
Viability of a Parsing Algorithm for Context-sensitive
Graph Grammars

Jeroen T. Vermeulen

August 26, 1996

Abstract

Graph Grammars describe formal languages similar to the textual ones commonly used to define
computer languages, but their productions operate on graphs instead of on text. They arecontext-
sensitive when productions rewrite patterns of symbols rather than single symbols. Parsing such
grammars is inherently very hard because among other reasons, the input is not sequential in nature.

An algorithm for parsing a large class of context-sensitivegraph grammars has been developed
by Jan Rekers and Andy Schürr. This thesis describes a first implementation of this algorithm as well
as several improvements, additional work, examples, theory of operation and performance character-
istics. Future and existing optimizations are discussed.

1 Introduction

1.1 Graph Grammars

Although formal grammars are commonly used in computer science for the description of textual lan-
guages, relatively little progress has as yet been made towards understanding and implementingvisual
languages. A visual language defines a set of diagrams rather than a set of textual sentences. Commonly
used visual languages include electrical diagrams, Petri nets, andER diagrams; however they are only
rarely defined in terms of formal grammars.

Interactive graphical editors are already available for some of these visual languages, eg. circuit-
board design tools and flow-chart editors, but they are usually part of a dedicatedenvironment and
only allow syntactically correct diagrams to be generated by limiting the editing primitives to valid
transformations on the underlying interpretation (or semantic value) of the diagram.

This procedure, known assyntax-directed editing, makes it easier on the environment but requires
the user to perform a sequence of actions that is not necessarily related to hisconception of the diagram
he is creating. Other environments may allow more or less random editing, but provide no way of storing
an unfinished diagram to disk because they don’t know how to handle expressions that are not members
of the formal language they implement.

It is believed that the general ability to parse visual languages afterfree-form editing with a generic
graphical editor, which is accepted practice for textual languages such as C or TEX, could be used to
improve user-friendliness of user interfaces and bring a host of applications that currently require expert
knowledge closer to the end user.

Setting up a relational database, for instance, normally involves designing an entity-relationship
architecture inER notation, and manually converting that to a textual representation in the data-definition
language included with the DBMS package. Given some kind of parser forER diagrams this conversion

1


