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Abstract—This paper presents a technique for motion detection
that incorporates several innovative mechanisms. For example,
our proposed technique stores, for each pixel, a set of values taken
in the past at the same location or in the neighborhood. It then
compares this set to the current pixel value in order to determine
whether that pixel belongs to the background, and adapts the
model by choosing randomly which values to substitute from the
background model. This approach differs from those based on
the classical belief that the oldest values should be replaced first.
Finally, when the pixel is found to be part of the background, its
value is propagated into the background model of a neighboring
pixel.

We describe our method in full details (including pseudo-
code and the parameter values used) and compare it to other
background subtraction techniques. Efficiency figures show that
our method outperforms recent and proven state-of-the-art
methods in terms of both computation speed and detection
rate. We also analyze the performance of a downscaled version
of our algorithm to the absolute minimum of one comparison
and one byte of memory per pixel. It appears that even such
a simplified version of our algorithm performs better than
mainstream techniques. An implementation of ViBe is available
at http://www.motiondetection.org.

Index Terms—Background subtraction, surveillance, video sig-
nal processing, learning (artificial intelligence), image segmenta-
tion, vision and scene understanding, computer vision, image
motion analysis, pixel classification, real-time systems.
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I. INTRODUCTION

THE number of cameras available worldwide has increased

dramatically over the last decade. But this growth has

resulted in a huge augmentation of data, meaning that the

data are impossible either to store or to handle manually.

In order to detect, segment, and track objects automatically

in videos, several approaches are possible. Simple motion

detection algorithms compare a static background frame with

the current frame of a video scene, pixel by pixel. This is

the basic principle of background subtraction, which can be

formulated as a technique that builds a model of a background

and compares this model with the current frame in order

to detect zones where a significant difference occurs. The

purpose of a background subtraction algorithm is therefore

to distinguish moving objects (hereafter referred to as the

foreground) from static, or slow moving, parts of the scene

(called background). Note that when a static object starts

moving, a background subtraction algorithm detects the object

in motion as well as a hole left behind in the background

(referred to as a ghost). Clearly a ghost is irrelevant for motion

interpretation and has to be discarded. An alternative definition

for the background is that it corresponds to a reference frame

with values visible most of the time, that is with the highest

appearance probability, but this kind of framework is not

straightforward to use in practice.

While a static background model might be appropriate for

analyzing short video sequences in a constrained indoor envi-

ronment, the model is ineffective for most practical situations;

a more sophisticated model is therefore required. Moreover,

the detection of motion is often only a first step in the

process of understanding the scene. For example, zones where

motion is detected might be filtered and characterized for the

detection of unattended bags, gait recognition, face detection,

people counting, traffic surveillance, etc. The diversity of scene

backgrounds and applications explains why countless papers

discuss issues related to background subtraction.

In this paper, we present a universal method for background

subtraction. This method has been briefly described in [1]

and in a patent [2]. In Section II, we extensively review the

literature of background subtraction algorithms. This review

presents the major frameworks developed for background

subtraction and highlights their respective advantages. We have

implemented some of these algorithms in order to compare

them with our method. Section III describes our technique and

details our major innovations: the background model, the ini-

tialization process, and the update mechanism. Section IV dis-

cusses experimental results including comparisons with other

state-of-the-art algorithms and computational performance. We

also present a simplified version of our algorithm which

requires only one comparison and one byte of memory per

pixel; this is the absolute minimum in terms of comparisons

and memory for any background subtraction technique. We

show that, even in its simplified form, our algorithm performs

better than more sophisticated techniques. Section V concludes

the paper.
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II. REVIEW OF BACKGROUND SUBTRACTION ALGORITHMS

The problem tackled by background subtraction techniques

involves the comparison of an observed image with an es-

timated image that does not contain any object of interest;

this is referred to as the background model (or background

image) [3]. This comparison process, called foreground detec-

tion, divides the observed image into two complementary sets

of pixels that cover the entire image: (1) the foreground that

contains the objects of interest, and (2) the background, its

complementary set. As stated in [4], it is difficult to specify

a gold-standard definition of what a background subtraction

technique should detect as a foreground region, as the defini-

tion of foreground objects relates to the application level.

Many background subtraction techniques have been pro-

posed with as many models and segmentation strategies, and

several surveys are devoted to this topic (see for example [3]–

[9]). Some algorithms focus on specific requirements that an

ideal background subtraction technique could or should fulfill.

According to [7], a background subtraction technique must

adapt to gradual or fast illumination changes (changing time of

day, clouds, etc), motion changes (camera oscillations), high

frequency background objects (e.g. tree leave or branches),

and changes in the background geometry (e.g. parked cars).

Some applications require background subtraction algorithms

to be embedded in the camera, so that the computational load

becomes the major concern. For the surveillance of outdoor

scenes, robustness against noise and adaptivity to illumination

changes are also essential.

Most techniques described in the literature operate on each

pixel independently. These techniques relegate entirely to post-

processing algorithms the task of adding some form of spatial

consistency to their results. Since perturbations often affect

individual pixels, this results in local misclassifications. By

contrast, the method described by Seiki et al. in [10] is based

on the assumption that neighboring blocks of background

pixels should follow similar variations over time. While this

assumption holds most of the time, especially for pixels

belonging to the same background object, it becomes problem-

atic for neighboring pixels located at the border of multiple

background objects. Despite this inconvenience, pixels are

aggregated into blocks and each N ×N block is processed as

an N2-component vector. A few samples are then collected

over time and used to train a Principal Component Analysis

(PCA) model for each block. A block of a new video frame is

classified as background if its observed image pattern is close

to its reconstructions using PCA projection coefficients of 8-

neighboring blocks. Such a technique is also described in [11],

but it lacks an update mechanism to adapt the block models

over time. In [12], the authors focus on the PCA reconstruction

error. While the PCA model is also trained with time samples,

the resulting model accounts for the whole image. Individual

pixels are classified as background or foreground using simple

image difference thresholding between the current image and

the backprojection in the image space of its PCA coefficients.

As for other PCA-based methods, the initialization process and

the update mechanism are not described.

A similar approach, the Independent Component Analysis

(ICA) of serialized images from a training sequence, is de-

scribed in [13] in the training of an ICA model. The resulting

de-mixing vector is then computed and compared to that of a

new image in order to separate the foreground from a reference

background image. The method is said to be highly robust to

indoor illumination changes.

A two-level mechanism based on a classifier is introduced

in [14]. A classifier first determines whether an image block

belongs to the background. Appropriate blockwise updates of

the background image are then carried out in the second stage,

depending on the results of the classification. Classification

algorithms are also the basis of other algorithms, as in the

one provided in [15], where the background model learns its

motion patterns by self organization through artificial neural

networks.

Algorithms based on the framework of compressive sensing

perform background subtraction by learning and adapting

a low dimensional compressed representation of the back-

ground [16]. The major advantage of this approach lies in

the fact that compressive sensing estimates object silhouettes

without any auxiliary image reconstruction. On the other hand,

objects in the foreground need to occupy only a small portion

of the camera view in order to be detected correctly.

Background subtraction is considered to be a sparse error

recovery problem in [17]. These authors assumed that each

color channel in the video can be independently modeled as the

linear combination of the same color channel from other video

frames. Consequently, the method they proposed is able to

accurately compensate for global changes in the illumination

sources without altering the general structure of the frame

composition by finding appropriate scalings for each color

channel separately.

Background estimation is formulated in [18] as an optimal

labeling problem in which each pixel of the background image

is labeled with a frame number, indicating which color from

the past must be copied. The author’s proposed algorithm pro-

duces a background image, which is constructed by copying

areas from the input frames. Impressive results are shown for

static backgrounds but the method is not designed to cope with

objects moving slowly in the background, as its outcome is a

single static background frame.

The authors of [19] were inspired by the biological mech-

anism of motion-based perceptual grouping. They propose a

spatio-temporal saliency algorithm applicable to scenes with

highly dynamic backgrounds, which can be used to perform

background subtraction. Comparisons of their algorithm with

other state-of-the-art techniques show that their algorithm

reduces the average error rate, but at a cost of a prohibitive

processing time (several seconds per frame), which makes it

unsuitable for real-time applications.

Pixel-based background subtraction techniques compensate

for the lack of spatial consistency by a constant updating

of their model parameters. The simplest techniques in this

category are the use of a static background frame (which

has recently been used in [20]), the (weighted) running aver-

age [21], first-order low-pass filtering [22], temporal median

filtering [23], [24], and the modeling of each pixel with a

gaussian [25]–[27].
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Probabilistic methods predict the short-term evolution of a

background frame with a Wiener [28] or a Kalman [29] filter.

In [28], a frame-level component is added to the pixel-level

operations. Its purpose is to detect sudden and global changes

in the image and to adapt the background frame accordingly.

Median and gaussian models can be combined to allow inliers

(with respect to the median) to have more weight than outliers

during the gaussian modeling, as in [30] or [31]. A method

for properly initializing a gaussian background model from

a video sequence in which moving objects are present is

proposed in [32].

The W 4 model presented in [33] is a rather simple but

nevertheless effective method. It uses three values to represent

each pixel in the background image: the minimum and max-

imum intensity values, and the maximum intensity difference

between consecutive images of the training sequence. The

authors of [34] bring a small improvement to the W 4 model

together with the incorporation of a technique for shadow

detection and removal.

Methods based on Σ − ∆ (sigma-delta) motion detection

filters [35]–[37] are popular for embedded processing [38],

[39]. As in the case of analog-to-digital converters, a Σ −∆
motion detection filter consists of a simple non-linear recursive

approximation of the background image, which is based on

comparison and on an elementary increment/decrement (usu-

ally −1, 0, and 1 are the only possible updating values). The

Σ−∆ motion detection filter is therefore well suited to many

embedded systems that lack a floating point unit.

All these unimodal techniques can lead to satisfactory re-

sults in controlled environments while remaining fast, easy to

implement, and simple. However, more sophisticated methods

are necessary when dealing with videos captured in complex

environments where moving background, camera egomotion,

and high sensor noise are encountered [5].

Over the years, increasingly complex pixel-level algorithms

have been proposed. Among these, by far the most popular

is the Gaussian Mixture Model (GMM) [40], [41]. First pre-

sented in [40], this model consists of modeling the distribution

of the values observed over time at each pixel by a weighted

mixture of gaussians. This background pixel model is able to

cope with the multimodal nature of many practical situations

and leads to good results when repetitive background motions,

such as tree leaves or branches, are encountered. Since its

introduction, the model has gained vastly in popularity among

the computer vision community [4], [7], [11], [42]–[44], and it

is still raising a lot of interest as authors continue to revisit the

method and propose enhanced algorithms [45]–[50]. In [51],

a particle swarm optimization method is proposed to automat-

ically determine the parameters of the GMM algorithm. The

authors of [52] combine a GMM model with a region-based

algorithm based on color histograms and texture information.

In their experiments, the authors’ method outperform the

original GMM algorithm. However, the authors’ technique

has a considerable computational cost as they only manage

to process seven frames of 640× 480 pixels per second with

an Intel Xeon 5150 processor.

The downside of the GMM algorithm resides in its strong

assumptions that the background is more frequently visible

than the foreground and that its variance is significantly

lower. None of this is valid for every time window. Fur-

thermore, if high- and low-frequency changes are present in

the background, its sensitivity cannot be accurately tuned and

the model may adapt to the targets themselves or miss the

detection of some high speed targets, as detailed in [53].

Also, the estimation of the parameters of the model (especially

the variance) can become problematic in real-world noisy

environments. This often leaves one with no other choice than

to use a fixed variance in a hardware implementation. Finally,

it should be noted that the statistical relevance of a gaussian

model is debatable as some authors claim that natural images

exhibit non-gaussian statistics [54].

To avoid the difficult question of finding an appropriate

shape for the probability density function, some authors

have turned their attention to non-parametric methods to

model background distributions. One of the strengths of non-

parametric kernel density estimation methods [53], [55]–[59]

is their ability to circumvent a part of the delicate parameter

estimation step due to the fact that they rely on pixel values

observed in the past. For each pixel, these methods build a

histogram of background values by accumulating a set of

real values sampled from the pixel’s recent history. These

methods then estimate the probability density function with

this histogram to determine whether or not a pixel value of

the current frame belongs to the background. Non-parametric

kernel density estimation methods can provide fast responses

to high-frequency events in the background by directly includ-

ing newly observed values in the pixel model. However, the

ability of these methods to successfully handle concomitant

events evolving at various speeds is questionable since they

update their pixel models in a first-in first-out manner. This

has led some authors to represent background values with

two series of values or models: a short term model and a

long term model [53], [60]. While this can be a convenient

solution for some situations, it leaves open the question of

how to determine the proper time interval. In practical terms,

handling two models increases the difficulty of fine-tuning the

values of the underlying parameters. Our method incorporates

a smoother lifespan policy for the sampled values, and as

explained in Section IV, it improves the overall detection

quality significantly.

In the codebook algorithm [61], [62], each pixel is rep-

resented by a codebook, which is a compressed form of

background model for a long image sequence. Each codebook

is composed of codewords comprising colors transformed by

an innovative color distortion metric. An improved codebook

incorporating the spatial and temporal context of each pixel

has been proposed in [63]. Codebooks are believed to be

able to capture background motion over a long period of

time with a limited amount of memory. Therefore, codebooks

are learned from a typically long training sequence and a

codebook update mechanism is described in [62] allowing

the algorithm to evolve with the lighting conditions once the

training phase is over. However, one should note that the

proposed codebook update mechanism does not allow the

creation of new codewords, and this can be problematic if

permanent structural changes occur in the background (for
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example, in the case of newly freed parking spots in urban

outdoor scenes).

Instead of choosing a particular form of background density

model, the authors of [64], [65] use the notion of “consensus”.

They keep a cache of a given number of last observed

background values for each pixel and classify a new value

as background if it matches most of the values stored in

the pixel’s model. One might expect that such an approach

would avoid the issues related to deviations from an arbitrarily

assumed density model, but since values of pixel models are

replaced according to a first-in first-out update policy, they are

also prone to the problems discussed previously, for example,

the problem of slow and fast motions in the background,

unless a large number of pixel samples are stored. The authors

state that a cache of 20 samples is the minimum required for

the method to be useful, but they also noticed no significant

further improvement for caches with more than 60 samples.

Consequently, the training period for their algorithm must

comprise at least 20 frames. Finally, to cope with lighting

changes and objects appearing or fading in the background,

two additional mechanisms (one at the pixel level, a second at

the blob level) are added to the consensus algorithm to handle

entire objects.

The method proposed in this paper operates differently in

handling new or fading objects in the background, without

the need to take account of them explicitly. In addition to

being faster, our method exhibits an interesting asymmetry

in that a ghost (a region of the background discovered once

a static object starts moving) is added to the background

model more quickly than an object that stops moving. Another

major contribution of this paper resides in the proposed update

policy. The underlying idea is to gather samples from the past

and to update the sample values by ignoring when they were

added to the models. This policy ensures a smooth exponential

decaying lifespan for the sample values of the pixel models and

allows our technique to deal with concomitant events evolving

at various speeds with a unique model of a reasonable size for

each pixel.

III. DESCRIPTION OF A UNIVERSAL BACKGROUND

SUBTRACTION TECHNIQUE: VIBE

Background subtraction techniques have to deal with at

least three considerations in order to be successful in real

applications: (1) what is the model and how does it behave?,

(2) how is the model initialized?, and (3) how is the model

updated over time? Answers to these questions are given in

the three subsections of this section. Most papers describe the

intrinsic model and the updating mechanism. Only a minority

of papers discuss initialization, which is critical when a fast

response is expected, as in the case inside a digital camera. In

addition, there is often a lack of coherence between the model

and the update mechanism. For example, some techniques

compare the current value of a pixel p to that of a model

b with a given tolerance T . They consider that there is a good

match if the absolute difference between p and b is lower

than T . To be adaptive over time, T is adjusted with respect

to the statistical variance of p. But the statistical variance is

estimated by a temporal average. Therefore, the adjustment

speed is dependent on the acquisition framerate and on the

number of background pixels. This is inappropriate in some

cases, as in the case of remote IP cameras whose framerate is

determined by the available bandwidth.

We detail below a background subtraction technique, called

“ViBe” (for “VIsual Background Extractor”). For convenience,

we present a complete version of our algorithm in a C-like

code in Appendix A.

A. Pixel model and classification process

To some extent, there is no way around the determination,

for a given color space, of a probability density function (pdf)

for every background pixel or at least the determination of

statistical parameters, such as the mean or the variance. Note

that with a gaussian model, there is no distinction to be made

as the knowledge of the mean and variance is sufficient to

determine the pdf. While the classical approaches to back-

ground subtraction and most mainstream techniques rely on

pdfs or statistical parameters, the question of their statistical

significance is rarely discussed, if not simply ignored. In

fact, there is no imperative to compute the pdf as long as

the goal of reaching a relevant background segmentation is

achieved. An alternative is to consider that one should enhance

statistical significance over time, and one way to proceed is to

build a model with real observed pixel values. The underlying

assumption is that this makes more sense from a stochastic

point of view, as already observed values should have a higher

probability of being observed again than would values not yet

encountered.

Like the authors of [65], we do not opt for a particular

form for the pdf, as deviations from the assumed pdf model

are ubiquitous. Furthermore, the evaluation of the pdf is a

global process and the shape of a pdf is sensitive to outliers.

In addition, the estimation of the pdf raises the non-obvious

question regarding the number of samples to be considered;

the problem of selecting a representative number of samples

is intrinsic to all the estimation processes.

If we see the problem of background subtraction as a

classification problem, we want to classify a new pixel value

with respect to its immediate neighborhood in the chosen

color space, so as to avoid the effect of any outliers. This

motivates us to model each background pixel with a set of

samples instead of with an explicit pixel model. Consequently

no estimation of the pdf of the background pixel is performed,

and so the current value of the pixel is compared to its

closest samples within the collection of samples. This is an

important difference in comparison with existing algorithms,

in particular with those of consensus-based techniques. A new

value is compared to background samples and should be close

to some of the sample values instead of the majority of all

values. The underlying idea is that it is more reliable to

estimate the statistical distribution of a background pixel with

a small number of close values than with a large number of

samples. This is somewhat similar to ignoring the extremities

of the pdf, or to considering only the central part of the

underlying pdf by thresholding it. On the other hand, if one
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Fig. 1. Comparison of a pixel value with a set of samples in a two
dimensional Euclidean color space (C1, C2). To classify v(x), we count
the number of samples of M(x) intersecting the sphere of radius R centered
on v(x).

trusts the values of the model, it is crucial to select background

pixel samples carefully. The classification of pixels in the

background therefore needs to be conservative, in the sense

that only background pixels should populate the background

models.

Formally, let us denote by v(x) the value in a given

Euclidean color space taken by the pixel located at x in the

image, and by vi a background sample value with an index

i. Each background pixel x is modeled by a collection of N

background sample values

M(x) = {v1, v2, . . . , vN} (1)

taken in previous frames. For now, we ignore the notion of

time; this is discussed later.

To classify a pixel value v(x) according to its corresponding

model M(x), we compare it to the closest values within the

set of samples by defining a sphere SR(v(x)) of radius R

centered on v(x). The pixel value v(x) is then classified as

background if the cardinality, denoted ♯, of the set intersection

of this sphere and the collection of model samples M(x) is

larger than or equal to a given threshold ♯min. More formally,

we compare ♯min to

♯{SR(v(x)) ∩ {v1, v2, . . . , vN}}. (2)

According to equation 2, the classification of a pixel value

v(x) involves the computation of N distances between v(x)
and model samples, and of N comparison with a thresholded

Euclidean distance R. This process is illustrated in Figure 1.

Note that, as we are only interested in finding a few matches,

the segmentation process of a pixel can be stopped once ♯min

matches have been found.

As can easily be seen, the accuracy of our model is

determined by two parameters only: the radius R of the sphere

and the minimal cardinality ♯min. Experiments have shown that

a unique radius R of 20 (for monochromatic images) and

a cardinality of 2 are appropriate (see Section IV-A for a

thorough discussion on parameter values). There is no need

to adapt these parameters during the background subtraction

nor do we need to change them for different pixel locations

within the image. Note that since the number of samples N

and ♯min are chosen to be fixed and since they impact on the

same decision, the sensitivity of the model can be adjusted

using the following ratio

♯min

N
, (3)

but in all our comparative tests we kept these values un-

changed.

So far we have detailed the nature of the model. In the

coming sections, we explain how to initialize the model from

a single frame and how to update it over time.

B. Background model initialization from a single frame

Many popular techniques described in the literature, such

as [53], [62], and [65], need a sequence of several dozens

of frames to initialize their models. Such an approach makes

sense from a statistical point of view as it seems imperative

to gather a significant amount of data in order to estimate

the temporal distribution of the background pixels. But one

may wish to segment the foreground of a sequence that is

even shorter than the typical initialization sequence required by

some background subtraction algorithms. Furthermore, many

applications require the ability to provide an uninterrupted

foreground detection, even in the presence of sudden light

changes, which cannot be handled properly by the regular

update mechanism of the algorithm. A possible solution to

both these issues is to provide a specific model update process

that tunes the pixel models to new lighting conditions. But the

use of such a dedicated update process is at best delicate, since

a sudden illumination may completely alter the chromatic

properties of the background.

A more convenient solution is to provide a technique that

will initialize the background model from a single frame.

Given such a technique, the response to sudden illumination

changes is straightforward: the existing background model

is discarded and a new model is initialized instantaneously.

Furthermore, being able to provide a reliable foreground

segmentation as early on as the second frame of a sequence

has obvious benefits for short sequences in video-surveillance

or for devices that embed a motion detection algorithm.

Since there is no temporal information in a single frame,

we use the same assumption as the authors of [66], which is

that neighboring pixels share a similar temporal distribution.

This justifies the fact that we populate the pixel models with

values found in the spatial neighborhood of each pixel. More

precisely, we fill them with values randomly taken in their

neighborhood in the first frame. The size of the neighborhood

needs to be chosen so that it is large enough to comprise

a sufficient number of different samples, while keeping in

mind that the statistical correlation between values at different

locations decreases as the size of the neighborhood increases.

From our experiments, selecting samples randomly in the

8-connected neighborhood of each pixel has proved to be

satisfactory for images of 640× 480 pixels.

Formally, we assume that t = 0 indexes the first frame and

that NG(x) is a spatial neighborhood of a pixel location x,
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therefore

M0(x) = {v0(y | y ∈ NG(x))} (4)

where locations y are chosen randomly according to a uniform

law. Note that it is possible for a given v0(y) to be selected

several times (for example if the size of the neighborhood is

smaller than the cardinality of M0(x)) or to not be selected

at all. However, this is not an issue if one acknowledges that

values in the neighborhood are excellent sample candidates.

This strategy has proved to be successful. The only draw-

back is that the presence of a moving object in the first frame

will introduce an artifact commonly called a ghost. According

to [24], a ghost is “a set of connected points, detected as in

motion but not corresponding to any real moving object”. In

this particular case, the ghost is caused by the unfortunate

initialization of pixel models with samples coming from the

moving object. In subsequent frames, the object moves and

uncovers the real background, which will be learned progres-

sively through the regular model update process, making the

ghost fade over time. Fortunately, as shown in Section IV-C,

our update process ensures both a fast model recovery in the

presence of a ghost and a slow incorporation of real moving

objects into the background model.

C. Updating the background model over time

In this Section, we describe how to continuously update the

background model with each new frame. This a crucial step

if we want to achieve accurate results over time: the update

process must be able to adapt to lighting changes and to handle

new objects that appear in a scene.

1) General discussions on an update mechanism: The

classification step of our algorithm compares the current

pixel value vt(x) directly to the samples contained in the

background model of the previous frame, Mt−1(x) at time

t − 1. Consequently, the question regarding which samples

have to be memorized by the model and for how long is

essential. One can see the model as a background memory or

background history, as it is often referred to in the literature.

The classical approach to the updating of the background

history is to discard and replace old values after a number of

frames or after a given period of time (typically about a few

seconds); the oldest values are substituted by the new ones.

Despite the rationale behind it, this substitution principle is

not so obvious, as there is no reason to remove a valid value

if it corresponds to a background value.

The question of including or not foreground pixel values

in the model is one that is always raised for a background

subtraction method based on samples; otherwise the model

will not adapt to changing conditions. It boils down to a choice

between a conservative and a blind update scheme. Note that

kernel-based pdf estimation techniques have a softer approach

to updating. They are able to smooth the appearance of a new

value by giving it a weight prior to inclusion.

A conservative update policy never includes a sample be-

longing to a foreground region in the background model. In

practice, a pixel sample can be included in the background

model only if it has been classified as a background sample.

Such a policy seems, at first sight, to be the obvious choice.

It actually guarantees a sharp detection of the moving objects,

given that they do not share similar colors with the back-

ground. Unfortunately, it also leads to deadlock situations and

everlasting ghosts: a background sample incorrectly classified

as foreground prevents its background pixel model from being

updated. This can keep indefinitely the background pixel

model from being updated and could cause a permanent mis-

classification. Unfortunately, many practical scenarios lead to

such situations. For example, the location freed by a previously

parked car cannot be included in the background model with a

purely conservative update scheme, unless a dedicated update

mechanism handles such situations.

Blind update is not sensitive to deadlocks: samples are

added to the background model whether they have been

classified as background or not. The principal drawback of this

method is a poor detection of slow moving targets, which are

progressively included in the background model. A possible

solution consists of using pixel models of a large size, which

cover long time windows. But this comes at the price of both

an increased memory usage and a higher computational cost.

Furthermore, with a first-in first-out model update policy such

as those employed in [53] or [65], 300 samples cover a time

window of only 10 seconds (at 30 frames per second). A pixel

covered by a slowly moving object for more than 10 seconds

would still be included in the background model.

Strictly speaking, temporal information is not available

when the background is masked. But background subtraction

is a spatio-temporal process. In order to improve the technique,

we could assume, as we proposed in Section III-B, that

neighboring pixels are expected to have a similar temporal

distribution. According to this hypothesis, the best strategy is

therefore to adopt a conservative update scheme and to exploit

spatial information in order to inject information regarding

the background evolution into the background pixel models

masked locally by the foreground. This process is common in

inpainting, where objects are removed and values are taken

in the neighborhood to fill holes [67]. In Section III-C4,

we provide a simple but effective method for exploiting

spatial information, which enables us to counter most of the

drawbacks of a purely conservative update scheme.

Our update method incorporates three important compo-

nents: (1) a memoryless update policy, which ensures a smooth

decaying lifespan for the samples stored in the background

pixel models, (2) a random time subsampling to extend the

time windows covered by the background pixel models, and

(3) a mechanism that propagates background pixel samples

spatially to ensure spatial consistency and to allow the adap-

tation of the background pixel models that are masked by the

foreground. These components are described, together with

our reasons for using them, in the following three subsections.

2) A memoryless update policy: Many sample-based meth-

ods use first-in first-out policies to update their models. In

order to deal properly with wide ranges of events in the scene

background, Wang et al. [65] propose the inclusion of large

numbers of samples in pixel models. But as stated earlier,

this may still not be sufficient for high framerates. Other

authors [53], [58] incorporate two temporal sub-models to

handle both fast and slow modifications. This approach proved
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Fig. 2. 3 of the 6 possible outcomes of the updating of a pixel model of size
N = 6. We assume that values occupy the same color space as in Figure 1
and that we have decided to update the model. This figure shows 3 possible
models after the update. The decision process for selecting one particular
model is random (with equal probabilities).

to be effective. However, it increases the parametrization

problem, in that it makes necessary to determine a greater

number of parameter values in order to achieve a practical

implementation.

From a theoretical point of view, we believe that it is more

appropriate to ensure a monotonic decay of the probability of

a sample value to remain inside the set of samples. A pixel

model should contain samples from the recent past of the pixel

but older samples should not necessarily be discarded.

We propose a method that offers an exponential monotonic

decay for the remaining lifespan of the samples. The method

improves the time relevance of the estimation by allowing a

few old samples to remain in the pixel model. Remember that

this approach is combined with a conservative update policy,

so that foreground values should never be included in the

models.

The technique, illustrated in Figure 2, is simple but ef-

fective: instead of systematically removing the oldest sample

from the pixel model, we choose the sample to be discarded

randomly according to a uniform probability density function.

The new value then replaces the selected sample. This

random strategy contradicts the idea that older values should

be replaced first, which is not true for a conservative update

policy. A conservative update policy is also necessary for the

stability of the process. Indeed, the random update policy pro-

duces a non-deterministic background subtraction algorithm

(to our knowledge, this is the first background subtraction

algorithm to have that property). Only a conservative update

policy ensures that the models do not diverge over time.

Despite this, there may be slight differences, imperceptible

in our experience, between the results of the same sequence

processed by our background subtraction algorithm at different

times.

Mathematically, the probability of a sample present in the

model at time t being preserved after the update of the pixel

model is given by N−1
N

. Assuming time continuity and the

absence of memory in the selection procedure, we can derive

a similar probability, denoted P (t, t+ dt) hereafter, for any

further time t+ dt. This probability is equal to

P (t, t+ dt) =

(

N − 1

N

)(t+dt)−t

(5)

which can be rewritten as

P (t, t+ dt) = e− ln( N

N−1
)dt. (6)

This expression shows that the expected remaining lifespan of

any sample value of the model decays exponentially. It appears

that the probability of a sample being preserved for the interval

(t, t + dt), assuming that it was included in the model prior

to time t, is independent of t. In other words, the past has

no effect on the future. This property, called the memoryless

property, is known to be applicable to an exponential density

(see [68]). This is a remarkable and, to our knowledge, unique

property in the field of background subtraction. It completely

frees us to define a time period for keeping a sample in the

history of a pixel and, to some extent, allows the update

mechanism to adapt to an arbitrary framerate.

3) Time subsampling: We have shown how the use of a

random replacement policy allow our pixel model to cover

a large (theoretically infinite) time window with a limited

number of samples. In order to further extend the size of

the time window covered by a pixel model of a fixed size,

we resort to random time subsampling. The idea is that in

many practical situations, it is not necessary to update each

background pixel model for each new frame. By making

the background update less frequent, we artificially extend

the expected lifespan of the background samples. But in the

presence of periodic or pseudo-periodic background motions,

the use of fixed subsampling intervals might prevent the

background model from properly adapting to these motions.

This motivates us to use a random subsampling policy. In

practice, when a pixel value has been classified as belonging

to the background, a random process determines whether this

value is used to update the corresponding pixel model.

In all our tests, we adopted a time subsampling factor,

denoted φ, of 16: a background pixel value has 1 chance in

16 of being selected to update its pixel model. But one may

wish to tune this parameter to adjust the length of the time

window covered by the pixel model.

4) Spatial consistency through background samples propa-

gation: Since we use a conservative update scheme, we have

to provide a way of updating the background pixel models that

are hidden by the foreground. A popular way of doing this is to

use what the authors of the W 4 algorithm [33] call a “detection

support map” which counts the number of consecutive times

that a pixel has been classified as foreground. If this number

reaches a given threshold for a particular pixel location,

the current pixel value at that location is inserted into the

background model. A variant consists of including, in the

background, groups of connected foreground pixels that have

been found static for a long time, as in [69]. Some authors, like

those of the W 4 algorithm and those of the SACON model

[64], [65], use a combination of a pixel-level and an object-

level background update.

The strength of using a conservative update comes from

the fact that pixel values classified as foreground are never

included in any background pixel model. While convenient,

the support map related methods only delay the inclusion of

foreground pixels. Furthermore, since these methods rely on

a binary decision, it takes time to recover from a improper

inclusion of a genuine foreground object in the background

model. A progressive inclusion of foreground samples in the

background pixel models is more appropriate.
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As stated earlier, we have a different approach. We consider

that neighboring background pixels share a similar temporal

distribution and that a new background sample of a pixel

should also update the models of neighboring pixels. Ac-

cording to this policy, background models hidden by the

foreground will be updated with background samples from

neighboring pixel locations from time to time. This allows

a spatial diffusion of information regarding the background

evolution that relies on samples classified exclusively as

background. Our background model is thus able to adapt to

a changing illumination and to structural evolutions (added

or removed background objects) while relying on a strict

conservative update scheme.

More precisely, let us consider the 4- or 8-connected spatial

neighborhood of a pixel x, that is NG(x), and assume that

it has been decided to update the set of samples M(x) by

inserting v(x). We then also use this value v(x) to update the

set of samples M(y ∈ NG(x)) from one of the pixels in the

neighborhood, chosen at random according to a uniform law.

Since pixel models contain many samples, irrelevant infor-

mation that could accidentally be inserted into the neighbor-

hood model does not affect the accuracy of the detection.

Furthermore, the erroneous diffusion of irrelevant information

is blocked by the need to match an observed value before it can

propagate further. This natural limitation inhibits the diffusion

of error.

Note that neither the selection policy nor the spatial prop-

agation method is deterministic. As stated earlier, if the algo-

rithm is run over the same video sequence again, the results

will always differ slightly (see Figure 2). Although unusual,

the strategy of allowing a random process to determine which

samples are to be discarded proves to be very powerful. This is

different from known strategies that introduce a fading factor

or that use a long term and a short term history of values.

This concludes the description of our algorithm. ViBe makes

no assumption regarding the video stream framerate or color

space, nor regarding the scene content, the background itself,

or its variability over time. Therefore, we refer to it as a

universal method.

IV. EXPERIMENTAL RESULTS

In this section, we determine optimal values for the param-

eters of ViBe, and compare its results with those of seven

other algorithms: two simple methods and five state-of-the art

techniques. We also describe some advantageous and intrinsic

properties of ViBe, and finally, we illustrate the suitability of

ViBe for embedded systems.

For the sake of comparison, we have produced manually

ground-truth segmentation maps for subsets of frames taken

from two test sequences. The first sequence (called “house”)

was captured outdoor on a windy day. The second sequence

(“pets”) was extracted from the PETS2001 public data-set

(data-set 3, camera 2, testing). Both sequences are challenging

as they feature background motion, moving trees and bushes,

and changing illumination conditions. The “pets” sequence is

first used below to determine objective values for some of

the parameters of ViBe. We then compare ViBe with seven

existing algorithms on both sequences.

Many metrics can be used to assess the output of a

background subtraction algorithm given a series of ground-

truth segmentation maps. These metrics usually involve the

following quantities: the number of true positives (TP), which

counts the number of correctly detected foreground pixels;

the number of false positives (FP), which counts the number

of background pixels incorrectly classified as foreground; the

number of true negatives (TN), which counts the number of

correctly classified background pixels; and the number of false

negatives (FN), which accounts for the number of foreground

pixels incorrectly classified as background.

The difficulty of assessing background subtraction algo-

rithms originates from the lack of a standardized evaluation

framework; some frameworks have been proposed by various

authors but mainly with the aim of pointing out the advantages

of their own method. According to [6], the metric most widely

used in computer vision to assess the performance of a binary

classifier is the Percentage of Correct Classification (PCC),

which combines all four values:

PCC =
TP + TN

TP + TN + FP + FN
. (7)

This metric was adopted for our comparative tests. Note that

the PCC percentage needs to be as high as possible, in order

to minimize errors.

A. Determination of our own parameters

From previous discussions, it appears that ViBe has the

following parameters:

• the radius R of the sphere used to compare a new pixel

value to pixel samples (see equation 2),

• the time subsampling factor φ,

• the number N of samples stored in each pixel model,

• and the number ♯min of close pixel samples needed to

classify a new pixel value as background (see equation 2).

In our experience, the use of a radius R = 20 and a time

subsampling factor φ = 16 leads to excellent results in every

situation. Note that the use of R = 20 is an educated choice,

which corresponds to a perceptible difference in color.

To determine an optimal value for ♯min, we compute the

evolution of the PCC of ViBe on the “pets” sequence for ♯min

ranging from 1 to 20. The other parameters were fixed to

N = 20, R = 20, and φ = 16. Figure 3 shows that the best

PCCs are obtained for ♯min = 2 and ♯min = 3.

Since a rise in ♯min is likely to increase the computational

cost of ViBe, we set the optimal value of ♯min to ♯min = 2.

Note that in our experience, the use of ♯min = 1 can lead to

excellent results in scenes with a stable background.

Once the value of 2 has been selected for ♯min, we study

the influence of the parameter N on the performance of ViBe.

Figure 4 shows percentages obtained on the “pets” sequence

for N ranging from 2 to 50 (R and φ were set to 20 and

16). We observe that higher values of N provide a better

performance. However, they tend to saturate for values higher

than 20. Since as for ♯min, large N values induce a greater

computational cost, we select N at the beginning of the

plateau, that is N = 20.
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B. Comparison with other techniques

We now compare the results of ViBe with those of five state-

of-the-art background subtraction algorithms and two basic

methods: (1) the gaussian mixture model proposed in [47]

(hereafter referred to as GMM); (2) the gaussian mixture

model of [50] (referred to as EGMM); (3) the Bayesian

algorithm based on histograms introduced in [70]; (4) the

codebook algorithm [62]; (5) the zipfian Σ − ∆ estimator

of [37]; (6) a single gaussian model with an adaptive variance

(named “gaussian model” hereafter); and (7) the first-order

low-pass filter (that is Bt = αIt +(1−α)Bt−1, where It and

Bt are respectively the input and background images at time

t), which is used as a baseline.

The first-order low-pass filter was tested using a fading

factor α of 0.05 and a detection threshold T of 20. A similar

fading factor α of 0.05 was used for the gaussian model. The

GMM of [70] and the Bayesian algorithm of [47] were tested

using their implementations available in Intel’s IPP image

processing library. For the EGMM algorithm of [50], we used

the implementation available on the author’s website1. The

authors of the zipfian Σ−∆ filter were kind enough to provide

1http://staff.science.uva.nl/˜zivkovic/DOWNLOAD.html

(a) Input image (b) Ground-truth

(c) ViBe (RGB) (d) ViBe (gray) (e) Bayesian histogram

(f) Codebook (g) EGMM [Zivkovic] (h) GMM [Li et al.]

(i) Gaussian model (j) 1st order filter (k) Sigma-Delta Z.

Fig. 5. Comparative background/foreground segmentation maps of nine
background subtraction techniques for one frame taken from the “house”
sequence. The segmentation maps of ViBe are the closest to the ground-truth
reference.

us with their code to test their method. We implemented

the codebook algorithm ourselves and used the following

parameters: 50 training frames, λ = 34, ǫ1 = 0.2, ǫ2 = 50,

α = 0.4, and β = 1.2. ViBe was tested with the default

values proposed in this paper: N = 20, R = 20, ♯min = 2,

and φ = 16. Most of the algorithms were tested using the

RGB color space; the codebook uses its own color space, and

the Σ−∆ filter implementation works on grayscale image. In

addition, we implemented a grayscale version of ViBe.

Figures 5 and 6 show examples of foreground detection

for one typical frame of each sequence. Foreground and

background pixels are shown in white and black respectively.

Visually, the results of ViBe look better and are the closest

to ground-truth references. This is confirmed by the PCC

scores; the PCC scores of the nine comparison algorithms for

both sequences are shown in Figure 7.

We also compared the computation times of these nine

algorithms with a profiling tool, and expressed the computation

times in terms of achievable framerates. Figure 8 shows their

average processing speed on our platform (2.67GHz Core i7

CPU, 6GB of RAM, C implementation).

We did not optimize the code of the algorithms explicitly,

except in the case of the Σ−∆ algorithm, which was optimized

by its authors, the algorithms of the IPP library (GMM and

Bayesian histogram), which are optimized for Intel processors,
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(a) Input image (b) Ground-truth

(c) ViBe (RGB) (d) ViBe (gray) (e) Bayesian histogram

(f) Codebook (g) EGMM [Zivkovic] (h) GMM [Li et al.]

(i) Gaussian model (j) 1st order filter (k) Sigma-Delta Z.

Fig. 6. Comparative background/foreground segmentation maps of nine
background subtraction techniques for one frame taken from the “pets”
sequence. Here too, the segmentation maps of ViBe are the closest to the
ground-truth reference.

and ViBe to some extent. To speed up operations involving

random numbers in ViBe, we used a buffer pre-filled with

random numbers.

We see that ViBe clearly outperforms the seven other

techniques: its PCCs are the highest for both sequences and

its processing speed is as high as a framerate of 200 frames

per second, that is 5 times more than algorithms optimized by

Intel. Compare these figures to those obtained by the algorithm

proposed by Chiu et al. [71] recently; they claim to segment

320 × 240 images at a framerate of around 40 frames per

second. A simple rescaling to the size of our images lowers

this value to 10 frames per second.

The only method faster than ViBe is the zipfian Σ − ∆
estimator, whose PCC is 12 to 15% smaller than that of ViBe.

The authors of the zipfian sigma-delta algorithm provided

us with post-processed segmentation maps of the “house”

sequence which exhibit an improved PCC but a the cost of

a lower processing speed. One can wonder how it is possible

that ViBe runs faster than simpler techniques such as the first-

order filter model. We discuss this question in Appendix B.

In terms of PCC scores, only the Bayesian algorithm of [70]

based on histograms competes with ViBe. However, it is more

than 20 times slower than ViBe. As shown in Figures 5

and 6, the grayscale and the color versions of ViBe manage

to combine both a very small rate of FP and a sharp detection

of the foreground pixels. The low FP rate of ViBe eliminates
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(a) Results for the first sequence (“house”).
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(b) Results for the second sequence (“pets”).

Fig. 7. Percentages of Correct Classification (PCCs) of nine background
subtraction techniques. ViBe has the highest PCCs.
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Fig. 8. Processing speed, expressed in terms of Frames Per Second (FPS),
of nine background subtraction techniques for 640×480 pixels wide images.
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the need for any post-processing, which further alleviates the

total computational cost of the foreground detection.

Next, we concentrate on the specific strengths of ViBe: fast

ghost suppression, intrinsic resilience to camera shake, noise

resilience, and suitability for embedding.

C. Faster ghost suppression

A background model has to adapt to modifications of the

background caused by changing lighting conditions but also

to those caused by the addition, removal, or displacement of

some of its parts. These events are the principal cause of the

appearance of ghosts: regions of connected foreground points

that do not correspond to any real object.

When using a detection support map or a related technique

to detect and suppress ghosts, it is very hard, if not impossible,

to distinguish ghosts from foreground objects that are currently

static. As a result, real foreground objects are included in the

background model if they remain static for too long. This

is a correct behavior since a static foreground object must

eventually become part of the background after a given time.

It would be better if ghosts were included in the background

model more rapidly than real objects, but this is impossible

since they cannot be distinguished using a detection support

map.

Our spatial update mechanism speeds up the inclusion of

ghosts in the background model so that the process is faster

than the inclusion of real static foreground objects. This can be

achieved because the borders of the foreground objects often

exhibit colors that differ noticeably from those of the samples

stored in the surrounding background pixel models. When a

foreground object stops moving, the information propagation

technique described in Section III-C4 updates the pixel models

located at its borders with samples coming from surrounding

background pixels. But these samples are irrelevant: their

colors do not match at all those of the borders of the object.

In subsequent frames, the object remains in the foreground,

since background samples cannot diffuse inside the foreground

object via its borders.

By contrast, a ghost area often shares similar colors with

the surrounding background. When background samples from

the area surrounding the ghost try to diffuse inside the ghost,

they are likely to match the actual color of the image at

the locations where they are diffused. As a result, the ghost

is progressively eroded until it disappears entirely. Figure 9

illustrates this discussion.

The speed of this process depends on the texture of the

background: the faster ghost suppressions are obtained with

backgrounds void of edges. Furthermore, if the color of the

removed object is close to that of the uncovered background

area, the absorption of the ghost is faster. When needed,

the speed of the ghost suppression process can be tuned by

adapting the time subsampling factor φ. For example, in the

sequence displayed in Figure 9, if we assume a framerate of

30 frames per second, the ghost fades out after 2 seconds

for a time subsampling factor φ equal to 1. However, if we

set φ to 64, it takes 2 minutes for ViBe to suppress the

ghost completely. For the sake of comparison, the Bayesian

Fig. 10. Background/foreground segmentation maps for a slightly moving
camera. If spatial propagation is deactivated, the camera motions produce false
positives in high-frequency areas (image in the center), while the activation
of spatial propagation avoids a significant proportion of false positives (right-
hand image).

histogram algorithm suppresses the same ghost area in 5

seconds.

One may ask how static foreground objects will ultimately

be included in the background model. The responsibility

for the absorption of foreground pixels into the background

lies with the noise inevitably present in the video sequence.

Due to the noise, some pixels of the foreground object end

up in the background, and then serve as background seeds.

Consequently, their models are corrupted with foreground

samples. These samples later diffuse into their neighboring

models, as a result of the spatial propagation mechanism of the

background samples, and allow a slow inclusion of foreground

objects in the background.

D. Resistance to camera displacements

In many situations, small displacements of the camera are

encountered. These small displacements are typically due to

vibrations or wind and, with many other techniques, they cause

significant numbers of false foreground detections.

Another obvious benefit of the spatial consistency of our

background model is an increased robustness against such

small camera movements (see Figure 10). Since samples are

shared between neighboring pixel models, small displacements

of the camera introduce very few erroneous foreground detec-

tions.

ViBe also has the capability of dealing with large displace-

ments of the camera, at the price of a modification of the

base algorithm. Since our model is purely pixel-based, we

can make it able to handle moving cameras by allowing pixel

models to follow the corresponding physical pixels according

to the movements of the camera. The movements of the camera

can be estimated either using embedded motion sensors or

directly from the video stream using an algorithmic technique.

This concept is illustrated in Figures 11 and 12. The first

series shows images taken from an old DARPA challenge. The

camera pans the scene from left to right and the objective is

to follow the car. Figure 12 shows a similar scenario acquired

with a Pan-Tilt Zoom video-surveillance camera; the aim here

is to track the person.

To produce the images of Figures 11 and 12, the displace-

ment vector between two consecutive frames is estimated for

a subset of background points located on a regularly spaced

grid using Lucas and Kanade’s optical flow estimator [72].

The global displacement vector of the camera is computed

by averaging these pixel-wise displacement vectors. The pixel

models are then relocated according to the displacement
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Fig. 9. Fast suppression of a ghost. In this scene, an object (a carpet) is moved, leaving a ghost behind it in the background, and is detected as being part of
the foreground. It can be seen that the ghost is absorbed into the background model much faster than the foreground region corresponding to the real physical
object.

Fig. 11. Background/foreground segmentation maps for a sequence taken
with a moving camera (from the DARPA challenge).

Fig. 12. Background/foreground segmentation maps for a sequence taken
with a moving camera (surveillance camera).

of the camera inside a larger mosaic reference image. The

background model of pixels that correspond to areas seen for

the first time is initialized instantaneously using the technique

described in Section III-B. It can be seen that, even with such

a simple technique, the results displayed in Figures 11 and 12

are promising.

E. Resilience to noise

To demonstrate the resilience of ViBe to noise, we compared

it to seven other techniques on a difficult noisy sequence

(called “cable”). This sequence shows an oscillating electrical

cable filmed at a large distance with a 40× optical zoom. As

can be seen in Figure 13a, the difficult acquisition conditions

result in a significant level of noise in the pixel values. Back-

ground/foreground segmentation maps displayed in Figure 13

demonstrate that ViBe is the only technique that manages to

combine a low rate of FP with both a precise and accurate

detection of the foreground pixels.

Two factors must be credited for ViBe’s high resilience to

noise. The first originates from our design, allowing the pixel

models of ViBe to comprise exclusively observed pixel values.

The pixel models of ViBe adapt to noise automatically, as they

are constructed from noisy pixel values. The second factor

is the pure conservative update scheme used by ViBe (see

Section III-C). By relying on pixel values classified exclusively

as background, the model update policy of ViBe prevents

the inclusion of any outlier in the pixel models. As a result,

these two factors ensure a continuous adaptation to the noise

present in the video sequence while maintaining coherent pixel

models.

F. Downscaled version and embedded implementation

Since ViBe has a low computational cost (see Figure 8) and

relies exclusively on integer computations, it is particularly

well suited to an embedded implementation. Furthermore,

the computational cost of ViBe can be further reduced by

using low values for N and ♯min. Appendix B provides some

implementation details and compares the complexity of ViBe

with respect to the complexity of the first-order filter model.

In Figure 14, we give the PCC scores and framerates

for a downscaled version of ViBe, which uses the absolute

minimum of one comparison and one byte of memory per

pixel. We also give the PCC scores and framerates for the

full version of ViBe and for the two faster techniques from

our tests in Section IV-B. One can see, on the left hand side

of the graph in Figure 14, that the downscaled version of

ViBe maintains a high PCC. Note that its PCC is higher than

that of the two GMM-based techniques tested in Section IV-B

(see Figure 7a). In terms of processing speed or framerate,

the zipfian Σ − ∆ filter method of [37] is the only one to

be faster than the downscaled version of ViBe. However, a

post-processing step of the segmentation map is necessary to

increase the low PCC score of the zipfian Σ−∆ method, and

the computational cost induced by this post-processing process

reduces the framerate significantly.

To illustrate the low computational cost of ViBe and its

simplicity, we embedded our algorithm in a digital camera.
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(a) Input image (b) ViBe (RGB) (c) ViBe (grayscale) (d) GMM [Li et al.] (e) Codebook

(f) Bayesian histogram (g) EGMM [Zivkovic] (h) Gaussian model (i) 1st order filter (j) Sigma-Delta Zipf

Fig. 13. Background/foreground segmentation maps for one frame taken from the noisy “cable” sequence.
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(b) FPS for images of 640× 480 pixels.

Fig. 14. Percentages of Correct Classification (PCCs) and processing
speeds of fast techniques, expressed in Frames Per Second (FPS), including
a downscaled version of ViBe which requires only one comparison and one
byte of memory per pixel.

The porting work of ViBe on a Canon PowerShot SD870 IS

was performed with a modified version of the open source

alternative firmware CHDK2. Parameters of ViBe were set to

N = 5 and ♯min = 1. Despite the camera’s low speed ARM

processor, we managed to process 6 frames of 320×240 pixels

wide images per second on average. The result is shown in

Figure 15.

V. CONCLUSIONS

In this paper, we introduced a universal sample-based back-

ground subtraction algorithm, called ViBe, which combines

three innovative techniques.

Firstly, we proposed a classification model that is based on

a small number of correspondences between a candidate value

2http://chdk.wikia.com

Fig. 15. Embedded implementation of ViBe in a Canon camera.

and the corresponding background pixel model. Secondly, we

explained how ViBe can be initialized with a single frame.

This frees us from the need to wait for several seconds

to initialize the background model, an advantage for image

processing solutions embedded in digital cameras and for

short sequences. Finally, we presented our last innovation:

an original update mechanism. Instead of keeping samples

in the pixel models for a fixed amount of time, we ignore

the insertion time of a pixel in the model and select a value

to be replaced randomly. This results in a smooth decaying

lifespan for the pixel samples, and enables an appropriate

behavior of the technique for wider ranges of background

evolution rates while reducing the required number of samples

needing to be stored for each pixel model. Furthermore, we

also ensure the spatial consistency of the background model

by allowing samples to diffuse between neighboring pixel

models. We observe that the spatial process is responsible for

a better resilience to camera motions, but that it also frees us

from the need to post-process segmentation maps in order to

obtain spatially coherent results. To be effective, the spatial

propagation technique and update mechanism are combined

with a strictly conservative update scheme: no foreground pixel

value should ever be included in any background model.

After a description of our algorithm, we determined optimal

values for all the parameters of the method. Using this set of

parameter values, we then compared the classification scores

and processing speeds of ViBe with those of seven other
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background subtraction algorithms on two sequences. ViBe is

shown to outperform all of these algorithms while being faster

than six of them. Finally, we discussed the performance of a

downscaled version of ViBe, which can process more than 350

frames per second on our platform. This downscaled version

was embedded in a digital camera to prove its suitability for

low speed platforms. Interestingly, we found that a version

of ViBe downscaled to the absolute minimum amount of

resources for any background subtraction algorithm (i.e. one

byte of memory and one comparison with a memorized value

per pixel) performed better than the state-of-the-art algorithms

in terms of the Percentage of Correct Classification criterion.

ViBe might well be a new milestone for the large family of

background subtraction algorithms.

Please note that programs and object-code are available at

http://www.motiondetection.org.
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APPENDIX A

C-LIKE SOURCE CODE FOR OUR ALGORITHM

Pseudo-code of ViBe for grayscale images, comprising

default values for all the parameters of the method, is given

hereafter.

/ / f i x e d p a r a m e t e r s f o r ViBe

/ / number o f sa mp les p er p i x e l

i n t N = 2 0 ;

/ / r a d i u s o f t h e s p h e r e

i n t R = 2 0 ;

/ / number o f c l o s e sa mp les f o r b e i n g

/ / p a r t o f t h e background ( bg )

i n t ♯min = 2 ;

/ / amount o f random s u b s a m p l i n g

i n t φ = 1 6 ;

/ / d a ta

i n t width , h e i g h t ;

/ / c u r r e n t image

byte image [ wid th ] [ h e i g h t ] ;

/ / background model

byte sam p les [ wid th ] [ h e i g h t ] [N ] ;

/ / background / f o r e g r o u n d s e g m e n t a t i o n map

byte segMap [ wid th ] [ h e i g h t ] ;

/ / background and f o r e g r o u n d i d e n t i f i e r s

byte b ack g ro u nd = 0 ;

byte f o r e g r o u n d = 2 5 5 ;

/ / f o r each p i x e l

f o r ( i n t x = 0 ; x < wid th ; x ++){
f o r ( i n t y = 0 ; y < h e i g h t ; y ++){

/ / 1 . Compare p i x e l t o background model

i n t c o u n t = 0 , i n d e x = 0 , d i s t = 0 ;

whi le ( ( c o u n t < ♯min ) && ( i n d e x < N ) ) {

/ / E u c l i d e a n d i s t a n c e c o m p u t a t i o n

d i s t = E u c l i d D i s t ( image [ x ] [ y ] ,

sam p les [ x ] [ y ] [ i n d e x ] ) ;

i f ( d i s t < R ) {
c o u n t ++;

}
i n d e x ++;

}
/ / 2 . C l a s s i f y p i x e l and u p d a te model

i f ( c o u n t >= ♯min ) {
/ / s t o r e t h a t image [ x ] [ y ] ∈ background

segMap [ x ] [ y ] = b ack g ro u nd ;

/ / 3 . Update c u r r e n t p i x e l model

/ / g e t random number b e tween 0 and φ−1

i n t r an d = getRandomNumber ( 0 , φ−1) ;

i f ( r an d == 0 ) { / / random s u b s a m p l i n g

/ / r e p l a c e randomly ch o sen sample

r an d = getRandomNumber ( 0 , N−1) ;

sam p les [ x ] [ y ] [ r an d ] = image [ x ] [ y ] ;

}
/ / 4 . Update n e i g h b o r i n g p i x e l model

r an d = getRandomNumber ( 0 , φ−1) ;

i f ( r an d == 0 ) { / / random s u b s a m p l i n g

/ / ch o o se n e i g h b o r i n g p i x e l randomly

i n t xNG
, yNG

;

xNG
= getRandomNeighbrXCoord ina te ( x ) ;

yNG
= getRandomNeighbrYCoord ina te ( y ) ;

/ / r e p l a c e randomly ch o sen sample

r an d = getRandomNumber ( 0 , N−1) ;

sam p les [xNG
] [ yNG

] [ r an d ] = image [ x ] [ y ] ;

}
}
e l s e { / / c o u n t < ♯min

/ / s t o r e t h a t image [ x ] [ y ] ∈ f o r e g r o u n d

segMap [ x ] [ y ] = f o r e g r o u n d ;

}
}

}

APPENDIX B

IMPLEMENTATION DETAILS, AND COMPLEXITY ANALYSIS

OF VIBE AND THE FIRST-ORDER MODEL

As computation times of hardware or software operations

might depend on the processor or the compiler, it is hard to

provide an exact analysis of the computation times. Instead,

we present the steps involved for the computation of ViBe

and the first-order filter model and evaluate the number of

operations involved.

For ViBe, the evaluation runs as follows:

• Segmentation step:

Remember that we compare a new pixel value to back-

ground samples to find two matches (♯min = 2). Once

two matches have been found, we step over to the

next pixel and ignore the remaining background samples.

Operations involved during the segmentation step are:

– comparison of the current pixel value with the values

of the background model. Most of the time, the two
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first values of the background model of a pixel are

close to the new pixel value. Therefore, we consider

2,5 (byte) comparisons on average per pixel (this is

an experimentally estimated value).

– 1,5 (byte) comparisons of the counter to check if

there are at least 2 matching values in the model;

we only need to compare the counter value after the

comparison between the current pixel value and the

second value of the background model.

• Update step:

– 1 pixel substitution per 16 background pixels (the

update factor, φ, is equal to 16). Because we have

to choose the value to substitute and access the

appropriate memory block in the model, we perform

an addition on memory addresses. Then we perform

a similar operation, for a pixel in the neighborhood

(first we locate which pixel in the neighborhood to

select, then which value to substitute).

In total, we evaluate the cost of the update step as 3
additions on memory addresses per 16 background

pixels.

• Summary (average per pixel, assuming that most pixels

belong to the background):

– 4 subtractions on bytes.

– 3
16 addition on memory addresses.

For the first-order model, we have:

• Segmentation step:

– 1 pixel comparison between an integer and a double

number.

• Update step:

– 2 multiplications and 1 addition on doubles, to

perform Bt = αIt + (1 − α)Bt−1.

• Summary (per pixel):

– 2 multiplications and 2 additions on doubles

From this comparison, it appears that, once the random num-

bers are pre-calculated, the number of operations for ViBe

is similar to that of the first-order filter model. However, if

processors deal with “integer” (single byte) numbers faster

than “double” numbers or if an addition is computed in less

time than a multiplication, ViBe is faster than the first-order

model.
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