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VHDL generation from hierarchical Petri net
specifications of parallel controllers

J.M.Fernandes
M. Adamski
A.J.Proenga

Indexing terms: VHDL generation, Parallel controllers, Petri nets

Abstract: Parallel controllers can be best specified
using a description with a formal support to
validate structural and dynamic properties. Petri
nets (PN) can provide an adequate means to
model and to animate parallel systems based on
the control and data path approach, in a
hierarchically structured way. A set of tools was
developed to allow formal validation of parallel
controllers, based on hierarchical PN-based
specifications and to automatically generate RT-
level VHDL code. An example of a VLSI chip
design, the transputer link adapter, shows the
capabilities of this methodology and associated
tools.

1 Introduction

The use of finite state machines (FSMs) for the graphi-
cal specification of the control unit of a digital system
is no longer adequate when the system presents parallel
activities. Among the modelling paradigms, Petri nets
(PNs) [1] allow easy specification of co-operating sub-
systems and the use of formal validation methods,
which are based on mathematical theory. These meth-
ods should be applied prior to the implementation
phase and in parallel with the simulation phase, to
minimise the consequences of design errors.

Several types of PNs have been proposed to specify
and model digital systems, either by imposing restric-
tions to a basic model or by adding extensions to it. A
PN-based controller can be best specified and modelled
by a safe PN with guarded transitions and synchronous
transition firing; this PN should also support enabling
and inhibitor arcs [2, 3].

The specification languages currently available in
ECAD packages often lack appropriate support to
clearly express concurrent and co-operating activities.
A new softwarc framework has been developed to
accept a PN-based controller specification as input, to
validate the properties of the controller, to allow the
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PN model animation, and to generate the correspond-
ing VHDL code. This code can feed standard ECAD
packages for simulation and synthesis purposes.

2 Petri nets and digital systems

A design and implementation methodology must pro-
vide tools for system specification, modelling and
implementation. System specification includes the
description of the expected behaviour of the digital sys-
tem. Modelling involves constructing a mathematical
formalism embodying the specified system behaviour.
This formalism can be manipulated and analysed to
determine properties of the system which are not neces-
sarily apparent from the initial system specification.
The modelling formalism may also be adopted for the
system specification, when there is a close correspond-
ence between the system model and its specification.

The PN has been shown to be a powerful tool to
specify and model the behaviour of parallel systems,
and, in particular, parallel digital controllers. A
detailed analysis of the model, based on a set of well
established methods, allows the detection of a large
number of design errors prior to system implementa-
tion.

A marking of the PN can be regarded as a global
state of the modelled system (node in the reachability
graph), and a change of the marking corresponds to a
state transition (edge in the reachability graph).

Safe PNs can be viewed as a natural extension to
FSMs, providing an easy migration path from FSM to
PN-based specifications. To realistically model any par-
allel controller with safe place/transition (P/T) nets [1],
some well known modifications are introduced:

+ logic expressions are assigned to transitions (the
guards)

+ output signals are attached to places and transitions,
to represent the controller actions

+ transition firings are synchronised with the active
edge of a (global) clock.

To achieve efficient testing and synthesis, the safe P/T
net is treated as a condition/event (C/E) PN (in Section
4). Moore type output signals are associated to places,
while Mealy type output signals are related to transi-
tions. The resulting PN type is a synchronous inter-
preted PN (SIPN). To implement an SIPN, all the
enabled transitions at a given moment wait for a clock
pulse and then all fire to produce a new marking. [1]
(from [4]), presents an SIPN example, where xi are
input signals and yi are output signals.
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Fig.1 .4n SIPN specification of a controller

Some quasi-independent sub-PNs may require prior-
ity and synchronisation schemes to share resources. To
support these requirements, enabling and inhibitor arcs
are used.

A priority can be modelled with an inhibitor arc. An
mhibitor arc, as shown in Fig. 2 represented by a
dashed line with a circle, connects a place to a transi-
tion and disables the transition when the place is
marked. Consider a system in which two processes
access a shared resource. A conflict arises when both
processes apply for the resource. To solve this problem,
an inhibitor arc is introduced.

processA

process B

resource
free

1

resource
granted

Fig.2 Use of an inhibitor arc and a shared place io model a priority

A synchronisation between two processes can be
modelled by an enabling arc shown in Fig. 3. An ena-
bling arc, represented by a dashed line with an arrow,
connects a place to a transition and enables the transi-
tion when the place is marked. Nevertheless, when the
transition fires, no token is removed from the place
connected to the transition through an enabling arc.
Consider the system in Fig. 3 in which process B can
continue only when a token is present in place pA.

Structured programming concepts are also useful for
dealing with the specification and modelling of com-
plex or large controller systems. Hierarchical specifica-
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tion mechanisms can be introduced. in macronodes
(macroplaces or macrotransitions) [5] to allow the
encapsulation of sub-PNs and their use as often as
required. This approach decreases the size of the speci-
fication, improves its readability and reduces the
number of typing errors.

process A

Fig.3  The use of an enabling arc to model a synchronisation

As an example of a hierarchical SIPN, consider the
PN and the macroplace represented in Fig. 4a [6]. The
resulting PN, after expanding the macroplace, is pre-
sented in Fig. 4b.

A PN is said to be live if, from any global state, it
can always enable all the transitions. This fact guaran-
tees that the system is deadlock-free and that there is
no dead code (transitions that are never enabled or
places that are never marked). The latter ensures that
there is no wasted silicon at the final implementation.
To test liveness, a reachability graph of a PN is used: it
describes all markings that are reachable from the ini-
tial marking. The reachability graph is usually built by
generating all possible reachable markings, without
considering its interpretation and synchronism.

An undesirable occurrence on an SIPN occurs when
two or more transitions attempt to simultaneously
mark/unmark the same output/input place. This is illus-
trated in Fig. 5. The controller is not properly specified
if it allows undesirable situations.

3  Petri nets and VHDL

PNs are well suited for modelling and formal analysis
of complex discrete systems, while VHDL is a standard
hardware description language which exploits concur-
rency in the specification of digital systems, allowing
their simulation and synthesis. PNs and VHDL may
complement each other and they may also provide a
proof subsystem that accepts the same user interface
descriptions for all design tasks [7, 8].

Modelling PNs in VHDL was already debated in
1990 [9]. A VHDL textual PN description of parallel
controllers was proposed in [4], which describes a
VHDL template with ASSERT statements to enable
the syntatic and semantic correctness of the model to
be tested. Experimental results, developed at Inmos in
a practical design, achieved a 50% area reduction and a
40% speed improvement over the best FSM synthesis.
Another straightforward VHDL model of PNs, ade-
quate for automatic generation by a translation tool,

IEE Proc.~Comput. Digit. Tech., Vol. 144, No. 2, March 1997
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Fig.4 Hierarchy in SIPNs
a SIPN with a macroplace; b exploding the macroplace

was later presented [10]. The specification of PNs in
terms of LSMs (linked state machines) and VHDL can
be found, for example, in [11, 12].

a
Fig.5 Undesirable occurrences on an SIPN
a conflict; b overflow

Research on mapping coloured PNs into VHDL was
also pursued at Linkoping (Sweden) [13]. The commer-
cial tools Design/CPN and MINT were used to map a
controller into VLSI. As stated, the research concluded
without any experimental validation of the synthesis
efficiency, and the implemented examples were fairly
trivial. Another technique to convert a textual PN
design representation into a VHDL description was
introduced by Peng [14] in the CAMAD system. How-
ever, the PN was transformed into the classical FSM
model, and the advantages of concurrency were lost.

IEE Proc.-Comput. Digit. Tech., Vol. 144, No. 2, March 1997

The VHDL code generated by SYSTEMSPECS [15]
is mainly used for general modelling purposes, and the
efficiency of VLSI compilation results were not
reported.

The PN modelling techniques for simulation were
also introduced, among others, by Swaminathan ef al.
[16] and by Benders et al. [17], but related VLSI syn-
thesis was not reported. The only efficient methodol-
ogy, proven in industry, was introduced by Bolton, and
it was extended in this work. The approach followed
here, for synchronous parallel controller design, is
closely related to the PARIS tool [3] and suggests a
particular way to implement a safe PN specification of
discrete systems in VHDL for later simulation and syn-
thesis. It generates VHDL code and supports hierarchi-
cal specifications.

To keep a very strict direct correspondence (isomor-
phism) between an initial PN specification, in a rule-
based format, and VHDL statements, the authors pro-
pose the use of an intermediate language CONPAR.
The main goal is to preserve the one-to-one corre-
spondence between simulation and synthesis specifica-
tions and to produce implementations with a high
degree of concurrency.

Other methods were also proposed for a reverse
transformation: from specifications defined in a VHDL
subset to PNs for performance and reliability analysis.
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Some of the most recent developments related to mod-
elling and analysis were reported, for example, in [18—
20].

4 The CONPAR description language

PNs can also be viewed as formal models for logic rule-
based specifications [21, 22]. They make the straightfor-
ward link between algebraic numerical methods and
the symbolic mathematical logic based methods of
specification, optimisation, verification and synthesis.
The rule-based form of specification can be considered
as an alternative textual form of timing diagram
description. The causality among signals is given
explicitly in terms of local, relevant inputs, outputs and
state changes.

Several researchers have independently proposed
rule-based formalisms for the description and imple-
mentation of autonomous discrete concurrent systems,
which are related with PNs. Transition rules are usually
treated as production rules (‘if-then’ nonprocedural
statements) [21]. The rule-based description supported
by means of logic deduction techniques (Gentzen natu-
ral logic calculus) was recently presented in the logic
controller design context [23]. The syntax of the lan-
guage ‘was revised over the years. Some major syntax
modifications have been made in the PARIS system [2,
3, 24], and a new description format called the PN
specification format (PNSF) was introduced.

The CONPAR specification format (in the Appen-
dix) was developed as a bridge between the textual
logic description of a PN and its VHDL model. It sup-
ports macroplaces and it is consistent with previously
introduced rule-based specification languages. It also
supports the translation of a hierarchical symbolic rep-
resentation of PNs (with macroplaces and macrotransi-
tions) directly into VHDL format.

Restricted interpreted PNs are used in this work as
the basic specification formalism. They are translated
into rule-based specifications, which are composed of
discrete local state symbols, and input and output sig-
nal symbols of the controller. Discrete state transition
rules describe local state changes, influenced by the
external environment. The rule-based description does
not describe sequencing explicitly, but sequences of
operations could be easily derived by ordering the tran-
sition rules.

In CONPAR notation, a transition is described as a
conditional rule:

<label >:<PreConditions > |— <PostConditions>;

The precondition and postcondition are, respectively,
formed from input and output place symbols. When
the preconditions of a rule are satisfied (hold), the
postconditions are made true (they will hold). Logical
conjunction of all related discrete states is assumed
when the precondition contains more than one discrete
state symbol.

For example, the transition t1 in Fig. 1 has input
place pl, output places p2 and p3, it is guarded by
input x1, and the output signal y1 is activated when the
transition is enabled. In CONPAR notation, this tran-
sition is described as follows:

tl:pl * x1 |- p2 * p3 * yi;

To obtain an efficient implementation, the PN may be
directly mapped into Boolean equations without
explicit enumeration of all possible global states and
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global state changes [22]. The specification is given in
terms of the local states changes (local transitions) and
one-hot code state assignment is used [4, 25]. In Peng’s
approach [14], the VHDL code is not directly related to
the original PN specification, which causes some imple-
mentation inefficiency. As mentioned earlier, the PN is
transformed into an FSM (the FSM is built in the same
way as the reachability graph) and then translated into
VHDL using a CASE statement inside a PROCESS.

Consider again transition t1 in Fig. 1. Its description
in VHDL is presented below and can be read as: ‘tran-
sition tl will be enabled when input signal x1 is
asserted, place pl is marked and places p2 and p3 are
not marked’.

t1 <= x1 AND pl AND NOT p2 AND NOT p3;

The preconditions of a given transition are directly
mapped into a VHDL Boolean conjunction. The post-
conditions are distributed among the VHDL expres-
sions Npi (i = 1 ... 5), which are VHDL signals that
model inputs to {lip-flops. For transition tl, the rele-
vant parts of the expressions are as follows:

Npl <= ... DR (pl AND NOT t1);
Np2 <= £t1 OR ...;

Np3 <= ... OR t1 OR ...;

The assignment for Npl describes place pl holding the
token, when transition tl is not enabled. The remaining
assignments represent places p2 and p3 when they get
new tokens, when transition tl fires.

For each output signal, a concurrent signal assign-
ment is used, which describes the nodes where the sig-
nal is activated. For output signal y! in Fig. 1, the
assignment is written as follows:

vyl <= ... OR ti;
5 ECAD framework

A new software framework [6, 26] was developed to
feed any ECAD package that accepts VHDL as input.
This framework is appropriate for small controller sys-
tems specified at the RT-level. The hierarchical PN
specification is directly and efficiently mapped to
Boolean equations. This approach simplifies the VHDL
code debbuging, since there is a direct correspondence
between the original PN, the CONPAR description and

the produced VHDL code.
editor

. text
editor

ConPar |

graphic
anirmator

properties

analyser compiler

\
VHDL
y
simulator synthesiser

Fig.6 The complete framework

IEE Proc.-Comput. Digit. Tech., Vol. 144, No. 2, March 1997



The complete framework, illustrated in Fig. 6, pro-
vides editors for the SIPN specification, analyses the
basic properties of the SIPN, and compiles the specifi-
cation into VHDL.

clock RELOGIO
.input xI x2 x3
.output y1 y2 y3

.part controller

.place pl p2 p3 p4 p5
.transition tl t2 t3 t4 t5
.net

tl: pl *x1 |- p2* p3 *yl;
12: p2 * x2 |- p4;

t3: p3 * x3 |- pS * y2;

t4: p5* x3 |- p3;

t5: p4 *p5 * Ix3 |- pl *y2;
.MooreOutput

pl |- y3;

p4 -yl

.marking pl

e

ENTITY controller IS
PORT (reset, x1, x2, x3, clock : IN BIT;
yl, y2, y3: OUT BIT);
END controller;

ARCHITECTURE datatlow OF controller IS
— — Place Signals
SIGNAL pl, Npl : BIT;
SIGNAL p2, Np2 : BIT;
SIGNAL p3, Np3 : BIT;
SIGNAL p4, Np4 : BIT;
SIGNAL p5, NpS : BIT;
— ~ Transition Signals
SIGNAL ti : BIT;
SIGNAL t2 : BIT;
SIGNAL 3 : BIT;
SIGNAL t4 : BIT;
SIGNAL t5 : BIT;
BEGIN
PROCESS BEGIN
WAIT UNTIL clock’ EVENT and clock=‘1;
IF reset="0" THEN
pl <= Npl;
p2 <= Np2;
p3 <= Np3;
p4 <= Np4;
p5 <= Np5;
ELSE
pt <=1
p2 <='0%
p3 <=0,
pd <=0
p5 <= ‘07
END IF:
END PROCESS;
— — Dataflow description for transitions
tl <= NOT p2 AND NOT p3 AND xi AND pl;
t2 <= NOT p4 AND x2 AND p2;
t3 <= NOT p5 AND x3 AND p3;
t4 <= NOT p3 AND x3 AND p5;
t5 <= NOT pl AND p5 AND p4 AND (NOT x3);
— - Dataflow description for next place markings
Npl <= t5 OR (p! AND NOT tl);
Np2 <= t] OR (p2 AND NOT 12);
Np3 <= t4 OR tl OR (p3 AND NOT t3);
Npd <= {2 OR (p4 AND NOT t5);
Np5 <= t3 OR (p5 AND NOT t5 AND NOT t4);
- — Output Signals Equations
yl <= p4 OR tl;
y2 <=1t5 OR 3;
y3 <= pl;
— —— — ASSERT Commands
~ - Transitions in conflict
ASSERT NOT (t4 AND tl)
REPORT “output place p3 overflows (transitions t4, tl)”
SEVERITY ERROR;
ASSERT NOT (t5 AND t4)
REPORT “t5 and t4 are in conflict (input place p5)”
SEVERITY ERROR;
- ~ No Enabled Transitions
ASSERT NOT (t1='0" AND t2='0 AND t3=0' AND t4="0" AND (5="0")
REPORT “Petri Net may be deadlocked”
SEVERITY WARNING;
END Dataflow;
h
g} N7 CONPAR description and generated VHDL code for a linear
a CONPAR description; b VHDL code

The text editor uses the CONPAR language nota-
tion. As an illustration, the CONPAR description for

IEE Proc.-Comput. Digit. Tech., Vol. 144, No. 2, March 1997

the SIPN in Fig. 1 is listed in Fig. 7a. A graphic SIPN
editor, which is currently under development, can offer
a better user friendly interface, hiding the CONPAR
language formalities. The SIPN can be specified hierar-
chically, using expanded macroplaces.

It is possible to adapt already available commercial
editors for PNs, such as the editor supplied by the
SYSTEMSPECS tools. In general, those editors are too
expensive and too general for the restricted application
area considered in this project.

The properties analyser verifies if the input specifica-
tions are live and conflict-free, issuing a message to the
user whenever a problem occurs (deadlock or conflict).
Since it is not appropriate to mark a place if it is
already marked, that situation is also detected, clearly
located and an adequate message is sent to the user
interface.

The algorithm used in the properties analyser to ver-
ify the liveness builds the reachability graph for an
SIPN (a restricted reachability graph), as defined, for
example, in [3, 14], and uses the PN structure. The live-
ness of the SIPN is partially analysed through the fol-
lowing tests:

(1) to check if there are source or sink places

(i1) to ensure that each marking has, at least, one suc-
cessor marking

(iii) to verify that each transition is reached at least
once, connecting two consecutive markings in the
reachability graph.

The analysis procedures, on the current framework
prototype, are only applied at the outermost abstract
level: when the PN is specified in a hierarchical way
(see Fig. 4, for example), only the main PN is tested for
validation. To overcome this limitation, the methods
introduced by Valette [5] and Suzuki ef al. [27] will be
considered. These methods show that it is possible to
analyse the main PN and the macronodes separately,
and to extrapolate the analysis results for the global
PN.

The graphic SIPN animator allows the user to exe-
cute the PN model that gives structural support to the
controller being implemented. The current animator
immplementation [28] is an independent graphic applica-
tion, built on top of OBJECTWORKS/SMALLTALK,
that allows the user to interact with a running PN
directly. The interface is used to display the informa-
tion that represents the current state of the SIPN, to
send the input signals and to activate the transitions.

The style of description for the code generated by the
compiler is similar to the template type presented by
Bolton et al. [4]. Some modifications were introduced
to support the adopted PN model. To make the imple-
mentation more efficient, negated output places are
introduced in the transition expressions. This also sim-
plifies the SIPN testing and forces the system to be
stopped if the one-hot mapping is partially destroyed
during the evaluation of real hardware.

The current compiler version provides two code gen-
eration alternatives, according to the ECAD package
tool being used. To infer the initial and next markings,
the user can select either a BLOCK statement or a
PROCESS statement to be included into the generated
VHDL file. In both cases, the produced VHDL code is
at the RT-level.

As an example, the generated VHDL code, for the
SIPN in Fig. 1, is listed in Fig. 7b, which includes a
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PROCESS statement. The ENTITY and PROCESS
used to infer the state register are identical to those
used for an FSM description in VHDIL [10, 11, 14].
However, whilst an FSM usually includes a CASE
statement to infer the combinational logic, the SIPN
uses concurrent signal assignments, including a list of
transitions, next place markings and control outputs.

To simplify fast validation by VHDL simulation,
ASSERT statements are included automatically in the
produced code [4]. These statements check for potential
conflicts on transitions and test for possible deadlock
situations. For the latter, a warning is issued since the
controller may be just waiting for transition guards to
become true.

For hierarchical SIPNs, the current compiler version
generates flat (one level) VHDL code. In Section 6, an
example is considered using a hierarchical SIPN, and
the generation of VHDL code with a BLOCK state-
ment is presented.

The compiler was built with the facilities provided by
the Compiler Tool Box (CTB) [29]. This tool automati-
cally generates routines that accomplish the lexical,
syntactic and semantic analysis, from several specifica-
tions. CTB allows efficient compilers to be developed,
by providing tools that cover almost all compilation
tasks.

The generated programs—from the CTB and manu-
ally—are ANSI C, allowing easy modification and
compiler portability to different platforms.

6 Design example: the transputer link adapter

To clarify the concepts presented in the preceding Sec-
tions, a detailed example is presented: the transputer
link adapter [30, 2], which interfaces a transputer net-
work with its host bus system. A transputer network
uses serial links to perform nearest-neighbour commu-
nication. To enable full duplex data flow, two wires are
used for each link, and data transmitted along the out-
going wire are synchronised by acknowledgments from
the receiving transputer on the incoming wire. Thus
data, and acknowledgments for received data, are inter-
leaved on each wire.

A data packet is transmitted as two start bits,
followed by the data byte and the stop bit. The
transmitter then waits for an acknowledgment packet,
consisting of a start bit followed by a stop bit. To
enable continuous data transfer, the receiver can
transmit an acknowledgment packet as soon as an
incoming data header is detected (provided it is not
also transmitting a data packet at that time).

u—| 2

b [V1li

Linkout «e————e—ro

controller ————— [Ack

Linkin laa————————— QACk

% QVvalid

Shift.Enable
A

—'—{ shift register l
— 1Y

Fig.8 The link adapter
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The communication between the transputer network
and an external bus-based system requires serial-to-par-
allel and parallel-to-serial conversions to be performed
at the network. The link adapter shown in Fig. 8 pro-
vides a full duplex interface between a transputer link
and two unidirectional 8-bit buses. Data on the input
bus (I0-I7) are multiplexed onto LinkOut whilst data
on LinkIn are latched, via an §-bit register, onto the
output bus (Q0-Q7). A complete handshake protocol
(IValid, TAck, QValid, QAck) controls data transfer to
and from the buses.

Parallel-to-serial conversion is described by the dia-
gram in Fig. 9a. The bus driver deposits a data byte on
signals [0-17 and raises IValid. The link adapter pack-
ages the data, multiplexes onto LinkOut, and looks for
an acknowledgment packet on LinkIn. When this
acknowledgment is received, the link adapter relays it
to the bus by raising IAck. The bus driver replies by
lowering IValid and waits for the link adapter to lower
TAck.

[0-17 X

IvValid \
X o
LinkIn >< ACK ><

[Ack

LinkOut

:

LinkIn >< DATA X

Q0-Q7 ><
Qvalid ﬁ—\—
QAck / \
LinkOut X ACK X

b

Fig.9 Timing diagrams
a parallel-to-serial conversion; b serial-to-parallel conversion

Serial-to-parallel conversion is described by the dia-
gram in Fig. 9b. The transputer sends a data packet
along LinkIn. On detecting the incoming data header,
the link adapter discards the packaging, latches the
data byte on Q0-Q7 and asserts QValid. When QAck is
raised in reply, the link adapter relays it to the trans-
puter as an acknowledgment packet on LinkOut. Then,
the link adapter lowers QValid and waits for the
receiver to lower QAck.

The system controller of the link adapter can be
specified by the SIPN in Fig. 10. The design, a revision
of an earlier prototype [2], is a concurrent Mealy
machine comprising 29 places and 35 transitions: Two
macroplaces—Figs. 11a and b—were introduced, which
reduces the size of the specification and improves its
readability

IEE Proc.-Comput. Digit. Tech.; Vol. 144, No. 2, March 1997
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10

p18

LinkOut

LinkOut  LinkOut LinkOut
b
Fig.11  SIPN for link adapter controller

a serial-toparallel conversion macroplace; b parallel-to-serial conversion mac-
roplace

The PN can be roughly divided into four partially
overlapped parts:
» Places pl, p2 and macroplace SerPar perform serial-
to-parallel conversion, and LinkIn acknowledges
packet detection.
+ Places p28, pll, p12 and macroplace ParSer perform
parallel-to-serial conversion, and Linkout acknowl-
edges packet sending.
* Places p13—pl16 and p29 represent the second part of
serial-to-parallel conversion: generating QValid output
status signal, and waiting for an acknowledge signal on
the input QAck.
+ Places pl7 (added for shared resources control on
the output LinkOut), pl5 and macroplace ParSer con-
stitute the last concurrent part.
The textual specification of the system controller in
CONPAR notation is listed in Fig. 12.
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.CLOCK clock

NPUT 10 11 12 13 14 15 16 17 LinkIn QACK IValid

.OUTPUT LinkOut IAck QValid ShiftEnable

< 3% % 3k 3 ke ok ok ok sk okook ok ** e 3k ok s e e ok o ok ok ok ok ok >

.MACROPLACE PS (in0 inl in2 in3 in4 in5 in6 in7, out)

INTERFACE pl8, p27

.PLACE pl9 p20 p21 p22 p23 p24 p25 p26

.TRANSITION st st2 st3 st4 st5 st6 st7 st8 st9 st10 stll
st12 st13 st14 st15 st16 st17

NET
stl: pl8 |- p19 * out;
st2: p19 * tin0 |- p20;
st3: p19 * in0 |- p20 * out;
st4: p20 * lin0 |- p21;
st5: p20 * in0 |- p21 * out;
st6: p21 ¥ linQ |- p22;
st7: p21 * in0 |- p22 * out;
st8: p22 * 1in0 |- p23;
st9: p22 * in0 |- p23 * out;
st10: p23 * lin0 |- p24;
stll: p23 * in0 |- p24 * out;
st12: p24 * lin0 |- p25;
st13: p24 * in0 |- p25 * out;
st14: p25 * lin0 |- p26;
st15: p25 * in0 |- p26 * out;
st16: p26 * tinQ |- p27;
st17: p26 * in0 |- p27 * out;
<3 3 o ok e ok 3 ok K 0 o o e S 3 ok ok 3 ok sk i ok ok sk ok ke sk ok e ok e sk ok e ok ok o ok ok ek ok ol ok Rk >
.MACROPLACE SP (in, out)
INTERFACE p3, pl0
PLACE p4 p5 p6 p7 p8 p9
.TRANSITION stl st2 st3 st4 st5 st6 st7
.NET
stl: p3 |- p4 * out;
st2: pd |- p5 * out;
st3: pS |- p6 * out;
st4: p6 |- p7 * out;
stS: p7 |- p8 * out;
st6: p8 |- p9 * out;
st7: p9 |- pl0 * out;
< 3k 3 3k o aje o ok e o b ok ok e sk ke ok ok ok ok 3k 2k e 3k s 3k ok 3 ke ok e sk e sk sk ok e ok ok o sk sk ok ok kR >
.PART macronet
PLACE pl p2 pl1 pl2 pi3 pl4 pl5 pl6 pl7 p28 p29
SerPar=SP (10, ShiftEnable)
ParSer=PS (10 I1 12 13 I4 15 I6 17, LinkOut)
.TRANSITION tI t2 t3 t4 t5 t6 t7 t8 t9 t10 t1
<*¥ PREDICATE pred*>
.NET
tl: pl * LinkIn |- p2;
t2: p2 * LinkIn |- SerPar * ShiftEnable;

t3: SerPar * p29 |- pl * pl3;
t4: pi3 |- p14 * QValid;
t5: pl4 * p17 * QACK |- p15 * LinkOut;
t6: p15 |- p16 * pl7;
t7: pl6 * IQACK |- p29
t8: p12 * p17 IValid |- ParSer * LinkOut;
t9: ParSer I- p28 * pl7;
t10: p2 * p28 * LinkIn |- pl * pl1 * TAck;
t11: pll * TValid - pl12;
.MARKING

pl pl2 pl7 p29

< % ek 3 ke e s 3 ok ok e e 3k 3 o sk sk ok ok ok e e ok ok o 3k 3k ok ok ok ok ok ok ok ok o K ok sk ok ok ok ok ok oK >

.E

Fig.12 CONPAR code for link adapter controller

t8

IValid LinkOut QAck LinkOut

Fig.13  Inkibitor arc 10 solve a conflict situation
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ENTITY controller IS
PORT (reset, i0, il, ... i7, linkin, qack, ivalid, clock : IN BIT;
linkout, iack, gvalid, shiftenable : OUT BIT);
END controller;

ARCHITECTURE dataflow OF controller IS
- — Place Signals
SIGNAL pt : REG_BIT REGISTER;
SIGNAL Np! : BIT;

SIGNAL p29 : REG_BIT REGISTER;
SIGNAL Np29 : BIT;

SIGNAL serpar_p3 : REG_BIT REGISTER;
SIGNAL Nserpar_p3 : BIT;

SIGNAL serpar_pl0 : REG_BIT REGISTER,;
SIGNAL Nserpar_pl0 : BIT;
SIGNAL parser_pl8 : REG_BIT REGISTER;
SIGNAL Nparser_pl8 : BIT;

SIGNAL parser_p27 : REG_BIT REGISTER;
SIGNAL Nparser_p27 : BIT;

- — Transistion Signals
SIGNAL tl : BIT;

SIGNAL t10 : BIT;
SIGNAL serpar_st7 : BIT;

SIGNAL serpar_st! ; BIT;
SIGNAL parser_st!7 : BIT;

SIGNAL parser_stl : BIT;

BEGIN
PART : BLOCK {clock=1" AND NOT clock’'STABLE)
BEGIN
pl <= GUARDED Npl WHEN reset="0" ELSE ‘I";
p2 <= GUARDED Np2 WHEN reset="0" ELSE '0";

p28 <= GUARDED Np28 WHEN reset="0" ELSE ‘0;
p29 <= GUARDED Np29 WHEN reset="0' ELSE ‘I*;
serpar_p3 <= GUARDED Nserpar_p3 WHEN reset="0" ELSE *0";

serpar_pl0 <= GUARDED Nserpar_pi0 WHEN reset="0" ELSE ‘0’;
parser_p!9 <= GUARDED Nparser_pl9 WHEN reset="0" ELSE ‘0";

parser_pl8 <= GUARDED Nparser_pl8 WHEN reset='0" ELSE '0’;
END BLOCK;
— — Dataflow description for transitions
th <= NOT p2 AND linkin AND pl;

18 <= NOT parser_pl8 AND pl7 AND pi2 AND (ivalid AND NOT pl4);
serpar_st7 <= serpar_p9 AND NOT serpar_pl0;

serpar_stl <= serpar_p3 AND NOT serpar_p4;
parser_st!7 <= parser_p26 AND i7 AND NOT parser_p27;

parser_stl <= parser_pl8 AND NOT parser_pi9;
- — Dataflow description for next place markings

Npl <=t10 OR t3 OR (p! AND NOT ti);

Np2 <= tl OR (p2 AND NOT ti0 AND NOT 12);

Np29 <= t7 OR (p29 AND NOT t3);
Nserpar_p3 <= t2 OR (serpar_p3 AND NOT serpar_stl);

Nserpar_pl0 <= serpar_st7 OR (serpaer_pl0 AND NOT t3);
Nparser_pl8§ <= t8 OR (parser_pl8 AND NOT parser_stl);

Nparser_p27 <= parser_st16 OR parser_st}7 OR (parser_p27 AND NOT t9);
— — Output Signals Equations
linkout <= t8 OR t5 OR parser_sti OR parser_st3 OR . .. OR parser_stl7;
iack <= t10;
qvalid <= t4;
shiftenable <= t2 OR serpar_st] OR ... OR serpar st7;
—~ -~ ASSERT commands
- - Transitions in conflict
ASSERT NOT (t10 AND 3)
REPORT *“output place pl overflows (transitions t10, t3)”
SEVERITY ERROR;
ASSERT NOT (19 AND t6)
REPORT * output place pl7 overflows (transitions t9, t6)”
SEVERITY ERROR;
ASSERT NOT (18 AND t5)
REPORT "8 and t5 are in conflict (input place p17)”
SEVERITY ERROR;
- — No Enables Transitions
ASSERT NOT (t1=0" AND ., . AND serpar_st7="0" AND . . .)
REPORT “Petri Net may be deadlocked”
SEVERITY WARNING;
END dataflow;

Fig.14 Generated data flow VHDL code for link adapter controller,
including a BLOCK statement
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Using this notation to feed the properties analyser
module, a potential conflict situation, similar to the
one presented in Fig. 5a, is detected: transitions t5 and
t8 share the input place pl7. Note that those transi-
tions are guarded by predicates QAck and IValid,
respectively. To solve the possible conflict detected by
the properties analyser, an inhibitor arc from pl4 to
the transition t8 may be introduced, as depicted in
Fig. 13.

A file containing the reachability graph can be cre-
ated by the properties analyser module. A part of the
produced graph related to the initial marking {p29,
pl7, pl12, pl} follows:

p29 pl7 pl2 pl1 : t8 t1 -> parser p29 p2

t3 -> parser p29 pil
t1 -> p29 pl7 pl2 p2

With the introduced modification (the inhibitor arc),
the analysis phase did not report any severe error and a
data flow VHDL file is produced by the compiler mod-
ule (Fig. 14). A compilation option was selected to
direct the compiler to create a BLOCK statement.

The ASSERT statements, automatically generated by
the compiler tool, help the user in the system simula-
tion. Those statements roughly detect transitions in
conflict and deadlock situations. If transitions t3 and
t10 were enabled simultaneously, the place p7 would be
not safe. If both transitions were fired, output place pl
would be marked twice, violating the desired PN safe-
ness. Similar situations would occur for transitions t6,
t9 and transitions t5, t§ with respect to place pl7.

For simulation and synthesis the ALLIANCE pack-
age [31] was used, since the subset accepted by its tools
includes all the constructs used in the SIPN descrip-
tions, including BLOCK and PROCESS statements.

To simulate the system controller of the link adapter
the generated VHDL file is used together with a test
vectors file. The ALLIANCE simulator was fed with
those files, and no errors were detected.

The synthesis process can be completed by using the
ALLIANCE synthesiser. This tool generates a VHDL
structural description from an RTL VHDIL specifica-
tion.

7 Conclusions

A complete ECAD framework which allows the specifi-
cation, analysis, animation, simulation and synthesis of
a hierarchical SIPN-based controller has been pre-
sented. This new set of design tools supports a struc-
tured intermediate rule-based specification of a parallel
controller from an SIPN, as an alternative to writing
an unstructured VHDL specification and verify its cor-
rectness. Since there is a direct correspondence between
the verified PN described in CONPAR and the gener-
ated VHDL code, there is no need to validate the
VHDL programs formally.

The main part of the framework is the CONPAR to
VHDL compiler. It produces VHDL code at the RT-
level that is later used for both simulation and synthe-
sis purposes. Despite the current limitations, the pro-
posed framework is shown to be a useful tool for
designing parallel controllers, particularly by minimis-
ing the number of errors at the specification level, prior
to any implementation.

IEE Proc.-Comput. Digit. Tech., Vol. 144, No. 2, March 1997



Further research is currently undergoing to imple-
ment. an appropriate graphic editor, to improve the
analysis procedures for hierarchical models, and to
include the data path into the PN animator.
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9 Appendix: The CONPAR language

The complete CONPAR language grammar is pre-
sented: the constructs of the language are described
with some examples. The Backus-Naur Form (BNF)
notation is used to show the language syntax.

9.1 Generic structure
The generic structure of a CONPAR source file fol-
lows:

< ParallelController >::=

< Header >
(<MacroPlace> | < MacroTransition >)*

<Part> +
[PREDICATEDESCRIPTION < PredDescr> +]

E

Remarks can be added to the source file and they can
be nested to any level. To open a remark the string
‘< ** is used and the remark ends with the string “* >’.

The language is not case-sensitive. To write the key-
word ‘.marking’ any of the following strings is allowed:
‘marking’, ‘Marking’ ‘MARKING’, ‘<MaRkInG’.
The same applies for any other keyword or identifier in
the language.

9.2 Global signals
Global signals represent all the signals that are availa-
ble in any part of the controller. Those signals include
the clock, the primary inputs and outputs and the pred-
icates.
Syntax:
<Header> ::=

.CLOCK <id>

[INPUT <id>+]

[[OUTPUT <id>+]

[[PREDICATE <id>+]

9.3 Macronodes
Macronodes (macroplaces and macrotransitions) can
be seen as procedures of an HLL and they let the con-
troller be hierarchically specified. The interfaces are the
ports of a macroplace or macrotransition.
Syntax:
<Macroplace> ::=
.MACROPLACE <id> (<id>*, <id>*)
INTERFACE <id>, <id>
<MacroNodeHeader>
.NET <Transition>+
[[MOOREOUTPUT <Moore Output>+]
[.PREDICATEDESCRIPTION <PredDescr>+]
[<Initial Marking>]
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<MacroTransition> ::=
MACROTRANSITION <id> (<id>* | <id>%*)
INTERFACE <id>, <id>
<MacroNodeHeader>
NET <Transition>+
[[MOOREOUTPUT <Moore Output>-+]
[[PREDICATEDESCRIPTION <PredDescr>+]

9.4 Parts

The parts represent the several PNs that form the spec-
ification of a parallel controller, i.e. the various sub-
controllers that together constitute the global
controller. The parts can be interconnected or not
interconnected. The places and transitions defined in
parts are global, which means that places and transi-
tions in any part should have distinct names.

Syntax:

<Part> ::=
PART <id>
<PartHeader>
NET <Transition>-+
[[MOOREOUTPUT <Moore Output>+]
[.PREDICATEDESCRIPTION <PredDescr>+]
<Initial Marking>

9.5 Transitions

For each transition in a part or macronode, there is a
specification, which describes the input and output
places, its guard and the Mealy outputs activated at
that transition.

Syntax:
<Transition> 1=

<label> : <Preconditions> |- <PostConditions>;
<label>: the transition being specified.

<PreConditions>: list of input places and an optional
guard (separated by “*°). The guard should be specified
as a single name. If the guard is just a single input sig-
nal (negated or not), that signal can be used directly. If
the guard is written with more than one signal (inputs
and places), the respective logical expression should be
indicated by a predicate (see subsection 9.7). Whenever
there are inhibitor or enabling arcs connecting a place
to a given transition, its specification must be written
with a predicate (to distinguish from ‘normal’ input
places). An inhibitor arc is specified by negating its
input place, while an enabling arc is specified by simply
referring the source place from where it comes.

<PostConditions>: list of output places and Mealy out-
put signals (only activated when the transition is ena-

bled).

9.6 Moore outputs
For each place, a specification of the activated output
signals must be considered. If no output signal is
activated at a given place, no specification should be
written.
Syntax:
<Moore Output> ::=

<id> |- <Active Outputs>;
<id>: the place where the outputs are activated.
<Active Qutputs>: list of the active output signals
(separated by a ‘*’) when the respective place is
marked.
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9.7 Predicates
When a transition’s guard contains an expression with
enabling or inhibitor arcs or with more than one input
signal, a predicate must be used in the transition speci-
fication.
Syntax:
<PredDescr>

<id> = <Logic_Function>;
<Logic Function>: a logical expression with input sig-
nals and places. The operators in Table 1 can be used
to built a logical expression:

Table 1: Symbols used to define logical expressions for
predicates

Symbol Meaning

* logical AND
+ logical OR

! logical NOT

To group logical expressions, parenthesis, ‘(" and ‘Y,
can be used. Note the examples in Fig. 15, assuming
that xi are input signals, pi are places, ti are transitions
and predi represent predicates.

3A  plA_ phC_ pSA__ p5C_ pBA_ pbC

plA p2A p O
t1 t2 t3 /
x1 x2' X1ex 2"
p1B p2B p3B piB p5B

tl: plA * x1 |- p1B;
t2: p2A * 1x2 |- p2B;
t3: p3A * pred3 |- p3B;
t4: p4A * pred4 |- p4B;
t5: pSA * pred5 |- p5B;
t6: p6A * pred6 |- p6B,;

pred3 = x1 + 1x2;

pred4 = p4C;

pred5 = Ip5C;

pred6 = (1x2 * x3) * p6C;

Fig.15 Transitions of an SIPN and their respective code in CONPAR

For transitions tl and t2, predicates are not neces-
sary because their guards contain a single input signal
(inverted for transition t2). The other transitions need
predicates. The transition t3 has a guard whose logical
expression involves two input signals. For transitions t4
and t5, a predicate must be used, because there are an
enabling arc with origin in place p4C and an inhibitor
arc with origin in place p5C, respectively. Transition t6
represents the most generic situation, when the transi-
tion guard is a logical expression with input signals,
enabling and inhibitor arcs.

9.8 |Initial marking
For any part or macroplace, the places initially marked
should be specified.
Syntax:
<Initial Marking> ::=
MARKING <id>+
<id>: specifies any of the places initially marked.

9.9 CONPAR language grammar
<ParallelController> ::=
<Header>
(<Macroplace> | <MacroTransition>)*
<Part>+
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[.PREDICATEDESCRIPTION <PredDescr>+]
.E!

<Header> ::=
CLOCK <id>
LINPUT <id>+]
[.OUTPUT <id>+]
[[PREDICATE <id>+]

<MacroPlace>
.MACROPLACE <id> (<id>* , <id>*)
INTERFACE <id>, <id>
<MacroNodeHeader>
.NET <Transition>+
[.[MOOREOUTPUT <Moore_Output>+]
[[PREDICATEDESCRIPTION <PredDescr>+]
[<Initial Marking>]

<MagroTransition> ::=
MACROTRANSITION <id> (<id>*, <id>*)
INTERFACE <id>, <id>
<MacroNodeHeader>
NET <Transition>+
[LMOOREOUTPUT <Moore_Output>+]
[[PREDICATEDESCRIPTION <PredDescr>+]
<Ma<%roNodeHeader> n=
PLACE <Node>+
TRANSITION <Node>+
[.PREDICATE <id>+]

<Part> =
.PART <id>
<PartHeader>
NET <Transition>+
[LMOOREOQUTPUT <Moore Output> +]
[LPREDICATEDESCRIPTION <PredDescr>+]
<Ir;iitial_Marking>
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<PartHeader> ::=
[INPUT <id>+]
[.OUTPUT <id>+]
PLACE <Node>+
.TRANSITION <Node>+
[[PREDICATE <id>+]

<Transition> ::=
<id> : <Cond> (* <Cond>)* |- <id> (* <id>)*;

<Cond> ::=

<id>

|! <id>
<Moore Output> ::=

<id> |- <id> (* <id>)*
<PredDescr> =

<id> = <Logic_Function>;
<Logic Function> ::=

<id> <AuxLF>

|! <Logic Function> <AuxLF>

| (<Logic_Function>) <AuxLF>

<AuxLF> =
+ <Logic_Function>
|* <Logic Function>
le
<Initial Marking> ::=
.MARKING <id>+
<Node> ::=
<id> <NodeAux>
<NodeAux> ;=
= <id> (<id>* , <id>%)
le

137





