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Abstract

Background: Viruses are central to microbial community structure in all environments. The ability to generate large

metagenomic assemblies of mixed microbial and viral sequences provides the opportunity to tease apart complex
microbiome dynamics, but these analyses are currently limited by the tools available for analyses of viral genomes

and assessing their metabolic impacts on microbiomes.

Design: Here we present VIBRANT, the first method to utilize a hybrid machine learning and protein similarity

approach that is not reliant on sequence features for automated recovery and annotation of viruses, determination

of genome quality and completeness, and characterization of viral community function from metagenomic assemblies.
VIBRANT uses neural networks of protein signatures and a newly developed v-score metric that circumvents traditional

boundaries to maximize identification of lytic viral genomes and integrated proviruses, including highly diverse viruses.

VIBRANT highlights viral auxiliary metabolic genes and metabolic pathways, thereby serving as a user-friendly platform
for evaluating viral community function. VIBRANT was trained and validated on reference virus datasets as well as

microbiome and virome data.

Results: VIBRANT showed superior performance in recovering higher quality viruses and concurrently reduced the false
identification of non-viral genome fragments in comparison to other virus identification programs, specifically VirSorter,

VirFinder, and MARVEL. When applied to 120,834 metagenome-derived viral sequences representing several human

and natural environments, VIBRANT recovered an average of 94% of the viruses, whereas VirFinder, VirSorter, and
MARVEL achieved less powerful performance, averaging 48%, 87%, and 71%, respectively. Similarly, VIBRANT identified

more total viral sequence and proteins when applied to real metagenomes. When compared to PHASTER, Prophage

Hunter, and VirSorter for the ability to extract integrated provirus regions from host scaffolds, VIBRANT performed
comparably and even identified proviruses that the other programs did not. To demonstrate applications of VIBRANT,

we studied viromes associated with Crohn’s disease to show that specific viral groups, namely Enterobacteriales-like

viruses, as well as putative dysbiosis associated viral proteins are more abundant compared to healthy individuals,
providing a possible viral link to maintenance of diseased states.
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Conclusions: The ability to accurately recover viruses and explore viral impacts on microbial community metabolism

will greatly advance our understanding of microbiomes, host-microbe interactions, and ecosystem dynamics.

Keywords: Virome, Virus, Bacteriophage, Metagenome, Machine learning, Auxiliary metabolism, Software

Background
Viruses that infect bacteria and archaea are globally abun-

dant and outnumber their hosts in most environments

[1–3]. Viruses are obligate intracellular pathogenic genetic

elements capable of reprogramming host cellular meta-

bolic states during infection and can cause the lysis of 20–

40% of microorganisms in diverse environments every day

[4, 5]. Due to their abundance and widespread activity, vi-

ruses are key facets in microbial communities as they con-

tribute to cycling of essential nutrients such as carbon,

nitrogen, phosphorus, and sulfur [6–10]. In human sys-

tems, viruses have been implicated in contributing to

dysbiosis that can lead to various diseases, such as inflam-

matory bowel diseases, or even have a symbiotic role with

the immune system [11–13].

Viruses harbor vast potential for diverse genetic con-

tent, arrangement, and encoded functions [14–17]. Rec-

ognizing their genetic diversity, there has been

substantial interest in “mining” these viral sequences for

novel anti-microbial drug candidates, enzymes for bio-

technological applications, and for bioremediation [18–

22]. Recently, it has been appreciated that viruses may

directly link biogeochemical cycling of nutrients by spe-

cifically driving metabolic processes [23–27]. For ex-

ample, during infection, viruses can acquire 40–90% of

their required nutrients from the surrounding environ-

ment by taking over and subsequently directing host me-

tabolism [28–30]. To manipulate host metabolic

frameworks, some viruses selectively “steal” metabolic

genes from their host. These host-derived genes, collect-

ively termed auxiliary metabolic genes (AMGs), can be

actively expressed during infection to provide viruses

with fitness advantages [31–34]. Due to the need to

study the role of viruses in microbiomes and integrate

viruses into models of ecosystem function, it has become

of great interest to determine which sequences within

whole microbial communities are derived from viruses.

These sequences can include free virions, active intracel-

lular infections (which may be the case for as many as

30% of all bacteria at any given time [35]), particle or

host-attached virions [36], and host-integrated or epi-

somal viral genomes (i.e., proviruses).

Multiple tools exist for the identification of viruses

from mixed metagenomic assemblies. For several years,

VirSorter [37], which succeeded tools such as VIROME

[38] and Metavir [39], has been the most widely used for

its ability to identify viral metagenomic fragments (scaf-

folds) from large metagenomic assemblies. VirSorter

predominantly relies on database searches of predicted

proteins, using both reference homology as well as prob-

abilistic similarity, to compile metrics of enrichment of

virus-like proteins and simultaneous depletion of other

proteins. To do this, it uses a virus-specific curated data-

base as well as Pfam [40] for non-virus annotations,

though it does not fully differentiate viral from non-viral

Pfam annotations. It also incorporates sequence signa-

tures of viral genomes, such as encoding short genes or

having low levels of strand switching between genes.

VirSorter is also unique in its ability to use these annota-

tions and sequence metrics to identify and extract inte-

grated provirus regions from host scaffolds.

More recent tools have been developed as alternatives

or supplements of VirSorter. VirFinder [41] was the first

tool to implement machine learning and be completely

independent of annotation databases for predicting vi-

ruses, which was a platform later implemented in PPR-

Meta [42]. VirFinder was built with the consideration

that viruses tend to display distinctive patterns of 8-

nucleotide frequencies (otherwise known as 8-mers),

which was proposed despite the knowledge that viruses

can share remarkably similar nucleotide patterns with

their host [43]. These 8-mer patterns are used to quickly

classify sequences as short as 500 bp and generate

model-derived scores, though it is up to the user to de-

fine the score cutoffs. VirFinder was shown to greatly

improve the ability to recover viruses compared to Vir-

Sorter, but it also demonstrated substantial host and

source environment biases in predicting diverse viruses,

likely due to reference database-associated biases while

training the machine learning model [41]. Moreover,

under-recovery of viruses from certain environments

was identified [44].

Additional recent tools have been developed that

utilize slightly different methods for identifying viruses.

MARVEL [45], for example, leverages annotation,

sequence signatures, and machine learning to identify vi-

ruses from metagenomic bins. MARVEL differs from

VirSorter in that it only utilizes a single virus-specific

database for annotation. However, MARVEL provides

no consideration for integrated proviruses and is only

suitable for identifying bacterial dsDNA viruses from the

order Caudovirales which substantially limits its ability

Kieft et al. Microbiome            (2020) 8:90 Page 2 of 23



to discover novel viruses. Another recently developed

tool, VirMiner [46], is unique in that it functions to use

metagenomic reads and associated assembly data to

identify viruses and performs best for highly abundant

viruses. VirMiner is a web-based server that utilizes a

hybrid approach of employing both homology-based

searches to a virus-specific database as well as machine

learning. VirMiner was found to have improved ability

to recover viruses compared to both VirSorter and Vir-

Finder but was concurrently much less accurate.

Thus far, VirSorter remains the most efficient tool for

identifying integrated proviruses within metagenomic as-

semblies. Other tools, predominantly PHASTER [47]

and Prophage Hunter [48], are specialized in identifying

integrated proviruses from whole genomes rather than

scaffolds generated by metagenomic assemblies. Similar

to VirSorter, these two provirus predictors rely on refer-

ence homology and viral sequence signatures with slid-

ing windows to identify regions of a host genome that

belong to a virus. Although they are useful for whole ge-

nomes, they lack the capability of identifying scaffolds

belonging to lytic (i.e., non-integrated) viruses and per-

form slower for large datasets. In addition, both PHA-

STER and Prophage Hunter are exclusively available as

web-based servers and offer no stand-alone command

line tools.

Here we developed VIBRANT (Virus Identification By

iteRative ANnoTation), a tool for automated recovery,

annotation, and curation of both free and integrated vi-

ruses from metagenomic assemblies and genome se-

quences. VIBRANT is capable of identifying diverse

dsDNA, ssDNA, and RNA viruses infecting both bacteria

and archaea, and to our knowledge has no evident envir-

onmental biases. VIBRANT uses neural networks of pro-

tein annotation signatures from non-reference-based

similarity searches with Hidden Markov Models

(HMMs) as well as a unique “v-score” metric to

maximize identification of diverse and novel viruses.

After identifying viruses, VIBRANT implements curation

steps to validate predictions. VIBRANT additionally

characterizes viral community function by highlighting

AMGs and assesses the metabolic pathways present in

viral communities. All viral genomes, proteins, annota-

tions, and metabolic profiles are compiled into formats

for user-friendly downstream analyses and visualization.

When applied to reference viruses, non-reference virus

datasets, and various assembled metagenomes, VI-

BRANT outperformed VirFinder, VirSorter, and MAR-

VEL in the ability to maximize virus recovery and

minimize false discovery. When compared to PHASTER,

Prophage Hunter, and VirSorter for the ability to extract

integrated provirus regions from host scaffolds, VI-

BRANT performed comparably. VIBRANT was also

used to identify differences in metabolic capabilities

between viruses originating from various environments.

When applied to three separate cohorts of individuals

with Crohn’s disease, VIBRANT was able to identify

both differentially abundant viral groups compared to

healthy controls as well as virally encoded genes puta-

tively influencing a diseased state. VIBRANT is freely

available for download at https://github.com/Ananthara-

manLab/VIBRANT. VIBRANT is also available as a

user-friendly, web-based application through the

CyVerse Discovery Environment at https://de.cyverse.

org/de [49].

Methods
Dataset for generation and comparison of metrics

To generate training and testing datasets, sequences

representing bacteria, archaea, plasmids, and viruses

were downloaded from the National Center for Biotech-

nology Information (NCBI) RefSeq and Genbank data-

bases (accessed July 2019) (Additional File 1: Table S1).

For bacteria/archaea, 181 genomes were chosen by

selecting from diverse phylogenetic groups. Likewise, a

total of 1452 bacterial plasmids were chosen. For viruses,

NCBI taxids associated with viruses that infect bacteria

or archaea were used to download reference virus ge-

nomes, which were then limited to only sequences above

3 kb. This included viruses with both DNA and RNA ge-

nomes, though RNA genomes must first be converted to

complementary DNA. Sequences not associated with ge-

nomes, such as partial genomic regions, were identified

according to sequence headers and removed. This

resulted in 15,238 total viral partial and complete ge-

nomes. To be consistent between all sequences acquired

from NCBI, proteins and genes were predicted using

Prodigal (-p meta, v2.6.3) [50]. All sequences were split

into non-overlapping, non-redundant fragments between

3 and 15 kb to simulate metagenome-assembled scaf-

folds. These simulated scaffolds are hereafter called frag-

ments and were used throughout training and testing

VIBRANT. For RNA virus detection, 33 viral (bacterio-

phage) genomes from NCBI RefSeq and 37 from Krish-

namurthy et al. were used [51], and for archaeal virus

detection, all genomes were acquired from NCBI RefSeq.

The RNA and archaeal viral genomes were represented

in both the training and testing datasets as genomic frag-

ments, and recall evaluation was performed on whole

genomes. These were the only datasets in which training

and evaluation datasets were semi-redundant. See Sup-

plemental Methods (Additional File 16) for additional

datasets and sequences used.

Integrated viruses are common in both bacteria and

archaea. To address this for generating a dataset devoid

of viruses, PHASTER (accessed July 2019) was used to

predict putative integrated viruses in the 181 bacteria/ar-

chaea genomes. Using BLASTn [52], any fragments that
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had significant similarity (at least 95% identity, at least 3

kb coverage, and e-value < 1e−10) to the PHASTER pre-

dictions were removed as contaminant virus sequence.

The new bacteria/archaea dataset was considered de-

pleted of proviruses but not entirely devoid of contamin-

ation. Next, the datasets for bacteria/archaea and

plasmids were annotated with KEGG, Pfam, and VOG

HMMs (hmmsearch (v3.1), e-value < 1e−5) [53] to fur-

ther remove contaminant virus sequence (see next sec-

tion for details of HMMs). Plasmids were included

because it was noted that the dataset appeared to con-

tain virus sequences, possibly due to misclassification of

episomal proviruses as plasmids. Using manual inspec-

tion of the KEGG, Pfam, and VOG annotations, any se-

quence that clearly belonged to a virus was removed.

Manual inspection was guided first by the number of

KEGG, Pfam, and VOG annotations and then by the an-

notations themselves. For example, sequences with more

VOG than KEGG or Pfam annotations were inspected

and removed if multiple viral hallmark genes were found

or if the majority of annotations represented viral-like

genes. The final datasets consisted of 400,291 fragments

for bacteria/archaea, 14,739 for plasmids, and 111,963

for viruses. Total number of fragments for all datasets

used can be found in Additional File 2: Table S2.

Databases used by VIBRANT

VIBRANT uses HMM profiles from three different data-

bases: Kyoto Encyclopedia of Genes and Genomes

(KEGG) KoFam (March 2019 release) [54, 55], Pfam

(v32) [40], and Virus Orthologous Groups (VOG) (re-

lease 94, vogdb.org). For Pfam, all HMM profiles were

used. To increase speed, KEGG and VOG HMM data-

bases were reduced in size to contain only profiles likely

to annotate the viruses of interest. For KEGG, this was

done by only retaining profiles considered to be relevant

to “prokaryotes” as determined by KEGG documenta-

tion. For VOG, this was done by only retaining profiles

that had at least one significant hit to any of the 15,238

NCBI-acquired viruses using BLASTp. The resulting da-

tabases consisted of 10,033 HMM profiles for KEGG; 17,

929 for Pfam; and 19,182 for VOG (Additional File 3:

Table S3).

V-score generation

Predicted proteins from reference viral genomes from

NCBI and VOG database viral proteins were combined

to generate v-scores, which resulted in a total of 633,194

proteins. Redundancy was removed from the viral pro-

tein dataset using CD-HIT (v4.6) [56] with an identity

cutoff of 95%, which resulted in a total of 240,728 viral

proteins. This was the final dataset used to generate v-

scores. All KEGG HMM profiles were used to annotate

the viral proteins. A v-score for each KEGG HMM

profile was determined by the number of significant (e-

value < 1e−5) hits by hmmsearch, divided by 100, and a

maximum value was set at 10 after division. The same v-

score generation was done for Pfam and VOG databases.

Any HMM profile with no significant hits to the virus

dataset was given a v-score of zero. For KEGG and Pfam

databases, any annotation that was given a v-score above

zero and contained the keyword “phage” was given a

minimum v-score of 1. To highlight viral hallmark

genes, any annotation within all three databases with the

keyword portal, terminase, spike, capsid, sheath, tail,

coat, virion, lysin, holin, base plate, lysozyme, head, or

structural was given a minimum v-score of 1. Non-

prokaryotic virus annotations (e.g., reovirus core-spike

protein) were not considered. Each HMM is assigned a

v-score and represents a metric of virus association (i.e.,

do not take into account virus specificity or association

with non-viruses) and are manually tuned to put greater

weight on viral hallmark genes (Additional File 4: Table

S4). Overall, annotations that are likely non-viral will

have a low v-score whereas annotations that are com-

monly associated with viruses will have a high v-score.

Raw HMM table outputs for v-score generation can be

found in Additional Files 5, 6, and 7 for KEGG, Pfam,

and VOG, respectively (Additional File 5: Table S5, Add-

itional File 6: Table S6, and Additional File 7: Table S7).

Training and testing VIBRANT

The bacteria/archaea genomic, plasmid, and virus data-

sets described above were used to train and test the ma-

chine learning model. Scikit-Learn (v0.21.3) [57] libraries

were used to assess various machine learning strategies

to identify the best performing algorithm. Among sup-

port vector machines, neural networks, and random for-

ests, we found that neural networks lead to the most

accurate and comprehensive identification of viruses.

Therefore, Scikit-Learn’s supervised neural network

multi-layer perceptron classifier (hereafter called neural

network) was used. The portion of VIBRANT’s workflow

up until the neural network classifier (i.e., KEGG, Pfam,

and VOG annotation) was used to compile the 27 anno-

tation metrics for each scaffold. To account for differ-

ences in scaffold sizes, all metrics are normalized (i.e.,

divided by) to the total number of proteins encoded by

the scaffold. The first metric, for total proteins, was nor-

malized to log base 10 of itself. Each metric was

weighted equally, though it is worth noting that the re-

moval of several metrics did not significantly impact the

accuracy of model’s prediction. The normalized results

were randomized, and non-redundant portions of these

results were taken for training or testing the neural net-

work. In total, 93,913 fragments were used for training,

and 9000 different fragments were used for testing the
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neural network specifically (Additional File 8: Table S8

and Additional File 9: Table S9).

To test the performance of VIBRANT in its entirety, a

new testing dataset was generated consisting of frag-

ments from the neural network testing set as well as

additional fragments non-redundant to the previous

training dataset (hereafter called comprehensive test

dataset). This new comprehensive test dataset was com-

prised of 256,713 genomic fragments from bacteria/ar-

chaea, 29,926 from viruses, and 8968 from plasmids.

Each met the minimum protein number requirement of

VIBRANT: at least four open reading frames.

Calculation of evaluation metrics and benchmarking of

VIBRANT

For comparison of VIBRANT (v1.2.0) to VirFinder

(v1.1), VirSorter (v1.0.3), and MARVEL (v0.2), the com-

prehensive test dataset was used. Two intervals for Vir-

Finder and VirSorter were used for comparison. For

VirSorter, the intervals selected were (1) category 1 and

2 predictions, and (2) category 1 and 2 predictions using

the virome decontamination mode. Categories 1 and 2

are generally considered trustworthy, but category 3 pre-

dictions are more likely to contain false identifications.

VirSorter was ran using the “Virome” database. For Vir-

Finder, the intervals were (1) scores greater than or

equal to 0.90 (approximately equivalent to a p value of

0.013) and (2) scores greater than or equal to 0.75 (ap-

proximately equivalent to a p value of 0.037). Since

MARVEL was built for the identification of viral bins,

each scaffold was evaluated separately as a single “bin.”

To ensure proper identification by MARVEL and VI-

BRANT, different versions of Scikit-Learn were used for

each (v0.19.1 and v0.21.3, respectively).

Several metrics were used to compare performance of

all four programs: recall, precision, accuracy, specificity,

Mathews Correlation Coefficient (MCC), and F1 score.

When calculating metrics, the larger bacteria/archaea

and plasmid dataset was normalized to the size of the

smaller viral dataset in order to make accurate calcula-

tions. All equations used can be found in Additional File

10: Table S10 and the results of each calculation can be

found in Additional File 11: Table S11. Comparison met-

rics were visualized using R (v3.5.2) package “ggplot2.”

It is worth noting that although VIBRANT was tested

using sequences that were not used for training, biases may

still be associated with reported metrics due to the reliance

of KEGG, Pfam, and VOG HMMs on NCBI databases. That

is, NCBI databases in part were used to construct the HMMs

and therefore are well suited at annotating NCBI-derived se-

quences. This same type of bias will be seen in the evaluation

of VirSorter and MARVEL, both of which rely on NCBI-

reliant databases. Although VirFinder does not use annota-

tion databases, the machine-learning algorithm it employs

was trained on NCBI-derived sequences. Similarly, biases

with comparisons to VirFinder, VirSorter, and MARVEL will

arise when using NCBI databases. Sequences from NCBI

were used for training each of the three programs and there-

fore will likely contain redundancy to VIBRANT’s compre-

hensive test dataset. This redundancy will cause artificially

enhanced performance. To address these biases, we further

compared all four programs to non-NCBI datasets (see

below).

AMG identification

KEGG annotations were used to classify potential AMGs

(Additional File 12: Table S12). KEGG annotations fall-

ing under the “metabolic pathways” category as well as

“sulfur relay system” were considered. Manual inspection

was used to remove non-AMG annotations, such as

nrdAB and thyAX. Other annotations not considered

were associated with direct nucleotide to nucleotide con-

versions. All AMGs were associated with a KEGG meta-

bolic pathway map.

Completeness estimation

Scaffold completeness is determined based on four met-

rics: circularization of scaffold sequence, VOG annota-

tions, total VOG nucleotide replication proteins, and

total VOG viral hallmark proteins (Additional File 13:

Table S13). In order to be considered a complete gen-

ome, a sequence must be identified as likely circular. A

kmer-based approach is used to do this. Specifically, the

first 20 nucleotides are compared to 20-mer sliding win-

dows within the last 900 bp of the sequence. If a

complete match is identified, the sequence is considered

a circular template. Scaffolds can also be considered a

low-, medium-, or high-quality draft. To benchmark

completeness, 2466 NCBI RefSeq viruses identified as

Caudovirales, limited to 10 kb in length, were used to

estimate completeness by stepwise removing 10% viral

sequence at a time. VIBRANT was found to identify

2465 of the 2466 viruses. This set of viruses was add-

itionally used to assess the error rate of cutting provirus

regions. Viral genome diagrams to depict genome quality

and completeness, provirus predictions, and novel virus

identification were made using Geneious Prime 2019.0.3.

Analysis of Crohn’s disease metagenomes

Metagenomic reads from He et al. [58] were assembled by

Pasolli et al. [59] and used for analysis. VIBRANT (-l 5000)

was used to predict viruses from 49 metagenomes originat-

ing from individuals with Crohn’s disease and 53 from

healthy individuals (102 total samples). A total of 14,121 vi-

ruses were identified. Viral sequences were dereplicated

using Mash [60] and Nucmer [61] to 95% nucleotide iden-

tity and 70% sequence coverage. The longest sequence was

kept as the representative for a total of 8822 dereplicated
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viruses. A total of 96 read sets were used (59 Crohn’s dis-

ease and 37 healthy), trimmed using Sickle and aligned to

the dereplicated viruses using Bowtie2 (-N 1, v2.3.4.1) [62],

and the resulting coverages were normalized to total reads.

The normalized relative coverage of each virus for all 96

samples were compared using DESeq2 [63] (Additional File

14: Table S14). Viruses that displayed significantly different

abundance between Crohn’s disease and control samples

were determined by a p value cutoff of 0.05. iRep (default

parameters) [64] was used to estimate replication activity of

two highly abundant Crohn’s-associated viruses. EasyFig

(v2.2.2) [65] was used to generate genome alignments of

Escherichia phage Lambda (NCBI accession number NC_

001416.1) and three Crohn’s-associated viruses. vCon-

TACT2 (v0.9.8) was run using default parameters on the

CyVerse Discovery Environment platform. Putative hosts of

Crohn’s-associated and healthy-associated were estimated

using proximity of vConTACT2 protein clustering and

BLASTp identity (NCBI non-redundant protein database,

assessed October 2019). Two additional read sets from

Gevers et al. [66] and Ijaz et al. [67] were likewise assem-

bled by Pasolli et al. VIBRANT (-l 5000 -o 10) was used to

predict viruses from 43 metagenomes originating from in-

dividuals with Crohn’s disease and 21 from healthy individ-

uals (64 total samples). In contrast to the discovery, dataset

viral genomes were not dereplicated, and differential abun-

dance was not determined. Instead, viruses from each

group were directly clustered using vConTACT2. Abun-

dances of dysbiosis-associated genes in the validation set

were normalized to total viruses. Validation of dysbiosis-

associated genes’ presence on viral genomes, rather than

microbial contamination, was done by identifying viral hall-

mark genes on the viral scaffold (Additional File 15: Table

S15). Protein networks were visualized using Cytoscape

(v3.7.2) [68].

Results
VIBRANT was built to extract and analyze bacterial and ar-

chaeal viruses from assembled metagenomic and genome se-

quences, as well as provide a platform for characterizing

metabolic proteins and functions in a comprehensive man-

ner. The concept behind VIBRANT’s mechanism of virus

identification stems from the understanding that arduous

manual inspection of annotated genomic sequences pro-

duces the most dependable results. As such, the primary

metrics used to inform validated curation standards and to

train VIBRANT’s machine learning based neural network to

identify viruses reflects human-guided intuition, though in a

high-throughput automated fashion.

Determination of v-score

We developed a unique “v-score” metric as an approach

for providing quantitative information to VIBRANT’s al-

gorithm in order to assess the qualitative nature of

annotation information. A v-score is a value assigned to

each possible protein annotation that scores its associ-

ation to known viral genomes (see “Methods” section).

V-score differs from the previously used “virus quotient”

metric [69, 70] in that it does not take into account the

annotation’s relatedness to bacteria or archaea. Not in-

cluding significant similarity to non-viral genomes in the

calculation of v-scores has important implications for

this metric’s utility. Foremost is that annotations shared

between viruses and their hosts, such as ribonucleotide

reductases, will be assigned a v-score reflecting its asso-

ciation to viruses, not necessarily virus-specificity. Many

genes are commonly associated with viruses and host or-

ganisms but when encoded on viral genomes can be

central to virus replication efficiency (e.g., ribonucleotide

reductases [71]). Therefore, a metric representing virus-

association rather than virus-specificity would be more

appropriate in identifying if an unknown scaffold is viral

or not. Secondly, this approach takes into account wide-

spread horizontal gene transfer of host genes by viruses

as well as the presence of AMGs.

VIBRANT workflow

VIBRANT utilizes several annotation metrics in order to

guide removal of non-viral scaffolds before curation of

reliable viral scaffolds. The annotation metrics used are

derived from HMM-based probabilistic searches of pro-

tein families from the KEGG, Pfam, and VOG databases.

VIBRANT is not reliant on reference-based similarity

and therefore accounts for the large diversity of viruses

on Earth and their respective proteins. Consequently,

widespread horizontal gene transfer, rapid mutation, and

the vast amount of novel sequences do not hinder VI-

BRANT’s ability to identify known and novel viruses. VI-

BRANT does not rely on non-annotation features, such

as rates of open reading frame strand switching, because

these features were not as well conserved in genomic

scaffolds in contrast to whole genomes.

VIBRANT’s workflow consists of four main steps (Fig. 1a).

Briefly, proteins (predicted or user input) are used by VI-

BRANT to first eliminate non-viral sequences by assessing

non-viral annotation signatures derived from KEGG and

Pfam HMM annotations. At this step, potential host scaffolds

are fragmented using sliding windows of KEGG annotation

v-scores in order to extract integrated provirus sequences.

Following the elimination of most non-viral scaffolds and

rough excision of provirus regions, proteins are annotated by

VOG HMMs. Before analysis by the neural network machine

learning model, any extracted putative provirus is trimmed

to exclude any remaining non-viral sequences. Annotations

from KEGG, Pfam, and VOG are used to compile 27 metrics

that are utilized by the neural network to predict viral se-

quences (Additional File 16: Supplemental Methods). These
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Fig. 1 (See legend on next page.)
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27 metrics were found to be adequate for the separation of

viral and non-viral scaffolds (Fig. 1b).

After prediction by the neural network, a set of cur-

ation steps are used to filter the results. Curation is an

automated mechanism of verifying and/or altering the

neural network predictions in order to improve accuracy

and recovery of viruses. This concept, as previously

stated, originates from experiences with manual inspec-

tion of viral genomes that cannot be captured even

within machine-learning algorithms. For example, these

curation steps can (1) more accurately separate plasmid

sequences by discerning viral-like and plasmid-like inte-

grase annotations, (2) remove scaffolds that encode a

high density of bacterial-like (i.e., v-score of zero) pro-

teins, or (3) increase true positive identifications by

retaining otherwise missed scaffolds that are unique

(e.g., encode few but highly virus-related proteins).

Once viruses are identified VIBRANT automates the

analysis of viral community function by highlighting

AMGs and assigning them to KEGG metabolic path-

ways. The genome quality (i.e., proxy of completeness)

of identified viruses is estimated using a subset of the

annotation metrics, and viral sequences are used to iden-

tify circular templates (i.e., likely complete circular vi-

ruses). These quality analyses were determined to best

reflect established completeness metrics for both bac-

teria and viruses [72, 73]. Finally, VIBRANT compiles all

results into a user-friendly format for visualization and

downstream analysis. For a detailed description of VI-

BRANT’s workflow see “Methods” section.

Comparison of VIBRANT to other programs

VirSorter, VirFinder, and MARVEL, three commonly

used programs for identifying bacterial and archaeal vi-

ruses from metagenomes, were selected to compare

against VIBRANT for the ability to accurately identify

viruses. We evaluated all four programs’ performance on

the same viral, bacterial, and archaeal genomic and plas-

mid datasets. Given that both VirSorter and VirFinder

produce various confidence ranges of virus identifica-

tion, we selected certain parameters for each program

for comparison. For VirSorter, the parameters selected

were (1) category 1 and 2 predictions, and (2) category 1

and 2 predictions using the virome decontamination

mode. For VirFinder, the intervals were (1) scores greater

than or equal to 0.90 (approximately equivalent to a p

value of 0.013) and (2) scores greater than or equal to

0.75 (approximately equivalent to a p value of 0.037).

Hereafter, we provide two statistics for each VirSorter

and VirFinder run that reflects results according to the

two set confidence intervals, respectively. Both VI-

BRANT and MARVEL have set output predictions and

therefore will be reported with a single statistic.

VIBRANT yields a single output of confident predic-

tions and therefore does not provide multiple output op-

tions. Since VIBRANT is only partially reliant on its

neural network machine learning model for making pre-

dictions, all comparisons are focused on VIBRANT’s full

workflow performance. VIBRANT does not consider

scaffolds shorter than 1000 bp or those that encode less

than four predicted open reading frames in order to

maintain a low false positive rate (FPR) and have suffi-

cient annotation information for identifying viruses.

Therefore, in comparison of performance metrics, only

scaffolds meeting VIBRANT’s minimum requirements

were analyzed. Inclusion of fragments encoding less than

four open reading frames in analyses, which are fre-

quently generated by metagenomic assemblies, is dis-

cussed below. We used the following statistics to

compare performance: recall, precision, accuracy, specifi-

city, MCC, and F1 score (Fig. 2).

First, we evaluated the true positive rate (TPR or re-

call) of viral genomic fragments as well as whole viral

genomes. Viral genomes were acquired from the NCBI

RefSeq and GenBank databases and split into various

non-redundant fragments between 3 and 15 kb to simu-

late genomic scaffolds (see “Methods” section). VI-

BRANT correctly identified 98.43% of the 29,926 viral

fragments, which was greater than VirSorter (40.03%

and 96.53%), VirFinder (76.23% and 89.03%), and MAR-

VEL (93.79%) at all scoring intervals. For VirSorter, it

was essential to set virome decontamination mode for

datasets consisting of mainly viruses, without which the

TPR was substantially inhibited.

Similar to TPR, we calculated FPR (or specificity)

using two different datasets: genomic fragments of bac-

teria and archaea (hereafter called genomic) and bacter-

ial plasmids (plasmid). Plasmids were evaluated

separately because they often encode for genes similar to

those on viral genomes, such as those for genome repli-

cation and mobilization. Genomic and plasmid se-

quences were acquired from NCBI RefSeq and GenBank

databases and split into various non-redundant frag-

ments between 3 and 15 kb, and putative proviruses

were depleted from the datasets (see “Methods” section).

VIBRANT had high specificity against both genomic

(See figure on previous page.)

Fig. 1 Representation of VIBRANT’s method for virus identification and virome functional characterization. a Workflow of virome analysis. Annotations

from KEGG, Pfam, and VOG databases are used to construct signatures of viral and non-viral annotation signatures that are read into a neural network

machine learning model. b Visual representation (PCA plot) of the metrics used by the neural network to identify viruses, depicting viral, plasmid, and

bacterial/archaeal genomic sequences
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(99.90%) and plasmid fragments (98.90%). VirSorter had

similar specificity against both genomic (99.84% and

99.59%) and plasmid (99.33% and 97.55%) datasets, but

only VirFinder set to a score cutoff of 0.90 was fully

comparable (genomic 99.10%, plasmid 98.39%). VirFin-

der at a score cutoff of 0.75 (genomic 97.19%, plasmid

94.93%) along with MARVEL (genomic 92.92%, plasmid

85.54%) were slightly less specific. Although VirFinder

(set to a score cutoff of 0.90) and VIBRANT had a simi-

lar overall specificity, VirFinder identified 9.3 times more

genomic scaffolds as viruses (false discoveries) compared

to VIBRANT (2311 and 249, respectively). MARVEL

was even more pronounced, identifying 72.9 times more

genomic scaffolds as viruses (18,164 total) compared to

VIBRANT.

We used the results from TPR of viral fragments and

FPR of non-viral genomic or plasmid fragments to calcu-

late precision (i.e., proportion of true virus identifica-

tions out of all virus identifications) and accuracy (i.e.,

proportion of correct predictions out of all predictions).

VIBRANT outperformed each other program at both

precision (VIBRANT 99.87%, VirFinder 98.80% and

96.85%, VirSorter 99.57% and 99.50%, and MARVEL

92.73%) and accuracy (VIBRANT 99.15%, VirFinder

87.67% and 93.08%, VirSorter 69.97% and 98.03%, and

MARVEL 93.23%). F1 and MCC are additional metrics

(maximum values of 1) accounting for both TPR and

FPR, and therefore acts as a comprehensive evaluation

of overall performance. Our calculation of F1 indicates

that VIBRANT (0.991) is able to better identify viruses

while subsequently reducing false identifications com-

pared to VirFinder (0.861 and 0.928), VirSorter (0.571

and 0.980), or MARVEL (0.933). MCC likewise indicated

that VIBRANT (0.983) was better suited at maximizing

the ratio of viruses to non-viruses compared to VirSorter

(0.498 and 0.961), VirFinder (0.774 and 0.864), and

MARVEL (0.865).

Although VIBRANT exhibits improved performance

with scaffolds at least 3 kb in length, it is worth noting

that performance drops considerably at the set mini-

mum length of 1 kb. To display this, the TPR and FPR

of both 1 k and 3 kb scaffolds were assessed (Additional

File 16: Figure S1A). For this analysis, VirSorter was

evaluated using virome decontamination mode and Vir-

Finder was set to a score cutoff of 0.90. MARVEL’s

minimum length requirement is 2 kb and therefore was

not compared with 1 kb scaffolds. For 1 kb viral scaf-

folds, VIBRANT (1.95%) and VirSorter (1.12%) recov-

ered far fewer scaffolds compared to VirFinder (22.56%).

However, at a length of 3 kb, VIBRANT (43.54%) recov-

ered more viral fragments than VirSorter (25.43%), Vir-

Finder (34.42%), and MARVEL (37.82%). Even at the

Fig. 2 Performance comparison of VIBRANT, VirFinder, VirSorter, and MARVEL on artificial scaffolds of 3–15 kb. Performance was evaluated using

datasets of reference viruses, bacterial plasmids, and bacterial/archaeal genomes. For VirFinder and VirSorter, two different confidence cutoffs

were used (VirFinder: score of at least 0.90 and score of at least 0.75, VirSorter: categories 1 and 2 predictions and categories 1 and 2 predictions

using virome decontamination mode). All four programs were compared using the following statistical metrics: F1 score, MCC, recall, precision,

accuracy, and specificity. To ensure equal comparison all scaffolds tested encoded at least four open reading frames
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low resolution of short scaffolds, VIBRANT’s FPR is not

impacted. For 1 kb genomic and 1 kb plasmid scaffolds,

VIBRANT (< 0.00% and 0.07%) and VirSorter (<0.00%

and 0.10%) had fewer false positive discoveries than Vir-

Finder (2.61% and 3.70%). Similarly, for 3 kb genomic

and 3 kb plasmid scaffolds, VIBRANT (0.10% and 2.69%)

and VirSorter (0.11% and 2.41%) falsely identified fewer

sequences than VirFinder (2.26% and 5.54%) or MAR-

VEL (6.08% and 16.30%). Overall, this suggests that Vir-

Finder is uniquely able to accurately recover short (e.g.,

1 kb) viral scaffolds while maintaining a relatively low

FPR, but this ability is not maintained with longer scaf-

folds. Moreover, our current abilities to sequence and

assemble scaffolds of lengths over 3 kb will likely lead to

a greater focus on longer viral sequences that are more

amenable to downstream analysis, such as taxonomic

classification and functional analyses.

Next, we assessed the ability of VIBRANT to filter out

eukaryotic contamination rather than falsely identify

these sequences as viral since eukaryotes were not repre-

sented in the training or testing datasets. However, these

contaminants should be sparse because the majority of

eukaryotic KEGG and VOG HMMs were removed from

the annotation databases (see “Methods” section). Like-

wise, eukaryotic-like annotations should receive a low v-

score. A total of 8672 eukaryotic sequences ranging from

1 to 15 kb were assessed. VIBRANT (0.62%), VirSorter

(0.05% and 0.05%), and MARVEL (0.44%) performed

well with recovering few sequences, whereas VirFinder

(4.92% and 15.44%) recovered contamination at a greater

rate (Additional File 16: Figure S1B).

Finally, viruses with RNA genomes as well as those

that infect archaea are rare in current culture systems

and sequence databases compared to bacterial dsDNA

viruses. However, the true abundance of RNA and ar-

chaeal viruses has yet to be explored mainly due to

biases towards dsDNA in genome extracting and se-

quencing methods [74] and the low abundance of ar-

chaea in most environments. VIBRANT was built to

identify all prokaryotic viruses in order to expand our

knowledge of understudied groups. A total of 70 RNA

viral genomes and 93 archaeal viral genomes were used

to evaluate recall. VIBRANT was able to recover 47% of

RNA viruses or 84% of those that encoded at least four

predicted open reading frames. In comparison, VirSorter

(7% and 70%), VirFinder (33% and 57%), and MARVEL

(68%) ranged from lower to higher recovery (Additional

File 16: Figure S1C). The high recovery of RNA viruses

by MARVEL is intriguing since the software was trained

exclusively on dsDNA Caudovirales but may be ex-

plained by the greater rate of false positive discovery.

For archaeal viruses, VIBRANT (96.77%) identified sig-

nificantly more viruses than VirSorter (70.97% and

93.55%), VirFinder (46.24% and 74.19%), and MARVEL

(80.65%) (Additional File 16: Figure S1D). Taken to-

gether, VIBRANT has the potential to identify RNA and

archaeal viruses, though the significance of this differ-

ence is hard to distinguish due to the current dearth of

reference genomes with which to validate.

Identification of viruses in diverse environments

We next tested VIBRANT’s ability to successfully

identify viruses from a diversity of environments.

Using 120,834 viruses from the IMG/VR database, in

which the source environment of viruses is catego-

rized, we identified that VIBRANT is more robust in

identifying viruses from all tested environments com-

pared to VirFinder, VirSorter, and MARVEL (Fig. 3a).

The 12 environments were animal-associated, aquatic

sediment, city, marine A (coastal, gulf, inlet, intertidal,

neritic, oceanic, pelagic, and strait), marine B (hydro-

thermal vent, volcanic, and oil), deep subsurface,

freshwater, human-associated, plant-associated, soil,

wastewater, and wetlands. VIBRANT averaged 94.59%

recall, substantially greater than VirFinder (29.19%

and 48.13%), VirSorter (54.37% and 87.49%), and

MARVEL (71.23%). Between the 12 environments, VI-

BRANT recovered between 89.55% and 97.87% (total

range of 8.33%) of the viruses. Conversely, VirFinder

(score cutoff of 0.75) had a range of 53.65%, VirSorter

(categories 1 and 2, virome decontamination) had a

range of 27.48%, and MARVEL had a range of

42.75%. These results suggest that in comparison to

other software, VIBRANT has no evident environ-

mental biases and is fully capable of identifying vi-

ruses from a broad range of source environments. We

also used a dataset of 13,203 viruses from the Human

Gut Virome database for additional comparison. The

vast majority of viruses (~ 96%) in this dataset were

assumed to infect bacteria. Although recall was di-

minished compared to IMG/VR datasets, VIBRANT

(79.22%) nevertheless outperformed or matched Vir-

Finder (31.67% and 62.83%), VirSorter (41.93% and

79.97%), and MARVEL (66.49%) on this dataset.

Relatively few viruses from the IMG/VR dataset that

were not identified by VIBRANT were identified by

either VirFinder, VirSorter, or MARVEL at even the

most inclusive score cutoffs (Fig. 3b). Furthermore,

for most environments, VIBRANT displayed the lar-

gest proportion of unique identifications, suggesting

that VIBRANT has the propensity for discovery of

viruses. The differences in the overlap of identified vi-

ruses was not too distinctive in environments for

which many reference viruses are available, such as

marine, though for more understudied environments,

such as plants or wastewater, VIBRANT displayed

near-complete overlap with VirFinder, VirSorter, and

MARVEL predictions. This suggests that database bias
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may not affect VIBRANT’s performance to a signifi-

cant degree. Although VirFinder does not rely on an

annotation database, it still has been trained on a

dataset of reference viral genomes which can contrib-

ute to database dependency and recall bias.

Identification of viruses in mixed metagenomes

Metagenomes assembled using short read technology

contain many scaffolds that do not meet VIBRANT’s

minimum length requirements and therefore are not

considered during analysis. Despite this, VIBRANT’s

Fig. 3 Effect of source environment on predictive abilities of VIBRANT, VirFinder, VirSorter, and MARVEL. Viral scaffolds from IMG/VR and HGV

database were used to test if VIBRANT displays biases associated with specific environments. a The recall (or recovery) of viral scaffolds from 12

environment groups was compared between VIBRANT and two confidence cutoffs for both VirFinder and VirSorter. Marine environments were

classified into two groups: marine A (coastal, gulf, inlet, intertidal, neritic, oceanic, pelagic, and strait) and marine B (hydrothermal vent, volcanic,

and oil). b Comparison of the overlap in the scaffolds identified as viruses by all three programs. Cutoffs for VirFinder (scores greater than or

equal to 0.75) and VirSorter (categories 1 and 2 using virome decontamination mode) were set to display each program’s ability to recover

diverse viruses
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predictions contain more annotation information and

greater total viral sequence length than tools built to

identify short sequences, such as scaffolds with less than

four open reading frames. VIBRANT, VirFinder (score

cutoff of 0.90), and VirSorter (categories 1 and 2) were

used to identify viruses from human gut, freshwater lake,

and thermophilic compost metagenome sequences

(Table 1). In addition, alternate program settings—VI-

BRANT virome mode, VirFinder at a score cutoff of

0.75, and VirSorter virome decontamination mode—

were used to identify viruses from an estuary virome

dataset. MARVEL was not considered in this analysis

due to the inability to achieve comparable precision.

Each metagenomic assembly was limited to sequences of

at least 1000 bp but no minimum open reading frame

limit was set. For these metagenomes, 31 to 40% of the

scaffolds were of sufficient length (at least four open

reading frames) to be analyzed by VIBRANT; for the es-

tuary virome, 62% was of sufficient length. In compari-

son, 100% of scaffolds from each dataset was long

Table 1 Virus recovery of VIBRANT, VirFinder, and VirSorter from mixed metagenomes and a virome

Metagenome Seqs. total
(≥ 1 kb)

Seqs. ≥ 4
ORFs

Metric VIBRANT VirFinder
(score ≥ 0.90)

VIBRANT vs.
VirFinder

VirSorter
(cat. 1 and 2)

VIBRANT vs.
VirSorter

Human gut:
adenoma

34,883 11,360 Total putative
viruses

527 604 0.87 284 1.86

Total virus
length (bp)

c5,234,242 1,696,118 3.09 3,982,292 1.31

Total virus
proteins

7,661 2,134 3.59 5,484 1.40

Human gut:
carcinoma

53,946 18,669 Total putative
viruses

784 1,329 0.59 450 1.74

Total virus
length (bp)

5,611,953 3,500,838 1.60 4,182,862 1.34

Total virus
proteins

8,401 4,644 1.81 5,945 1.41

Human gut:
healthy

42,739 17,079 Total putative
viruses

565 672 0.84 309 1.83

Total virus
length (bp)

5,623,082 2,411,049 2.33 4,512,571 1.25

Total virus
proteins

8,202 3,230 2.54 6,127 1.34

Thermophilic
compost

68,815 21,620 Total putative
viruses

1,047 878 1.19 383 2.73

Total virus
length (bp)

10,253,162 2,238,129 4.58 3,290,654 3.12

Total virus
proteins

9,912 2,806 3.53 4,400 2.25

Freshwater
lake (bog)

79,862 26,832 Total putative
viruses

5,626 7,567 0.74 1,503 3.74

Total virus
length (bp)

34,976,570 25,357,664 1.38 15,436,797 2.27

Total virus
proteins

56,120 37,537 1.50 21,280 2.64

*Estuary virome 5,247 3,277 Total putative
viruses

3,141 2,294 1.37 1,121 2.80

Total virus
length (bp)

6,591,285 6,478,804 1.02 5,163,674 1.28

Total virus
proteins

20,500 12,035 1.70 9,645 2.13

Mixed community assembled metagenomes from human gut, thermophilic compost, and freshwater, as well as an estuary virome, were used to compare virus

prediction ability between the three programs. For each assembly, the scaffolds were limited to a minimum length of 1000 bp. Only a subset of each dataset

contained scaffolds encoding at least four open reading frames. VIBRANT, VirFinder (score minimum of 0.90), and VirSorter (categories 1 and 2) were compared by

total viral predictions, total combined length of predicted viruses, and total combined proteins of predicted viruses. Comparison columns, denoted “VIBRANT vs.

VirFinder” and “VIBRANT vs. VirSorter”, display the comparison ratio of the given metric; bold indicates greater performance by VIBRANT. The asterisk represents

that VIBRANT, VirFinder and VirSorter were ran with alternate settings (see Methods)
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enough to be analyzed by VirFinder. The ability of Vir-

Finder to make a prediction with each scaffold is consid-

ered the major strength of the tool.

For all six assemblies, VirFinder averaged approxi-

mately 1.16 times more virus identifications than VI-

BRANT, though for both thermophilic compost and the

estuary virome VIBRANT identified a greater number.

Despite VirFinder averaging more total virus identifica-

tions, VIBRANT averaged 2.33 times more total viral se-

quence length and 2.44 times more total viral proteins.

This is the result of VIBRANT having the capability to

identify more viruses of higher quality and longer

sequence length. For example, among all six datasets,

VIBRANT identified 1320 total viruses at least 10 kb in

length in comparison to VirFinder’s 479.

VIBRANT was also able to outperform VirSorter in all

metrics, averaging 2.45 times more virus identifications,

1.76 times more total viral sequence length, and 1.86

times more encoded viral proteins.

VIBRANT’s method of predicting viruses provides a

unique opportunity in comparison to similar tools in

that it yields sequences of higher quality which are more

amenable for analyzing protein function from virome

data. It is an important distinction that the total number

of viruses identified may not be correlated with the total

viruses identified or the total number of encoded pro-

teins. Even if VIBRANT identified fewer total viruses

compared to other tools in certain circumstances, more

data of higher quality was generated as viral sequences

of longer length were identified as compared to many

short fragments. This provides an important distinction

that the metric of total viral predictions is not necessar-

ily an accurate representation for the quality or quantity

of the data generated.

Integrated provirus prediction

In many environments, integrated proviruses can ac-

count for a substantial portion of the active viral com-

munity [75]. Despite this, few tools exist that are capable

of identifying both lytic viruses from metagenomic scaf-

folds as well as proviruses that are integrated into host

genomes. To account for this important group of vi-

ruses, VIBRANT identifies provirus regions within meta-

genomic scaffolds or whole genomes. VIBRANT is

unique from most provirus prediction tools in that it

does not rely on sequence motifs, such as integration

sites, and therefore is especially useful for partial meta-

genomic scaffolds in which neither the provirus nor host

region is complete. In addition, this functionality of VI-

BRANT provides the ability to trim non-viral (i.e., host

genome) ends from viral scaffolds. This results in a more

correct interpretation of genes that are encoded by the

virus and not those that are misidentified as being within

the viral genome region. Briefly, VIBRANT identifies

proviruses by first identifying and isolating scaffolds and

genomes at regions spanning several annotations with

low v-scores. These regions were found to be almost

exclusive to host genomes. After cutting the original se-

quence at these regions, a refinement step trims the pu-

tative provirus fragment to the first instance of a virus-

like annotation to remove leftover host sequence (Fig.

4a). The final scaffold fragment is then analyzed by the

neural network similar to non-excised scaffolds.

To assess VIBRANT’s ability to accurately extract

provirus regions, we compared its performance to

PHASTER and Prophage Hunter, two programs expli-

citly built for this task, as well as VirSorter. We com-

pared the performance of these programs with

VIBRANT on four complete bacterial genomes. VI-

BRANT and PHASTER predicted an equal number of

proviruses, 17, while Prophage Hunter and VirSorter

identified slightly less with 13 and 16 identifications,

respectively (Fig. 4b). Only one putative provirus pre-

diction (Lactococcus lactis putative provirus 6) was

shared between all programs except VIBRANT. How-

ever, VIBRANT was able to identify two putative pro-

virus regions (Desulfovibrio vulgaris putative provirus

7 and Bacteroides vulgatus putative provirus 1) that

neither PHASTER nor Prophage Hunter identified,

though VirSorter identified these likely due to the

similar approach of extracting provirus regions. Man-

ual inspection of the putative Bacteroides vulgatus

provirus identified a number of virus hallmark and

virus-like proteins suggesting that it is an accurate

prediction (Fig. 4c). Our results suggest that VI-

BRANT has the ability to accurately identify provi-

ruses and, in some cases, can outperform other tools

in this task.

Both VIBRANT and VirSorter identify integrated

proviruses from metagenomic assemblies by cutting

host scaffolds at either end of a provirus region. By

employing this method, these programs generate a

more comprehensive understanding of a virome, but

errors in identified cut sites may occur due to the di-

versity of genomic arrangements in both virus and

host. This will result in fragmented viral genomes

that should have remained intact. We assessed the

error rate of VIBRANT and VirSorter (using virome

decontamination mode) for cutting viral genomes. A

total of 2466 Caudovirales complete genomes were

acquired from the NCBI RefSeq database, including

74 megaphages with genomes greater than 200 kb. In

total, VIBRANT fragmented 5 genomes whereas Vir-

Sorter fragmented 159 (categories 1 and 2) or 160

(categories 1, 2, and 3). Although relatively compar-

able, VirSorter incorrectly cut 6.2% more complete

viral genomes compared to VIBRANT (6.4% versus

0.2%, respectively).
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Fig. 4 Prediction of integrated proviruses by VIBRANT and comparison to PHASTER, Prophage Hunter, and VirSorter. a Schematic representing the

method used by VIBRANT to identify and extract provirus regions from host scaffolds using annotations. Briefly, v-scores are used to cut scaffolds at

host-specific sites and fragments are trimmed to the nearest viral annotation. b Comparison of proviral predictions within four complete bacterial

genomes between VIBRANT, PHASTER, Prophage Hunter, and VirSorter. For PHASTER, putative proviruses are colored according to “incomplete” (red),

“questionable” (blue), and “intact” (green) predictions. Prophage Hunter is colored according to “active” (green) and “ambiguous” (blue) predictions. All

VirSorter predictions for categories 1 and 2 are shown in green. c Manual validation of the Bacteroides vulgatus provirus prediction made by VIBRANT.

The presence of viral hallmark protein, integrase and genome replication proteins strongly suggests this is an accurate prediction

Kieft et al. Microbiome            (2020) 8:90 Page 14 of 23



Evaluating quality and completeness of predicted viral

sequences

Determination of quality, in relation to completeness, of

a predicted viral sequence has been notoriously difficult

due to the absence of universally conserved viral genes.

To date, the most reliable metric of completeness for

metagenome- assembled viruses is to identify circular se-

quences (i.e., complete circular genomes). Therefore, the

remaining alternatives rely on estimation based on

encoded proteins that function in central viral processes:

replication of genomes and assembly of new viral

particles.

VIBRANT estimates the quality of predicted viral se-

quences, a relative proxy for completeness, and indicates

sequences that are circular. To do this, VIBRANT uses

annotation metrics of nucleotide replication and viral

hallmark proteins. Hallmark proteins are those typically

specific to viruses and those that are required for pro-

ductive infection, such as structural (e.g., capsid, tail,

baseplate), terminase, or viral holin/lysin proteins.

Nucleotide replication proteins are a variety of proteins

associated with either replication or metabolism, such as

nucleases, polymerases, and DNA/RNA binding pro-

teins. Viruses are categorized as low-, medium-, or high-

quality draft as determined by VOG annotations (Fig. 5a,

Additional File 17: Table S16). High-quality draft repre-

sents sequences that are likely to contain the majority of

a virus’s complete genome and will contain annotations

that are likely to aid in analysis of the virus, such as

phylogenetic relationships and true positive verification.

Medium draft quality represents the majority of a

complete viral genome but is more likely to be a smaller

portion in comparison to high quality. These sequences

may contain annotations useful for analysis but are

under less strict requirements compared to high quality.

Finally, low draft quality constitutes sequences that were

not found to be of high or medium quality. Many meta-

genomic scaffolds will likely be low-quality genome frag-

ments, but this quality category may still contain the

higher quality genomes of some highly divergent viruses.

We benchmarked VIBRANT’s viral genome quality es-

timation using a total of 2466 Caudovirales genomes

from NCBI RefSeq database. Genomes were evaluated

either as complete sequences or by removing 10% of the

sequence at a time stepwise between 100 and 10% com-

pleteness (Fig. 5b). The results of VIBRANT’s quality

analysis displayed a linear trend in indicating more

complete genomes as high quality and less complete ge-

nomes as lower quality. The transition from categorizing

genomes as high quality to medium quality ranged from

60 to 70% completeness. Although we acknowledge that

VIBRANT’s metrics are not perfect, we demonstrate the

first benchmarked approach to quantify and characterize

genome quality associated with completeness of viral

sequences. Manual inspection and visual verification of

viral genomes that were characterized into each of these

genome quality categories showed that quality estima-

tions matched annotations (Fig. 5c).

Identifying function in viral communities: metabolic

analysis

Viruses are a dynamic and key facet in the metabolic

networks of microbial communities and can reprogram

the landscape of host and community metabolism dur-

ing infection. This can often be achieved by modulating

host metabolic networks through expression of AMGs

encoded on viral genomes. Identifying these AMGs and

their associated role in the function of communities is

imperative for understanding complex microbiome dy-

namics, or in some cases can be used to predict virus-

host relationships. VIBRANT is optimized for the evalu-

ation of viral community function by identifying and

classifying the metabolic capabilities encoded by a vir-

ome. To do this, VIBRANT identifies AMGs and assigns

them into specific metabolic pathways and broader cat-

egories as designated by KEGG annotations.

To highlight the utility of this feature, we compared

the metabolic function of IMG/VR viruses derived from

several diverse environments: freshwater, marine, soil,

human-associated, and city (Additional File 16: Figure

S2). We found natural environments (freshwater, mar-

ine, and soil) to display a different pattern of metabolic

capabilities compared to human environments (human-

associated and city). Viruses originating from natural en-

vironments tend to largely encode AMGs for amino acid

and cofactor/vitamin metabolism with a more secondary

focus on carbohydrate and glycan metabolism. On the

other hand, AMGs from city and human environments

are dominated by amino acid metabolism, and to some

extent cofactor/vitamin and sulfur relay metabolism. In

addition to this broad distinction, all five environments

appear slightly different from each other. Despite fresh-

water and marine environments appearing similar in the

ratio of AMGs by metabolic category, the overlap in spe-

cific AMGs is less extensive. The dissimilarity between

natural and human environments is likewise corrobo-

rated by the relatively low overlap in individual AMGs.

A useful observation provided by VIBRANT’s meta-

bolic analysis is that there appears to be globally con-

served AMGs (i.e., present within at least 10 of the 12

environments tested). These 14 genes—dcm, cysH, folE,

phnP, ubiG, ubiE, waaF, moeB, ahbD, cobS, mec, queE,

queD, queC—likely perform functions that are central to

viral replication regardless of host or environment. Not-

ably, folE, queD, queE, and queC constitute the entire 7-

cyano-7-deazaguanine (preQ0) biosynthesis pathway, but

the remainder of queuosine biosynthesis are entirely ab-

sent with the exception of queF. Certain AMGs are
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unique in that they are the only common representatives

of a pathway among all AMGs identified, such as phnP

for methylphosphonate degradation. These AMGs may

indicate an evolutionary advantage for manipulating a

specific step of a pathway, such as overcoming a reaction

bottleneck, as opposed to modulating an entire pathway

as seen with preQ0 biosynthesis. However, it should be

noted that this list of 14 globally conserved AMGs may

not be entirely inclusive of the core set of AMGs in a

given environment.

VIBRANT was evaluated for its ability to provide new

insights into viral community function by highlighting

AMGs from mixed metagenomes. Using only data from

VIBRANT’s direct outputs, we compared the viral meta-

bolic profiles of 6 hydrothermal vent and 15 human gut

metagenomes (Fig. 6). As anticipated, based on IMG/VR

Fig. 5 Estimation of genome quality of identified viral scaffolds. a Explanation of interpretation of quality categories: complete circular, high-quality

draft, medium-quality draft, and low-quality draft. Quality generally represents total proteins, viral annotations, viral hallmark protein, and nucleotide

replication proteins, which are common metrics used for manual verification of viral genomes. b Application of quality metrics to 2466 NCBI RefSeq

Caudovirales viruses with decreasing genome completeness from 100 to 10% completeness, respective of total sequence length. All 2466 viruses are

represented within each completeness group. c Examples of viral scaffolds representing low-, medium-, and high-quality draft categories
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environment comparisons, the metabolic capabilities be-

tween the two environments were different even though

the number of unique AMGs was relatively equal (138

for hydrothermal vents and 151 for human gut). The

pattern displayed by metabolic categories for each meta-

genome was similar to that displayed by marine and hu-

man viromes. For hydrothermal vents, the dominant

AMGs were part of carbohydrate, amino acid, and cofac-

tor/vitamin metabolism, whereas human gut AMGs

were mostly components of amino acid and, to some ex-

tent, cofactor/vitamin metabolism. Although the ob-

served AMGs and metabolic pathways were overall

different, about a third (50 total AMGs) of all AMGs

from each environment was shared; between these meta-

genomes alone, all 14 globally conserved AMGs were

present.

Observations of individual AMGs provided insights

into how viruses interact within different environments.

For example, tryptophan 7-halogenase (prnA) was iden-

tified in high abundance (45 total AMGs) within hydro-

thermal vent metagenomes but was absent from the

human gut. Verification using GOV2 (Global Ocean Vir-

omes 2.0) [76] and Human Gut Virome databases sup-

ported our finding that prnA appears to be constrained

to aquatic environments, which is further supported by

the gene’s presence on several marine cyanophages.

PrnA catalyzes the initial reaction for the formation of

pyrrolnitrin, a strong antifungal antibiotic. Identification

of this AMG only within aquatic environments suggests

a directed role in aquatic virus lifestyles. Similarly, cyst-

eine desulfhydrase (iscS) was abundant (14 total AMGs)

within the human gut metagenomes but not hydrother-

mal vents.

Application of VIBRANT: identification of viruses from

individuals with Crohn’s disease

We applied VIBRANT to identify viruses of at least 5 kb

in length from 102 human gut metagenomes (discovery

dataset): 49 from individuals with Crohn’s disease and

53 from healthy individuals [58, 59]. VIBRANT identi-

fied 14,121 viruses out of 511,977 total scaffolds. These

viral sequences were dereplicated to 8822 non-

redundant viral sequences using a cutoff of 95% nucleo-

tide identity over at least 70% of the sequence. We next

used read coverage of each virus sequence from all 102

metagenomes to calculate relative differential abundance

across Crohn’s disease and healthy individuals. In total,

we found 721 viral sequences to be more abundant in

the gut microbiomes associated with Crohn’s disease

(Crohn’s-associated) and 950 to be more abundant in

healthy individuals (healthy-associated).

Using these viruses identified by VIBRANT, we sought

to identify taxonomic or host-association relationships

to differentiate the viral communities of individuals with

Crohn’s disease. We used vConTACT2 to cluster the

721 Crohn’s- or 950 healthy-associated virus sequences

with reference genomes using protein similarity. The

majority of virus sequences (95.5%) were not clustered

with any reference genome at approximately the genus

level suggesting VIBRANT may have identified a large

pool of novel or unique viral genomes. Although fewer

total viruses were associated with Crohn’s disease, sig-

nificantly more were clustered to at least one representa-

tive at the genus level (72 for Crohn’s and 4 for healthy).

Interestingly, no differentially abundant viruses from

healthy individuals clustered with Enterobacterales-

infecting reference viruses (enteroviruses), yet the major-

ity (60/76) of Crohn’s-associated viruses were clustered

with known enteroviruses, such as Lambda- and

Shigella-related viruses. The remaining 16 viruses mainly

Fig. 6 Comparison of AMG metabolic categories between

hydrothermal vents and human gut. Venn diagram depicts the

unique and shared non-redundant AMGs between 6 hydrothermal

vent and 15 human gut metagenomes. The graphs depict the

differential abundance of KEGG metabolic categories of respective

AMGs for hydrothermal vents (top) and human gut (bottom)
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clustered with Caudovirales infecting Lactococcus, Clos-

tridium, Riemerella, Klebsiella, and Salmonella species,

though Microviridae and a likely complete crAssphage

were also identified. A significant proportion of all

Crohn’s-associated viruses (250/721) and the majority of

genus-level clustered viruses (42/76) were found to be

integrated sequences within a microbial genomic scaf-

fold but were able to be identified due to VIBRANT’s

ability to excise proviruses.

We also generated a protein sharing network contain-

ing all 721 Crohn’s and 950 healthy-associated virus se-

quences, which corresponded to taxonomic and host

relatedness (Fig. 7a). This protein network identified two

different clustering patterns: (1) overlapping Crohn’s and

healthy-associated viral populations clustered with Fir-

micutes-like viruses which may be indicative of a stable

gut viral community; (2) Crohn’s-associated viruses clus-

tered with Enterobacterales-like and Fusobacterium-like

viruses which may be indicative of a state of dysbiosis.

The presence of a greater diversity and abundance of

Enterobacterales and Fusobacteria has previously been

linked to Crohn’s disease [77, 78], and therefore the

presence of viruses infecting these bacteria may provide

similar information.

Fig. 7 Viral metabolic comparison between Crohn’s disease and healthy individuals gut metagenomes. a Partial view of vConTACT2 protein

network clustering of viruses identified by VIBRANT and reference viruses. Small clusters and clusters with no VIBRANT representatives are not

shown. Each dot represents one genome and is colored according to host or dataset association. Relevant viral groups are indicated by dotted

circles (circles enclose estimated boundaries). b tBLASTx similarity comparison between (1) Escherichia phage Lambda and (2) three Crohn’s-

associated viruses identified by VIBRANT. Putative virulence genes are indicated as follows: pagC, tonB, hokC, and dicB
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VIBRANT provides annotation information for all of

the identified viruses which can be used to infer func-

tional characteristics in conjunction with host associ-

ation. Comparison of Crohn’s-associated Lambda-like

virus genomic content and arrangement suggested a

possible role of virally encoded host-persistence and

virulence genes that are absent in the healthy-associated

virome (Fig. 7b). Among all Crohn’s-associated viruses,

17 total genes (bor, dicB, dicC, hokC, kilR, pagC, ydaS,

ydaT, yfdN, yfdP, yfdQ, yfdR, yfdS, yfdT, ymfL, ymfM,

and tonB) that have the potential to impact host survival

or virulence were identified. Importantly, no healthy-

associated viruses encoded such genes (Table 2). The

presence of these putative dysbiosis-associated genes

(DAGs) may contribute to the manifestation and/or per-

sistence of disease, similar to what has been proposed

for the bacterial microbiome [79–81]. For example, pagC

encodes an outer membrane virulence factor associated

with enhanced survival of the host bacterium within the

gut [82]. The identification of dicB encoded on a puta-

tive Escherichia virus is unique in that it may represent a

“cryptic” provirus that protects the host from lytic viral

infection, thus likely to enhance the ability of the host to

survive within the gut [83]. Finally, hokC may indicate

mechanisms of virally encoded virulence [84].

To characterize the distribution and association of

DAGs with Crohn’s disease, we calculated differential

abundance for two highly abundant DAG-encoding vi-

ruses across all metagenome samples. The first virus

encoded pagC and yfdN, and the second encoded dicB,

dicC, and hokC. Comparison of Crohn’s disease to

healthy metagenomes indicates that these viruses are

present within the gut metagenomes of multiple individ-

uals but more abundant in association with Crohn’s dis-

ease (Additional File 16: Figure S3A). This suggests an

association of disease with not only putative DAGs, but

also specific and potentially persistent, viral groups that

encode them. In order to correlate increased abundance

with biological activity, we calculated the index of repli-

cation (iRep) for each of the two viruses [64]. Briefly,

iRep is a function of differential read coverage which is

able to provide an estimate of active genome replication.

Seven metagenomes containing the greatest abundance

for each virus were selected for iRep analysis and indi-

cated that each virus was likely active at the time of col-

lection (Additional File 16: Figure S3B).

To validate these aforementioned findings, we applied

VIBRANT to two additional metagenomic datasets from

cohorts of individuals with Crohn’s disease and healthy in-

dividuals (validation dataset): 43 from individuals with

Crohn’s disease and 21 from healthy individuals [66, 67].

VIBRANT identified 3759 redundant viral genomes from

Crohn’s-associated metagenomes and 1444 from healthy-

associated metagenomes. Determination of protein net-

works and visualization similarly identified clustering of

Crohn’s-associated viruses with reference enteroviruses

(Additional File 16: Figure S4). Likewise, we were able to

identify 15 out of the 17 putative DAGs to be present in

Table 2 Identification of putative DAGs encoded by Crohn’s-associated viruses

ID Gene Name Crohn’s disease Healthy

PF06291.11 bor Bor protein 8 0

K22304 dicB Cell division inhibition protein 8 0

K22302 dicC Transcriptional repressor of cell division inhibition gene dicB 18 0

K18919 hokC Protein HokC/D 16 0

VOG11478 kilR Killing protein 15 0

K07804 pagC Putative virulence related protein 13 0

PF15943.5 ydaS Putative antitoxin of bacterial toxin-antitoxin system 22 0

PF06254.11 ydaT Putative bacterial toxin 18 0

VOG04806 yfdN Uncharacterized protein 19 0

VOG01357 yfdP Uncharacterized protein 11 0

VOG11472 yfdQ Uncharacterized protein 11 0

VOG01639 yfdR Uncharacterized protein 17 0

VOG01103 yfdS Uncharacterized protein 18 0

VOG16442 yfdT Uncharacterized protein 8 0

VOG00672 ymfL Uncharacterized protein 25 0

VOG21507 ymfM Uncharacterized protein 9 0

K03832 tonB periplasmic protein 3 0

The differential abundance between Crohn’s disease and healthy metagenomes of 17 putative DAGs. Abundance of each gene represents non-redundant

annotations or total gene copy number, from Crohn’s-associated and healthy-associated viruses
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higher abundance in the Crohn’s disease microbiome

(Additional File 18: Table S17). This validates our findings

of the presence of unique viruses and proteins associated

with Crohn’s disease and suggests that Enterobacterales-

like viruses and putative DAGs may act as markers of

Crohn’s disease. Overall, our results suggest that VI-

BRANT provides a platform for characterizing these

relationships.

Discussion
Viruses that infect bacteria and archaea are key compo-

nents in the structure, dynamics, and interactions of mi-

crobial communities [2, 6, 10, 76, 85]. Tools that are

capable of efficient recovery of these viral genomes from

mixed metagenomic samples are likely to be fundamen-

tal to the growing applications of metagenomic sequen-

cing and analyses. Importantly, such tools would need to

reduce bias associated with specific viral groups (e.g.,

Caudovirales) and highly represented environments (e.g.,

marine). Moreover, viruses that exist as integrated provi-

ruses within host genomes should not be ignored as they

can represent a substantial fraction of infections in cer-

tain conditions and also persistent infections within a

community [75].

Here we have presented VIBRANT, a newly described

method for the automated recovery of both free and in-

tegrated viral genomes from metagenomes that hybrid-

izes neural network machine learning and protein

signatures. VIBRANT utilizes metrics of non-reference-

based protein similarity annotation from KEGG, Pfam,

and VOG databases in conjunction with a unique “v-

score” metric to recover viruses with little to no biases.

VIBRANT was built with the consideration of the hu-

man guided intuition used to manually inspect metage-

nomic scaffolds for viral genomes and packages these

ideas into an automated software. This platform origi-

nates from the notion that proteins generally considered

as non-viral, such as ribosomal proteins [86], may be de-

cidedly common among viruses and should be consid-

ered accordingly when viewing annotations. V-scores are

meant to provide a quantitative metric for the level of

virus-association for each annotation used by VIBRANT,

especially for Pfam and KEGG HMMs. That is, v-scores

provide a means for both highlighting common or hall-

mark viral proteins as well as differentiating viral from

non-viral annotations. In addition, v-scores give a quan-

tifiable value to viral hallmark genes instead of categoriz-

ing them in a binary fashion.

VIBRANT was not only built for the recovery of

viral genomes, but also to act as a platform for inves-

tigating the function of a viral community. VIBRANT

supports the analysis of viromes by assembling useful

annotation data and categorizing the metabolic path-

ways of viral AMGs. Using annotation signatures,

VIBRANT furthermore is capable of estimating gen-

ome quality and distinguishing between lytic and lyso-

genic viruses. To our knowledge, VIBRANT is the

first software that integrates virus identification, anno-

tation, and estimation of genome completeness into a

stand-alone program.

Benchmarking and validation of VIBRANT indicated

improved performance compared to VirSorter [37], Vir-

Finder [41], and MARVEL [45], three commonly used

programs for identifying viruses from metagenomes.

This included a substantial increase in the relationship

between true virus identifications (recall, true positive

rate) and false non-virus identifications (specificity, false

positive rate). That is, VIBRANT recovered more viruses

with no discernable expense to false identifications. The

result was that VIBRANT was able to recover an average

of 2.3 and 1.7 more viral sequence from real metagen-

omes than VirFinder and VirSorter, respectively. When

tested on metagenome-assembled viral genomes from

IMG/VR [87] representing diverse environments, VI-

BRANT was found to have no perceivable environment

bias towards identifying viruses. In comparison to pro-

virus prediction tools, specifically PHASTER [47], Pro-

phage Hunter [48], and VirSorter, VIBRANT was shown

to be proficient in identifying viral regions within bacter-

ial genomes. This included the identification of a puta-

tive Bacteroides provirus that PHASTER and Prophage

Hunter were unable to identify. The importance of inte-

grated provirus prediction was underscored in the ana-

lysis of Crohn’s disease metagenomes since it was found

that a significant proportion of disease-related viruses

were temperate viruses existing as host-integrated

genomes.

VIBRANT’s method allows for the distinction between

scaffold size and coding capacity in designating the mini-

mum length of virus identifications. Traditionally, a cut-

off of 5000 bp has been used to filter for scaffolds of a

sufficient length for analysis. This is under the presump-

tion that a longer sequence will be likely to encode more

proteins. For example, this cutoff has been adopted by

IMG/VR. However, we suggest a total protein cutoff of

four open reading frames rather than sequence length

cutoff to be more suitable for comprehensive

characterization of the viral community. VIBRANT’s

method works as a strict function of total encoded pro-

teins and is completely agnostic to sequence length for

analysis. Therefore, the boundary of minimum encoded

proteins will support a more guided cutoff for quality

control of virus identifications. For example, increasing

the minimum sequence length to 5000 bp will have no

effect on accuracy or ability to recall viruses since VI-

BRANT will only be considerate of the minimum total

proteins, which is set to four. The result will be the loss

of all 1000 to 4999 bp viruses that still encode at least
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four proteins. To visualize this distinction, we applied

VIBRANT with various length cutoffs to the previously

used estuary virome (see Table 1). Input sequences were

stepwise limited from 1000 to 10,000 bp (1000 bp steps)

or four open reading frames to 13 open reading frames

(one open reading frame steps) in length. Limiting to

open reading frames indicated a reduced drop-off in

total virus identifications and total viral sequence com-

pared to a minimum sequence length limit (Additional

File 16: Figure S5).

The output data generated by VIBRANT—protein/gene

annotation information, protein/gene sequences, HMM

scores and e-values, viral sequences in FASTA and Gen-

Bank format, indication of AMGs, genome quality, etc.—

provides a platform for easily replicated pipeline analyses.

Application of VIBRANT to characterize the function of

Crohn’s-associated viruses emphasizes this utility. VI-

BRANT was not only able to identify a substantial number

of viral genomes, but also provided meaningful information

regarding putative DAGs, viral sequences for differential

abundance calculation and genome alignment, viral pro-

teins for clustering, and AMGs for metabolic comparisons.

Conclusions
Our construction of the VIBRANT platform expands the

current potential for virus identification and characterization

from metagenomic and genomic sequences. When com-

pared to two widely used software programs, VirFinder and

VirSorter, we show that VIBRANT improves total viral se-

quence and protein recovery from diverse human and nat-

ural environments. As sequencing technologies improve and

metagenomic datasets contain longer sequences, VIBRANT

will continue to outcompete programs built for short scaf-

folds (e.g., 500–3000 bp) by identifying more higher quality

genomes. Our workflow, through the annotation of viral ge-

nomes, aids in the capacity to discover how viruses of bac-

teria and archaea may shape an environment, such as driving

specific metabolism during infection or dysbiosis in the hu-

man gut. Furthermore, VIBRANT is the first virus identifica-

tion software to incorporate annotation information into the

curation of predictions, estimation of genome quality, and in-

fection mechanism (i.e., lytic vs lysogenic). We anticipate that

the incorporation of VIBRANT into microbiome analyses

will provide easy interpretation of viral data, enabled by VI-

BRANT’s comprehensive functional analysis platform and

visualization of information.
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