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Abstract— We describe a method to completely automatically re-

cover 3D scene structure together with a camera for each frame from

a sequence of images acquired by an unknown camera undergoing

unknown movement. Previous approaches have used calibration ob-

jects or landmarks to recover this information, and are therefore of-

ten limited to a particular scale. The approach of this paper is far

more general, since the “landmarks” are derived directly from the

imaged scene texture. The method can be applied to a large class of

scenes and motions, and is demonstrated here for sequences of inte-

rior and exterior scenes using both controlled-motion and hand-held

cameras.

We demonstrate two applications of this technology. The first is the

construction of 3D graphical models of the scene; the second is the

insertion of virtual objects into the original image sequence. Other

applications include image compression and frame interpolation.

I. INTRODUCTION

The goal of this work is to obtain 3D scene structure and

camera projection matrices from an uncalibrated sequence

of images. The structure and cameras form the basis for

a number of applications and two of these will be illus-

trated in this paper. The first application is building 3D

graphical models from an image sequence acquired by a

hand-held camcorder. This enables texture mapped models

of isolated objects, building interiors, building exteriors etc

to be obtained simply by videoing the scene, even though

with a camcorder the motion is unlikely to be smooth, and

is unknown a priori. The second application is to use the

camera which is estimated for each frame of the sequence

in order to insert virtual objects into the original real image

sequence [15]. An ‘augmented reality’ facility of this type

is of use for post-production in the film industry.

To obtain the structure and cameras we employ Struc-

ture and Motion recovery results from the photogrammetry

and computer vision literature, where it has been shown

that there is sufficient information in the perspective pro-

jections of a static cloud of 3D points and lines to deter-

mine the 3D structure as well as the camera positions from

image measurements alone. In our approach these points

and lines are obtained automatically from features in the

scene, and their correspondence established across multi-

ple views. Establishing this correspondence is a significant

part of the problem.

The core of the system is shown in figure 1. This auto-

matic process can be thought of, at its simplest, as convert-

ing a camcorder to a sparse range sensor. Together with

more standard graphical post-processing such as triangula-

tion of sparse 3D point and line sets, and texture mapping

from images, the system becomes a “VHS to VRML” con-

verter (VRML is the Virtual Reality Modeling Language, a

standard for the interchange of 3D scenes).

The key advantage of the approach we adopt is that no

information other than the images themselves is required a

priori: more conventional photogrammetry techniques re-

quire calibration objects or 3D control points to be visible

in every frame.

A. Background

Although the general framework for uncalibrated struc-

ture from motion has been in place for some time [4], [11],

[14] only recently have general acquisition systems come

near to becoming a reality. This is because a combina-

tion of image processing, projective geometry for multiple

views [9], [20], [22], and robust statistical estimation [26],

[28] has been required in order to succeed at automating

structure and motion algorithms [2], [12].

Tomasi and Kanade [24] demonstrated that 3D models

could be built from an uncalibrated sequence, but employed

a simplified projection model. The work described in this

paper is an improvement in three respects: first, the most

general projection model is used — significant perspective

effects (giving rise to vanishing points etc) will degrade

the Tomasi and Kanade results; second, their system uses

a simple point tracker to find matches and does not em-

ploy robust statistics and rigid geometry for tracking—this

severely limits camera motions and scene types; third, their

method is optimal when points are visible in all images, and

that restriction does not apply to our work.

B. The scope of the approach

The limitations of the approach of this paper are: first,

that the images must be sufficiently “interesting”—if the

scene has no significant texture (to be defined more pre-

cisely later), then the feature based methods we use will

have too few 2D measurements to work with; and second,
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Feature extraction: Points and Lines
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Core: Simultaneous feature matching and geometry estimation

Matched features; ✂☎✄✝✆ projection matrices; 3D structure

Through

Postprocessing: Triangulation / Plane fitting / Photogrammetry software

Fig. 1. Overview of the VHS to VRML process. Six of the eleven frames from an input video sequence are shown at the top. The images are acquired by a

camera mounted on a vehicle moving down a corridor. A three dimensional reconstruction of points and lines in the scene and cameras (represented by

their image planes) is computed automatically from the images. A texture mapped triangulated graphical model is then constructed. Left: a rendering

of the scene from a novel viewpoint different from any in the sequence. Right: VRML model of the scene with the cameras represented by their image

planes (texture mapped with the original images from the sequence).
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that the camera motion between images needs to be rel-

atively small, in particular rotation about the optical axis

should be limited—otherwise the cross-correlation tech-

niques used to match the features between images will fail.

Happily, this restricted motion is the typical motion be-

tween frames of a video sequence, and the system is tuned

for such data. We also require that the 3D scene be largely

static, although smaller independently moving objects—

shadows, passing cars and the like—are excised automati-

cally by the use of robust estimation techniques.

The advantage of a video sequence, where the dis-

tance between camera centres (the baseline) for succes-

sive frames is small, is that evaluating correspondences

between successive images is simplified because the im-

ages are similar in appearance. The disadvantage is that the

3D structure is estimated poorly due to the small baseline.

However, this disadvantage is ameliorated by tracking over

many views in the sequence so that the effective baseline is

large.

II. REVIEW: THE CORRESPONDENCE PROBLEM OVER

MULTIPLE VIEWS

In this section we rehearse the method for establishing

correspondences throughout the sequence, and thence com-

pute the scene and camera reconstruction.

Under rigid motion there are relationships between cor-

responding image points which depend only on the cam-

eras and their motion relative to the scene, but not on the

3D structure of the scene. These relationships are used to

guide matching. The relationships include the epipolar ge-

ometry between view pairs, represented by the fundamental

matrix [4], [11]; and the trifocal geometry between view

triplets, represented by the trifocal tensor [9], [20], [22].

These relationships, and image correspondences consistent

with the relations, can be computed automatically from im-

ages, and this is described below.

Geometry guided matching, for view pairs and view

triplets, is the basis for obtaining correspondences, cam-

era projection matrices and 3D structure. The triplets may

then be sewn together to establish correspondences, pro-

jection matrices and structure for the entire sequence [2],

[6]. The correspondence method will be illustrated on the

corridor sequence of figure 1.

A. Matching for view pairs

Correspondences are first determined between all con-

secutive pairs of frames as follows. An interest-point oper-

ator [8] extracts point features (“corners”) from each frame

of the sequence. Putative correspondences are generated

between pairs of frames based on cross-correlation of in-

terest point neighbourhoods and search windows. Matches

are then established from this set of putative correspon-

dences by simultaneously estimating epipolar geometry

and matches consistent with this estimated geometry. The

estimation algorithm is robust to mismatches and is de-

scribed in detail in [25], [27], [28]. This basic level of

tracking is termed the F-Based Tracker (“F” for fundamen-

tal matrix).

Typical results. Typically the number of corners used in a✞✠✟☛✡ ✄✌☞ ✞✠✟ image of an indoor scene is about 500, the num-

ber of seed matches is about 200, and the final number of

matches is about 250. Using corners computed to sub-pixel

accuracy, the average distance of a point from its epipolar

line is ✍ 0.2 pixels.

The robust nature of the estimation algorithms means

that it is not necessary to restrict putative correspondences

to nearest neighbours or even the highest cross-correlation

match, as the rigidity constraint can be used to select the

best match from a set of candidates. Typically the radius of

the search window for candidate matches is 10–20% of the

image size, which adequately covers image point motion

for most sequences.

B. Matching for view triplets

Correspondences are then determined between all con-

secutive triplets of frames. The 3-view matches are drawn

from the 2-view matches provided by the F-Based Tracker.

Although a proportion of these 2-view matches are erro-

neous (outliers), many of these mismatches are removed

during the simultaneous robust estimation of the trifocal

tensor and consistent matches [26]. The trifocal geometry

provides a more powerful disambiguation constraint than

epipolar geometry because image position is completely

determined in a third view, given a match in the other two

views, whereas image position is only restricted to a line

by the epipolar geometry between two views.

The output at this stage of matching consists of sets

of overlapping image triplets. Each triplet has an associ-

ated trifocal tensor and 3-view point matches. The cam-

era matrices for the 3-views may be instantiated from the

trifocal tensor [10], and 3D points instantiated for each 3-

view point match by minimizing reprojection error over the

triplet.

Typical results. Typically the number of seed matches

over a triplet is about 100 corners. The final number of

matches is about 180. Using corners computed to sub-pixel

accuracy, the typical distance of a corner from its trans-

ferred position is ✍✏✎✒✑✔✓ pixels. An example is shown in

figure 2a.

C. Matching lines over view triplets

Line matching is notoriously difficult over image pairs

as there is no geometric constraint equivalent to the funda-

mental matrix for point correspondences. However, over

3 views a geometric constraint is provided by the trifocal

tensor computed as above from point correspondences.
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Fig. 2. Image triplet processing: The workhorse of the system, con-

verting a passive, uncalibrated, camera into a sparse range sensor. (a)

The first three images of the corridor sequence. (b) Point (white) and

line (grey) features extracted from the sequence. (c) features matched

across these three views.

Line segments are matched over the triplet in two stages.

First, given the trifocal tensor and putatively correspond-

ing lines in two images, the corresponding line in the third

image is determined. A line segment should be detected at

the predicted position in the third image for a match to be

instantiated. Second, the match is verified by a photometric

test based on correlation of the line’s intensity neighbour-

hood. The point to point correspondence for this correla-

tion is provided by the computed epipolar geometry. De-

tails are given in [18].

Typical results. Typically there are 200 lines in each im-

age and a third of these are matched over the triplet. The

line transfer error is generally less than a pixel. In practice

the two stages of verification eliminate all but a couple of

mismatches. An example is shown in figure 2b.

D. Matching for sequences

Correspondences are extended over many frames by

merging 3-view point matches for overlapping triplets [6],

[12]. For example a correspondence which exists across

the triplet 1-2-3 and also across the triplet 2-3-4 may be ex-

tended to the frames 1-2-3-4, since the pair 2-3 overlaps for

the triplets. The camera matrices and 3D structure are then

computed for the frames 1-2-3-4. This process is extended

by merging neighbouring groups of frames until camera

matrices and correspondences are established throughout

the sequence. At any stage the available cameras and struc-

ture can be used to guide matching over any frame of the

sequence. The initial estimate of 3D points and cameras

for a sequence is refined by a hierarchical bundle adjust-

ment [6], [21]. Finally, the projective coordinate system is

transformed to Euclidean (less overall scale) by autocali-

bration [5], [16].

In this manner structure and cameras may be com-

puted automatically for sequences consisting of hundreds

of frames. Examples are given in the following section.

III. RESULTS

Some example sequences are shown in figure 3, each of

which particularly exercise different aspects of the system.

First the sequences are discussed, with the points of note

being identified, and then two applications of the system

are presented, with reference to the example sequences.

A. Corridor sequence

A camera is mounted on a mobile vehicle for this se-

quence. The vehicle moves along the floor turning to the

left. The forward translation in this sequence makes struc-

ture recovery difficult, due to the small baseline for trian-

gulation. In this situation, the benefit of using all frames in

the sequence is significant. Figure 1 shows the recovered

structure.

B. Dinosaur sequence

In this sequence, the model dinosaur is rotated on a

turntable so that effectively the camera circumnavigates the

object. Feature extraction is performed on the luminance

component of the colour signal. No reliable lines are ex-

tracted on this object so only points are used. In this case,

the additional constraint that the motion is known to be

circular is applied, resulting in improved structure fidelity.

Although the angle of rotation was known to be precisely✕ ✎✗✖✙✘✚✎✒✑ ✎☛✎✗☞✗✖ , this information was not supplied to the sys-

tem in order to gain a measure of accuracy. The recovered

RMS difference from
✕ ✎✛✖ was ✎✜✑ ✎☛✆✛✖ , or approximately 1

milliradian. Figure 4 shows the recovered point structure

and cameras.

C. Castle sequence

This sequence is taken with a standard SLR camera, by

a cameraman walking around the grounds of a Belgian cas-

tle. The images are digitized to PAL resolution. There

is significant lighting variation between the first and final

frames, and the sequence contains non-rigid components

(passing pedestrians and moving trees). Figure 5 shows

that structure and motion are successfully recovered despite

these impediments.
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Fig. 3. Example sequences: Dinosaur, fixed camera, object on turntable (36 frames); Castle, hand-held camera (25 frames); Wilshire, camera in

helicopter (350 frames).

Fig. 4. Dinosaur: 3D point structure and camera positions for the Di-

nosaur sequence.

Fig. 5. Castle: Computed cameras and 3D point structure. The plan view

shows the accuracy of the self calibration.

D. “Wilshire” sequence

The final sequence is a helicopter shot of Wilshire Boule-

vard, Los Angeles. In this case reconstruction is hampered

by the repeated structure in the scene—many of the fea-

ture points (for example those on the skyscraper windows)

have very similar intensity neighbourhoods, so correlation-

based tracking produces many false candidates. However,

the robust geometry-guided matching ( ✢ II-A) successfully

rejects the incorrect correspondences. Figure 6 shows the

structure.

IV. APPLICATIONS

The previous sections have described the core camera-

and-structure recovery system, and we now develop two

applications which use this information.

A. Construction of Virtual-Reality Models

Having the complete point and line structure, we now

describe how to convert the sparse 3D features into a form

suitable for graphical rendering.

To produce triangulated structure for the polyhedral ex-

amples in this paper, planes are automatically extracted

from the 3D data using the RANSAC technique: random

3-point subsets of the data are selected to define planes,

and the number of 3D points which are less than a user-

specified distance from each plane are counted. The plane

with the greatest number of consistent points is stored, and

the data points which were consistent with it removed from

the structure. Repeating this process extracts the largest

planes from the dataset, and the process is terminated when

the required number of planes have been found.

The RANSAC procedure, by its nature, will ignore

small-scale structure in the data, but is an ideal starting
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Fig. 6. Wilshire: 3D points and cameras for 350 frames of a helicopter

shot. Cameras are shown for just the start and end frames for clarity,

with the camera path plotted between.

point for photogrammetric techniques such as the Debevec

et al. architectural system [3].

The planes are textured by selecting (automatically) the

image from the sequence which is most fronto-parallel to

that plane, and then texture mapping from the appropriate

polygonal image region. As the texture mapping from the

image to the plane is via an affine transformation, it is nec-

essary to first warp the image to remove any projective dis-

tortion. Again this correction is automatic. Figure 1 shows

the final texture-mapped model.

For the non-polyhedral objects, the surface extraction

problem is more difficult, mainly due to the sparsity of the

data. However, the dinosaur sequence is easily approached

by segmenting the (blue) background and intersecting the

generalized cones formed by the occluding contours (or sil-

houettes), and results are shown in figure 7.

B. Augmented reality

Because the system automatically determines the camera

position for each view, it is possible to render computer-

generated objects as if they are part of the scene. This

process, generally known as augmented reality is of great

importance in cinematic special effects. Figures 8 and 9

demonstrate this process on two of the example sequences.

In figure 8, planar surfaces are identified in the 3D struc-

Fig. 7. Dinosaur: Reconstruction from occluding contours.

ture, and then an image is transformed via the implied 2D

perspective transformation such that it appears to be at-

tached to the plane. Figure 9 demonstrates the use of the

recovered 3D structure of the scene for depth-keying. The

cage around the object is rendered into a Z-buffer which is

initialized using the 3D model, so that the bars behind the

object are correctly occluded, and those in front correctly

occlude the object.

V. FUTURE DEVELOPMENTS

We have presented a system that will take sequences of

images from an uncalibrated camera or cameras, and will

automatically recover camera positions and 3D point and

line structure from these sequences. We are currently ex-

tending the core system to include space curves [19], im-

prove the automatic plane extraction [1], and cope with

wide baselines between frames [17].

The system can be used as a pre-process to a number of

applications. We have demonstrated VRML construction

and Augmented Reality here. Other applications include:

building a lumigraph or light field rendering [7], [13], im-

age sequence compression, and frame interpolation.
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Fig. 8. Wilshire: Augmented reality. Planar surfaces are identified in 3D, then 2D homographies are computed which map the augmenting images onto

the planes. Note that images appear to be rigidly attached onto two skyscrapers.

Fig. 9. Dinosaur: Augmented reality. The recovered 3D structure is used to depth-key the cage, which then correctly occludes the model.
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