
A Compressed Video Database Structured for

Active Browsing and Search ∗

Cüneyt Taşkiran, Jau-Yuen Chen, Charles A. Bouman and Edward J. Delp
School of Electrical and Computer Engineering

Purdue University
West Lafayette, IN 47907-1285

{taskiran,jauyuen,bouman,ace}@ecn.purdue.edu

June 1, 1999

Abstract
We describe a unique system called ViBE (video

browsing environment) for browsing and searching
large databases of video sequences. The system first
computes the DC sequence for a given MPEG se-
quence. It then detects and identifies shot bound-
aries by using the generalized trace. A hierarchical
tree structure is constructed for shot comparison and
keyframe extraction. In addition to low-level image
features, the system also uses pseudo-semantic fea-
tures to characterize the frames. Finally, the results
are presented to the user in an active browsing envi-
ronment which we call a similarity pyramid. The users
can also prune and reorganize the environment using
relevance feedback methods.

1 Introduction
Due to rapid advances in compression technology,

the expansion of low-cost storage media, and the ex-
plosive growth of the internet, the availability of video
has greatly increased. However, the technology for or-
ganizing and searching vast video sources is still in its
infancy.

In recent years tremendous attention has been given
to developing content-based methods to access video
sequences and finding better ways of presenting the re-
sults to the user. Most of the initial work has concen-
trated on developing reliable methods for scene change
detection [1], [2]. Recently, however, the focus has
shifted to key frame detection, shot clustering, and to
design of complete systems for extracting information
from video sequences and presenting it compactly to
the user [3]. However, most previous approaches have
focused on processing a single video sequence. This

∗Appeared in ICIP ’98, vol. 3, pp. 133-137, Chicago, IL,
Oct. 4-7, 1998.

approach has the drawback of not exploiting shot clus-
tering across sequences, which can substantially limit
the search power of the video database. Another prob-
lem is that techniques designed to analyze single se-
quences may fail to scale in performance when dealing
with hundreds of hours of video of different types.

Another important trend is the use of algorithms
which operate directly on the compressed video
stream. Such approachs are important for a number of
reasons. First, it often is not practical to decompress
video data because of the large computational de-
mands. But in addition, the compressed video stream
contains a rich set of precomputed features, such as
motion vectors, that can be used to analyze and orga-
nize the data.

In this paper we describe a complete video database
management system to be used on a database of
MPEG compressed video sequences. The system in-
cludes content based analysis of video and supports
an active environment for browsing and searching the
database. An essential component of the approach is
the use of compression domain processing. In par-
ticular, all our processing is based on the DC image
sequence which can be extracted from the DC compo-
nents of the DCT transformations. The DC images
form a “thumbnail” representation of the video se-
quences which are then used to perform the four major
functions of the ViBE system: scene change detection
and classification; shot representation using a hierar-
chical keyframe structure; pseudo-semantic classifica-
tion; and active browsing using a hierarchical data
structure which we call a similarity pyramid.

1



2 Scene Change Detection
and Identification

We will refer to each continuous video sequence as
a shot. Our first task is to segment out shots by de-
tecting and classifying scene changes. Scene changes
can take a variety of forms ranging from abrupt cuts
to dissolves, fades, and special effects such as wipes
and page turns. Our objective is to both detect and
classify each of these scene change types so that the
associated shot may be segmented out of the sequence.

The feature vector for performing scene change de-
tection and classification is extracted from the com-
pressed video stream and the associated DC sequence.
The DC sequence is formed from the DC coefficients of
the DCT transform blocks. While the DC image is di-
rectly available for I frames, we have used the method
of [4] to estimate the DC image for B and P frames.

From the DC image and the compressed video
stream, we extract a 12 dimensional feature vector
which we call the generalized trace (GT) [5]. The GT
for frame i of the sequence is denoted by ~xi where xi,j
is its jth component. The elements of the vector are
as follows:

xi,1−3 - Histogram intersection between frames i and
i− 1 for the Y , U , and V color components.

xi,4−6 - Absolute difference between variance of ith DC
image and variance of (i − 1)th DC image for
the Y , U , and V color components.

xi,7 - Number of intracoded macroblocks.
xi,8 - Number of forward predicted macroblocks.
xi,9 - Number of backward predicted macroblocks.
xi,10−12 - Flags which identify the frame type as I, P ,

or B.

Figure 1 illustrates how the components of the GT
vary with frame number for a typical sequence. Im-
portantly, the information contained in the GT must
be interpreted differently for different frames of the se-
quence. For example, the number of intracoded mac-
roblocks per frame (xi,7) will differ for I, P , and B
frames. In order to use this information effectively,
we include a binary flag for each of the possible frame
types, I, P , or B.

A conventional approach to scene change detection
would be to compute the norm of the GT and thresh-
old the result. However, from Fig. 1 it is clear that the
time-varying and diverse nature of the GT’s compo-
nents makes this type of direct thresholding approach
unworkable. To address this problem, we use a regres-
sion tree [6] to estimate the probability of a frame cut
given the GT. The regression tree is first designed in
a training processes that uses sequences with known

3000 3500 4000 4500 5000 5500 6000
0

0.5

1

1.5
histogram intersection of Y

3000 3500 4000 4500 5000 5500 6000
0

100

200

300

400
number of intracoded block 

3000 3500 4000 4500 5000 5500 6000
0

0.5

1
ground truth of cut

Figure 1: Plots of (1-histogram intersection), num-
ber of intracoded macroblocks per frame, and ground
truth for scene cut locations.

scene cut locations [7]. Once designed, the tree may be
applied to any sequence. The regression tree has the
advantages that it normalizes the output to the range
[0, 1] for consistent thresholding, and it accounts for
the specific frame type being considered.

3 Shot Representation
Typically, a shot may be represented by one or more

sequentially selected keyframes [2]. However, these
representations have been linear and lack a hierarchi-
cal structure. This section describes a novel shot rep-
resentation based on a tree structure formed by clus-
tering the frames in a shot. The tree structure allows
important operations, such as similarity comparisons,
to be obtained efficiently using tree matching algo-
rithms.

This tree representation is obtained through ag-
glomerative clustering of the shot’s frames [8]. We
use the global color, texture and edge histograms pro-
posed in [9] as the feature vector for each frame in a
shot, and we use the L1 norm to measure feature dis-
tances. Figure 2(a) illustrates such a representation
for a shot from an action sequence. In this example,
the shot contains significant changes which can not be
captured by a single keyframe; so the tree structure
can better represent the diverse aspects of the shot.
The tree structure hierarchically organizes frames into
similar groups, therefore allowing automatic detection
of subgroups inside a shot.

The dissimlarity between two shots is measured by
computing the distance between the two correspond-
ing trees as shown in Figure 2(b). Each node, s, of the
tree is associated with a set of frames and contains an



(a)

(b)

Figure 2: (a) Each shot is represented by a hierarchy
of key frames which are extracted with agglomerative
clustering; (b) Shot dissimilarity is then determined
by computing the distance between two trees.

associated feature vector, zs, for the cluster of frames.
Generally, zs is computed to be the centroid of the fea-
ture vectors in the cluster. The distance between the
trees is then given by the weighted sum of distances
between nodes for the best correspondence mapping
between trees. For the trees of depth three used in
this paper, there are eight distinct correspondences
which must be checked.

4 Shot Description
Most approaches in content-based retrieval rely on

descriptions which are either problem-specific such as
anchor shot models in news video [10] or low-level
models such as color and edges. While they are very
easy to derive, low-level features severely limit the ca-
pability of user interaction for non-expert users. How-
ever, the extraction of the truly semantic features re-
quired currently is not possible.

To overcome this difficulty a number of pseudo-
semantic features, that bridge the gap between low
level and semantic features, have been proposed. In-
teresting work in this area includes [11] where it has
been shown that two pseudo-semantic features, aver-
age shot activity and duration correlate well with se-
mantic features such as “action”, “romance”, or “com-
edy”, and [12] where models of human bodies and au-
dio features are coupled to detect violence in a given
sequence.

Considering this, we have chosen to complement
the statistical features for a shot described in Section

3 with a number of pseudo-semantic features, which
are easy to derive from low level image features. A
feature vector is associated with each shot that in-
cludes the following attributes: {head and shoulders,
indoor/outdoor, action}. Each of these attributes has
a continuous value in the range [0,1] which indicates
the belief that the shot has the corresponding at-
tribute.

5 Active Browsing
In this section, we make use of the similarity

pyramid we proposed in [13] to organize the video
database. This pyramid is created by clustering the
keyframes of the shot representation described in Sec-
tion 3. Figure 3 illustrates a similarity pyramid and its
embedded quadtree for a video database. The similar-
ity pyramid is created by first hierarchically clustering
the shots into a quadtree structure, and then mapping
the quadtree’s clusters onto the 2-D grid at each level
of the pyramid. The shots are clustered using the dis-
tance metric of Section 3.

Each cluster of the pyramid is represented by a sin-
gle icon keyframe chosen from the cluster; so as the
user moves through the pyramid they have a sense
of database content at various scales. The similarity
pyramid has a user interface which allows movement
up and down through levels. It also allows users to
pan across a single level of the database to locate video
shots of interest.

The relevance feedback has long been used to im-
prove the performance of search-by-query [14, 15].
However, our use of relevance feedback is distinct in
two ways: First, we use the feedback to reorganize and
prune the browsing environment, rather then simply
modifying a search criterion. Second, for the brows-
ing problem, we can investigate more sophisticated
and non-iterative methods to extract information from
relevance feedback, and then use this information to
define pseudo-semantic classes.

Our approach consists of two major components.
In the first phase, the relevant shots are clustered to
find natural groupings inside the set of relevant shots.
This clustering is based on a standard agglomerative
clustering algorithm and forms a dendrogram (binary
tree) of shots. We then cut the dendrogram to pro-
duce N clusters. The main problem is to determine
the number of clusters (N) which best fits the data.
We solve this problem using a cross validation strat-
egy. We methodically leave out one shot, cluster the
remaining shots into N clusters, and then compute
the ranking of the left-out shot. By minimizing this
ranking with respect to N , we can find the optimal
cluster order, N .



Figure 3: An example of a similarity pyramid and its embedded quadtree.

After determining the groupings among the rele-
vant shots, we apply the feature weighting optimiza-
tion to separate the relevant shots from the irrelevant
shots. The cost function we used is based on the rank-
ing of each relevant shot among the domain of feed-
back with respect to every other relevant shot. Define
D as the index set of the shots displayed on the screen,
and R ⊂ D as the index set of the relevant shots, and
zi, i = 1 · · ·N as the centroid of clusters of the relevant
shots. The dissimilarity measure between shot xj and
the set of relevant shots R is defined as,

dθ(xi) = min
j=1,···,N

dθ(xi, zj)

where dθ(., .) is the dissimilarity measure with a set
of weightings, θ. Let rθ(xj) be the ranking of xj with
respect to dθ(.) among the set D. The cost of selecting
weighting set θ is then defined as

c(θ) =
∑
j∈R

log rθ(xj)

The optimal θ is then computed by minimizing c(θ).
With a set of clusters of relevant shots and a set of

optimal weighting, we then find the M most similar
shots, xi, i = 1, · · · ,M , which minimize the distance
function dθ(.). These M shots are then organized into
a similarity pyramid according to algorithm defined
in [13] using the dissimilarity dθ(·, ·).

6 Experimental Results
We have used a database consisting of 8 ground-

truthed video clips and 7 additional video clips. The
clips are each approximately 10 minutes long, and
come from sources such as CNN Headline News, C-
SPAN, local newscasts, and a Hummer promotional
video. We use two sequences to train the tree classi-
fier and the remaining six ground-truthed clips to test
classification performance.

Figure 4 shows the results of applying the tree clas-
sifier to scene cut detection. The category “misclas-
sification” is the number of dissolves or fade scene

changes that are misclassified as scene cuts. From
these results we see that the performance of the classi-
fier can be considerably improved by using additional
features other than the histogram intersection. The
motion statistic features, xi,7−12, are particularly use-
ful for reducing false alarms, and a temporal window
of features seems to substantially improve overall ac-
curacy. An important advantage of the tree classifier is
that it automatically uses information which best de-
tects the scene cut, even when this information varies
from frame-to-frame.

In Figure 4, we show an example of relevance feed-
back for similarity pyramid pruning and design. Fig-
ure 4a) shows 8 images that have been selected by
a user. Although these images have dissimilar at-
tributes, they all form a single semantic category,
“head shot of speaker”. Figure 4b) shows that cluster-
ing of these selected images results in three groupings
to represent the members of the semantic class. Fig-
ure 4c) shows the 64 shots most similar to the centroid
of one of the three clusters after feature weight opti-
mization. The images are listed in order of similar-
ity. Notice that the pruned set contains images which
closely match the user selected set.

References
[1] Ishwar K. Sethi and Nilesh V. Patel, “A statisti-

cal approach to scene change detection,” in Proc. of
IS&T/SPIE Conf. on Storage and Retrieval for Im-
age and Video Databases III, San Jose, CA, February
1995, vol. 2420.

[2] Boon-Lock Yeo and Bede Liu, “Rapid scene analysis
on compressed video,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 5, no. 6, pp. 533–
544, December 1995.

[3] Minerva M. Yeung and Boon-Lock Yeo, “Video visu-
alization for compact presentation and fast browsing
of pictorial content,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 7, no. 5, pp. 771–
785, October 1997.

[4] Ke Shen and Edward J. Delp, “A fast algorithm for
video parsing using mpeg compressed sequences,” in



Case Description Feature Subset Correct Missed FA Misclass.
1 Hist. Intersec. xi,1−3 140 85 62 14
2 case 1 + variance xi,1−6 152 73 50 12
3 case 2 + motion blocks xi,1−12 154 71 19 6
4 case 3 + time window ~xi−1, ~xi, ~xi+1 208 17 11 0

Table 1: Results for cut detection using tree classifier. The table lists correct detections, missed detections, false
alarms, and misclassifications of fades and dissolves as cuts.

(a) relevance feedback (b) clustering result (c) pruned results

Figure 4: (a) A set of images with user selected images outlined with a box. These images form a semantic
category of “head shot of speaker”. (b) The result for clustering the relevant shots. Three groupings are formed
to represent the category as described in Section 5. (c) The set of images which are most similar to the new
category listed in order of similarity.

Proc. of IEEE Int’l Conf. on Image Proc., Washing-
ton, D.C., October 26-29 1995, pp. 252–255.

[5] Cuneyt Taskiran and Edward J. Delp, “Video scene
change detection using the generalized trace,” in sub-
mitted to ICASSP’98.

[6] L. Breiman, J. H. Friendman, R. A. Olshen, and
C. J. Stone, Classification and Regression Trees,
Wadsworth International Group, Belmont, CA, 1984.

[7] Saul Gelfand, C. Ravishankar, and Edward Delp, “An
iterative growing and pruning algorithm for classifica-
tion tree design,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 13, no. 2, pp. 163–174,
February 1991.

[8] Anil K. Jain and Richard C. Dubes, Eds., Algorithms
for Clustering Data, Prentice Hall, New Jersey, 1988.

[9] Jau-Yuen Chen, Charles A. Bouman, and Jan P. Alle-
bach, “Multiscale branch and bound image database
search,” in Proc. of SPIE/IS&T Conf. on Storage and
Retrieval for Image and Video Databases V, San Jose,
CA, February 13-14 1997, vol. 3022, pp. 133–144.

[10] HongJiang Zhang, Shuang Y. Tan, Stephen W. Smo-
liar, and Gong Yihong, “Automatic parsing of news

video,” Multimedia Systems, vol. 2, pp. 256–266,
1995.

[11] Nuno Vasconcelos and Andrew Lippman, “Towards
semantically meaningful feature spaces for the char-
acterization of video content,” in Proc. of IEEE Int’l
Conf. on Image Proc., Santa Barbara, CA, October
1997.

[12] Stephan Fischer, “Automatic violance detection in
digital movies,” in Proc. of IS&T/SPIE Conf. on
Multimedia Storage and Archiving Systems II, San
Jose, CA, February 1996, vol. 2916, pp. 212–223.

[13] Jau-Yuen Chen, Charles A. Bouman, and John Dal-
ton, “Similarity pyramids for browsing and orga-
nization of large image databases,” in Proc. of
SPIE/IS&T Conf. on Storage and Retrieval for Im-
age and Video Databases III, San Jose, CA, January
26-29 1998, vol. 3299.

[14] Ingemar J. Cox, Matt L. Miller, Stephen M. Omohun-
dro, and Peter N. Yianilos, “Pichunter: Bayesian rel-
evance feedback for image retrieval,” in Proceedings
of International Conference on Pattern Recognition,
Vienna, Austria, August 1996, vol. 3, pp. 361–369.



[15] Yong Rui, Thomas S. Huang, and Sharad Mehro-
tra, “Relevance feedback techniques in interac-
tive content-based image retrieval,” in Proc. of
SPIE/IS&T Conf. on Storage and Retrieval for Im-
age and Video Databases VI, San Jose, CA, January
26-29 1998, vol. 3312, pp. 25–36.


