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Abstract—The Fast Fourier Transform (FFT) and its inverse 
transform (IFFT) processor are key components in many 
communication systems. An optimized implementation of the 8-
point FFT processor with radix-2 algorithm in R2MDC 
architecture is presented in this paper. The butterfly- Processing 
Element (PE) used in the 8-FFT processor reduces the 
multiplicative complexity by using a real constant multiplication 
in one method and eliminates the multiplicative complexity by 
using add and shift operations in other proposed method. The 
pipeline architecture R2MDC has been implemented with the 8-
point module and simulation results show that this module 
significantly achieves a better performance with lower resource 
usage. 
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I.  INTRODUCTION 
The FFT/IFFT is one of the most commonly used digital 

signal processing algorithm. Recently, FFT processor has been 
widely used in digital signal processing field applied for 
communication systems. FFT/IFFT processors are key 
components for an Orthogonal Frequency Division 
Multiplexing (OFDM) based wireless broadband 
communication system; it is one of the most complex and 
intensive computation module of various wireless standards 
PHY layer (OFDM-802.11a, MIMO-OFDM 802.11n…) [1]. 
However, the main constraints nowadays for FFT processors 
used in wireless communication systems are execution time 
and lower power consumption [2]. The main issue in FFT/IFFT 
processors is complex multiplication, which is the most 
prominent arithmetic operation used in FFT/IFFT blocks.  It is 
an expensive operation and consumes a large chip area and 
power especially when it comes to a large FFT point [3].  To 
reduce the complexity of the multiplication, one of the two 
proposed methods in this article replaces the expensive 
complex multiplication with real and constant multiplications 
[4]. The other method optimizes further the processing, by 
wiping out the non-trivial complex multiplication with the 
twiddle factors and fulfills the processing with no complex 
multiplication. 

We applied both methods to a simple 8-point FFT and we 
compared them to the conventional FFT and to the R2MDC 
processor in order to a comparative evaluation. 

The paper is organized as follows: Section II discusses the 
FFT algorithm implementation (Cooley-Tukey) and complex 
multiplication used inside the butterfly-processing element.  
Section III devoted for an architectural description of the FFT 
used module. Section IV shows the resulting implementation 
and finally a conclusion is given in section V. 

II. FFT ALGORITHM 
In this section, a brief overview of IFFT and FFT 

algorithms is provided to be effectively used in OFDM 
applications.   

The N-point discrete Fast Fourier Transform (DFT) is 
defined as:  

∑
−

=

=
1

0

].[][
N

n

nk
NWnxkX                    

Where               
N
nkjnk

N eW
π2−

=                         10 −≤≤ Nk  

 
X(k) is the k-th harmonic and x(n) is the n-th input sample. 

Direct DFT calculation requires a computational complexity of 
O(N2). By using The Cooley–Tukey FFT algorithm, the 
complexity can be reduced to O (N.logr N) [2] [5].  

A. The Cooley-Tukey FFT Algorithm  
The Cooley-Tukey FFT is the most universal of all FFT 

algorithms, because of any factorization of N is possible [5] 
[6]. The most popular Cooley-Tukey FFTs are those were the 
transform length is a power of a basis r, i.e., N = rS. These 
algorithms are referred to as radix-r algorithms. The most 
commonly used are those of basis r = 2 and r = 4. 

For r = 2 and S stages, for instance, the following index 
mapping of the The Cooley–Tukey algorithm gives:  
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The Cooley–Tukey algorithm is based on a divide-and-
conquer approach in the frequency domain and therefore is 
referred to as decimation-in-frequency (DIF) FFT. The DFT 
formula is split into two summations:  

 
 

 

 

 

 

 
X(k) can be decimated into even-and odd-indexed 

frequency samples:  

 

The computational procedure can be repeated through 
decimation of the N/2-point DFTs X(2k) and DFTs X(2K+1). 
The entire algorithm involves log2N stages, where each stage 
involves N/2 operation units (butterflies). The computation of 
the N point DFT via the decimation-in-frequency FFT, as in the 
decimation-in-time algorithm requires (N/2).log2N complex 
multiplication and N.log2N complex addition [5]. 

B. 8-point FFT Module 
The flow graph of complete DIF decomposition of 8-point 

DFT computation is represented in Fig. 1. The basic operation 
in the signal flow graph is the butterfly operation; it’s a 2-point 
DFT computation as shown in Fig. 2. 

 
 
 

 
 

 
 
 
 
 

 
 

Figure 1.  8-point decimation-in-frequency FFT algorithm. 

 
 

 

 

 
Figure 2.  Basic Butterfly computation.  

Radix-2 butterfly processor consists of a complex adder and 
complex subtraction. Beside that, an additional complex 
multiplier for the twiddle factors WN is implemented. The 
complex multiplication with the twiddle factor requires four 
real multiplications and two add/subtract operations [1] [3] [7].  

C. Complex Multiplication 
Since complex multiplication is an expensive operation, we 

tend to reduce the multiplicative complexity of the twiddle 
factor inside the butterfly processor by calculating only three 
real multiplications and three add/subtract operations as in (5) 
and (6). 

The twiddle factor multiplication:  

jS)  ).(C jY  (X  jI  R ++=+            (4) 

However the complex multiplication can be simplified: 

  Z .Y S) - (C  R +=                          (5) 

       Z- .X S)  (C  I +=             (6) 

With:             Y) - (X C.  Z =            (7)  

C and S are pre-computed and stored in a memory table. 
Therefore it is necessary to store the following three 
coefficients C, C + S, and C - S. 

The implemented algorithm of complex multiplication used 
in this work uses three multiplications, one addition and two 
subtractions as shown in Fig. 3. This is done at the cost of an 
additional third memory table which is given in (7). In the 
hardware description language (VHDL) program,�the twiddle 
factor multiplier was implemented using component 
instantiations of three lpm-mult and three lpm-add-sub modules 
from Altera library. Worth to note that lpm modules are 
supported by most of EDA vendors and LPM provides an 
architecture-independent library of logic functions or modules 
that are parameterized to achieve scalability and adaptability. 

 

 

 

 

 

 

 

 
Figure 3.  Implementation of complex multiplication.  
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In the 8-point FFT with radix-2 algorithm, the 
multiplication with W8

2=-j and W8
0 factors is trivial, 

multiplication with W8
2 simply can be done by swapping from 

real to imaginary part and vice versa, followed by changing the 
sign [7] [8]. The number of complex multiplication in this 
scheme of FFT is two: W8

1, W8
3. This non-trivial complex 

multiplication was implemented with two multiplications for 
W8

1 and three multiplications for W8
3. Therefore, the number of 

real multiplications is 5. However, this solution was not 
suitable in practice; because the first stage has to process four 
different twiddle factors (trivial and non-trivial multiplications) 
in pipeline architecture with one complex multiplier. Therefore, 
it will require more elements in the structure to implement the 
two complex multiplications in addition to the two trivial 
multiplications in one block. Eventually, we used four complex 
multiplications with one complex multiplier in the first 
proposed architecture of the 8-point FFT processor as shown in 
TABLE I. 

Another architecture solution was proposed in order to wipe 
out completely the complex multiplication inside the butterfly 
processor. The implementation complexity of non-trivial 
twiddle factors W8

1, W8
3 was replaced by basic operation of 

shift-and-add which is shown in Fig. 5.      

III. PIPELINE 8-POINT FFT/IFFT PROCESSOR ARCHITECTURE 

A. 8-point FFT Calculation Method  
The application of the FFT algorithm for computation of 

the 8-point DFT required calculation of three of 2-point DFT 
(radix-2) [9]. 

n = 4n2 + 2n1 + n0    n2=0,1       n1=0,1     and      n0=0,1  
k = 4k2 + 2k1 + n0    k2=0,1       k1=0,1     and      k0=0,1  

 
The 8-point FFT can be expressed in the following 

sequence: 
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The process of computation of the 8-point FFT is done as 
follow:  

First butterfly calculation:  

 ∑
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Twiddle factor multiplication:      
102)0,1,0(1)0,1,0(1' knWkknxkknx =          (10)   

Second butterfly calculation:                    

∑
=

=
1

01

114).0,1,0(1')0,1,0(2
k

knWkknxknnx    (11) 

Twiddle factor multiplication:   

  0)012()0,1,0(2)0,1,0(2' knnWknnxknnx +=      (12) 

Third butterfly calculation:   
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B. R2MDC Architecture  
Simplicity, modularity, high throughput and real-time 

applications are required for FFT/IFFT processors in 
communication systems. The pipeline architecture is suitable 
for those ends [7] [9].  

The sequential input stream in pipeline architecture 
unfortunately doesn’t match the FFT/IFFT algorithm since the 
bloc FFT/IFFT requires temporal separation of data. In this 
case the data memory is required in the pipeline processor to be 
rearranged according to FFT/IFFT algorithm as shown in Fig.1. 

One of the most straightforward approaches for pipeline 
implementation of radix-2 FFT algorithm is Radix-2 Multi-path 
Delay Commutator (R2MDC) architecture. It’s the simplest 
way to rearrange data for the FFT/IFFT algorithm [2] [9]. The 
input data sequence are broken into two parallel data stream 
flowing forward, with correct distance between data elements 
entering the butterfly scheduled by proper delays. 8-point FFT 
in R2MDC architecture is shown in Fig. 4. 

At each stage of this architecture half of the data flow is 
delayed via the memory (Reg) and processed with the second 
half data stream. The delay for each stage is 4, 2, and 1 
respectively. The total number of delay elements is 4 + 2 + 2 + 
1 +1 = 10. 

In this R2MDC architecture, both Butterflies (BF) and 
multipliers are idle half the time waiting for the new inputs. 
The 8-point FFT/IFFT processor has one multiplier, 3 of radix-
2 butterflies, 10 registers (R) (delay elements) and 2 switches 
(S). 

IV. IMPLEMENTATION AND RESULTS  
The 8-point FFT computation with radix-2 in R2MDC 

architecture was first coded in VHDL using Quartus software 
tool from Altera and then simulated and synthesized on Altera 
Cyclone 2 EP2C35F672C6 device. The purpose is to determine 
the resource usage of the two proposed designs. The first 
proposed structure combines two resource reductions, the 
complex multiplication reduction inside the butterfly, and the 
fact of using the pipeline architecture. The second structure 
attempts to eliminate the complex multiplication, hence avoid 
this expensive operation of multiplication and consumes less 
chip area. 

 

 

 

 

 

 

 
Figure 4.  8-point FFT implemented in R2MDC architecture. 
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TABLE I.  COMPARISON OF THE FIRST PROPOSED ARCHITECTURE WITH 
COOLEY-TUKEY ALGORITHM AND CONVENTIONAL R2MDC ARCHITECTURE IN 
TERMS OF NUMBER OF ARITHMETIC OPERATIONS AND MULTIPLIERS. 

Algorithm Complex 
Multipli- 
cations 

Real 
Multipli- 
cations  

Real   
add/ 
sub 

Complex 
multipliers 

Real 
multipliers 

 Cooley-
Tukey 

      12     48 72 12 48 

 R2MDC 
 

      12     48  72 3 12 

1stProposed 
architecture  

       4     12 60 1 3 

 

In the first structure, the twiddle factors of first stage of the 
8-point FFT are computed and stored in a register in order to 
synchronize the multiplication of those coefficients with the 
two radix-2 FFT points entered in the pipeline architecture as 
shown in Fig. 4.  

From the algorithmic perspective, this proposed 
architecture demands less number of arithmetic operations 
compared to the Cooley-Tukey algorithm and the conventional 
R2MDC pipeline architecture. This comparison is shown in 
TABLE I. 

The above comparison shows that the simple architecture of 
8-point FFT proposed in this work requires 33% of non-trivial 
complex multiplication, and 25% of real multiplication, and 
83% of number of addition/ subtraction when compared to the 
R2MDC approach. This shows an important reduction of 
resource usage, which leads to a high speed operation [10].  

The number of Embedded 9-bit multiplier elements used in 
the proposed architecture was reduced from 12 elements to 3 
by using the complex multiplication reduction in the FFT 
R2MDC pipelined architecture as shown in TABLE I. Hence, 
this solution is more efficient than the conventional R2MDC. 
However, the minimum size of data memory remains the same. 

In order to further optimize the processor, another method 
proposed eliminates the non-trivial complex multiplication with 
the twiddle factors (W8

1, W8
3) and implements the processor 

without complex multiplication. The proposed butterfly 
processor performs the multiplication with the trivial factor 
W8

2=-j by switching from real to imaginary part and imaginary 
to real part, with the factor W8

0 by a simple cable. With the 

non-trivial factors 41
8

πj

eW
−

= , 4
3

3
8

πj

eW
−

= , the processor 
realize the multiplication by the factor 1/√2 using hardwired 
shift-and-add operation as shown in Fig. 5. 

 

 

 

 

 
 

 
Figure 5.  Butterfly processor with no complex multiplication. 
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Figure 6.  RTL viewer implementation of the butterfly processor architecture. 
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TABLE II.  COMPARISON OF THE SECOND PROPOSED ARCHITECTURE WITH 
CONVETIONAL R2MDC ARCHITECTURE IN TERMS OF NUMBER OF ARITHMETIC 
OPERATIONS AND NUMBER OF MULTIPLIERS. 

 

The performance of the proposed processor is compared in 
Table II. The employed architecture within the proposed 
butterfly processor allows us to eliminate completely the 
multiplication operations inside the 8-point FFT/IFFT and cut 
down the number of complex multiplications for large points 
FFT processors (FFT 64, FFT 512).  

In consequence, the optimized 8-point in this work can be 
used to build a 64-FFT points pipelined processor for OFDM  
systems (IEEE 802.11a, IEEE 802.11n MIMO-OFDM) [11] 
[12], due to the lower multiplier requirement compared to other 
proposed architectures [13] [14]. 

In order to verify the credibility of computation of the FFT 
core, we have simulated the calculation of 8-point FFT in 
timing and functional simulation mode. The output of the bloc 
FFT implemented completely matches the output of an FFT 
function written in Matlab representing a theoretical example 
of FFT calculation.  

V. CONCLUSION 
In this paper, a novel 8-point FFT processor based on 

pipeline architecture with no complex multiplication was 
described and compared to Cooley-Tukey and R2MDC 
processor. The proposed architecture gives an advantage in 
terms of area, resource usage using the complex multiplication 
reduction approach for large points FFT and pipelining method.   

 The simulation results show that the proposed architecture 
significantly reduces the number of operations inside the FFT 
processor compared to the Cooley-Tukey and R2MDC 
processors. 

The proposed processor can be integrated with other 
components to be used as stand-alone processor applied for 
wireless communication systems. 
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cations  

Real   
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sub 

Complex 
multipliers 

Real 
multipliers 
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      12     48  72 3 12 

1stProposed  
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       4     12 60 1 3 
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