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Abstract Nonlinear energy sink (NES) can passively absorb broadband energy from
primary oscillators. Proper multiple NESs connected in parallel exhibit superior perfor-
mance to single-degree-of-freedom (SDOF) NESs. In this work, a linear coupling spring
is installed between two parallel NESs so as to expand the application scope of such vi-
bration absorbers. The vibration absorption of the parallel and parallel-coupled NESs
and the system response induced by the coupling spring are studied. The results show
that the responses of the system exhibit a significant difference when the heavier cubic
oscillators in the NESs have lower stiffness and the lighter cubic oscillators have higher
stiffness. Moreover, the efficiency of the parallel-coupled NES is higher for medium shocks
but lower for small and large shocks than that of the parallel NESs. The parallel-coupled
NES also shows superior performance for medium harmonic excitations until higher re-
sponse branches are induced. The performance of the parallel-coupled NES and the SDOF
NES is compared. It is found that, regardless of the chosen SDOF NES parameters, the
performance of the parallel-coupled NES is similar or superior to that of the SDOF NES
in the entire force range.
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1 Introduction

Nonlinear energy sink (NES) can engage in resonance with modes over broad frequency
bands because of lacking a preferential resonant frequency. Therefore, broadband energy can
be effectively transferred from primary systems to properly designed NESs[1–3]. Due to this ad-
vantage, NESs are being widely used in a wide variety of engineering applications. In order to
meet the engineering requirements, several novel devices based on the theory of targeted energy
transfer are proposed. Among those, vibro-impact NES[4–6] is the least like original design of
purely cubic stiffness absorber. It consumes energy through the impact between the primary
system and an internal impactor, and can be connected in parallel with cubic NES to enhance
energy absorption[7–8]. Rotary-oscillatory NES is capable of dissipating energy with its angular
and radial damping elements[9]. Piecewise linear stiffness NES is straightforward to manufac-
ture, and can effectively transfer energy[10–12]. NES with piecewise quadratic damping[13] and
non-smooth NES with descending stiffness[14] can suppress high branches of response within a
given range of excitation amplitude.

Magnetic components were used to realize purely cubic stiffness instead of springs and
strings, which enable the design of cubic NES to be more flexible[15–16]. It was shown that
the shock mitigation performance of asymmetric magnet-based NES is superior to that of sym-
metric stiffness-based NES[17]. Bi-stable and multi-stable components[18–20] as well as internal
rotators[21–22] and inerters[23–25] were used to transfer energy and improve the vibration ab-
sorption performance.

Several traditional cubic NESs can be connected in series or parallel so as to improve the
vibration absorption performance. Multiple-degree-of-freedom cubic NESs in series have been
investigated[26–28], and it was shown that they have superior performance with respect to single-
degree-of-freedom (SDOF) NESs of equal mass[29–31]. Cubic NESs in parallel[32–34] have been
also found to have superior performance with respect to SDOF NESs, and have simpler structure
than NESs in series.

The historical progress of NES is reviewed in detail from the viewpoints of design, analysis,
and application, respectively[35]. The properties and improvement of NES still attract much
attention. NiTiNOL-steel wire ropes are used to enhance the performance of cubic NES[36].
The vibration reduction of the multiple modes of a cantilever beam is investigated by using an
impact damper[37]. The vibration absorption of a cubic NES under harmonic and random base
excitations is studied[38].

With the development of dynamical theory and design methods, NES has been considering
in a growing number of engineering applications. Existing research shows that the vibrations of
engine crankshaft[39], rotor system[40], hypersonic wing[41], whole spacecraft[42], fluid conveying
pipes[43–44], and composite laminated plate[45] can be effectively suppressed by NES. NES is used
to integrate with a viscoelastic isolation system[46] to improve its performance and a piezoelectric
device[47] to realize vibration reduction and broad-band energy harvest simultaneously. It can
also be used to mitigate seismic response and applied in civil engineering[48–51]. In some cases,
the excitations imposed on the primary system are known in advance and/or only changed in
a small range. Therefore, NES can be optimized and compared in a straightforward manner.
However, in certain other cases, when the excitations are unknown and/or vary over a wide
range, e.g., the seismic load of buildings and the combined load for aircrafts and spacecrafts,
the development of NES must balance the vibration absorption influence of both small and
large excitations.

In this work, a linear spring is attached to two traditional cubic NESs in parallel to construct
parallel-coupled NES with favorable performance over a large range of excitations. We aim to
enhance the performance of the NES as much as possible through a minor change of the existing
design. In Sections 2 and 3, the vibration absorption of the parallel-coupled NES is studied and
the variation in the dynamic response of the system induced by the coupling spring is analyzed.
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In Section 4, the performance of the parallel-coupled NES and an SDOF cubic NES is compared
under shock and harmonic excitations. In Section 5, the main conclusions are summarized.

2 Coupling influence under shock excitation

Figure 1 shows a linear primary oscillator attached to two parallel purely cubic oscillators
connected by a linear spring. M , µ, and K represent the mass, damping, and stiffness of the
linear oscillator, respectively. m1,2, λ1,2, and k1,2 are the mass, damping, and stiffness of the
two cubic oscillators, respectively. k3 is the stiffness of the linear coupling spring. F is the
external force. The two cubic oscillators are referred to as the parallel NESs for k3 = 0, and
the integrated absorber is referred to as the parallel-coupled NES for k3 6= 0.

λ

 

μ

λ

Fig. 1 Linear primary oscillator attached to the parallel-coupled NES

The dynamic equations of the linear primary oscillator attached to the parallel-coupled NES
are derived as follows:

Mẍ1 + µẋ1 + Kx1 + λ1(ẋ1 − ẋ2) + k1(x1 − x2)3 + λ2(ẋ1 − ẋ3) + k2(x1 − x3)3 = F, (1a)

m1ẍ2 + λ1(ẋ2 − ẋ1) + k1(x2 − x1)3 + k3(x2 − x3) = 0, (1b)

m2ẍ3 + λ2(ẋ3 − ẋ1) + k2(x3 − x1)3 + k3(x3 − x2) = 0, (1c)

where the overdot represents the derivative with respect to time. Then, the following parameters
are introduced:





ε1 =
m1

M
, ε2 =

m2

M
, t̃ =

√
K

M
t, µ̃ =

µ√
KM

, λ̃1 =
λ1√
KM

,

λ̃2 =
λ2√
KM

, F̃ =
F

K
, k̃1 =

k1

K
, k̃2 =

k2

K
, k̃3 =

k3

K
.

Using the above transformations, Eq. (1) is rewritten as

ẍ1 + µ̃ẋ1 + x1 + λ̃1(ẋ1 − ẋ2) + k̃1(x1 − x2)3 + λ̃2(ẋ1 − ẋ3) + k̃2(x1 − x3)3 = F̃ , (2a)

ε1ẍ2 + λ̃1(ẋ2 − ẋ1) + k̃1(x2 − x1)3 + k̃3(x2 − x3) = 0, (2b)

ε2ẍ3 + λ̃2(ẋ3 − ẋ1) + k̃2(x3 − x1)3 + k̃3(x3 − x2) = 0. (2c)

First, we investigate the influence of the coupling spring on the system response under shock
excitation. The Runge-Kutta method is used to solve Eq. (2). For convenience, the overbars of
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the dimensionless parameters in the following analysis are dropped. The primary oscillator is
excited by the following half-wave shock:

F =

{
f sin(2πt/T ), 0 6 t 6 T/2,

0, t > T/2,
(3)

where T = 0.4/π.
The total energy of the primary oscillator is

E1,2 =
1
2

∫ t

0

(x2
1 + ẋ2

1)dτ.

The vibration absorption efficiency is

η =
E1 − E2

E1
,

where E1 represents the total energy of the primary oscillator without an NES attached, and
E2 represents the total energy of the primary oscillator attached to a given NES.

The vibration absorption efficiency of the parallel and parallel-coupled NESs is shown in
Fig. 2. The following parameters are chosen:

ε1 = 0.07, ε2 = 0.03, λ1 = 0.007, λ2 = 0.003, k1 = 0.1, k2 = 0.5.

It is noted that the two cubic oscillators have different parameters and the heavier cubic oscilla-
tor has higher damping and lower stiffness for both the parallel NESs and the parallel-coupled
NES. Figure 2 shows that the parallel NESs are activated for a small excitation. However, its
efficiency quickly drops with the increase in the excitation. At f = 11, the efficiency returns to
a high value. The efficiency curve of the parallel-coupled NES is smoother with respect to that
of the parallel NESs. The latter rises rapidly from f = 5, and reaches its peak at f = 9. It
is seen that the efficiency of the parallel-coupled NES is higher than that of the parallel NESs
for medium excitations. However, it is lower for both small and large excitations. It can be
concluded that both the parallel and parallel-coupled NESs have their respective advantages.

In order to elucidate the reason for the occurrence of the two peaks in the efficiency of the
parallel NESs, the waveforms of the system are shown in Figs. 3–5.

η

-

Fig. 2 Vibration absorption efficiency of the parallel (k3 = 0) and parallel-coupled (k3 = 0.1) NESs
with shock amplitude, where ε1 = 0.07, ε2 = 0.03, λ1 = 0.007, λ2 = 0.003, k1 = 0.1, and
k2 = 0.5 (color online)
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Fig. 3 Responses of the system with the parallel NESs at f = 2
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Fig. 4 Responses of the system with the parallel NESs at f = 3
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Fig. 5 Responses of the system with the parallel NESs at f = 11

At f = 2, the amplitudes of the two cubic oscillators of the parallel NESs are both relatively
small, and thus the vibration of the primary oscillator is prolonged. The vibrations of the
two cubic oscillators are different because of the difference of their parameters. At f = 3, the
lighter cubic oscillators undergo a large amplitude vibration. However, the amplitude of the
other one remains low. A large amount of energy of the primary oscillator is dissipated due to
the activation of one of the NESs, causing the efficiency of the parallel NESs to reach the first
peak. Since the motion of the two oscillators in the parallel NESs is relatively independent,
the obtained result is in accord with that of the SDOF NES, i.e., NES with small mass and/or
large stiffness is easier to activate. At f = 11, the two cubic oscillators are both activated
and produce large amplitude vibrations, causing the efficiency of the parallel NESs to reach
its second peak. Generally, an SDOF NES with large mass and/or small stiffness has higher
efficiency under large shocks. Therefore, these parallel NESs can be activated under small
shocks and have excellent performance under larger shocks. However, the efficiency for medium
shocks is not favorable.

The waveforms of the system with the parallel-coupled NES are shown in Figs. 6 and 7.
The responses of the primary oscillator with the parallel and parallel-coupled NESs are almost
the same at f = 2. The responses of the two cubic oscillators in the parallel-coupled NES are
similar due to the elastic connection between them. However, the case is different when the
two cubic oscillators are both activated. The relative motion between the two cubic oscillators
in the parallel NESs is significantly larger than that in the parallel-coupled NES. However,
the relative motion in the parallel NESs has no practical significance for vibration absorption.
Moreover, the efficiency of the parallel-coupled NES is slightly higher than that of the parallel
NESs, and the amplitudes of the two cubic oscillators in the parallel and parallel-coupled NESs
are close. Therefore, it can be concluded that the phase difference of the two cubic oscillators
in the parallel-coupled NES is smaller than that in the parallel NESs due to linear coupling.
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Fig. 6 Responses of the system with the parallel-coupled NES at f = 2
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Fig. 7 Responses of the system with the parallel-coupled NES at f = 11
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The influence of the stiffness of the connection spring is shown in Fig. 8. With the increase
in k3, the activating force of the parallel-coupled NES is reduced. However, the efficiency for
large excitations is also reduced. The further increase in the coupling stiffness slightly enhances
the efficiency under small shocks but greatly reduces the efficiency under large shocks when the
stiffness reaches a certain value.

k3=0.03
1.0

0.9

0.8

0.7

0.6

k3=0.1

f

k3=0.5
k3=1

η

0 5 10 20 302515

Fig. 8 Influence of the coupling spring stiffness on the vibration absorption efficiency of the parallel-
coupled NES, where ε1 = 0.07, ε2 = 0.03, λ1 = 0.007, λ2 = 0.003, k1 = 0.1, and k2 = 0.5
(color online)

The influence of the distributions of mass and damping is shown in Fig. 9. The total mass
and damping are kept unchanged, and the mass ratio of the cubic oscillators is equal to their
damping ratio. We define the ratio of ε1 to ε2 over the ratio of k1 to k2 as the degree of
asymmetry. It can be concluded that with the reduction of the degree of asymmetry, both the
activating force and the efficiency for large shocks decrease and the influence of the change in
the degree of asymmetry and the coupling stiffness is similar.

Figure 10 shows the comparison of the efficiency of the parallel and parallel-coupled NESs
with the same degree of asymmetry. It is shown that, with the reduction in the degree of

1.0

0.9

0.8

0.7

0.6

f

η

0 5 10 20 302515

Fig. 9 Influence of the distributions of mass and damping on the vibration absorption efficiency of
the parallel-coupled NES, where k1 = 0.1, k2 = 0.5, and k3 = 0.1. Black curve: ε1 = 0.09,
ε2 = 0.01, λ1 = 0.009, and λ2 = 0.001. Red curve: ε1 = 0.07, ε2 = 0.03, λ1 = 0.007, and
λ2 = 0.003. Green curve: ε1 = 0.05, ε2 = 0.05, λ1 = 0.005, and λ2 = 0.005. Blue curve:
ε1 = 0.03, ε2 = 0.07, λ1 = 0.003, and λ2 = 0.007. Cyan curve: ε1 = 0.01, ε2 = 0.09,
λ1 = 0.001, and λ2 = 0.009 (color online)
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Fig. 10 Comparison of efficiency between the parallel (k3 = 0) and parallel-coupled (k3 = 0.1) NESs,
where k1 = 0.1, and k2 = 0.5. (a) ε1 = 0.09, ε2 = 0.01, λ1 = 0.009, and λ2 = 0.001. (b)
ε1 = 0.05, ε2 = 0.05, λ1 = 0.005, and λ2 = 0.005. (c) ε1 = 0.03, ε2 = 0.07, λ1 = 0.003, and
λ2 = 0.007. (d) ε1 = 0.01, ε2 = 0.09, λ1 = 0.001, and λ2 = 0.009 (color online)

asymmetry, the difference between the efficiency of the two kinds of NESs becomes smaller and
smaller. In Figs. 10(c) and (d), the black and red curves almost overlap under large shocks.
However, Fig. 10(a) shows a difference between the two curves that exceeds the one in Fig. 2.
The light cubic oscillator in the parallel NESs can be activated with a smaller shock. However,
the parallel-coupled NES is superior to the parallel NESs over a wider force range.

3 Coupling influence under harmonic excitation

In this section, we aim at the study on the case of harmonic excitation (F = f sin(Ωt)). The
complexification-averaging method is used to obtain the slow-flow equation of the system. We
introduce v = x2 − x3 and let

ẋ1 + iΩx1 = α1eiΩt, ẋ2 + iΩx2 = α2eiΩt, v̇ + iΩv = α3eiΩt. (4)

Subsequently, we obtain the following expressions:





x1 =
α1eiΩt − ᾱ1e−iΩt

2iΩ
, ẋ1 =

α1eiΩt + ᾱ1e−iΩt

2
,

ẍ1 =
α̇1eiΩt + iΩα1eiΩt + ˙̄α1e−iΩt − iΩᾱ1e−iΩt

2
,

(5a)
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x2 =
α2eiΩt − ᾱ2e−iΩt

2iΩ
, ẋ2 =

α2eiΩt + ᾱ2e−iΩt

2
,

ẍ2 =
α̇2eiΩt + iΩα2eiΩt + ˙̄α2e−iΩt − iΩᾱ2e−iΩt

2
,

(5b)





v =
α3eiΩt − ᾱ3e−iΩt

2iΩ
, v̇ =

α3eiΩt + ᾱ3e−iΩt

2
,

v̈ =
α̇3eiΩt + iΩα3eiΩt + ˙̄α3e−iΩt − iΩᾱ3e−iΩt

2
.

(5c)

Substituting Eq. (5) into Eq. (2) and retaining the slow-flow parts, we obtain

α̇1 + iΩα1 + µα1 +
α1

iΩ
+ λ1(α1 − α2)

+
3k1(α1 − α2)2(ᾱ1 − ᾱ2)

4iΩ3
+ λ2(α1 − α2 + α3)

+
3k2(α1 − α2 + α3)2(ᾱ1 − ᾱ2 + ᾱ3)

4iΩ3
= f, (6a)

ε1(α̇2 + iΩα2) + λ1(α2 − α1)

+
3k1(α2 − α1)2(ᾱ2 − ᾱ1)

4iΩ3
+

k3α3

iΩ
= 0, (6b)

ε2(α̇2 + iΩα2 − α̇3 − iΩα3) + λ2(α2 − α3 − α1)

− 3k2(α1 − α2 + α3)2(ᾱ1 − ᾱ2 + ᾱ3)
4iΩ3

− k3α3

iΩ
= 0. (6c)

Define
α1 = a1 + ib1, α2 = a2 + ib2, α3 = a3 + ib3.

Then, substituting the above equations into Eq. (6) yields

ȧ1 + iḃ1 + iΩ(a1 + ib1) + µ(a1 + ib1)

− i(a1 + ib1)
Ω

+ λ1(a1 + ib1 − a2 − ib2)

− 3ik1

4Ω3
((a1 − a2)2 + (b1 − b2)2)(a1 + ib1 − a2 − ib2)

+ λ2(a1 − a2 + a3 + i(b1 − b2 + b3))− 3ik2

4Ω3
((a1 + a3 − a2)2

+ (b1 + b3 − b2)2)(a1 − a2 + a3 + i(b1 + b3 − b2)) = f, (7a)

ε1(ȧ2 + iḃ2 + iΩ(a2 + ib2)) +
3ik1

4Ω3
((a1 − a2)2

+ (b1 − b2)2)(a1 + ib1 − a2 − ib2)

+ λ1(a2 + ib2 − a1 − ib1)− ik3

Ω
(a3 + ib3) = 0, (7b)
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ε2(ȧ2 + iḃ2 + iΩ(a2 + ib2)− ȧ3 − iḃ3 − iΩ(a3 + ib3))

+ λ2(a2 − a3 − a1 + i(b2 − b3 − b1))

+
3ik2

4Ω3
((a1 − a2 + a3)2 + (b1 − b2 + b3)2)(a1 − a2 + a3 + i(b1 − b2 + b3))

+
ik3

Ω
(a3 + ib3) = 0. (7c)

Separating the real and imaginary parts of Eq. (7) yields

ȧ1 = Ωb1 − b1

Ω
− µa1 − λ1(a1 − a2)− 3k1

4Ω3
((a1 − a2)2

+ (b1 − b2)2)(b1 − b2)− λ2(a1 + a3 − a2)

− 3k2

4Ω3
((a1 + a3 − a2)2 + (b1 + b3 − b2)2)(b1 + b3 − b2) + f, (8a)

ḃ1 = −Ωa1 +
a1

Ω
− µb1 − λ1(b1 − b2) +

3k1

4Ω3
((a1 − a2)2

+ (b1 − b2)2)(a1 − a2)− λ2(b1 + b3 − b2) +
3k2

4Ω3
((a1 + a3 − a2)2

+ (b1 + b3 − b2)2)(a1 + a3 − a2), (8b)

ȧ2 = Ωb2 − λ1

ε1
(a2 − a1)− k3

Ωε1
b3 +

3k1

4ε1Ω3
((a1 − a2)2 + (b1 − b2)2)(b1 − b2), (8c)

ḃ2 = −Ωa2 − λ1

ε1
(b2 − b1) +

k3

Ωε1
a3 − 3k1

4ε1Ω3
((a1 − a2)2 + (b1 − b2)2)(a1 − a2), (8d)

ε2(ȧ2 − Ωb2 − ȧ3 + Ωb3) + λ2(a2 − a3 − a1)− k3b3

Ω

− 3k2

4Ω3
((a1 − a2 + a3)2 + (b1 − b2 + b3)2)(b1 + b3 − b2) = 0, (8e)

ε2(ḃ2 + Ωa2 − ḃ3 − Ωa3) + λ2(b2 − b3 − b1) +
k3a3

Ω

+
3k2

4Ω3
((a1 − a2 + a3)2 + (b1 − b2 + b3)2)(a1 + a3 − a2) = 0. (8f)

Substituting Eqs. (8c) and (8d) into Eqs. (8e) and (8f), we obtain

ȧ3 = − λ1

ε1
(a2 − a1)− k3

Ω

( 1
ε1

+
1
ε2

)
b3 +

3k1

4ε1Ω3
((a1 − a2)2

+ (b1 − b2)2)(b1 − b2) + Ωb3 +
λ2

ε2
(a2 − a3 − a1)

− 3k2

4ε2Ω3
((a1 − a2 + a3)2 + (b1 − b2 + b3)2)(b1 + b3 − b2), (9a)
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ḃ3 = − λ1

ε1
(b2 − b1) +

k3

Ω

( 1
ε1

+
1
ε2

)
a3 − 3k1

4ε1Ω3
((a1 − a2)2 + (b1 − b2)2)(a1 − a2)− Ωa3

+
λ2

ε2
(b2 − b3 − b1) +

3k2

4ε2Ω3
((a1 − a2 + a3)2 + (b1 − b2 + b3)2)(a1 + a3 − a2). (9b)

In the above equations, ȧ1, ḃ1, ȧ2, ḃ2, ȧ3, and ḃ3 are set to zero in order to obtain the
steady-state solutions. A represents the response amplitude of the primary oscillator, and is

given by A =
√

a2
1+b21
Ω .

In order to verify the derivation, the result obtained by the complexification-averaging
method is compared with that obtained by the Runge-Kutta method which is used to directly
solve Eq. (2). Figure 11 shows the frequency responses at f = 0.002 and the slow-flow equation
is solved with a code based on the least square method. The stability of the steady-state so-
lutions is obtained from the eigenvalues of the Jacobian matrix of Eqs. (8a)–(8d) and (9). The
results obtained from the two methods are found to be in good agreement. The parameters in
Figs. 11–16 are the same as those in Fig. 2.

Ω

Fig. 11 Comparison of the complexification-averaging method and the Runge-Kutta method (fre-
quency responses of the primary oscillator attached to the parallel-coupled NES at f = 0.002)
(color online)
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Fig. 12 Frequency responses of the primary oscillator at f = 0.004 with the (a) parallel and (b)
parallel-coupled NESs, where black points represent the stable responses and red points
represent the unstable responses (color online)
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Fig. 13 Frequency responses of the primary oscillator at f = 0.011 with the (a) parallel and (b)
parallel-coupled NESs, where black points represent the stable responses and red points
represent the unstable responses (color online)
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Fig. 14 Frequency responses of the primary oscillator at f = 0.014 with the (a) parallel and (b)
parallel-coupled NESs, where black points represent the stable responses and red points
represent the unstable responses (color online)
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Fig. 15 Frequency responses of the primary oscillator at f = 0.016 with the (a) parallel and (b)
parallel-coupled NESs, where black points represent the stable responses and red points
represent the unstable responses (color online)
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Fig. 16 Dependence of the maximal amplitude of the primary oscillator on the excitation amplitude.
Black and red circles: stable and unstable responses of the primary oscillator attached to
the parallel NESs. Black and red asterisks: stable and unstable responses of the primary
oscillator attached to the parallel-coupled NES (color online)

Figures 12–15 show the variations in responses of the primary oscillator attached to different
NESs. The system with the parallel NESs generates higher branches of responses at f = 0.004
in a frequency band that is slightly lower than the linear natural frequency of the primary
oscillator. For periodic excitations imposed on the system, higher stable branches of responses
can occur for specific initial conditions in the simulation as well as for certain external conditions
in practical engineering. Under this force, the response of the primary oscillator with the
parallel-coupled NES is like the response of a linear system, and its peak value is moderately
higher. For excitation amplitude at f = 0.011, the higher and lower branches of the former
system merge. However, the latter system still has only the lower branch. Unstable responses
in narrow frequency bands can be seen in two subfigures of Fig. 13, and these unstable responses
in most cases manifest as strongly modulated responses. The peak value in the former system
is markedly larger than that in the latter.

For the excitation amplitude at f = 0.014, the amplitude in the former system slightly
increases with respect to the case of f = 0.011. In the latter system, the higher branches of
responses are present, and therefore the peak value increases several times. At f = 0.016, the
peak value in the latter system exhibits only a minor increase with respect to that in Fig. 14(b).
It can be concluded based on Figs. 13–15 that once the higher branches are present, the am-
plitudes of both systems increase slowly with the increase in excitation forcing. However, the
higher branches of responses occur again in the former system, and the peak value dramatically
increases. For the parallel-coupled NES, the higher branches only occur once, owing to the
connection between two cubic oscillators. Since the parameters of the two cubic oscillators of
the parallel NESs significantly differ, the higher branches are induced twice with the increase in
the excitation amplitude. Next, the increasing force can affect the evolution of higher branches
of responses and lead to merging of higher and lower branches.

Figure 16 shows the comparison of the peak value of the primary oscillator attached to
the two different NESs. The performance of the parallel NESs exceeds that of the parallel-
coupled NES below f = 0.004, while for higher values of f , the converse holds true. When the
excitation amplitude further increases, the system with both the parallel-coupled and parallel
NESs generate detached higher branches at f = 0.012 and f = 0.015, respectively. The
occurrence of the detached higher branches of responses will significantly reduce the influence
of the NESs. It can be considered that the NESs almost lose efficacy once these branches
arise. Therefore, only the maximal amplitude of the primary oscillator before higher detached
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branches occur is shown. It follows from Fig. 2 that the changes of the vibration absorption
performance of both the parallel and parallel-coupled NESs for harmonic excitation are the
same as those for shock excitation, i.e., the parallel-coupled NES performs better for medium
excitations while the parallel NESs performs better for small and large excitations.

4 Performance comparison with the SDOF NES

Although the influence of the stiffness of the SODF cubic NES on the vibration absorption
efficiency is well-known, we still present a figure of this influence for comparing the advantages
and disadvantages between this NES and the parallel-coupled NES, as shown in Fig. 17. The
system in Eq. (2) can be reduced to a system comprised of a linear primary oscillator and an
SDOF NES by letting

λ2 = 0, k2 = 0, k3 = 0.

In accordance with the results shown in Figs. 8 and 9, the SDOF NES with certain parameters
and low activating force exhibit lower efficiency for large excitations.

k1=0.2
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0.8

0.7

0.6

k1=0.4

f

k1=0.6
k1=0.8
k1=1.0

η

0 5 10 20 302515

Fig. 17 Influence of the stiffness of the SDOF cubic NES on the vibration absorption efficiency, where
ε1 = 0.1, and λ1 = 0.01 (color online)

Figure 18 shows the comparison of the efficiency of the SODF cubic NES and the parallel-
coupled NES. It can be seen from Fig. 18(a) that the red curve is above the black curve over
the entire force range. Particularly, the efficiency of the parallel-coupled NES with k3 = 0.1
is significantly higher than that of the SDOF NES for large shocks. In addition, the green
curve is also above the black curve apart from a few cases. Moreover, the efficiency of the
parallel-coupled NES with k3 = 0.3 exhibits superior performance under small shocks. In order
to design parallel-coupled NES with superior performance with respect to the SDOF NES, the
parameters must be tuned accordingly. In Fig. 18(b), the stiffness of the SDOF NES is set
to k1 = 0.6. It is seen that all three curves almost overlap for small shocks, while for large
shocks, the red curve is slightly above the black curve while close to the green curve. Many
parametric studies were conducted and only several typical cases are shown in this work. The
results demonstrate that regardless of the SDOF NES parameters chosen, the parallel-coupled
NES with performance close or superior to this SDOF NES can always be constructed across
the entire force range.

Figure 19 shows the variation of the peak value of the primary oscillator attached to
the SDOF NES with varying stiffness. It is shown that the primary oscillator attached to
the NES with higher stiffness has lower peak value for small excitations. However, it is li-
able to generate higher branches of responses for increasing excitation. Therefore, although
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Fig. 18 Comparison of the efficiency between the SDOF cubic NES and the parallel-coupled NES
with the parameters of (a) ε1 = 0.07, ε2 = 0.03, λ1 = 0.007, λ2 = 0.003 and (b) ε1 = 0.03,
ε2 = 0.07, λ1 = 0.003, λ2 = 0.007 (color online)

0.000 0.005 0.010 0.015

Fig. 19 Influence of the stiffness of the SDOF cubic NES on the maximal amplitude of the primary
oscillator, where ε1 = 0.1, and λ1 = 0.01. Black symbols: stable responses. Red symbols:
unstable responses. Circles: k1 = 0.2. Asterisks: k1 = 0.4. Crosses: k1 = 0.6. Squares:
k1 = 0.8. Triangles: k1 = 1 (color online)

the NES with k1 = 0.2 exhibits the worst performance, the exciting force of higher branches is
the largest in this case, indicating the greatest robustness. The responses of the system after
higher branches occur are not shown. The performance of the SDOF NES and parallel-coupled
NES is compared. The parameters in Figs. 20(a) and 20(b) are the same as those in Figs. 18(a)
and 18(b), respectively. The peak values of the system attached to the parallel-coupled NES
with two different coupling stiffness are both lower than those of the system attached to the
SDOF NES in Fig. 20(a). In addition, the parallel-coupled NES with k3 = 0.1 has larger exciting
force of higher branches than the SDOF NES. In Fig. 20(b), the performance of the SDOF NES
and parallel-coupled NES is extremely close, and the peak values of the system attached to the
parallel-coupled NES are slightly higher than those of the system attached to the SDOF NES.
Under the comprehensive consideration of the results in this paper, the performance of the
NESs with purely nonlinear stiffness for harmonic excitation can be deduced from the results
for shock excitation, and vice versa.
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Fig. 20 Comparison of the maximal amplitudes of the primary oscillator attached to the SDOF cubic
NES and the parallel-coupled NES, where black symbols indicate the stable responses, and
red symbols indicate the unstable responses. (a) Circles, the SDOF NES with k1 = 0.4;
asterisks, the parallel-coupled NES with ε1 = 0.07, ε2 = 0.03, λ1 = 0.007, λ2 = 0.003, and
k3 = 0.1; crosses, the parallel-coupled NES with ε1 = 0.07, ε2 = 0.03, λ1 = 0.007, λ2 = 0.003,
and k3 = 0.3. (b) Circles, the SDOF NES with k1 = 0.6; asterisks, the parallel-coupled NES
with ε1 = 0.03, ε2 = 0.07, λ1 = 0.003, λ2 = 0.007, and k3 = 0.1; crosses, the parallel-coupled
NES with ε1 = 0.03, ε2 = 0.07, λ1 = 0.003, λ2 = 0.007, and k3 = 0.3 (color online)

5 Conclusions

The parallel-coupled NES is proposed to expand the application range of the purely cubic
stiffness absorber, and its performance is studied and compared with the parallel NESs and an
SODF NES under shock and harmonic excitations. The Runge-Kutta method, complexification-
averaging method, and least square method are used to solve the mathematical model of the
system. The principal findings of this study can be stated as follows.

(i) The large response differences of the systems attached to the parallel and parallel-coupled
NESs depend not only on the existence of the coupling spring but also on the asymmetric design
of the mass and stiffness of the two cubic oscillators.

(ii) The parallel and parallel-coupled NESs have their intrinsic application ranges. The
parallel NESs are suitable for the case of both small and large excitations. The parallel-coupled
NES is suitable for the case of medium excitations, and its performance for large excitations
is also favorable. It should be considered that there are few engineering applications in which
only operations with small and large excitations are required.

(iii) The parallel-coupled NES is superior to the SDOF NES across the entire force range
in certain parameter ranges, while its performance is close to that of the SDOF NES in the
remaining parameter ranges.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link
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visit http://creativecommons.org/licenses/by/4.0/.
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