MOSFET transistor
in the development team of the EKV MOST model. In September 1997, he
joined the University of Strasbourg (ULP) as an associate Professor, and
the CNRS Laboratory for PHysics and Applications of Semiconductors
(PHASE laboratory). Since September 2003, he is Professor at the ENSPS
Engineering School of Strasbourg. His current researches focus on
modeling and characterization of the deep submicron MOSFET transistors
with the EKV compact model, on the study of deep submicron effects in
the MOSFET transistor, and on the modeling of mixed-signal systems
with VHDL-AMS and Verilog-AMS.

Alain Vachoux (M'81) received the M.S. and
Ph.D. degrees in electrical engineering from the
Swiss Federal Institute of Technology Lausanne
(EPFL) in 1980 and 1988, respectively.
 From 1981 to 1998 he was with EPFL as a
Research Assistant where he worked on the
development of EDA tools for filter design and
large-scale circuit simulation, and on VHDL-
based design. From 1998 to 2001, he was with
XEMICS, a Swiss fabless semiconductor
company that designs mixed-signal ASICs and
ASSPs. He was responsible for the deployment

of a proprietary low-power standard cell and memory library as well as of
a low-power 8-bit RISC core. In 2001, he joined Antrim Design Systems
to work on mixed-signal modeling and characterization plans for pipeline
A/D converters. He also managed the development of a mixed-signal
layout generator for retargeting purposes. In 2002, he joined back EPFL to
work in the Microelectronic Systems Laboratory to develop R&D
activities on design flows and methodologies and on the use of languages
for analog and mixed-signal design. Dr. Vachoux has been actively
involved in the development of the analog and mixed-signal extensions to
VHDL since 1992. He participated to the VHDL-AMS language design
task and served as the Chair of the IEEE working group between 1997 and
1999. He conducted the IEEE ballot process until the first release of the
IEEE 1076.1 Standard in March 1999.

