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Abstract

VHPOP is a partial order causal link (POCL) planner loosely based on UCPOP. It
draws from the experience gained in the early to mid 1990’s on flaw selection strategies
for POCL planning, and combines this with more recent developments in the field of do-
main independent planning such as distance based heuristics and reachability analysis. We
present an adaptation of the additive heuristic for plan space planning, and modify it to
account for possible reuse of existing actions in a plan. We also propose a large set of novel
flaw selection strategies, and show how these can help us solve more problems than previ-
ously possible by POCL planners. VHPOP also supports planning with durative actions
by incorporating standard techniques for temporal constraint reasoning. We demonstrate
that the same heuristic techniques used to boost the performance of classical POCL plan-
ning can be effective in domains with durative actions as well. The result is a versatile
heuristic POCL planner competitive with established CSP-based and heuristic state space
planners.

1. Introduction

During the first half of the last decade, much of the research in domain independent plan
generation focused on partial order causal link (POCL) planners. The two dominant POCL
planners were SNLP (McAllester & Rosenblitt, 1991) and UCPOP (Penberthy & Weld,
1992), and a large part of the planning research was aimed at scaling up these two planners.
The most promising attempts at making POCL planning practical involved alternative flaw
selection strategies (Peot & Smith, 1993; Joslin & Pollack, 1994; Schubert & Gerevini, 1995;
Williamson & Hanks, 1996; Pollack, Joslin, & Paolucci, 1997). A flaw in POCL planning is
either an unlinked precondition (called open condition) for an action, or a threatened causal
link. While flaw selection is not a backtracking point in the search through plan space for
a complete plan, the order in which flaws are resolved can have a dramatic effect on the
number of plans searched before a solution is found. The role of flaw selection in POCL
planning is similar to the role of variable selection in constraint programming.

There have been dramatic advances in domain independent planning in the past seven
years, but the focus has shifted from POCL planning to CSP-based planning algorithms
(Blum & Furst, 1997; Kautz & Selman, 1996) and state space planning as heuristic search
(Bonet & Geffner, 2001b; Hoffmann & Nebel, 2001). Recently, Nguyen and Kambham-
pati (2001) showed that with techniques such as distance based heuristics and reacha-
bility analysis—largely responsible for the efficiency of today’s best domain independent
planners—can also be used to dramatically improve the efficiency of POCL planners, thereby
initiating a revival of this previously popular approach to domain independent planning. We
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have drawn from their experience, as well as from experience with flaw selection strategies
from the glory-days of POCL planning, when developing the Versatile Heuristic Partial
Order Planner (VHPOP), and the result is a POCL planner that was able to compete
well with CSP-based and heuristic state space planners at the 3rd International Planning
Competition (IPC3).

We have previously (Younes & Simmons, 2002) adapted the additive heuristic—proposed
by Bonet, Loerincs, and Geffner (1997) and used in HSP (Bonet & Geffner, 2001b)—for
plan space search. In this paper we present a variation of the additive heuristic for POCL
planning that accounts for possible reuse of actions that are already part of a plan. We
show that this accounting for positive interaction often results in a more effective plan
ranking heuristic. We also present ablation studies that demonstrate the effectiveness of
a tie-breaking heuristic based on estimated planning effort (defined as the total number
of open conditions, current and future, that need to be resolved in order to complete a
partial plan). The results show that using this tie-breaking heuristic almost always improves
planner performance.

While the heuristics implemented in VHPOP can work with either ground (fully instan-
tiated) or lifted (partially instantiated) actions, we chose to work only with ground actions
at IPC3. We have shown elsewhere (Younes & Simmons, 2002) that planning with lifted
actions can help reduce the branching factor of the search space compared to using ground
actions, and that this reduction sometimes is large enough to compensate for the added
complexity that comes with having to keep track of variable bindings. Further studies are
needed, however, to gain a better understanding of the circumstances under which planning
with lifted actions is beneficial.

VHPOP efficiently implements all the common flaw selection strategies, such as DUnf
and DSep (Peot & Smith, 1993), LCFR (Joslin & Pollack, 1994), and ZLIFO (Schubert &
Gerevini, 1995). In addition to these, we introduce numerous novel flaw selection strategies
in this paper, of which four were used at IPC3. While we do not claim to have resolved
the issue of global versus local flaw selection—manifested by the conflicting claims made
by Gerevini and Schubert (1996) on the one hand, and Pollack et al. (1997) on the other
about the most efficient way to reduce the number of searched plans in POCL planning—
we show that by combining ideas from both ZLIFO and LCFR we can get very efficient
flaw selection strategies. Other novel flaw selection strategies introduced in this paper
are based on heuristic cost, an idea previously explored by Ghallab and Laruelle (1994).
We also introduce “conflict-driven” flaw selection strategies that aim to expose possible
inconsistencies early in the search, and we show that strategies based on this idea can be
effective in domains previously thought to be particularly difficult for POCL planners.

Ideally, we would like to have one single flaw selection strategy that dominates all other
strategies in terms of number of solved problems. We have yet to discover such a universal
strategy, so instead we use a technique previously explored by Howe, Dahlman, Hansen,
Scheetz, and von Mayrhauser (1999) for combining the strengths of different planning al-
gorithms. The idea is to run several planners concurrently, and Howe et al. showed that
by doing so more problems can be solved than by running any single planner. In VHPOP

we use the same basic POCL planning algorithm in all instances, but we use different flaw
selection strategies concurrently.
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VHPOP extends the capabilities of classical POCL planners by also supporting planning
with durative actions. This is accomplished by adding a simple temporal network (STN)
(Dechter, Meiri, & Pearl, 1991) to the regular plan representation of a POCL planner. The
STN records temporal constraints between actions in a plan, and supersedes the simple
ordering constraints usually recorded by POCL planners. The use of STNs permits actions
with interval constraints on the duration (a feature that was not utilized by any of the
domains at IPC3 that VHPOP could handle). The approach we take to temporal POCL
planning is essentially the same as the constraint-based interval approach described by
Smith, Frank, and Jónsson (2000), and similar techniques for handling durative actions
in a POCL framework can be traced back at least to Vere’s DEVISER (Vere, 1983).
Our contribution to temporal POCL planning is demonstrating that the same heuristic
techniques shown to boost the performance of classical POCL planning can also be effective
in domains with durative actions, validating the feasibility of the POCL paradigm for
temporal planning on a larger set of benchmark problems than has been done before.

2. Basic POCL Planning Algorithm

We briefly review how POCL planners work, and introduce the terminology used throughout
this paper. For a thorough introduction to POCL planning, we refer the reader to the
tutorial on least commitment planning by Weld (1994).

A (partial) plan can be represented by a tuple 〈A,L,O,B〉, where A is a set of actions,
L a set of causal links, O a set of ordering constraints defining a partial order on the set A,
and B a set of binding constraints on the action parameters (B = ∅ if ground actions are
used). Each action a is an instance of some action schema A in the planning domain, and
a plan can contain multiple instances of the same action schema. A causal link, ai

q−→aj ,
represents a commitment by the planner that precondition q of action aj is to be fulfilled
by an effect of action ai.

An open condition,
q−→ai, is a precondition q of action ai that has not yet been linked

to an effect of another action. An unsafe link (or threat) is a causal link, ai
q−→ aj , whose

condition q unifies with the negation of an effect of an action that could possibly be ordered
between ai and aj . The set of flaws of a plan π is the union of open conditions and unsafe
links: F(π) = OC(π) ∪ UL(π).

A POCL planner searches for a solution to a planning problem in the space of partial
plans by trying to resolve all flaws in a plan. Algorithm 1 shows a generic procedure for
POCL planning that given a planning problem returns a plan solving the problem (or failure
if the given problem lacks a solution). A planning problem is a set of initial conditions I
and a set of goals G, and is represented by an initial plan with two dummy actions a0 ≺ a∞,
where the effects of a0 represent the initial conditions of the problem and the preconditions
of a∞ represent the goals of the problem. The procedure Make-Initial-Plan used in
Algorithm 1 returns the plan 〈{a0, a∞}, ∅, {a0 ≺ a∞}, ∅〉. A set P of generated, but not
yet visited, partial plans is kept. At each stage in the planning process, a plan is selected
and removed from P, and then a flaw is selected for that plan. All possible refinements
resolving the flaw (returned by the procedure Refinements) are added to P, and the
process continues until P is empty (indicates failure) or a plan without flaws is found.
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Algorithm 1 Generic POCL planning algorithm as formulated by Williamson and Hanks
(1996).
Find-Plan(I,G)

P ⇐ {Make-Initial-Plan(I,G)}
while P �= ∅ do

π ⇐ some element of P � plan selection
P ⇐ P \ {π}
if F(π) = ∅ then

return π
else

f ⇐ some element of F(π) � flaw selection
P ⇐ P ∪ Refinements(π, f)

return failure (problem lacks solution)

An open condition,
q−→ ai, can be resolved by linking q to the effect of an existing or

new action. An unsafe link, ai
q−→aj threatened by the effect p of action ak, can be resolved

by either ordering ak before ai (demotion), or by ordering ak after aj (promotion). If we
use lifted actions instead of ground actions, a threat can also be resolved by adding binding
constraints so that p and ¬q cannot be unified (separation).

3. Search Control

In the search for a complete plan, we first select a plan to work on, and given a plan we
select a flaw to repair. These two choice points are indicated in Algorithm 1. Making
an informed choice in both these cases is essential for good planner performance, and the
following is a presentation of how these choices are made in VHPOP.

3.1 Plan Selection Heuristic

VHPOP uses the A∗ algorithm (Hart, Nilsson, & Raphael, 1968) to search through plan
space. The A∗ algorithm requires a search node evaluation function f(n) = g(n) + h(n),
where g(n) is the cost of getting to n from the start node (initial plan) and h(n) is the
estimated remaining cost of reaching a goal node (complete plan). We want to find plans
containing few actions, so we take the cost of a plan to be the number of actions in it. For
a plan π = 〈A,L,O,B〉 we therefore have g(π) = |A|.

The original implementations of SNLP and UCPOP used hf(π) = |F(π)| as the heuris-
tic cost function, i.e. the number of flaws in a plan. Schubert and Gerevini (1995) consider
alternatives for hf(π), and present empirical data showing that just counting the open con-
ditions (hoc(π) = |OC(π)|) often gives better results. A big problem, however, with using
the number of open conditions as an estimate of the number of actions that needs to be
added is that it assumes a uniform cost per open condition. It ignores the fact that some
open conditions can be linked to existing actions (thus requiring no additional actions),
while other open conditions can be resolved only by adding a whole chain of actions (thus
requiring more than one action).
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Recent work in heuristic search planning has resulted in more informed heuristic cost
functions for state space planners. We have in previous work (Younes & Simmons, 2002)
adapted the additive heuristic—first proposed by Bonet et al. (1997) and subsequently used
in HSP (Bonet & Geffner, 2001b)—for plan space search and also extended it to handle
negated and disjunctive preconditions of actions as well as actions with conditional effects
and lifted actions. The heuristic cost function used by VHPOP at IPC3 was a variation of
the additive heuristic where some reuse of actions is taken into account, coupled with the
tie-breaking rank (introduced in Younes & Simmons, 2002) based on estimated remaining
planning effort.

3.1.1 The Additive Heuristic for POCL Planning

The key assumption behind the additive heuristic is subgoal independence. We give a
recursive definition of the additive heuristic for POCL planning, starting at the level of
literals and working towards a definition of heuristic cost for a partial plan.

Given a literal q, let GA(q) be the set of ground actions having an effect that unifies
with q. The cost of the literal q can then be defined as

hadd(q) =




0 if q unifies with a literal that holds initially
mina∈GA(q) hadd(a) if GA(q) �= ∅
∞ otherwise

.

A positive literal q holds initially if it is part of the initial conditions. A negative literal ¬q
holds initially if q is not part of the initial conditions (the closed-world assumption). The
cost of an action a is

hadd(a) = 1 + hadd(Prec(a)),

where Prec(a) is a propositional formula in negation normal form representing the precon-
ditions of action a. A propositional formula is in negation normal form if negations only
occur at the level of literals. Any propositional formula can be transformed into negation
normal form, and this is done for action preconditions by VHPOP while parsing the domain
description file.

Existentially quantified variables in an action precondition can be treated as additional
parameters of the action. The cost of an existentially quantified precondition can then
simply be defined as follows:

hadd(∃x.φ) = hadd(φ)

We can deal with universally quantified preconditions by making them fully instantiated
in a preprocessing phase, so in order to complete the definition of heuristic cost for action
preconditions we only need to add definitions for the heuristic cost of conjunctions and
disjunctions. The cost of a conjunction is the sum of the cost of the conjuncts:

hadd(
∧
i

φi) =
∑

i

hadd(φi)

The summation in the above formula is what gives the additive heuristic its name. The
definition is based on the assumption that subgoals are independent, which can lead to
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overestimation of the actual cost of a conjunctive goal (i.e. the heuristic is not admissible).
The cost of a disjunction is taken to be the cost of the disjunct with minimal cost:

hadd(
∨
i

φi) = min
i

hadd(φi)

The additive heuristic cost function for POCL plans can now be defined as follows:

hadd(π) =
∑

q−→ai∈OC(π)

hadd(q)

As with the cost function for conjunction, the above definition can easily lead to overesti-
mation of the number of actions needed to complete a plan, since possible reuse is ignored.
We propose a remedy for this below.

The cost of ground literals can be efficiently computed through dynamic programming.
We take conditional effects into account in the cost computation. If the effect q is condi-
tioned by p in action a, we add hadd(p) to the cost of achieving q with a. We only need
to compute the cost for ground literals once during a preprocessing phase, leaving little
overhead for evaluating plans during the planning phase. When working with lifted actions,
there is extra overhead for unification. It should also be noted that all lifted literals are
independently matched to ground literals without considering interactions between open
conditions of the same action. For example, two preconditions (a ?x) and (b ?x) of the
same action can be unified to ground literals with different matchings for the variable ?x.

3.1.2 Accounting for Positive Interaction

The additive heuristic does not take reuse of actions (other than the dummy action a0)
into account, so it often overestimates the actual number of actions needed to complete
a plan. The need to take positive interaction into account in order to obtain a more
accurate heuristic estimate has been recognized in both state space planning (Nguyen &
Kambhampati, 2000; Hoffmann & Nebel, 2001; Refanidis & Vlahavas, 2001) and plan space
planning (Nguyen & Kambhampati, 2001). For IPC3 we used a slight modification of the
additive heuristic to address the issue of action reuse:

hr
add(π) =

∑
q−→ai∈OC(π)




0 if ∃aj ∈ A s.t. an effect of aj unifies with q
and ai ≺ aj �∈ O

hadd(q) otherwise

The underlying assumption for this heuristic cost function is that an open condition
q−→ai

that can possibly be resolved by linking to the effect of an existing action aj will not give
rise to a new action when resolved. This can of course lead to an overly optimistic estimate
of the number of actions required to complete the plan. The modified heuristic is still not
admissible, however, since the same cost value as before is used for open conditions that
cannot be linked to effects of existing actions. In other words, we only account for possible
reuse of existing actions and not potential actions.

To illustrate the difference between hadd(π) and hr
add(π) consider a planning domain

with two action schemas A1 and A2, where A1 has no preconditions and A2 has a single
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Problem MW-Loc MW-Loc-Conf LCFR-Loc LCFR-Loc-Conf
hadd hr

add hadd hr
add hadd hr

add hadd hr
add

DriverLog6 8.65 0.16 4.41 0.13 87.58 2.01 - 1.16
DriverLog7 3.66 0.34 0.63 0.17 21.15 1.28 1.57 0.22
DriverLog8 - - 110.26 1.48 - 177.27 - 2.05
DriverLog9 - 0.33 - 0.28 - - - -
DriverLog10 4.13 2.11 0.71 0.76 3.79 0.64 1.30 0.83
ZenoTravel6 - 0.93 17.41 2.90 25.09 0.95 11.24 2.82
ZenoTravel7 - - - 37.81 - - - 33.10
ZenoTravel8 - 15.48 - 37.99 - - - 6.45
ZenoTravel9 - 86.21 - 11.53 - 33.37 26.33 9.49
ZenoTravel10 - 26.59 - 21.22 - 21.20 - 18.22
Satellite6 0.36 0.22 0.37 0.24 0.32 0.21 0.40 0.24
Satellite7 0.49 0.37 0.54 0.84 0.55 0.51 0.62 -
Satellite8 1.09 - 1.29 0.84 0.85 0.83 1.25 0.68
Satellite9 2.41 - 2.11 - 1.84 - 2.50 -
Satellite10 1.53 1.12 1.95 1.11 1.50 1.36 2.08 1.37

Table 1: Planning times in seconds using different flaw selection strategies for a selection of
problems in the DriverLog, ZenoTravel, and Satellite domains, showing the impact
of taking reuse into account in the plan ranking heuristic. A dash (-) means that
the planner ran out of memory (512Mb).

precondition q. Assume that q can only be achieved through an action instance of A1. The
heuristic cost for the literal q is therefore 1 according to the additive heuristic. Consider
now a plan π with two unordered actions a1 and a2 (ai being an instance of action schema
Ai) and a single open condition

q−→ a2. We have hadd(π) = hadd(q) = 1 corresponding to
the addition of a new instance of action schema A1 to achieve q, but hr

add(π) = 0 because
there is an action (viz. a1) that is not ordered after a2 and has an effect that unifies with q.
Table 1 shows that taking reuse into account can have a significant impact on planning time
in practice. The modified additive heuristic hr

add clearly dominates hadd in the DriverLog
and ZenoTravel domains despite incurring a higher overhead per generated plan. The results
in the Satellite domain are more mixed, with hadd having a slight edge overall. We show
planning times for the four flaw selection strategies that were used by VHPOP at IPC3.
These and other novel flaw selection strategies are discussed in detail in Section 3.2.2.

Hoffmann and Nebel (2001) describe the FF heuristic that takes positive interaction be-
tween actions into account by extracting a plan from the relaxed planning graph1, and argue
that the accounting of action reuse is one of the contributing factors to FF’s performance
advantage over HSP. The FF heuristic can take reuse of potential actions into account, and
not just existing actions as is the case with our modified additive heuristic. This should
result in a better estimate of actual plan cost, but requires that a plan is extracted from the

1. A relaxed planning graph is a planning graph with no action pairs marked as mutex.
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relaxed planning graph for every search node, which could be costly. It would be interesting
to see how the FF heuristic performs if used in a plan space planner.

The heuristic cost function used in RePOP (Nguyen & Kambhampati, 2001), a heuristic
partial order planner working solely with ground actions, is defined using a serial planning
graph.2 The heuristic is similar in spirit to the FF heuristic, and can like the FF heuristic
take reuse of potential actions into account. The RePOP heuristic also takes into account
reuse of existing actions, but seemingly without considering ordering constraints, which
is something we do in our modified additive heuristic. Furthermore, our hr

add heuristic
always takes reuse of any existing actions that achieves a literal q into account, while the
RePOP heuristic only considers an existing action if it happens to be selected from the
serial planning graph as the the action that achieves q. The results in Table 2 indicate that
the RePOP heuristic may be less effective than the additive heuristic (with and without
reuse) in certain domains.

3.1.3 Estimating Remaining Effort

Not only do we want to find plans consisting of few actions, but we also want to do so
exploring as few plans as possible. Schubert and Gerevini (1995) suggest that the number
of open conditions can be useful as an estimate of the number of refinement steps needed
to complete a plan. We take this idea a bit further.

When computing the heuristic cost of a literal, we also record the estimated effort of
achieving the literal. A literal that is achieved through the initial conditions has estimated
effort 1 (corresponding to the work of adding a causal link to the plan). If the cost of a
literal comes from an action a, the estimated effort for the literal is the estimated effort for
the preconditions of a, plus 1 for linking to a. Finally, the estimated effort of a conjunction
is the sum of the estimated effort of the conjuncts, while the estimated effort of a disjunction
is the estimated effort of the disjunct with minimal cost (not effort).

The main difference between heuristic cost and estimated effort of a plan is that esti-
mated effort assigns the value 1 instead of 0 to literals that can be unified with an initial
condition. To illustrate the difference, consider a plan π with two open conditions p and q
that both hold in the initial conditions. The heuristic cost for π is 0, while the estimated
effort is 2. The estimated effort is basically a heuristic estimate of the total number of open
conditions that will have to be resolved before a complete plan is found, and it is used as a
tie-breaker between two plans π and π′ in case f(π) = f(π′). Consider an alternative plan
π′ with the same number of actions as π but with a single open condition p. This plan
has heuristic cost 0 as does the plan π, but the estimated effort is only 1, so π′ would be
selected first if estimated effort is used as a tie-breaker. Table 2 shows that using estimated
effort as a tie-breaker can have a notable impact on planner performance for both hadd and
hr

add. Estimated effort helps reduce the number of generated and explored plans in all cases
but one (when using hr

add on problem rocket-ext-a).
Estimated effort is not only useful as a plan ranking heuristic, but also for heuristic flaw

selection as we will soon see.

2. A serial planning graph is a planning graph with every pair of non-noop actions at the same level marked
as mutex.
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Problem hadd with effort hr
add with effort RePOP

gripper-8 1636 / 705 1089 / 449 * * *
gripper-10 3268 / 1359 1958 / 795 * * *
gripper-12 5879 / 2359 3224 / 1294 * * *
gripper-20 33848 / 12204 14386 / 5558 * * *
rocket-ext-a 34917 / 25810 27846 / 20028 24507 / 15790 31213 / 20321 30110 / 17768
rocket-ext-b 27871 / 20034 27277 / 19363 15919 / 9000 10914 / 6705 85316 / 51540
logistics-a 503 / 301 481 / 287 621 / 389 530 / 317 411 / 191
logistics-b 857 / 488 713 / 404 694 / 402 584 / 326 920 / 436
logistics-c 766 / 422 630 / 346 629 / 353 438 / 227 4939 / 2468
logistics-d 3039 / 1398 2950 / 1384 2525 / 1300 1472 / 682 *

Table 2: The number of generated/explored plans for hadd and hr
add both without and with

estimated effort as a tie-breaker. The RePOP column contains the numbers re-
ported by Nguyen and Kambhampati (2001) for RePOP using the serial planning
graph heuristic. These numbers are included only for the purpose of showing that
there seems to be a qualitative difference between the RePOP heuristic and the
heuristics used by VHPOP. An asterisk (*) means that no solution was found
after generating 100000 plans. Flaws were selected in LIFO order.

3.2 Flaw Selection Strategies

In the original implementations of SNLP and UCPOP threats are selected before open
conditions. When there is more than one threat (or open condition) that can be selected,
the one added last is selected first (LIFO order). Several alternative flaw selection strategies
have been proposed in an attempt to improve the performance exhibited by POCL planners.

Peot and Smith (1993) show that the number of searched plans can be reduced by
delaying the resolution of some threats. The most successful of the proposed delay strategies
are DSep, which delays threats that can be resolved through separation, and DUnf, which
delays threats that can be resolved in more than one way.

Joslin and Pollack (1994) suggest that all flaws should be treated uniformly, and that
the flaw with the least number of refinements should be selected first. Their flaw selection
strategy, LCFR, can be viewed as an instance of the most-constrained-variable heuristic used
in simple search rearrangement backtracking (Bitner & Reingold, 1975; Purdom, 1983). The
main disadvantage with LCFR is that computing the repair cost for every flaw can incur a
large overhead for flaw selection. This can lead to longer planning times compared to when
using the default UCPOP strategy, even if the number of search nodes is significantly
smaller with LCFR. A clever implementation of LCFR can, however, reduce the overhead
for flaw selection considerably.

Schubert and Gerevini (1995) argue that a LIFO strategy for selecting open conditions
helps the planner maintain focus on the achievement of a particular high-level goal. Their
ZLIFO strategy is a variation of the DSep strategy, with the difference being that open
conditions that cannot be resolved, or can be resolved in only one way, are selected before
open conditions that can be resolved in more than one way. Gerevini and Schubert (1996)
present results indicating that ZLIFO often needs to generate fewer plans than LCFR
before a solution is found, and has a smaller overhead for flaw selection. These results are
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disputed by Pollack et al. (1997). They instead attribute much of the power of ZLIFO to
its delaying of separable threats, and propose a variation of LCFR, LCFR-DSep, that also
delays separable threats. Since we chose to work with ground actions at IPC3, separability
was not an issue for us.

3.2.1 Notation for Specifying Flaw Selection Strategies

In order to better understand the differences between various flaw selection strategies, and
to simplify comparative studies, Pollack et al. (1997) proposed a unifying notation for
specifying flaw selection strategies. We adopt their notation with only slight modifications.

A flaw selection strategy is an ordered list of selection criteria. Each selection criterion
is of the form

{flaw types}≤max refinementsordering criterion,

and applies to flaws of the given types that can be resolved in at most max refinements
ways. If there is no limit on the number of refinements, we simply write

{flaw types}ordering criterion.

The ordering criterion is used to order flaws that the selection criterion applies to. LIFO
order is used if the ordering criterion cannot be used to distinguish two or more flaws.

Pollack et al. define the flaw types “o” (open condition), “n” (non-separable threat),
and “s” (separable threat). They also define the ordering criteria “LIFO”, “FIFO”, “R”
(random), “LR”3 (least refinements first), and “New”. The last one applies only to open
conditions, and gives preference to open conditions that can be resolved by adding a new
action. The rest apply to both open conditions and threats.

Flaws are matched with selection criteria, and it is required for completeness that every
flaw matches at least one selection criterion in a flaw selection strategy. The flaw that
matches the earliest selection criterion, and is ordered before any other flaws matching the
same criterion (according to the ordering criterion), is the flaw that gets selected by the
flaw selection strategy. Note that we do not always need to test all flaws. If, for example,
the first selection criterion is {n, s}LIFO, and we have found a threat, then we do not need
to consider any other flaws for selection.

Using this notation, we can specify many different flaw selection strategies in a concise
manner. Table 3 specifies the flaw selection strategies mentioned earlier. A summary of
flaw types recognized by VHPOP, including three new flaw types defined below, is given
in Table 4.

3.2.2 New Flaw Selection Strategies

We now propose several additional flaw types and ordering criteria, and use these in combi-
nation with the previous ones to obtain some novel flaw selection strategies. Four of these
new flaw selection strategies were used at IPC3 and contributed to the success of VHPOP

at that event.

3. The original notation for this ordering criterion is LC for “least (repair) cost”, where the repair cost
is defined to be the number of refinements. Because we introduce a new ordering criterion based on
heuristic cost, we choose to rename this ordering criterion.
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Name Specification
UCPOP {n, s}LIFO / {o}LIFO
DSep {n}LIFO / {o}LIFO / {s}LIFO
DUnf {n, s}≤0LIFO / {n, s}≤1LIFO / {o}LIFO / {n, s}LIFO
LCFR {n, s, o}LR
LCFR-DSep {n, o}LR / {s}LR
ZLIFO {n}LIFO / {o}≤0LIFO / {o}≤1New / {o}LIFO / {s}LIFO

Table 3: A few of the flaw selection strategies previously proposed in the planning literature.

Flaw Type Description
n non-separable threat
s separable threat
o open condition
t static open condition
l local open condition
u unsafe open condition

Table 4: Summary of flaw types recognized by VHPOP.

Early Commitment through Flaw Selection. We have shown (Younes & Simmons,
2002) that giving priority to static open conditions can be beneficial when planning with
lifted actions. Introducing a new flaw type, “t”, representing static open conditions, we can
specify this flaw selection strategy as follows:

Static-First {t}LIFO / {n, s}LIFO / {o}LIFO

A static open condition is a literal that involves a predicate occurring in the initial
conditions of a planning problem, but not in the effects of any operator in the planning
domain. This means that a static open condition always has to be linked to the initial
conditions, and the initial conditions consist solely of ground literals. Resolving a static
open condition

q−→ ai will therefore cause all free variables of q to be bound to specific
objects. Resolving static open conditions before other flaws represents a bias towards early
commitment of parameter bindings. This resembles the search strategy inherent in planners
using ground actions, but without necessarily committing to bindings for all parameters of
an action at once. The gain is a reduced branching factor compared to a planner using
ground actions, and this reduction can compensate for the increased complexity that comes
with having to keep track of variable bindings.

Our earlier results (Younes & Simmons, 2002) indicated that despite a reduction in the
number of generated plans when planning with lifted actions, using ground actions was
still faster in most domains. In the gripper domain, for example, while using lifted actions
resulted in less than half the number of generated plans compared to when using ground
actions, planning with ground actions was still more than twice as fast. We have greatly
improved the implementation of the planner and the handling of variable bindings since
then. When using the latest version of VHPOP in the gripper domain, the planner is
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roughly as fast when planning with lifted actions giving priority to static preconditions as
when planning with ground actions.

Local Flaw Selection. By retaining the LIFO order for selecting open conditions achiev-
able in multiple ways, Schubert and Gerevini (1995) argue that the planner tends to main-
tain focus on a particular higher-level goal by regression, instead of trying to achieve multiple
goals in a breadth-first manner. When some of the goals to achieve are independent, main-
taining focus on a single goal should be beneficial. The problem with a LIFO-based flaw
selection strategy, however, as pointed out by Williamson and Hanks (1996), is that it is
highly sensitive to the order in which operator preconditions are specified in the domain
description.

It is not necessary, however, to select the most recently added open condition in order
to keep focus on the achievement of one goal. We can get the same effect by selecting any of
the open conditions, but restrict the choice to the most recently added action. We therefore
introduce a new flaw type, “l”, representing local open conditions. A local open condition is
one that belongs to the most recently added action that still has remaining open conditions.
We can use any ordering criterion to select among local open conditions. Using this new
flaw type, we can specify a local variant of LCFR:

LCFR-Loc {n, s, l}LR

One would expect such a strategy to be less sensitive to precondition-order than a sim-
ple LIFO-based strategy. We can see evidence of this in Table 5, which also shows that
the maintained goal focus achieved by local flaw selection strategies can help solve more
problems compared to a global flaw selection strategy.

Heuristic Flaw Selection. Distance based heuristics have been used extensively for
ranking plans in state space planners (e.g., HSP and FF). Nguyen and Kambhampati
(2001) show that these heuristics can be very useful for ranking plans in POCL planners as
well. They also suggest that the same heuristics could be used in flaw selection methods,
but do not elaborate further on this subject.

It is not hard to see, however, how many of the plan rank heuristics could be used for
the purpose of selecting among open conditions, since they often are based on estimating
the cost of achieving open conditions as seen in Section 3.1.1. By giving priority to open
conditions with the highest heuristic cost, we can build plans in a top-down manner from
the goals to the initial conditions. We call this ordering criterion “MC” (most cost first).
By using the opposite ordering criterion, “LC”, we would instead tend to build plans in a
bottom-up manner. Note that these two ordering criteria only apply to open conditions,
and not to threats, so we would need to use them in combination with selection criteria for
threats. We can define both global and local heuristic flaw selection strategies:

MC {n, s}LR / {o}MCadd

MC-Loc {n, s}LR / {l}MCadd

The subscript for MC indicates the heuristic function to use for ranking open conditions,
which in this case is the additive heuristic.
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Problem UCPOP LCFR LCFR-Loc MC MC-Loc MW MW-Loc
σ/|µ| n σ/|µ| n σ/|µ| n σ/|µ| n σ/|µ| n σ/|µ| n σ/|µ| n

DriverLog6 0.20 20 0.01 20 0.01 20 0.18 20 0.23 20 0.02 20 0.02 20
DriverLog7 0.23 20 0.10 20 0.32 20 0.13 18 0.25 20 - 0 0.05 20
DriverLog8 0.28 17 - 0 0.00 1 - 0 - 0 - 0 - 0
DriverLog9 0.62 7 0.00 10 0.45 14 - 0 0.01 20 - 0 0.01 20
DriverLog10 0.33 16 - 0 0.07 20 - 0 0.08 20 - 0 0.08 20

ZenoTravel6 0.27 20 0.03 7 0.22 20 - 0 0.00 20 - 0 0.00 20
ZenoTravel7 0.23 8 - 0 0.18 16 - 0 0.16 16 - 0 0.16 16
ZenoTravel8 0.29 11 - 0 0.15 19 - 0 0.18 20 - 0 0.18 20
ZenoTravel9 0.22 17 - 0 0.21 18 - 0 0.19 20 - 0 0.19 20
ZenoTravel10 0.26 18 - 0 0.22 17 - 0 0.15 19 - 0 0.15 19

Satellite6 0.20 19 - 0 0.02 20 - 0 0.02 20 - 0 0.02 20
Satellite7 0.54 9 - 0 0.03 20 - 0 0.07 20 - 0 0.07 20
Satellite8 0.35 8 - 0 0.02 20 - 0 0.07 4 - 0 0.07 4
Satellite9 0.34 7 - 0 0.00 1 - 0 0.00 1 - 0 0.00 1
Satellite10 0.32 9 - 0 0.01 20 - 0 - 0 - 0 - 0

Table 5: Relative standard deviation for the number of generated plans (σ/|µ|) and the
number of solved problems (n) over 20 instances of each problem with random
precondition ordered. Low relative standard deviation indicates low sensitivity to
precondition order. Results are shown for VHPOP using seven different flaw selec-
tion strategies. A memory limit of 512Mb was enforced, and hr

add with estimated
effort as tie-breaker was used as plan ranking heuristic.

In Section 3.1.3, we proposed that we can estimate the remaining planning effort for
an open condition by counting the total number of open conditions that would arise while
resolving the open condition. This heuristic could also be useful for ranking open conditions,
and is often more discriminating than an ordering criterion based on heuristic cost. We
therefore define two additional ordering criteria: “MW” (most work first) and “LW”. With
these, we can define additional flaw selection strategies:

MW {n, s}LR / {o}MWadd

MW-Loc {n, s}LR / {l}MWadd

For the planning problems listed in Table 5, we can see that MW-Loc is at most as sensitive
to precondition order as MC-Loc, with MW-Loc never performing worse than MC-Loc and
for the first two problems performing clearly better.

IxTeT (Ghallab & Laruelle, 1994; Laborie & Ghallab, 1995) also uses heuristic tech-
niques to guide flaw selection, but in quite a different way than suggested here. It is our
understanding of the IxTeT heuristic that it estimates, for each possible refinement r re-
solving a flaw, the amount of change (commitment) that would result from applying r to
the current plan. For open conditions, this estimate is obtained by expanding a tree of
subgoal decomposition, which in principal is a regression-match graph (McDermott, 1999).
This is similar to how heuristic values are computed using the additive heuristic. However,
IxTeT considers not only the number of actions that need to be added to resolve an open
condition but also to what degree current variable domains would be reduced and possible
action orderings restricted. Furthermore, IxTeT uses the heuristic values to choose the
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flaw in which a single refinement stands out the most as the least “costly” compared to
other refinements for the same flaw. The intended effect is a reduction in the amount of
backtracking that is needed to find a solution, although we are not aware of any evaluation
of the effectiveness of the technique.

Conflict-Driven Flaw Selection. Common wisdom in implementing search heuristics
for constraint satisfaction problems, e.g. propositional satisfiability, is to first make decisions
with maximal consequences, so that inconsistencies can be detected early on, pruning large
parts of the search space.

A flaw selection strategy that follows this principle would be to link unsafe open con-
ditions before other open conditions. We call an open condition unsafe if a causal link to
that open condition would be threatened. By giving priority to unsafe open conditions,
the planner will direct attention to possible conflicts/inconsistencies in the plan at an early
stage. We introduce the flaw type “u” representing unsafe open conditions. Examples of
conflict-driven flaw selection strategies using this new flaw type are the following variations
of LCFR, LCFR-Loc, and MW-Loc:

LCFR-Conf {n, s,u}LR / {o}LR
LCFR-Loc-Conf {n, s,u}LR / {l}LR

MW-Loc-Conf {n, s}LR / {u}MWadd / {l}MWadd

The first two of these conflict-driven strategies are very effective in the link-chain domain
constructed by Veloso and Blythe (1994). The link-chain domain is an artificial domain
specifically constructed to demonstrate the weakness of POCL planners in certain domains.
What makes the domain hard for SNLP and UCPOP with their default flaw selection
strategies is that open conditions can be achieved by several actions but with only one
action being the right choice because of negative interaction. This forces the POCL planner
to backtrack excessively over link commitments, but inconsistencies may not be immediately
detected because of the many link alternatives. We can see in Figure 1 that VHPOP using
the UCPOP flaw selection strategy performs very poorly in the link-chain domain. Using a
more sophisticated flaw selection strategy such as LCFR improves performance somewhat.
However, with the two conflict-driven flaw selection strategies all problems are solved in
less than a second. The number of generated and explored plans is in fact identical for
LCFR-Conf and LCFR-Loc-Conf, but LCFR-Loc-Conf is roughly twice as fast as LCFR-
Conf because of reduced overhead. This demonstrates the benefit of local flaw selection
strategies. Note, however, that LCFR is faster than LCFR-Loc in the link-chain domain,
so local strategies are not always superior to global strategies.

We can also see in Table 1 that conflict-driven flaw selection strategies work well in the
DriverLog and Depots domains, both with hadd and hr

add as heuristic function for ranking
plans.

4. Temporal POCL Planning

In classical planning, actions have no duration: the effects of an action are instantaneous.
Many realistic planning domains, however, require actions that can overlap in time and
have different duration. The version of the planning domain definition language (PDDL),
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Figure 1: Average planning time over ten problems for each point with different flaw selec-
tion strategies in the link-chain domain. Results are shown for VHPOP using
five different flaw selection strategies. Only points for which a strategy solved
all ten problems without running out of memory (512Mb) are shown. The hf

heuristic was used to rank plans.

PDDL2.1, that was used for IPC3 introduces the notion of durative actions. A durative
action represents an interval of time, and conditions and effects can be associated with
either endpoint of this interval. Durative actions can also have invariant conditions that
must hold for the entire duration of the action.

We use the constraint-based interval approach to temporal POCL planning described by
Smith et al. (2000), which in essence is the same approach as used by earlier temporal POCL
planners such as DEVISER (Vere, 1983), ZENO (Penberthy & Weld, 1994), and IxTeT

(Ghallab & Laruelle, 1994). Like IxTeT, we use a simple temporal network (STN) to record
temporal constraints. The STN representation allows for rapid response to temporal queries.
ZENO, on the other hand, uses an integrated approach for handling both temporal and
metric constraints, and does not make use of techniques optimized for temporal reasoning.
The following is a description of how VHPOP handles the type of temporal planning
domains expressible in PDDL2.1.

When planning with durative actions, we substitute the partial order O in the repre-
sentation of a plan with an STN T . Each action ai of a plan, except the dummy actions
a0 and a∞, is represented by two nodes t2i−1 (start time) and t2i (end time) in the STN
T , and T can be compactly represented by the d-graph (Dechter et al., 1991). The d-graph
is a complete directed graph, where each edge ti → tj is labeled by the shortest temporal
distance, dij , between the two time nodes ti and tj (i.e. tj − ti ≤ dij). An additional time
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−5 ∞ ∞ −4 0




(c)

Figure 2: Matrix representation of d-graph, with ε = 1, for STN after (a) adding action
a1 with duration constraint δ1 ≤ 7 ∧ δ1 ≥ 3, (b) adding action a2 with duration
constraint δ2 = 4, and (c) ordering the end of a2 before the end of a1. Explicitly
added temporal constraints are in boldface.

point, t0, is used as a reference point to represent time zero. By default, dij = ∞ for all
i �= j (dii = 0), signifying that there is no upper bound on the difference tj − ti.

Constraints are added to T at the addition of a new action, the linking of an open
condition, and the addition of an ordering constraint between endpoints of two actions.

The duration, δi, of a durative action ai is specified as a conjunction of simple duration
constraints δi �� c, where c is a real-valued constant and �� is in the set {=,≤,≥}.4 Each
simple duration constraint gives rise to temporal constraints between the time nodes t2i−1

and t2i of T when adding ai to a plan 〈A,L, T ,B〉. The temporal constraints, in terms of
the minimum distance dij between two time points, are as follows:

Duration Constraint Temporal Constraints
δi = c d2i−1,2i = c and d2i,2i−1 = −c
δi ≤ c d2i−1,2i ≤ c
δi ≥ c d2i,2i−1 ≤ −c

The semantics of PDDL2.1 with durative actions dictates that every action be scheduled
strictly after time zero. Let ε denote the smallest fraction of time required to separate two
time points. To ensure that an added action ai is scheduled after time zero, we add the
temporal constraint d2i−1,0 ≤ −ε in addition to any temporal constraints due to duration
constraints. Figure 2(a) shows the matrix representation of the d-graph after adding an
action, a1, with duration constraint δ1 ≤ 7 ∧ δ1 ≥ 3 to a null plan. The rows and columns
of the matrix correspond to time point 0, the start of action a1, and the end of action a1

in that order. After adding action a2 with duration constraint δ2 = 4, we have the d-graph
represented by the matrix in Figure 2(b). The two additional rows and columns correspond
to the start and end of action a2 in that order.

A temporal annotation τ ∈ {s, i, e} is added to the representation of open conditions.

The open condition
q@s−→ai represents a condition that must hold at the start of the durative

action ai,
q@e−→ai represents a condition that must hold at the end of ai, while

q@i−→ai is an
invariant condition for ai. An equivalent annotation is added to the representation of causal

4. In contrast, Vere’s DEVISER can only handle duration constraints of the form δi = c.
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links. The linking of an open condition
q@τ−→ai to an effect associated with a time point tj

gives rise to the temporal constraint dkj ≤ −ε (k = 2i if τ = e, else k = 2i− 1). Figure 2(c)
shows the representation of the STN for a plan with actions a1 and a2, as before, and with
an effect associated with the end of a2 linked to a condition associated with the end of a1.

Unsafe causal links are resolved in basically the same way as before, but instead of
adding ordering constraints between actions we add temporal constraints between time
points ensuring that one time point precedes another time point. We can ensure that time
point ti precedes time point tj by adding the temporal constraint dji ≤ −ε.

Every time we add a temporal constraint to a plan, we update all shortest paths dij

that could have been affected by the added constraint. This propagation of constraints can
be carried out in O(|A|2) time.

Once a plan without flaws is found, we need to schedule the actions in the plan, i.e. assign
a start time and duration for each action. A schedule of the actions is a solution to the STN
T , and a solution assigning the earliest possible start time to each action is readily available
in the d-graph representation. The start time of action ai is set to −d2i−1,0 (Corollary 3.2,
Dechter et al., 1991) and the duration to d2i−1,0 − d2i,0. Assuming Figure 2(c) represents
the STN for a complete plan, then we would schedule a1 at time 1 with duration 5 and a2

at time 1 with duration 4. We can easily verify that this schedule is indeed consistent with
the duration constraints given for the actions, and that a2 ends before a1 as required.

Each non-durative action can be treated as a durative action of fixed duration 0, with
preconditions associated with the start time, effects associated with the end time, and
without any invariant conditions. This allows for a frictionless treatment of domains with
both durative and non-durative actions.

Let us for a moment consider the memory requirements for temporal POCL planning
compared to classical POCL planning. When planning with non-durative actions, we store
O as a bit-matrix representing the transitive closure of the ordering constraints in O. For a
partial plan with n actions, this requires n2 bits. With n durative actions, on the other hand,
we need roughly 4n2 floating-point numbers to represent the d-graph of T . Each floating-
point number requires at least 32 bits on a modern machine, so in total we need more than
100 times as many bits to represent temporal constraints as regular ordering constraints
for each plan. We note, however, that each refinement changes only a few entries in the
d-graph, and by choosing a clever representation of matrices we can share storage between
plans. The upper left 3× 3 sub-matrix in Figure 2(b) is for example identical to the matrix
in Figure 2(a). The way we store matrices in VHPOP allows us to exploit this commonality
and thereby reduce the total memory requirements.

The addition of durative actions does not change the basic POCL algorithm. The
recording of temporal constraints and temporal annotations can be handled in a manner
transparent to the rest of the planner. The search heuristics described in Section 3, although
not tuned specifically for temporal planning, can be used with durative actions. We only
need to slightly modify the definition of literal and action cost in the additive heuristic
because of the temporal annotations associated with preconditions and effects of durative
actions. Let GAs(q) denote the set of ground actions achieving q at the start, and GAe(q)
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Name Specification
MW-Loc {n, s}LR / {l}MWadd

MW-Loc-Conf {n, s}LR / {u}MWadd / {l}MWadd

LCFR-Loc {n, s, l}LR
LCFR-Loc-Conf {n, s,u}LR / {l}LR

Table 6: Flaw selection strategies used by VHPOP at IPC3.

the set of ground actions achieving q at the end. We define the cost of the literal q as

hadd(q) =




0 if q holds initially
mina∈GAt(q) hadd(a@t) if GAt(q) �= ∅
∞ otherwise

,

with t ∈ {s, e} and the cost of a durative action a at endpoint t defined as

hadd(a@t) = 1 + hadd(Prect(a)).

Precs(a) is a propositional formula representing the invariant preconditions of a and pre-
conditions associated with the start of a, while Prece(a) is a formula representing all pre-
conditions of a.

5. VHPOP at IPC3

VHPOP allows for several flaw selection strategies to be used simultaneously in a round-
robin scheme. This lets us exploit the strengths of different flaw selection strategies con-
currently, which was essential for the success of VHPOP at IPC3 since we have yet to find
a single superior flaw selection strategy that dominates all other flaw selection strategies
in terms of the number of solved problems within a given time frame. The technique we
use in VHPOP for supporting multiple flaw selection strategies is in essence the same as
the technique proposed by Howe et al. (1999) for exploiting performance benefits of several
planners at once in a meta-planner. Although the meta-planner is slower than the fastest
planner on any single problem, it can solve more problems than any single planner.

We used four different flaw selection strategies at IPC3 (Table 6), preferring local flaw
selection strategies as they tend to incur a lower overhead than global strategies such as
LCFR and MW and often appear more effective than global strategies because of a main-
tained focused on subgoal achievement. The four strategies were selected after some initial
experimentation with problems from a few of the competition domains.

The use of multiple flaw selection strategies can be thought of as running multiple
concurrent instances of the planner, as a separate search queue is maintained for each
flaw selection strategy that is used. Similar to HSP2.0 at the planning competition in
2000 (Bonet & Geffner, 2001a), we use a fixed control strategy to schedule these multiple
instances of our planner. The first time a flaw selection strategy is used, it is allowed to
generate up to 1000 search nodes. The second time the same flaw selection strategy is
used, it can generate another 1000 search nodes, making it a total of 2000 search nodes.
At each subsequent round i, each flaw selection strategy is permitted to generate up to

422



VHPOP

Name Order STRIPS Limit Durative Limit
MW-Loc 1 10000 12000
MW-Loc-Conf 2 100000 100000
LCFR-Loc 3 200000 240000
LCFR-Loc-Conf 4 ∞ ∞

Table 7: Execution order of flaw selection strategies used at IPC3, and also search limits
used with each strategy on domains with and without durative actions.

1000 ·2i−2 additional nodes. The maximum number of nodes generated using a specific flaw
selection strategy is 1000 · 2i−1 after i rounds. An optional upper limit on the number of
generated search nodes can be set for each flaw selection strategy. This is useful for flaw
selection strategies that typically solve problems quickly, when they solve them at all within
reasonable time. Table 7 shows the search limits used by VHPOP at IPC3. These limits
were determined after some initial trials on the competition problems. Note that there was
no set search limit for the last flaw selection strategy. Whenever the other three strategies
all reached their search limits without having found a solution, LCFR-Loc-Conf was used
until physical resource limits were reached.

Table 8 shows the number of plans generated in the STRIPS Satellite domain before a
solution is found for the four flaw selection strategies used at IPC3, and also the number
of generated plans when combining the four strategies using the schedule in Table 7. To
better understand how the round-robin scheduling works, we take a closer look at the
numbers for problem 15. Table 9 shows how the total number of generated plans is divided
between rounds and flaw selection strategies. Note that although MW-Loc is actually the
best strategy for this problem, it is stopped already in round 5. The total number of
generated plans does not exactly match the actual number of generated plans reported in
Table 8. This is because we only consider suspending the use of a flaw selection strategy
after all refinements of the last selected plan have been added, so the limit in a round can
be exceeded slightly in practice. The numbers in Table 9 represent an idealized situation
where flaw selection strategies are switched when the number of generated plans exactly
matches the limit for the current round.

VHPOP solved 122 problems out of 224 attempted at IPC3. The quality of the plans,
in terms of number of steps, generated by VHPOP was generally very high. For plain
STRIPS domains, VHPOP’s plans were typically within 10 percent of the best plans found
by any planner in the competition, with 28 of VHPOP’s 68 STRIPS plans being at least as
short as the best plans found and, being a POCL planner, VHPOP automatically exploits
parallelism in planning domains, generating plans for STRIPS domains with low total plan
execution time (Table 10). Table 11 shows that VHPOP also performed well in terms of
number of solved problems in four of the six STRIPS domains, being competitive with top
performers such as MIPS and LPG (particularly in the Rovers domain).
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Problem MW-Loc MW-Loc-Conf LCFR-Loc LCFR-Loc-Conf All
1 118 118 118 118 118
2 229 229 249 249 229
3 172 172 172 172 172
4 738 843 822 1797 738
5 448 723000† 1018 706000† 448
6 636000† 629000† 720 834 2727
7 571 745 620 688000† 571
8 482000† 874 1017 783 1874
10 1245 1178 1323 1275 4283
11 1172 1172 1172 1172 4172
12 3517 3733 525000† 525000† 9542
13 6241 382000† 559000† 544000† 18265
14 2352 2352 2157 2157 8365
15 74738 444000† 107375 465000† 281387
16 533000† 529000† 3442 3571 13471
17 2975 2975 3438 3438 8981
18 1584 1584 1724 1724 4588

Table 8: Number of generated plans in the STRIPS Satellite domain for the four different
flaw selection strategies used by VHPOP at IPC3. The rightmost column is the
number of plans generated by VHPOP before finding a solution when using the
schedule in Table 7. A dagger (†) means that the planner ran out of memory
(800Mb) after generating at least the indicated number of plans.

Round MW-Loc MW-Loc-Conf LCFR-Loc LCFR-Loc-Conf Total
1 1000 1000 1000 1000 4000
2 1000 1000 1000 1000 4000
3 2000 2000 2000 2000 8000
4 4000 4000 4000 4000 16000
5 2000 8000 8000 8000 26000
6 - 16000 16000 16000 48000
7 - 32000 32000 32000 96000
8 - 36000 43375 79375

Total 10000 100000 107375 64000 281375

Table 9: A closer look at the round-robin scheduling for problem 15 in the STRIPS Satellite
domain. Italic entries indicate that the search limit for a flaw selection strategy
was reached in the round.
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Domain # Solved # Steps # Best Execution Time # Best
DriverLog 14 1.09 5 1.15 4
ZenoTravel 13 1.04 7 1.20 5
Satellite 17 1.07 7 1.25 5
Rovers 20 1.08 7 1.08 13

Table 10: Relative plan quality for the STRIPS domains where VHPOP solved more than
half of the problems. There are two plan quality metrics. Number of steps is
simply the total number of steps in a plan, while execution time is the total
time required to execute a plan (counting parallel actions as one time step). The
table shows the average ratio of VHPOP’s plan quality and the quality of the
best plan generated by any planner, and the number of problems in each domain
where VHPOP found the best plan is also shown.

Planner Depots DriverLog ZenoTravel Satellite Rovers FreeCell Total
FF 22 15 20 20 20 20 117
LPG 21 18 20 20 12 18 109
MIPS 10 15 16 14 12 19 86
Simplanner 22 11 20 17 9 12 91
Stella 4 10 18 14 4 0 50
VHPOP 3 14 13 17 20 1 68

Table 11: Number of problems solved by top performing fully automated planners in
STRIPS domains.

In domains with durative actions5, total execution time was given as an explicit plan
metric, and the objective was to minimize this metric. The specification of an explicit plan
metric is a feature of PDDL2.1 not present in earlier versions of PDDL. As VHPOP cur-
rently ignores this objective function and always tries to find plans with few steps, it should
come as no surprise that the quality of VHPOP’s plans for domains with durative actions
was significantly worse than the quality of the best plans found (Table 12).6 VHPOP

still produced plans with few steps, however, with over 60 percent of VHPOP’s plans for
domains with durative actions having the fewest steps. The plan selection heuristic that
VHPOP uses is tuned for finding plans with few steps, and it would need to be modified in
order to find plans with shorter total execution time. Table 13 shows that LPG solved by
far the most problems in domains with durative actions, but that VHPOP was competitive
with MIPS and clearly outperformed TP4 and TPSYS.

5. There were two types of domains with durative actions at IPC3: “SimpleTime” domains having actions
with constant duration and “Time” domains with durations being functions of action parameters. The
results with durative actions presented in this paper are for “SimpleTime” domains as there is currently
no support for durations as functions of action parameters in VHPOP. It would, in principle, not be
hard to add such support though, and we expect future versions of VHPOP to have it.

6. The poor performance is in part also due to the use of 1 for ε (see Section 4) in VHPOP, while most
other planners used 0.01 or less. Using 0.01 for ε with VHPOP reduces the total execution time of plans
with about 15 percent.
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Domain # Solved # Steps # Best Execution Time # Best
DriverLog 14 1.04 8 1.50 0
ZenoTravel 13 1.04 10 1.54 0
Satellite 17 1.04 9 2.51 0
Rovers 7 1.04 5 1.39 0

Table 12: Same information as in Table 10, but for domains with durative actions.

Planner Depots DriverLog ZenoTravel Satellite Rovers Total
LPG 20 20 20 20 12 92
MIPS 11 15 14 9 9 58
TP4 1 2 5 3 4 15
TPSYS 0 2 2 2 4 10
VHPOP 3 14 13 17 7 54

Table 13: Number of problems solved by fully automated planners in domains with durative
actions.

While VHPOP was a top performer at IPC3 in terms of plan quality, it was far from
the top in terms of planning time. VHPOP was typically orders of magnitude slower than
the fastest planner. The high planning times for VHPOP can in part be attributed to
implementation details. Improvements to the code (e.g. using pointer comparison instead
of string comparison whenever possible) since the planning competition has resulted in 10 to
20 percent lower planning times when using ground actions and when using lifted actions the
planner is more than twice as fast as before. The reachability analysis is still a bottleneck,
however, and further improvements could definitely be made there. It is important to
remember, though, that we basically run four planners at once by using four flaw selection
strategies concurrently. Table 14 shows the average relative performance of VHPOP at
IPC3 compared to the performance of VHPOP using only the best flaw selection strategy
for each problem. VHPOP with the best flaw selection strategy is on average two to three
times faster than VHPOP with four concurrent strategies. Using several flaw selection
strategies simultaneously helps us solve more problems, but the price is reduced speed. By
more intelligently scheduling the different flaw selection strategies depending on domain and
problem features, and not just using a fixed schedule for all problems, we could potentially
increase planner efficiency significantly.

6. Discussion

McDermott (2000) finds the absence of POCL planners at the first planning competition in
1998 striking, as such planners had been dominating planning research just a few years ear-
lier. “It seems doubtful that the arguments in [POCL planners’] favor were all wrong, and it
would be interesting to see partial-order planners compete in future competitions”, McDer-
mott writes. After two competitions without POCL planners, we believe that VHPOP’s
performance at IPC3 demonstrates that POCL planning—at least with ground actions—
can be competitive with CSP-based and heuristic state space planning. VHPOP also shows
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Domain STRIPS Durative
DriverLog 2.52 2.66
ZenoTravel 2.76 2.86
Satellite 1.78 2.01
Rovers 2.32 3.37

Table 14: Each number in the table represents the average ratio of the planning time for
VHPOP using all four flaw selection strategies concurrently and the planning
time for VHPOP with only the fastest flaw selection strategy.

that temporal POCL planning can be made practical by using the same heuristic techniques
that have been developed for classical planning. The idea of using the POCL paradigm for
temporal planning is not new and goes back at least to Vere’s DEVISER (Vere, 1983), but
we are the first to demonstrate the effectiveness of temporal POCL planning on a larger set
of benchmark problems.

We hope that the success of VHPOP at IPC3 will inspire a renewed interest in plan
space planning, and we have made the source code for VHPOP, written in C++, available
to the research community in an online appendix so that others can build on our effort.7

While VHPOP performed well above our expectations at IPC3, we see several ways in
which we can further improve the planner. Speed, as mentioned in Section 5, is the principal
weakness of VHPOP. The code for the reachability analysis is not satisfactory, as it cur-
rently generates ground action instances before performing any reachability analysis. This
often leads to many ground action instances being generated that do not have preconditions
with finite heuristic cost (according to the additive heuristic). We believe that VHPOP

could profit from code for reachability analysis in well-established planning systems such
as FF. We could also improve speed by better scheduling different flaw selection strategies.
We would like to see statistical studies, similar to that of Howe et al. (1999), linking domain
and problem features to the performance of various flaw selection strategies.

We have so far only considered using different flaw selection strategies. However, run-
ning multiple instances of VHPOP using different plan selection heuristics could be equally
interesting. We have, for example, noticed that using the additive heuristic without account-
ing for reuse helps us solve two more problems in the Satellite domain. It would also be
interesting to have the FF heuristic implemented in VHPOP and see how well it performs
in a plan space planner, possibly using local search techniques instead of A∗. It is not likely,
however, that the results on local search topology for the FF heuristic in state space (Hoff-
mann, 2001) carry over to plan space. While many of the benchmark planning domains
contain actions whose effects can be undone by other actions, the plan operators causing
transitions in the search space of a plan space planner are different from the actions defined
for a planning domain, and the effects of a plan space operator are generally irreversible.
We would likely need to add transformational plan operators that can undo linking and
ordering decisions. Incidentally, VHPOP started out as a project for adding transforma-
tional plan operators to UCPOP, but we got side-tracked by the need for better search

7. The latest version of VHPOP is available for download at www.cs.cmu.edu/˜lorens/vhpop.html.
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control, and our research on transformational POCL planning was suspended. With the
recent improvements in search control for POCL planners, it may be worthwhile to once
again consider adding transformational plan operators.

In addition to considering different search control heuristics, we could also have instances
of VHPOP working with lifted actions instead of ground actions. Recent improvements
to the code have significantly reduced the overhead for maintaining binding constraints,
making planning with lifted actions look considerably more favorable than was reported in
earlier work (Younes & Simmons, 2002). Planning with lifted actions could be beneficial for
problems with a high branching factor in the search space due to a large number of objects.

We would also like to see support for numeric effects and preconditions in future versions
of VHPOP. This would make VHPOP fully compatible with PDDL2.1. We have also
mentioned the need for plan ranking heuristics better tailored for temporal planning, so
that VHPOP’s performance in terms of plan execution time for domains with durative
actions can approach the performance of the best temporal planners at IPC3.
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