
VHDL implementation of an optimized 8-point
FFT/IFFT processor in pipeline architecture for

OFDM systems

Mounir Arioua, Said Belkouch, Mohamed Agdad
 Embedded Systems and Digital Controls Laboratory,

Dept. of Electrical Engineering, ENSAM
Cadi Ayyad University
Marrakech, Morocco

 m.arioua@ieee.org, belkouch@ensa.ac.ma,
 mohamed_agdad@hotmail.fr

Moha M’rabet Hassani
Electronic and Instrumentation Laboratory,

Dept. of Physics, Faculty of Science Semlalia
Cadi Ayyad University
Marrakech, Morocco
hassani@ucam.ac.ma

Abstract—The Fast Fourier Transform (FFT) and its inverse
transform (IFFT) processor are key components in many
communication systems. An optimized implementation of the 8-
point FFT processor with radix-2 algorithm in R2MDC
architecture is presented in this paper. The butterfly- Processing
Element (PE) used in the 8-FFT processor reduces the
multiplicative complexity by using a real constant multiplication
in one method and eliminates the multiplicative complexity by
using add and shift operations in other proposed method. The
pipeline architecture R2MDC has been implemented with the 8-
point module and simulation results show that this module
significantly achieves a better performance with lower resource
usage.

Keywords- Cooley-Tukey, FFT/IFFT, OFDM, R2MDC,VHDL.

I. INTRODUCTION
The FFT/IFFT is one of the most commonly used digital

signal processing algorithm. Recently, FFT processor has been
widely used in digital signal processing field applied for
communication systems. FFT/IFFT processors are key
components for an Orthogonal Frequency Division
Multiplexing (OFDM) based wireless broadband
communication system; it is one of the most complex and
intensive computation module of various wireless standards
PHY layer (OFDM-802.11a, MIMO-OFDM 802.11n…) [1].
However, the main constraints nowadays for FFT processors
used in wireless communication systems are execution time
and lower power consumption [2]. The main issue in FFT/IFFT
processors is complex multiplication, which is the most
prominent arithmetic operation used in FFT/IFFT blocks. It is
an expensive operation and consumes a large chip area and
power especially when it comes to a large FFT point [3]. To
reduce the complexity of the multiplication, one of the two
proposed methods in this article replaces the expensive
complex multiplication with real and constant multiplications
[4]. The other method optimizes further the processing, by
wiping out the non-trivial complex multiplication with the
twiddle factors and fulfills the processing with no complex
multiplication.

We applied both methods to a simple 8-point FFT and we
compared them to the conventional FFT and to the R2MDC
processor in order to a comparative evaluation.

The paper is organized as follows: Section II discusses the
FFT algorithm implementation (Cooley-Tukey) and complex
multiplication used inside the butterfly-processing element.
Section III devoted for an architectural description of the FFT
used module. Section IV shows the resulting implementation
and finally a conclusion is given in section V.

II. FFT ALGORITHM
In this section, a brief overview of IFFT and FFT

algorithms is provided to be effectively used in OFDM
applications.

The N-point discrete Fast Fourier Transform (DFT) is
defined as:

∑
−

=

=
1

0

].[][
N

n

nk
NWnxkX

Where
N
nkjnk

N eW
π2−

= 10 −≤≤ Nk

X(k) is the k-th harmonic and x(n) is the n-th input sample.

Direct DFT calculation requires a computational complexity of
O(N2). By using The Cooley–Tukey FFT algorithm, the
complexity can be reduced to O (N.logr N) [2] [5].

A. The Cooley-Tukey FFT Algorithm
The Cooley-Tukey FFT is the most universal of all FFT

algorithms, because of any factorization of N is possible [5]
[6]. The most popular Cooley-Tukey FFTs are those were the
transform length is a power of a basis r, i.e., N = rS. These
algorithms are referred to as radix-r algorithms. The most
commonly used are those of basis r = 2 and r = 4.

For r = 2 and S stages, for instance, the following index
mapping of the The Cooley–Tukey algorithm gives:

978-1-61284-732-0/11/$26.00 ©2010 IEEE

(1) .)
2

(.)1()(

)1(and .).
2

().(

).
2

().().().()(

1
2

0

.
1

2

0

.
1

2

0

)(
1

2

0

1
2

0

1

2

1
2

0

22

2

nk
N

N

n

k

kk
N

N

n

k
N

nk
N

N

n

nk
N

kn
N

N

n

N

n

nk
N

N

N
n

nk
N

N

n

nk
N

WNnxnx

WWWNnxWnx

WNnxWnxWnxWnxkX

NN

N

∑

∑∑

∑∑∑∑

−

=

−

=

−

=

+
−

=

−

=

−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−+=

−=++=

++=+=

SS
SS nnnnn ++++= −

−−
12

2
1

1 2...22

121
21 2...22 kkkkk S

S
S

S ++++= −
−−

And: 1,0,,..,, 121 =− SS nnnn

 1,0,,...,, 121 =− kkkk SS

The Cooley–Tukey algorithm is based on a divide-and-
conquer approach in the frequency domain and therefore is
referred to as decimation-in-frequency (DIF) FFT. The DFT
formula is split into two summations:

X(k) can be decimated into even-and odd-indexed

frequency samples:

The computational procedure can be repeated through
decimation of the N/2-point DFTs X(2k) and DFTs X(2K+1).
The entire algorithm involves log2N stages, where each stage
involves N/2 operation units (butterflies). The computation of
the N point DFT via the decimation-in-frequency FFT, as in the
decimation-in-time algorithm requires (N/2).log2N complex
multiplication and N.log2N complex addition [5].

B. 8-point FFT Module
The flow graph of complete DIF decomposition of 8-point

DFT computation is represented in Fig. 1. The basic operation
in the signal flow graph is the butterfly operation; it’s a 2-point
DFT computation as shown in Fig. 2.

Figure 1. 8-point decimation-in-frequency FFT algorithm.

Figure 2. Basic Butterfly computation.

Radix-2 butterfly processor consists of a complex adder and
complex subtraction. Beside that, an additional complex
multiplier for the twiddle factors WN is implemented. The
complex multiplication with the twiddle factor requires four
real multiplications and two add/subtract operations [1] [3] [7].

C. Complex Multiplication
Since complex multiplication is an expensive operation, we

tend to reduce the multiplicative complexity of the twiddle
factor inside the butterfly processor by calculating only three
real multiplications and three add/subtract operations as in (5)
and (6).

The twiddle factor multiplication:

jS)).(C jY (X jI R ++=+ (4)

However the complex multiplication can be simplified:

 Z .Y S) - (C R += (5)

 Z- .X S) (C I += (6)

With: Y) - (X C. Z = (7)

C and S are pre-computed and stored in a memory table.
Therefore it is necessary to store the following three
coefficients C, C + S, and C - S.

The implemented algorithm of complex multiplication used
in this work uses three multiplications, one addition and two
subtractions as shown in Fig. 3. This is done at the cost of an
additional third memory table which is given in (7). In the
hardware description language (VHDL) program,�the twiddle
factor multiplier was implemented using component
instantiations of three lpm-mult and three lpm-add-sub modules
from Altera library. Worth to note that lpm modules are
supported by most of EDA vendors and LPM provides an
architecture-independent library of logic functions or modules
that are parameterized to achieve scalability and adaptability.

Figure 3. Implementation of complex multiplication.

 -1

 -1

 -1

 -1

R {Out}

I {Out}

Y {in}

X {in}

C

 C+S

 C-S

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1 -1

-1

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)
W8

2

W8
0

W8
2

W8
0

W8
3

W8
2

W8
1

W8
0

 a

 b

 A=a+b

B= (a-b).WN

WN

+

+

)3(.)
2

()(.)
2

()()12(

)2(.)
2

()(.)
2

()()2(

.

2

1
2

0

..2
1

2

0

.

2

1
2

0

..2
1

2

0

kn
N

N

n

kn
N

N

n

kn
N

N

n

kn
N

N

n

WNnnxWNnnxkX

WNnnxWNnnxkX

∑∑

∑∑
−

=

−

=

−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−=⎟

⎠
⎞

⎜
⎝
⎛ +−=+

⎟
⎠
⎞

⎜
⎝
⎛ ++=⎟

⎠
⎞

⎜
⎝
⎛ ++=

In the 8-point FFT with radix-2 algorithm, the
multiplication with W8

2=-j and W8
0 factors is trivial,

multiplication with W8
2 simply can be done by swapping from

real to imaginary part and vice versa, followed by changing the
sign [7] [8]. The number of complex multiplication in this
scheme of FFT is two: W8

1, W8
3. This non-trivial complex

multiplication was implemented with two multiplications for
W8

1 and three multiplications for W8
3. Therefore, the number of

real multiplications is 5. However, this solution was not
suitable in practice; because the first stage has to process four
different twiddle factors (trivial and non-trivial multiplications)
in pipeline architecture with one complex multiplier. Therefore,
it will require more elements in the structure to implement the
two complex multiplications in addition to the two trivial
multiplications in one block. Eventually, we used four complex
multiplications with one complex multiplier in the first
proposed architecture of the 8-point FFT processor as shown in
TABLE I.

Another architecture solution was proposed in order to wipe
out completely the complex multiplication inside the butterfly
processor. The implementation complexity of non-trivial
twiddle factors W8

1, W8
3 was replaced by basic operation of

shift-and-add which is shown in Fig. 5.

III. PIPELINE 8-POINT FFT/IFFT PROCESSOR ARCHITECTURE

A. 8-point FFT Calculation Method
The application of the FFT algorithm for computation of

the 8-point DFT required calculation of three of 2-point DFT
(radix-2) [9].

n = 4n2 + 2n1 + n0 n2=0,1 n1=0,1 and n0=0,1
k = 4k2 + 2k1 + n0 k2=0,1 k1=0,1 and k0=0,1

The 8-point FFT can be expressed in the following

sequence:

)8()0,1,2()0,1,2(
7

0

)01224).(01224(∑
=

++++=
k

kkknnnWkkkxnnnX

Where:

0240)012(114102204

)01224).(01224(

.... knknnknknkn

kkknnn

WWWWW
W

+

++++ =

The process of computation of the 8-point FFT is done as
follow:

First butterfly calculation:

 ∑
=

=
1

02

204).0,1,2()0,1,0(1
k

knWkkkxkknx (9)

Twiddle factor multiplication:
102)0,1,0(1)0,1,0(1' knWkknxkknx = (10)

Second butterfly calculation:

∑
=

=
1

01

114).0,1,0(1')0,1,0(2
k

knWkknxknnx (11)

Twiddle factor multiplication:

 0)012()0,1,0(2)0,1,0(2' knnWknnxknnx += (12)

Third butterfly calculation:

 ∑
=

=
1

01

024).0,1,0(2')2,1,0(3
k

knWknnxnnnx (13)

B. R2MDC Architecture
Simplicity, modularity, high throughput and real-time

applications are required for FFT/IFFT processors in
communication systems. The pipeline architecture is suitable
for those ends [7] [9].

The sequential input stream in pipeline architecture
unfortunately doesn’t match the FFT/IFFT algorithm since the
bloc FFT/IFFT requires temporal separation of data. In this
case the data memory is required in the pipeline processor to be
rearranged according to FFT/IFFT algorithm as shown in Fig.1.

One of the most straightforward approaches for pipeline
implementation of radix-2 FFT algorithm is Radix-2 Multi-path
Delay Commutator (R2MDC) architecture. It’s the simplest
way to rearrange data for the FFT/IFFT algorithm [2] [9]. The
input data sequence are broken into two parallel data stream
flowing forward, with correct distance between data elements
entering the butterfly scheduled by proper delays. 8-point FFT
in R2MDC architecture is shown in Fig. 4.

At each stage of this architecture half of the data flow is
delayed via the memory (Reg) and processed with the second
half data stream. The delay for each stage is 4, 2, and 1
respectively. The total number of delay elements is 4 + 2 + 2 +
1 +1 = 10.

In this R2MDC architecture, both Butterflies (BF) and
multipliers are idle half the time waiting for the new inputs.
The 8-point FFT/IFFT processor has one multiplier, 3 of radix-
2 butterflies, 10 registers (R) (delay elements) and 2 switches
(S).

IV. IMPLEMENTATION AND RESULTS
The 8-point FFT computation with radix-2 in R2MDC

architecture was first coded in VHDL using Quartus software
tool from Altera and then simulated and synthesized on Altera
Cyclone 2 EP2C35F672C6 device. The purpose is to determine
the resource usage of the two proposed designs. The first
proposed structure combines two resource reductions, the
complex multiplication reduction inside the butterfly, and the
fact of using the pipeline architecture. The second structure
attempts to eliminate the complex multiplication, hence avoid
this expensive operation of multiplication and consumes less
chip area.

Figure 4. 8-point FFT implemented in R2MDC architecture.

x3x2x1x0

x7x6x5x4

X3X2X1X0

X7X6X5X4

*-j

 Twiddle
 Factor

R
e
g

B
F

S

R R

S

R

R R

B
F

R

B
F

TABLE I. COMPARISON OF THE FIRST PROPOSED ARCHITECTURE WITH
COOLEY-TUKEY ALGORITHM AND CONVENTIONAL R2MDC ARCHITECTURE IN
TERMS OF NUMBER OF ARITHMETIC OPERATIONS AND MULTIPLIERS.

Algorithm Complex
Multipli-
cations

Real
Multipli-
cations

Real
add/
sub

Complex
multipliers

Real
multipliers

 Cooley-
Tukey

 12 48 72 12 48

 R2MDC

 12 48 72 3 12

1stProposed
architecture

 4 12 60 1 3

In the first structure, the twiddle factors of first stage of the
8-point FFT are computed and stored in a register in order to
synchronize the multiplication of those coefficients with the
two radix-2 FFT points entered in the pipeline architecture as
shown in Fig. 4.

From the algorithmic perspective, this proposed
architecture demands less number of arithmetic operations
compared to the Cooley-Tukey algorithm and the conventional
R2MDC pipeline architecture. This comparison is shown in
TABLE I.

The above comparison shows that the simple architecture of
8-point FFT proposed in this work requires 33% of non-trivial
complex multiplication, and 25% of real multiplication, and
83% of number of addition/ subtraction when compared to the
R2MDC approach. This shows an important reduction of
resource usage, which leads to a high speed operation [10].

The number of Embedded 9-bit multiplier elements used in
the proposed architecture was reduced from 12 elements to 3
by using the complex multiplication reduction in the FFT
R2MDC pipelined architecture as shown in TABLE I. Hence,
this solution is more efficient than the conventional R2MDC.
However, the minimum size of data memory remains the same.

In order to further optimize the processor, another method
proposed eliminates the non-trivial complex multiplication with
the twiddle factors (W8

1, W8
3) and implements the processor

without complex multiplication. The proposed butterfly
processor performs the multiplication with the trivial factor
W8

2=-j by switching from real to imaginary part and imaginary
to real part, with the factor W8

0 by a simple cable. With the

non-trivial factors 41
8

πj

eW
−

= , 4
3

3
8

πj

eW
−

= , the processor
realize the multiplication by the factor 1/√2 using hardwired
shift-and-add operation as shown in Fig. 5.

Figure 5. Butterfly processor with no complex multiplication.

clk1

D0_r[7..0]

D0_i[7..0]

Q0_r[7..0]

Q0_i[7..0]

clk1

D0_r[7..0]

D0_i[7..0]

Q0_r[7..0]

Q0_i[7..0]

clk1

D0_r[7..0]

D0_i[7..0]

Q0_r[7..0]

Q0_i[7..0]

clk1

D0_r[7..0]

D0_i[7..0]

Q0_r[7..0]

Q0_i[7..0]

clk

Are_in[7..0]

Aim_in[7..0]

Dre_out[7..0]

Dim_out[7..0]

clk

Are_in[7..0]

Aim_in[7..0]

Dre_out[7..0]

Dim_out[7..0]

clk

Are_in[7..0]

Aim_in[7..0]

Dre_out[7..0]

Dim_out[7..0]

clk1

D0_r[7..0]

D0_i[7..0]

Q0_r[7..0]

Q0_i[7..0]

clk1

D0_r[7..0]

D0_i[7..0]

Q0_r[7..0]

Q0_i[7..0]

sel[1..0]

a0_r[7..0]

a0_i[7..0]

a1_r[7..0]

a1_i[7..0]

a2_r[7..0]

a2_i[7..0]

a3_r[7..0]

a3_i[7..0]

s_r[7..0]

s_i[7..0]

+
A[1..0]

B[1..0]

ADDER

D Q
PRE

ENA

CLR

mult_W1:Behav2

clk
E_r[7..0]
E_i[7..0]

S_r[7..0]
S_i[7..0]

Mux4a1_bus2:Mux

mult_W3:Behav3

mult_W2:Behav4

registr:Behav1

registr:Regi3

Add0

2' h1 --

var[1..0]

registr:Regi5

registr:Regi2

registr:Regi4

registr:Regi1

Figure 6. RTL viewer implementation of the butterfly processor architecture.

 S(3)S(2)S(1)S(0)

 S(7)S(6)S(5)S(4)

x(3)x(2)x(1)x(0)

x(7)x(6)x(5)x(4)

-

+

Shift & Add operations for
W1

8

 Switch operation for W2
8

Shift &Add operations for
W3

8

M
U
X

TABLE II. COMPARISON OF THE SECOND PROPOSED ARCHITECTURE WITH
CONVETIONAL R2MDC ARCHITECTURE IN TERMS OF NUMBER OF ARITHMETIC
OPERATIONS AND NUMBER OF MULTIPLIERS.

The performance of the proposed processor is compared in
Table II. The employed architecture within the proposed
butterfly processor allows us to eliminate completely the
multiplication operations inside the 8-point FFT/IFFT and cut
down the number of complex multiplications for large points
FFT processors (FFT 64, FFT 512).

In consequence, the optimized 8-point in this work can be
used to build a 64-FFT points pipelined processor for OFDM
systems (IEEE 802.11a, IEEE 802.11n MIMO-OFDM) [11]
[12], due to the lower multiplier requirement compared to other
proposed architectures [13] [14].

In order to verify the credibility of computation of the FFT
core, we have simulated the calculation of 8-point FFT in
timing and functional simulation mode. The output of the bloc
FFT implemented completely matches the output of an FFT
function written in Matlab representing a theoretical example
of FFT calculation.

V. CONCLUSION
In this paper, a novel 8-point FFT processor based on

pipeline architecture with no complex multiplication was
described and compared to Cooley-Tukey and R2MDC
processor. The proposed architecture gives an advantage in
terms of area, resource usage using the complex multiplication
reduction approach for large points FFT and pipelining method.

 The simulation results show that the proposed architecture
significantly reduces the number of operations inside the FFT
processor compared to the Cooley-Tukey and R2MDC
processors.

The proposed processor can be integrated with other
components to be used as stand-alone processor applied for
wireless communication systems.

REFERENCES
[1] Weidong Li, “Studies on implementation of lower power FFT

processors,” Linköping Studies in Science and Technology, Thesis No.
1030, ISBN 91-7373-692-9, Linköping, Sweden, Jun. 2003.

[2] S. He and M. Torkelson, “A new approach to pipeline FFT processor,”
In Proc. of the 10th Intern. Parallel Processing Symp. (IPPS), pp. 766–
770, Honolulu, Hawaii, USA, April 1996.

[3] W.Li, L.Wanhammar, “Complex multiplication reduction in FFT
processor,” SSoCC'02, Falkenberg, Sweden, Mar. 2002.

[4] M.Arioua, S.Belkouch, M.M.Hassani, “Complex multiplication
reduction in pipeline FFT architecture,” In Proc. of 20th Intern. Conf.
on Computer Theory and Applications (ICCTA), Alexandria, Egypt,
Oct. 2010.

[5] J.W.Cooley, J.W.Tukey, “An algorithm for the machine calculation of
complex Fourier series,” Math. Computation, vol.19, pp. 297-301, 1965.

[6] U.M. Baese, Digital Signal Processing with Field Programmable Gate
Arrays, 3rd ed. Springer, 2007.

[7] M.Petrov, M. Glesner, “Optimal FFT Architecture Selection for OFDM
Receivers on FPGA,” In Proc. of 2005 IEEE Intern. Conf. on Field
Programmable Technology, pp. 313–314, PI. 0-7803-9407-0, Singapore.

[8] W. Li and L. Wanhammar, “An FFT processor based on 16-point
module,” In Proc. of NorChip Conf., pp. 125–130, Stockholm, Sweden,
Nov. 2001.

[9] Y.Jung, H.Yoon, J.Kim, “New Efficient FFT Algorithm and Pipeline
Implementation Results for OFDM/DMT Applications,” IEEE
Transactions on Consumer Electronics, vol.49, No.1, 2003, pp. 14-20.

[10] P.Verma, H. Kaur, M.Singh, M, B.Singh, “ VHDL Implementation of
FFT/IFFT Blocks for OFDM,” In Proc. of Intern. Conf. on Advances in
Recent Technologies in Communication and Computing, pp. 186-188,
PI. 978-1-4244-5104-3, Kerala, 2009.

[11] B.Wang, Q. Zhang, T.Ao, M.Huang, “Design of Pipelined FFT
Processor Based on FPGA,” In Proc. of the 2nd Intern. Conf. on
Computer Modeling and Simulation (ICCMS’10), pp. 432–435, ISBN
978-1-4244-5642-0, Jan. 2010, Sanya, Hainan.

[12] H.L.Lin, H.Lin, Y.C. Chen and R.C. Chang, “A Novel Pipelined Fast
Fourier Transform Architecture for Double Rate OFDM Systems,”
IEEE workshop on signal processing systems design and
implementation, pp. 7-11, ISBN 03-8504-7, Texas, USA, 2004.

[13] K. Maharatna, E. Grass, U. Jagdhold, “A Low-Power 64-point
FFT/IFFT Architecture for Wireless Broadband Communication,” 7th
Intern. Conference on Mobile Multimedia Communication (MoMuC)
2000, Tokyo, Japan. 2A-2-1-2A-2-4.

[14] C. Eleanor Chu, G. Alan, Inside the FFT black box Serial and Parallel
Fast Fourier Transform Algorithms, part II, CRC Press LLC, Boca
Raton, 2000.

Algorithm Complex
Multipli-
cations

Real
Multipli-
cations

Real
add/
sub

Complex
multipliers

Real
multipliers

R2MDC

 12 48 72 3 12

1stProposed
architecture

 4 12 60 1 3

2ndProposed
architecture

 0 0 64 0 0

