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ABSTRACT

We examine the via assignment problem that arises when the single row routing approach to the

interconnection problem is used. Some new complexity results and two new heuristics are
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1 SINGLE ROW ROUTING

The single row routing approach to the interconnection problem for multilayer printed cir-

cuit boards was proposed by So, [SO74]. In this approach, it is assumed that the pins and vias lie

on the grid points of a unit grid (Figure 1.1). The vias occupy some number of columns on the

right end of the board while the pins occupy the remaining columns. We shall use the term point

to refer to both a via and a pin.

×1 × ×1 ×2 o o

×3 ×1 × ×1 o o

×3 ×2 ×2 ×3 o o

pins vias

Figure 1.1

The required interconnections are specified by means of a net list N = {N1, N2, ....., Nk},

where Ni is a subset of the pins and the Ni´s are pairwise disjoint. The single row routing

approach imposes three restrictions on the routings that realize the net list N. These are :

(1) Each wire connects a pair of points that are either on the same row or on the same column.

(2) The layout of a wire connecting two points on the same row (column) is confined to the two

wiring channels on either side of the row (column). Figure 1.2 shows such an example.

o o o o o o o o o

o o o o o o o o o

o o o o o o o o o

1 2 1 3 2 1 2 3

Figure 1.2: Single row routing.

(3) Each routing layer contains wires for only row connections or only column
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connections.

The single row routing approach is traditionally implemented to comprise the follow-

ing steps:

a) Via assignment -

In this step, each net is decomposed into a series of row and column interconnections.

This is done using vias as necessary. Figure 1.3 shows the decomposition for the net

list of Figure 1.1.

×1 × ×1 ×2 o o

×3 ×1 × ×1 o o

×3 ×2 ×2 ×3 o o

pins vias

Figure 1.3: Via assignment of net list of Figure 1.1.

b) Via column permutation -

The via columns are permuted so as to minimize the number of connections that cross

between any pair of adjacent via columns.

c) Layering -

The row (column) interconnects are partitioned into layers for realization.

d) Wire layout -

The row (column) interconnects assigned to each layer are laid out.

Each of the above four steps has recieved much attention in the literature. The via assign-

ment problem has been studied in [TING79], [TSUK79], [GONZ83] and [RAGH84]. [TSUK79]

has a slightly different model for the placement of vias. The via column permutation problem is

identical to the board permutation problem. Two references are [COHO83] and [GOTO77]. The

layering problem has been reported on in [TSUK83] and [HAN84a]. The wire layout problem has

recieved maximum attention. Some references are [TING76], [RAGH83], [HAN84b], [HAN84c]

and [TARN84].

In this paper, we shall be concerned with the via assignment problem only.

2 THE VIA ASSIGNMENT PROBLEM

Define a g-node to be a maximal subset of pins in a net that can be connected by row and

column interconnects without using any vias. Figure 2.1 identifies the g-nodes of a sample net. It

is easy to see that the g-nodes for any net are unique and may be determined quite easily.

The decomposition of the net list into a series of row and column interconnects is done by

first obtaining the g-nodes for all the nets. Nets that have two or more g-nodes utilize vias to
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× × ×1 ×1 o o

×1 × × × o o

× × ×1 × o o

×1 × × × o o

× ×1 × × o o

Figure 2.1: G-nodes.

connect the g-nodes together. The via assignment problem is that of assigning vias to nets so that

all g-nodes of each net may be connected using row and column interconnects alone. It is desir-

able to accomplish this assignment in such a way so as to use the smallest number of via

columns. The reason for this is that the size of the circuit board depends on the number of via

columns. It is also desirable to use the smallest number of vias as vias generally cause a reliabil-

ity problem.

× ×3 × ×2 o o o

×1 × ×3 × o o o

× × ×2 × o o o

×2 ×1 × × o o o

× × ×1 × o o o

Figure 2.2: Decomposition of a net list instance when RVIACOL is used.

The via assignment problem has been studied under two models :

(1) RVIACOL (restricted via column minimization) -

In this model, the vias used to realize any one net must all come from the same via column.

Figure 2.2 shows an optimal (i.e. least via columns) net decomposition using this model.

(2) VIACOL -
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In this model, the vias used for any one net may be taken from more than one via column.

Figure 2.3 shows an optimal decomposition for the nets of Figure 2.2 when this model is

used.

The restricted via column minimization problem was shown to be NP-hard in [TING79]

and [TSUK79]. A stronger result is obtained in [RAGH84]. Raghavan and Sahni [RAGH84] have

shown that in the restricted model, deciding whether or not two via columns are sufficient, is NP-

complete. They have also extended this result to the unrestricted model. A similar result for the

unrestricted model appears in [GONZ83].

(null) ×3 (null) ×2 o o

×1 (null) ×3 (null) o o

(null) (null) ×2 (null) o o

×2 ×1 (null) (null) o o

(null) (null) ×1 (null) o o

Figure 2.3: Decomposition of the instance of Figure 2.2 when VIACOL is used.

3 NEW COMPLEXITY RESULTS

The NP-complete(hard) results of [TING79], [TSUK79], [RAGH84] and [GONZ83]

involve constructions in which nets may contain an arbitrarily large number of pins. This leaves

open the question of whether the via assignment problem (whether restricted or not) remains

difficult when the nets are constrained to contain a small number of pins. We examine this prob-

lem in this section.

Theorem 3.1: Let L be a net list in which each net consists of exactly two pins.

(a) One can determine in polynomial time whether or not two via columns suffice under the res-

tricted model.

(b) Determining whether or not three via columns suffice under this model is NP-complete.

Proof:

(a) We construct a graph, G, that corresponds to L and the underlying grid. G contains one vertex

for each row of the grid. The 2-pin nets in L are considered one by one. If the two pins in a net

are in the same row or column, we disregard the net. Otherwise, draw an edge in G between the

vertices representing the two distinct rows in which the two pins lie. Figure 3.1 gives an example

construction.

It is easy to see that the minimum number of via columns needed for L is equal to the

minimum number of colors needed to edge color G (note that in an edge coloring, edges incident

on the same vertex must be assigned different colors). Let the minimum number of colors (and

hence the minimum number of via columns) be k.
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(null)row r1- ×a (null)(null)×c

r2- (null)×b (null)×f ×d

r3- ×e ×a (null)×f

r4- (null)(null)×b (null)×c

r5- (null)×e (null)×d

(a) Net list, L

r2

r1

r5

r4

r3

c

e

a
b

d

(b) Corresponding graph, G

Figure 3.1: Construction of graph, G, from 2-pin nets in L.

k is one iff no vertex in G has degree more than 1. If G has a vertex of degree > 2, then k >

2. If every vertex is of degree ≤ 2, then k ≤ 2 iff G contains no cycles of odd length (i.e. G is

bipartite). Hence, the cases k = 1 and k = 2 may be detected in polynomial time.

(b) The case k = 3 is NP-complete. This follows from the result of [HOLY81] that 3-coloring the

edges of a graph is NP-complete. To see this, let G = (V, E) be an arbitrary graph. We shall con-

struct an instance I, of the via assignment problem that has the following properties :

(i) Each net in I has exactly two pins.

(ii) Three via columns suffice for I iff G can be 3-colored.

(iii) I can be constructed from G in polynomial time.

For each vertex v ∈ V, I has a distinct grid row. For each edge (u, v) ∈ E, define a two termi-

nal net with pins on the rows corresponding to u and v. An example is given in Figure 3.2.

Clearly, three colors suffice for the edges of G iff three via columns suffice for the nets in I.

Theorem 3.2: Let L be a net list in which each net consists of exactly two pins.

(a) There is a polynomial time algorithm to determine whether or not two columns suffice under

the unrestricted model.

(b) Determining whether or not three via columns suffice is NP-complete.

Proof:

(a) From L, we obtain the graph G as in the proof of Theorem 3.1(a). If G has any vertex of

degree ≥ 3, then two columns are not sufficient. So, assume that the degree of every vertex in G

is ≤ 2. Under this assumption, G consists of a unique set of maximal paths and cycles. For each

cycle of odd length, a vertex of degree zero is needed (see Example 3.1). Hence, two columns

suffice iff the number of odd cycles does not exceed the number of vertices of zero degree. This is
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r2 r3

r4

r5

r1

c(c 3)

a(c 1)

d(c 1)

b(c 3)

f(c 2)

e(c 2)

(a) Graph, G = (V, E)

r1- ×a (null) (null) (null) (null) o o o

r2- ×e ×c (null) (null) (null) o o o

r3- (null) ×d ×c ×f (null) o o o

r4- (null) ×b ×d ×e (null) o o o

r5- ×b ×a (null) (null) ×f o o o

c 1 c 2 c 3

(b) Corresponding instance, I

Figure 3.2: Construction of a net list, I, from the graph, G.

easily determined in polynomial time.

(b) This again, follows from [HOLY81]. The graphs constructed in [HOLY81] are cubic (i.e.

every vertex has degree 3). Hence, the number of vertices is even (note that there are no cubic

graphs with an odd number of vertices as the number of edges in such a graph is 3n/2, where n =
�

V
�

). We use the same construction as in part (b) of Theorem 3.1. Since G is cubic, each row of

the constructed instance I has three pins. The number of 2-pin nets is
�

E
�

= 3
�

V
�

/2. The minimum

number of vias needed is 3
�

V
�

which is the total available in three via columns. This number

suffices only if no net is assigned vias from different columns. Hence, for instances obtained from

cubic graphs, the three via column problem is the same under both the restricted and unrestricted

models. Consequently, there is an unrestricted three via column assignment iff there is a res-

tricted three via column assignment iff the edges of the original cubic graph G are 3-colorable.

Hence, the unrestricted three via column assignment problem for 2-pin nets is NP-complete.

Example 3.1: Consider the net list of Figure 3.3(a). The corresponding graph is shown in Figure

3.3(b) and its unique paths and cycles are shown in Figure 3.3(c).

By 2-coloring the edges on the paths and even cycles, a via assignment for the correspond-

ing nets is obtained. For the odd cycles, a via assignment is possible only if a vertex of degree

zero is available. Using such a vertex, an odd cycle can, in effect, be transformed into an even
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r1- ×a (null)×c

r2- ×b ×a

r3- ×d

r4- (null)×d ×e

r5-

r6- (null)×f

r7- ×c ×b

r8- (null)×e ×f

(a)

r1 r5

r7r2

r3

r4

r8

r6

a

b

c

d

e

f

(b)

r1 r5

r7r2

r3

r4

r8

r6

a

b

c

d

e

f

cycle

odd cycle broken

using free vertex

path

(c)

o o

o o

o o

o o

o o

o o

o o

o o

a

d

f

c

b

e

(d)

Figure 3.3: Breaking up of odd cycles to obtain a 2-column via assignment.

cycle. Figure 3.3(d) shows the resulting via assignment.

The proofs given in [RAGH84] for the NP-completeness of the two column restricted and

unrestricted via assignment problem involve net lists in which a g-node may contain many pins.

Our next theorem examines the complexity of the two via column problem under the constraint

that each g-node contains exactly one pin.
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Theorem 3.3: Let L be a net list in which each g-node consists of exactly one pin.

(a) There is a polynomial time algorithm to determine whether or not two columns suffice in the

restricted model.

(b) For the unrestricted model, determining whether or not two columns suffice is NP-complete.

Proof:

(a) Remove from L, any net that contains only one g-node. If any row now contains more than

two g-nodes, then the net list cannot be realized using two via columns (recall that each g-node

consists of exactly one pin). Assume that no row contains more than two g-nodes. Construct the

graph G = (V, E) as follows. With each net in L, identify a unique vertex in V. There is an edge

(u, v) in E iff the nets identified with u and v have g-nodes on the same row. Clearly, if two nets

have g-nodes on the same row and each g-node consists of exactly one pin, then in the restricted

model the two nets must be assigned to different via columns. Hence, two via columns suffice iff

G is bipartite. This is easily determined in polynomial time.

(b) It is easy to see that this problem is in NP. So, we need merely show that it is NP-hard. For

this, we use the NP-complete problem [GARE79]: Minimum Node Deletion Bipartite Subgraph

(MNDBS). In this problem, we are given an undirected graph G = (V, E) and an integer k. We are

required to determine if there is a subset U ∈ V, � U � ≤ k, such that the subgraph induced by (V −
U) is bipartite.

From any undirected graph G and any k, we may construct an instance I of the two column

unrestricted via assignment problem such that every g-node in I has exactly one pin and I is real-

izable using two columns iff the answer to the MNDBS problem for (G, k) is yes.

I is obtained in the following way. First delete from G, vertices with degree ≤ 1. Let the

resulting graph be G´ = (V´, E´). The number of rows in I is (� E´ � + k). Identify each of the first � E´

� rows with a distinct edge in E´. Each v ∈ V´ defines a net of I. This net has a pin in each row that

corresponds to an edge that is incident on v. Each pin of a net is in a different column. So, each

pin defines a g-node. Note that each of the first � E´ � rows has exactly two pins on it. The remain-

ing k rows have no pins. Figure 3.4 shows an example construction with k = 4.

In every two column assignment of vias, the two pins on each of the first � E´ � rows must be

assigned to the two vias at the end of the row. The k pairs of vias at the bottom may be assigned

to upto k nets to allow these nets to use vias from both columns. If a two column assignment

exists, then deletion of the vertices corresponding to the nets (upto k) assigned to the bottom k via

pairs results in a bipartite graph. Similarly, if there is a U with � U � ≤ k such that (V − U) defines a

bipartite subgraph, then assigning the bottom � U � pairs to the nets corresponding to vertices in V

will result in a two column via assignment.

4 EXISTING VIA ASSIGNMENT HEURISTICS

In this section, we briefly review two existing heuristics for the via assignment problem.

The first of these is due to Ting, Kuh and Vincentelli [TING79] and the second to Gonzalez

[GONZ83]. Both heuristics use the unrestricted model for via assignment.

4.1 Heuristic of [TING79]

This heuristic assigns vias to nets one net at a time. Via columns are labeled old or new

depending on whether or not any via from the column has already been assigned. The following

procedure is used to assign vias to the net currently being considered :
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a

b
c

d

ef

r1
r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13
r14

r15

r1 - ×a ×b (null)(null)(null) o o

r2 - ×c ×a (null)(null)(null) o o

r3 - (null)(null)×a ×d (null) o o

r4 - (null)×e (null)×a (null) o o

r5 - (null)(null)×f (null)×a o o

r6 - ×b (null)(null)(null)×f o o

r7 - (null)(null)×b ×e (null) o o

r8 - (null)×d (null)×b (null) o o

r9 - (null)×c (null)(null)×b o o

r10- (null)(null)×c ×f (null) o o

r11- (null)(null)(null)×c ×e o o

r12- ×d (null)(null)(null)×c o o

r13- ×f (null)×d (null)(null) o o

r14- (null)(null)×e (null)×d o o

r15- ×e ×f (null)(null)(null) o o

o o

o o

o o

o o

a

d

e

f

c

b

c

d

e

f

k = 4

_______________________________________________________________________________

Figure 3.4: Example construction of net list, I, from graph, G´, with k = 4.

Step 1: Determine the g-nodes of the net. If the number of g-nodes is less than two, then no

vias are needed and we proceed to the next net (if any).

Step 2: Assume that the number of g-nodes is greater than 1. Determine an old via column to

which a maximum number of g-nodes connect. Ties are broken arbitrarily.

Step 3: If all g-nodes of this net are connected, proceed with the next net (if any) from Step 1.

If some unconnected g-nodes remain for this net, perform a breadth first search

beginning at the column selected above to an unconnected g-node (the search may

utilize only unused vias in old via columns).

Step 4: If the search of Step 3 reaches an unconnected g-node, then a via column connecting

the maximum number of unconnected g-nodes is selected by a backtrack process. The

newly connected g-nodes are labeled connected. Go to Step 3.

Step 5: The current net cannot be connected using old via columns alone. So, add a new via

column and assign vias from this column only to connect the net. Label this column
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old. Proceed with the next net (if any) from Step 1.

Example 4.1: An eleven net example is shown in Figure 4.1(a). Assume that the nets are con-

sidered for via assignment in the order 1,2,....,11. As no net has two pins in the same column or

row, each pin is a g-node. Nets 1 and 2 can be realized using vias from column 1. The g-nodes of

net 3 cannot be connected using vias from column 1 alone and so a new via column is added. Net

3 is assigned the first 5 vias in column 2. At this time, we have two old columns and their status is

as in Figure 4.1(b).

Net 4 is considered next. Both old columns connect two g-nodes of net 4. Assume that

column 2 is selected in Step 2. A breadth first search from column 2 gets us to column 1 (via the

row connection of row 7) which in turn gets us to the remaining g-nodes using column connec-

tions. Column 1 is selected in Step 4 and the net 4 via assignment completed as in Figure 4.1(c).

Figure 4.1(d) shows the via assignment obtained for all 11 nets.

In our later use of this heuristic, we make the following assumptions about how some of the

steps are implemented :

1. Nets are considered in non-increasing order of their number of g-nodes.

2. When a g-node is being assigned a via, all pins in the g-node are considered. An available

via from any of the rows on which there is a pin in the g-node may be assigned to the g-

node (Figure 4.2). For each of these assignable vias, we determine its demand. This is the

number of remaining g-nodes (from other remaining nets) to which it may be assigned. A

via with the least demand is assigned to the g-node.

4.2 Heuristic of [GONZ83]

Gonzalez [GONZ83] has developed a polynomial time heuristic for the unrestricted via

assignment problem that uses at most three times the minimum possible number of via columns.

This heuristic consists of the following three steps :

Step I: (a) From the given via assignment instance, construct a bipartite graph, G = (S ∪ T,

E), where S contains one vertex for each g-node and T contains one vertex for each

row of the pin grid. (s, t) ∈ E iff s ∈ S, t ∈ T and the g-node represented by s has a pin

in the row represented by T.

(b) Define a complete s-matching, I, of G to be a subset of E such that every vertex in

S is adjacent to exactly one edge in I. Let M( I ) be the maximum number of edges in

I that are adjacent to any vertex in T. An optimal complete s-matching (ocs) is a

complete s-matching with minimum M( I ). Find an ocs for G. Let M( I) for this ocs

be α. Clearly, α is a lower bound on the number of via columns needed.

Step II: The ocs obtained in Step I is used to construct a restricted via assignment instance in

which each net has exactly two pins. This restricted instance has the property that

from any via assignment for the instance, a via assignment that uses the same

number of columns can be constructed for the original unrestricted instance. Let gi

be the number of g-nodes in net i of the original instance, 1 ≤ i ≤ n. The restricted

instance contains n´=(
i =1
Σ
i=n

gi−n) 2-pin nets, 2n´ pin columns, and as many pin rows as

the original instance. For each net i in the original instance, there are (gi − 1) nets in

the restricted instance. Let p1 , p2,..., pgi
be the gi g-nodes of net i. Construct one net

for each of the (gi − 1) pairs (p1, p2), (p2 , p3),..., (pgi−1 , pgi
). The net for (pk, pk +1)
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×3 ×4 ×8 (null)×7 o o o o

×1 ×3 (null)(null)(null) o o o o

×7 ×1 ×3 ×11 (null) o o o o

(null)(null)×1 ×3 (null) o o o o

×6 ×8 ×10 (null)×3 o o o o

×10 ×5 ×11 (null)×1 o o o o

×5 ×7 (null)(null)×4 o o o o

×2 ×6 ×9 ×8 (null) o o o o

×9 ×2 ×4 (null)(null) o o o o

net1

net2

net3 net4

net1

net2

net3

(b) (c)(a)

o o o o o o

o o o o o o

o o o o o o

o o o o o o

o o o o o o

o o o o o o

o o o o o o

o o o o o o

o o o o o o

net4

net1

net2

net3 net8

net6

net5

net7

net9

net10

net11

(d)

Figure 4.1: [TING79] heuristic on an 11-net instance.

consists of one pin in each of the rows to which pk and pk +1 are matched in the ocs.

All pins are in distinct columns.

Step III: The via assignment problem constructed above consists only of 2-pin nets. No row

has more than 2α nets. This problem may be transformed into an equivalent edge

coloring problem as in Section 3. The edges may be colored in polynomial time

using at most 3α colors using the algorithm of Vizing [BOND76] (note that the
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×1 (null) (null) φ 0

×1 ×2 ×3 ο 2 φ : used via

×1 (null) (null) φ 0 ο : unused via

×1 (null) ×2 ο 1

vias
demand (for

g-node of net1)

Figure 4.2: Demand.

degree of the constructed graph is at most 2α). From the edge coloring, a via assign-

ment for the restricted instance is obtained and from this a via assignment for the ori-

ginal problem obtained. The maximum number of via columns used is 3α.

While the heuristic described above has the desirable characteristic that it guarantees to use

no more than three times the optimal number of via columns, it generates assignments that are

generally inferior to those obtainable by more direct methods (such as [TING79]). The reasons

for this poor behavior in practice, are :

1. An ocs constrains the rows from which vias can be assigned. There may be no optimal via

assignment available from an ocs. Consider the bipartite graph of Figure 4.3. All edges

define the ocs, except for a choice between edge a or b. If edge b exists in the possible ocs,

the best via assignment uses four via columns. Using edge a, a three column assignment is

possible.

2. The method suggested in [GONZ83] to construct the 2-pin net instance of Step II can result

in instances that have as many as 2α nets on a row. This may be larger than the total

number of nets in the original instance. Clearly, there are always solutions that use no more

via columns than the total number of nets. Figure 4.4 shows an ocs and the corresponding

restricted instance created in Step II. Since the maximum number of nets on a row directly

affects the final solution, we may employ a heuristic to obtain a better decomposition of the

g-nodes p1, p2,..., pgi
than the one currently employed (i.e., (p1, p2), (p2, p3),...., (pgi−1, pgi

) ).

Every decomposition of the form (pσ(1) , pσ(2)), (pσ(2) , pσ(3)),...... where σ is a permutation of

(1,2,.....,gi) is a valid decomposition for Step II. A good decomposition is obtained by taking

into account the demands placed by all nets on a particular row. For the example of Figure

4.4, a better restricted instance is shown in Figure 4.5.

3. Finally, in Step III, the edge coloring heuristic employed has a tendency to use 3β/2 colors

often (β is the degree of the multigraph created in Step III) even though fewer will often

suffice.
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1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,2

3,3

4,1

4,2

4,3

5,1

5,2

1

2

3

4

5

a
b

rownet1

net2

net3

net4

net5

Figure 4.3: An ocs.

1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,2

3,3

r1

r2

r3

r4

r5

net1

net2

net3

(a) An ocs

×11 ×31 ×32

(null) ×21

(null) ×31 ×32

(null)×11 ×12 ×21 ×22

(null) ×12 ×22

(×ij is subnet j of net i)

(b) Corresponding 2-pin nets

(n = 3, α = 2, # of via cols = 4)

Figure 4.4: Construction of net list instance from an ocs using [GONZ83].
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×11 ×31

(null) ×21 ×22 ×32

(null) ×31 ×32

(null) ×11 ×12 ×21

(null) ×12 ×22

(n = 3, α = 2, # of via cols = 3)

Figure 4.5: Net list instance of Figure 4.4(a) using a better method.

5 NEW HEURISTICS

In this section, we propose two new heuristics for the via assignment problem as well as a

heuristic for the Step II decomposition of [GONZ83].

5.1 Heuristic-1

This heuristic is quite similar to that of [TING79]. It employs the assumptions made at the

end of Section 4.1 about the order in which the nets are considered for via assignment and also

the selection of vias for each g-node. The essential difference between the two heuristics comes

about in the case of nets that cannot be realized using old via columns alone. While the heuristic

of [TING79] assigns all the vias for this net from a new via column, our heuristic utilizes as many

as possible from the old columns and gets the remainder from a new via column. Figures 5.1 and

5.2 show cases where the new strategy outperforms that of [TING79].

A detailed description of Heuristic-1 is provided below. The procedure to merge sort and

that to determine the g-nodes are quite standard and are omitted.
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(c) Improvement

(4 via cols)

Figure 5.1: Comparison of Heuristic-1 with [TING79] heuristic.

Algorithm for Heuristic-1 :

Step 1 : Input net data;

Step 2 : Determine the g-nodes;

Step 3 : Sort nets on [# of g-nodes] using merge sort;

Step 4 : Current via column = 1;

Step 5 : Map in first net into current via column :

  FOR each g-node of this net

    Determine via with least demand

  ENDFOR;

Step 6 : DO (till Step 21) for each net in sorted order -

Step 7 :   FOR each via col (i.e. from 1 to current via col)

    Determine rows reachable by via col;

    Determine g-nodes reachable by these rows;

  ENDFOR; (* keep track of via col which reaches

                 the maximum number of g-nodes *)

Step 8 :   Put via col (which reaches max # of g-nodes) into stack;

  Mark via col as visited;

Step 9 :   WHILE [(stack of via columns is not empty) AND (net not fully netted yet)],

  DO (till Step 15) -
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Figure 5.2: Another instance comparison of Heuristic-1 with [TING79] heuristic.

Step 10 :     Get via col from stack which reaches max # of g-nodes;

Step 11 :     FOR each g-node reached by this via col

      Determine via with least demand;

      Determine via cols reachable by this g-node;

      Put in stack if via col has not been visited yet;

      Mark them as visited;

    ENDFOR;

Step 12 :     Determine other via cols reachable by the

    via col (the one found in Step 10) ;

Step 13 :     Put them in stack if not visited yet;

    Mark them as visited;

Step 14 :     IF a reachable via col has already been visited but is reached by a

    via col using a row with least demand, THEN

      Mark via col visited using this least demand row vias;

    ENDIF;

    (* Note : If a via col has been reached by a g-node, this takes

    priority over all cases where via col is reached from another via col,

    because only one extra via may be used instead of two *)

Step 15 :   ENDWHILE; (*Step 9*)
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Step 16 :   IF (net has not been netted yet), DO (till Step 20) -

Step 17 :     Get a new via col (becomes current via col);

Step 18 :     Map remaining g-nodes into this new via col :

      FOR each g-node

        Determine via with least demand

      ENDFOR;

Step 19 :     Determine a row with least demand which connects the g-nodes

    (mapped in Steps 9 - 15) to this new via col;

Step 20 :   ENDIF; (*Step 16*)

Step 21 : ENDDO; (*Step 6*)

(* End of algorithm *)

5.2 Heuristic-2

In this heuristic, each time a new via column is introduced, an attempt is made to meet the

via needs of as many nets as possible. Nets are considered for via assignment in nonincreasing

order of their number of g-nodes. When the total needs of no more nets can be met from the new

via column, all remaining nets are reconsidered for via assignments from multiple via columns.

This is done in a manner similar to Heuristic-1. However, no new via columns are introduced.

When the needs of no additional nets can be totally met using the old via columns, a new via

column is introduced and the process repeated.

Figure 5.3 shows the result of applying this strategy to the eleven net example of Figure

4.1(a). The new via assignment uses 4 via columns rather than 6 as used by the heuristic of

[TING79]. Another example is shown in Figure 5.4. The details of Heuristic-2 are provided

below.
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Figure 5.3: Comparison of Heuristic-2 with [TING79] heuristic.

Algorithm for Heuristic-2 :

Step 1 : Input net data;

Step 2 : Determine g-nodes;

Step 3 : Sort nets on [# of g-nodes] using merge sort;

Step 4 : REPEAT (till Step 19) until all nets are done -

Step 5 :   Get new via column;

Step 6 :   REPEAT (till Step 10) for each net in sorted order which (have not

  been netted yet) and (which can be mapped into current via column) -

Step 7 :     Map in net into current via column :
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(null)×5 (null)×1 ×2 (null)(null)

(null)(null)(null)×2 ×1 (null)(null)

(null)(null)(null)(null)(null)(null)×1

×1 (null)(null)×3 (null)(null)(null)

(null)×6 (null)×5 (null)(null)×3

(null)(null)×4 (null)×3 (null)×2

(null)(null)(null)×6 (null)(null)(null)

(null)(null)(null)(null)×4 (null)(null)

(a) Net List

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

1

3

2

5

4

6

(b) [TING79] heuristic

(4 via cols)

o o o

o o o

o o o

o o o

o o o

o o o

o o o

o o o

o o o

o o o

1

6

4

2

5

3

(c) Improvement

(3 via cols)

Figure 5.4: Another instance comparison of Heuristic-2 with [TING79] heuristic.

      FOR each g-node of this net

        Determine via with least demand

      ENDFOR;

Step 8 :     Mark net as done;

Step 9 :     FOR via rows used by this net

      Determine other nets in demand of these vias;
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      Mark them as unmappable into current via col;

    ENDFOR;

Step 10 :   ENDREPEAT; (* Step 6 *)

Step 11 :   Reset nets (not yet netted) as mappable;

Step 12 :   IF a row has no free vias

    Determine nets in demand of vias on this row;

    Mark them as unmappable;

  ENDIF;

Step 13 :   (* Trying to map nets into old via columns *)

  REPEAT (till Step 17) for each net in sorted order which (have not

  been netted yet) and (which can be mapped) -

Step 14 :   Same as Steps 7 to 15 of Heuristic-1; (* these are the steps where a

  net is tried to be netted into the old via columns *)

Step 15 :     IF (net has not been netted yet) THEN

      Ignore g-nodes already mapped in Step 14

    ELSEIF (net has been netted) THEN

      Mark net as done

    ENDIF;

Step 16 :     IF (net has been netted)

      Determine rows which have no vias left;

      Find other nets in demand of these rows;

      Mark them as unmappable;

    ENDIF;

Step 17 :   ENDREPEAT; (* Step 13 *)

Step 18 :   Mark nets (not yet netted) as mappable;

Step 19 : ENDREPEAT; (* Step 4 *)

(* End of algorithm *)

5.3 Heuristic for Step II of [GONZ83]

In Step II of [GONZ83], the ocs obtained in Step I is used to obtain an instance with two

pins per net. This instance has the property that a via assignment for the instance is also a via

assignment for the original instance. We propose the following heuristic for this step.

Step 1: Let di be the degree of row i in the ocs, i.e. it is the number of g-nodes that have been

matched to vias in row i. Let n´, n and gi be as in Section 4.3. Let m(q) be the row to

which the g-node, q, is matched in the ocs.

Step 2: Discard nets that have only one g-node. Put each g-node of the remaining nets into a

distinct cluster. For each cluster i, let r(i) be a least degree row which contains a node.

Initially, if q is the sole g-node in the cluster, then q is a g-node and r(i) = m(q). Assign

each g-node q, to a pin in the row m(q). All pins are in distinct columns.

Step 3: FOR a = 1 TO n´ DO

Let c be the cluster with least d(r(c)).

Let e be the cluster from the same net as c with maximum d(r(e)) and c ≠ e.

CASE

: c and e both contain only one g-node : The two g-nodes define a two pin

net;

: c contains one g-node and e more than one : Add a pin to row r(e). This
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pin and the g-node of c define a two pin net;

: c contains more than one g-node and e one : Add a pin to row r(c). This

pin and the g-node of e define a two pin net;

: both c and e contain more than one g-node : Add a pin to each of the

rows r(c) and r(e). These pins define a new two pin net.

ENDCASE;

Combine both clusters into one. If there is only one remaining cluster for the

net, discard it.

Update r( ) values.

ENDFOR;

{ Note : All pins are added to new columns }

The above heuristic attempts to minimize the maximum number of pins assigned to a row.

As an example, consider the two net instance of Figure 5.5. This figure shows the ocs obtained in

Step I of [GONZ83].

A1

A2

A3

B1

B2

B3

B4

1 2

2 1

3 2

4 2

row degree

Figure 5.5: ocs of a two net instance.

The number of g-nodes in net A is gA = 3 and that in net B is gB = 4. So, n = 2, n´ = 3 + 4 − 2

= 5. An initial assignment of g-nodes to pins in the two pin instance is shown in Figure 5.6. The

cluster with least d(r( )) is {B2}. The one in net B with maximum d(r( )) is {B1} (or {B3} or {B4}).

These get combined to give the cluster {B1 , B2}. No new pins are added. Next, the cluster {B1 ,

B2} is combined with {B3} (or {B4}). A pin is added to row 2. At this point, we have two 2-pin

nets (Figure 5.7).

Now each cluster has d(r( )) = 2. So any two clusters from either net A or B can be combined

next. Assume that {B1, B2, B3} and {B4} are combined. A possible result is shown in Figure 5.8.

Now B has only one cluster and only net A remains.
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× (null)(null)× (null)(null)(null)(null) o o

(null)(null)(null)(null)× (null)(null)(null) o o

(null)× (null)(null)(null)× (null)(null) o o

(null)(null)× (null)(null)(null)× (null) o o

A1

A2

A3

B1

B2

B3

B4

Figure 5.6: Initial assignment of g-nodes to pins.
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(null)(null)× (null)(null)(null)× (null)(null) o o o
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Figure 5.8
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5.4 Complexity analysis

Let m, p and q respectively, denote the number of via columns, grid rows and g-nodes per

net. Let r be the average number of pins in each g-node. Heuristic-1 takes O(mpq) time to assign

vias to a net while Heuristic-2 takes O(m2pq) time per net. It should be noted that these are worst

case times and that in practice, one expects significantly better performance. The heuristic origi-

nally proposed in [TING79] takes O(mp2 + pm2 + mqr) time per net. The modified version stated

here can be implemented in O(mpq) time. The heuristic of [GONZ83] takes O( p 2

1___

Q 2

5___

log Q),

where Q is the total number of g-nodes.

6 EXPERIMENTAL RESULTS

We compared the performance (both time needed and number of via columns) of Heuristics

1,2 and [TING79]. The algorithms were coded in Pascal and run on a SUN workstation. Test data

was generated randomly. To get some indication of how close the solutions are to optimal, we

also computed a lower bound on the number of via columns needed. The lower bound computed

is α, the degree of ocs obtained in [GONZ83].

In order to determine the reasonableness of 3α via columns, we also compute some upper

bounds on the number of via columns needed. One obvious bound is n, the number of nets.

Another and better upper bound is obtained by constructing the following graph G = (V, E). V

has one vertex for each net. Consider the ocs obtained in Step I of [GONZ83]. There is an edge

(i, j) ∈ E iff nets i and j both have a g-node matched to a common row in the ocs. Let δ be the

maximum degree in G. The vertices of G can be colored using at most (δ + 1) colors. Also, every

coloring of G corresponds to a solution to the restricted via column assignment problem. Hence,

(δ + 1) is another upper bound on the minimum number of via columns needed.

Heur-1 Heur-2 [TING79] Lower bound Upper bound

n
m t m t m t α d dour 3α (δ+1)

2

3d___

2

3dour_____

10 4 2 4 1 4 2 4 8 4 12 9 12 6

20 6 4 6 3 6 4 6 10 6 18 20 15 9

50 10 17 10 7 10 15 10 20 12 30 45 30 18

70 14 34 14 11 14 34 14 26 16 42 61 39 24

80 16 68 16 16 16 63 16 30 18 48 70 45 27

90 16 56 16 17 16 51 16 32 20 48 77 48 30

100 18 81 18 18 18 84 18 35 22 54 85 53 33

Table 6.1: (p = 100, q = 12).

The results of our experiments are shown in Tables 6.1 - 6.6. The number of pin columns

used was 100. t is time specified in seconds. Tables 6.1 - 6.5 also provide some lower and upper

bounds on the number of via columns needed for the respective instances. From the lower bound

α, it is evident that for each instance reported in Tables 6.1 - 6.4, an optimal via assignment was
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Heur-1 Heur-2 [TING79] Lower bound Upper bound

q
m t m t m t α d dour 3α (δ+1)

2

3d___

2

3dour_____

3 7 12 7 4 7 12 7 10 7 21 13 15 11

6 10 20 10 6 10 19 10 18 10 30 33 27 15

9 12 29 12 9 12 26 12 24 14 36 53 36 21

12 16 47 17 13 16 43 16 30 18 48 69 45 27

15 20 99 20 20 20 87 20 40 22 60 77 60 33

18 21 81 21 24 21 95 21 42 26 63 80 63 39

Table 6.2: (p = 100, n = 80).

Heur-1 Heur-2 [TING79] Lower bound Upper bound

p
m t m t m t α d dour 3α (δ+1)

2

3d___

2

3dour_____

50 25 55 24 11 24 61 24 46 32 72 80 69 48

70 19 41 19 11 19 49 19 38 24 57 80 57 36

90 20 77 20 14 20 68 20 40 20 60 72 60 30

100 16 48 16 15 16 57 16 30 18 48 74 45 27

110 15 47 15 15 15 45 15 30 17 45 67 45 26

Table 6.3: (q = 12, n = 80).

obtained by at least one of the three heuristics (and most of the time by all three). The column

labeled d, gives us the degree of the two pin per net instance generated by Step II of [GONZ83].

dour is the d of the similar instance generated using the heuristic of Section 5.3. As can be seen, d

is considerably larger than dour . Further, both are often larger than α.

The solutions produced by the two heuristics developed here as well as those produced by

the modified version of the heuristic of [TING79], generally use the same number of via columns.

However, the heuristic developed in Section 5.2 takes significantly less time than the other two

heuristics.

The solutions obtainable by [GONZ83] may use as many as (3 ∗ α ) via columns. (3 ∗ α ) is

often a better upper bound than (δ + 1). For the instances generated, [GONZ83] generates solu-

tions that use between d and 3d/2 (or dour and 3dour/2) via columns. Clearly, on our test instances,
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Heur-1 Heur-2 [TING79] Lower bound Upper bound

m t m t m t α d dour 3α (δ+1)
2

3d___

2

3dour_____

11 18 11 5 11 18 11 16 11 33 36 24 17

9 12 9 5 9 15 9 17 10 27 39 26 15

9 18 9 5 10 16 9 18 10 27 40 27 15

16 49 16 11 16 42 16 32 16 48 50 48 24

15 36 15 12 15 34 15 30 17 45 50 45 26

Table 6.4: (p = 100, n = 50).

Heur-1 Heur-2 [TING79] Lower bound Upper bound

n
m t m t m t α d dour 3α (δ+1)

2

3d___

2

3dour_____

60 37 21 38 32 39 18 36 72 56 108 60 108 84

70 41 33 38 18 40 25 37 74 57 111 70 111 86

80 44 56 42 19 45 36 41 80 61 123 80 120 92

90 45 91 44 67 50 43 41 82 64 123 90 123 96

100 51 56 46 28 52 65 44 82 66 132 100 123 99

120 49 93 47 67 53 126 45 85 68 135 120 128 102

140 53 96 49 17 53 91 45 87 68 135 139 131 102

Table 6.5: (p = 20).

the heuristic of [GONZ83] will generate significantly inferior solutions. However, it should be

noted that none of the three heuristics tested have a better worst case performance bound than

that of [GONZ83].

The instances of Table 6.5 differ from the remaining instances. Tables 6.1 - 6.4 were

obtained with instances in which the number of nets (n) were generally less than the number of

rows (p). The instances used for Table 6.5 contain significantly more nets than rows. Here, none

of the three heuristics produced solutions with value equal to α. Heuristic-2 generally performed

better than Heuristic-1 which in turn generally performed better than [TING79].

We also experimented with one instance that had 175 nets and 20 rows and another that had

225 nets and 20 rows (number of pin columns = 200). For both of these instances, Heuristic-2
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Heur-1 [TING79]
n

m t m t

175 84 819 94 407

225 97 392 103 655

Table 6.6

required more time than we could spend. However, Heuristic-1 and [TING79] were able to

obtain solutions in less than 15 minutes each. The results are summarized in Table 6.6. Once

again the solutions obtained by Heuristic-1 are superior to those obtained by [TING79].

7 CONCLUSIONS

Based upon the experiments carried out by us, we conclude that Heuristic-2 generally

obtains better solutions than does Heuristic-1. Further, both heuristics generally outperform that

of [TING79]. The worst case time complexity of Heuristic-2 is, however, larger than that of

Heuristic-1. So, for certain instances it may not be practical to run Heuristic-2 to completion and

Heuristic-1 will have to be used instead.

8 REFERENCES

BOND76 Bondy J. and U.S.R.Murthy, Graph Theory with Applications, Elsevier North Hol-

land Inc, 1976.

COHO83 Cohoon J. and S.Sahni, Heuristics for the Board Permutation Problem, Proc. 1983

IEEE ICCAD Conf.

FIOR77 Fiorini S. and R.J.Wilson, Edge-Coloring of Graphs, Research notes in Mathemat-

ics, 16, Pitman, London, 1977.

GARE79 Garey M.R. and D.S.Johnson, Computers and Intractibility : A Guide to the

Theory of NP-Completeness, W.H.Freeman, San Francisco, 1979.

GONZ83 Gonzalez T., An Approximation Algorithm for the Via Assignment Problem,

ICCAD, 1983, pp 125-128.

GOTO77 Goto S., I.Cederbaum and B.Ting, Suboptimal Solution of the Backboard Order-

ing with Channel Capacity Constraints, IEEE Trans Circuits and Systems, Nov

1977, pp 645-652.

HAN84a Han S. and S.Sahni, Layering Algorithms for Single Row Routing, University of

Minnesota, Technical report, June 1984.

HAN84b Han S. and S.Sahni, Single Row Routing in Narrow Streets, IEEE Trans CAD,

CAD-3, 3, 1984, pp 235-241.

HAN84c Han S. and S.Sahni, A Fast Algorithm for Single Row Routing, University of Min-

nesota, Technical report, Jan 1984.



28

HOLY81 Holyer I., The NP-Completeness of Edge-Coloring, Siam J. Computing, Vol 10,

No 4, Nov 1981, pp 718-720.

HOPC73 Hopcroft J. and R.Karp, An n
5/2

Algorithm for Maximum Matching in Bipartite

Graphs, Siam J. Computing, 1973, pp 225-231.

HORO78 Horowitz E. and S.Sahni, Fundamentals of Computer Algorithms, Computer sci-

ence press, Potomac, MD, 1978.

KUH79 Kuh E., T.Kashiwabara and T.Fujisawa, On Optimal Single Row Routing, IEEE

Trans Cicuits and Systems, Vol CAS-26, No 6, June 1979.

RAGH83 Raghavan R. and S.Sahni, Single Row Routing, IEEE Trans Computers, C-32, 3,

1983, pp 209-220.

RAGH84 Raghavan R. and S.Sahni, The Complexity of Single Row Routing, IEEE Trans

Circuits and Systems, CAS-31, 5, 1984, pp 462-472.

SO74 So H.C., Some Theoritical Results on the Routing of Multilayer Printed Wiring

Boards, Proc IEEE Symp Circuits and Systems, 1974, pp 296-303.

SYSL83 Syslo M.M., N.Deo and J.S.Kowalik, Discrete Optimization Algorithms, Prentice

Hall Inc, NJ, 1983.

TARN84 Tarng T., M.Marek-Sadowska and E.S.Kuh, An Efficient Single Row Routing Algo-

rithm, IEEE Trans CAD, CAD-3, 3, 1984, pp 178-183.

TING76 Ting B., E.S.Kuh and I.Shirakawa, The Multilayer Routing Problem : Algorithms

and Necessary and Sufficient Conditions for the Single-Row Single-Layer Case,

IEEE Trans Circuit and Systems, CAS-23, Dec 1976, pp 768-778.

TING78 Ting B.S. and E.S.Kuh, An Approach to the Routing of Multilayer Printed Circuit

Boards, Proc IEEE Symp Circuits and Systems, 1978, pp 902-911.

TING79 Ting B.S., E.S.Kuh and A.Sangiovanni-Vincentelli, Via Assignment Problem in

Multilayer Printed Circuit Board, IEEE Trans Circuits and Systems, Vol CAS-26,

Apr 79, pp 261-271.

TSUK79 Tsukiyama S., I.Shirakawa and S.Asahara, An Algorithm for the Via Assignment

Problem in Multilayer Backboard Wiring, IEEE Trans Circuits and Systems, Vol

CAS-26, Jun 79, pp 369-377.

TSUK83 Tsukiyama S., E.S.Kuh and I.Shirakawa, On the Layering Problem of Multilayer

PWB Wiring, IEEE Trans CAD, CAD-2, 1, Jan 83, pp 30-38.

-- --


