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Untimely machinery breakdown will incur significant losses, especially to the manufacturing company as it affects the production
rates. During operation, machines generate vibrations and there are unwanted vibrations that will disrupt the machine system,
which results in faults such as imbalance, wear, and misalignment. +us, vibration analysis has become an effective method to
monitor the health and performance of the machine. +e vibration signatures of the machines contain important information
regarding the machine condition such as the source of failure and its severity. Operators are also provided with an early warning
for scheduled maintenance. Numerous approaches for analyzing the vibration data of machinery have been proposed over the
years, and each approach has its characteristics, advantages, and disadvantages. +is manuscript presents a systematic review of
up-to-date vibration analysis for machine monitoring and diagnosis. It involves data acquisition (instrument applied such as
analyzer and sensors), feature extraction, and fault recognition techniques using artificial intelligence (AI). Several research
questions (RQs) are aimed to be answered in this manuscript. A combination of time domain statistical features and deep learning
approaches is expected to be widely applied in the future, where fault features can be automatically extracted from the raw
vibration signals. +e presence of various sensors and communication devices in the emerging smart machines will present a new
and huge challenge in vibration monitoring and diagnosing.

1. Introduction

Machines are widely used in today’s industries and are
paramount for factory operation. Careful monitoring of the
machines must be done and when the machines do
breakdown unexpectedly, it will cause massive loss to the
company. +is can be prevented by diagnosing the machine
to determine the fault or potential fault such as imbalance,
wear, misalignment, defective bearing, friction whirl, and
cracking teeth in gearing [1, 2]. Several available diagnosis
methods have been applied over the years including oil
analysis, vibration signal analysis, particle analysis, corro-
sion monitoring, acoustic signal analysis, and wear debris
analysis [3, 4]. Among these analyses, acoustic and vibration
signal analysis emerge as popular choices because many

faults can be identified without stopping the machine or
tearing themachine down.+e changes of these signals often
indicate the presence of a fault. Acoustic analysis has the
advantages of short analysis time, high recognition effi-
ciency, and nondestructive testing. However, it is very
challenging to properly capture the acoustic signals due to
several factors such as environmental conditions, different
parameter of recording software, and reflected acoustic
signals [5]. Vibration signals analysis also has some ad-
vantages and disadvantages. Real-time machine monitoring
can be achieved using vibration analysis and there are many
well-developed signal processing techniques that can be
applied. +e limitations of vibration analysis are noise
contamination and proper mounting position of the vi-
bration sensors [6]. Another technique that can be used for
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machine monitoring and diagnosis is thermal imaging
analysis. In this analysis, an infrared camera is usually used
to detect many electrical faults in the machine based on the
thermal anomalies. +e thermal images obtained are useful
in detecting and locating the machine’s faults. However, this
technique is expensive and requires a longer time to process
the thermal images compared to processing the acoustic and
vibration signals. Vibration analysis is considered as the best
method in determining the machine condition [7].
According to Saucedo-Dorantes et al. [8], the percentage of
fault diagnosis techniques conducted with the means of
vibration analysis exceeds 82%. Machines are mostly made
up of moving parts that generate unwanted vibration and
with vibration analysis, and a decision on whether the
machine can continue to operate or needs to be shut down
and repaired can be made [3].

+e machine’s condition can be determined by the vi-
bration amplitude and frequency, as both can reveal the
severity and source of the machine problem, respectively [9].
At first, without the help of vibration equipment, machine
conditions can still be diagnosed with a human brain of
trained personnel coupled with the senses of touch and
hearing which acts as a vibration analyzer. However, human
perception is somewhat limited, and it is impossible to detect
problems that are beyond the capability of human senses of
touch and hearing. +en, vibration analysis was based on a
real-time spectral analyzer and now it can be categorized
into time, frequency, and time-frequency domain [10]. Time
and frequency domain analysis analyses the time series of
data with respect to time and frequency, respectively. Time-
frequency domain analysis used both time and frequency
domains at the same time [3]. Vibration analysis for most
machine monitoring and diagnosis can be divided into low-
speed and high-speed machines. Because currently there is
no universally accepted speed range to differentiate both
types of machines, machines with rotating speeds up to
600 rpm such as wind turbines and paper mills are con-
sidered low-speed machines. According to Kim et al. [11],
low-speed machines can be very time-consuming and more
difficult to monitor compared to high-speed machines as the
rotating elements and the fault is typically low unless the
fault has reached above the background noise level. Vi-
bration monitoring of low-speed machines is highly asso-
ciated with low-speed bearing in ensuring the reliability of
the machine.

+e vibration analysis for machine monitoring and
diagnosis typically consists of three main steps, which are
data acquisition, signal processing, and fault recognition.
To date, there are lots of techniques and instruments used
in each of the aforementioned steps, and choosing the right
ones might be quite challenging. +is is because each
method and instrument have its characteristics, advan-
tages, and disadvantages. +ese methods can be divided
into two main groups which are model-based and data-
driven methods. Model-based methods require an ana-
lytical model of the system whereas data-driven methods
do not need any assumption about the system’s model. In
data-driven methods, advanced signal processing tech-
niques are applied. Because it is very difficult to model a

faulty system, data-driven methods are widely applied in
machine diagnosis and monitoring compared to model-
based methods. +us, the main contribution of this article
is the review of various data-driven vibration analysis
techniques and instruments used for monitoring and di-
agnosing the machines. However, due to a wide range of
techniques, only the widely used ones are discussed in this
article. +ere are several review articles regarding this area,
and Table 1 discusses each of the review articles. Based on
Table 1, we aimed to fill the research gap in reviewing the
vibration analysis for machine monitoring and diagnosis,
where the data acquisition system and comparison be-
tween different vibration analysis techniques including the
latest deep learning approach are not discussed. We also
aimed to answer the following research questions de-
scribed in Table 2.

+is manuscript is organized as follows. In the next
section, the research approach for this review article is
discussed. +en, Sections 3–5 will follow the vibration
analysis steps, as shown in Figure 1. Firstly, in Section 3,
the data acquisition stage is discussed. +is stage involves
the types of vibration sensors used to obtain the vibration
data and analyzers for analyzing the acquired data. +e
data acquisition stage is not discussed in most of the
published review articles. Besides, different sensor
mounting techniques are also discussed in this section.
Section 4 is about the signal processing or feature ex-
traction methods performed by researchers over the years,
based on the time, frequency, and time-frequency do-
mains. +e final stage in vibration analysis, which is the
fault recognition stage, is discussed in Section 5. In this
section, different AI-based methods such as support
vector machine (SVM), neural network (NN) including
deep learning, fuzzy logic, and genetic algorithm (GA) in
the fault recognition step are discussed. +e discussions
and findings of our review are explained in Section 6, and
we conclude our studies in Section 7.

2. Research Approach

A comprehensive literature study was conducted to an-
swer the five research questions. A Systematic Literature
Review (SLR) approach was employed to collect the rel-
evant primary studies regarding the vibration analysis for
machine monitoring and diagnosis [17]. Firstly, we
classified the articles and the selected papers were then
analyzed and differentiated through the content analysis
method. +e results can be classified into four main
categories:

(1) Survey, where review articles made by other re-
searchers on vibration analysis for machine moni-
toring and diagnosis are discussed.

(2) Simulation, where the performance of the proposed
technique is evaluated through simulation methods.

(3) Experiment/real-time deployments, where the
methods developed are applied experimentally or in
real environments.
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(4) Performance comparison, where the proposed
technique is utilized and compared with other
methods in terms of accuracy or robustness.

+e databases used for the electronic search were
Multidisciplinary Digital Publishing Institute (MDPI), In-
stitute of Electrical and Electronics Engineers (IEEE) Xplore,
Association for Computing Machinery (ACM) Digital Li-
brary, ScienceDirect, Web of Science, Wiley Online Library,
Researchgate, Springer, Scopus, and Google Scholar. To
refine the search results, a set of inclusion and exclusion
criteria is used in determining the relevant articles, which
can be observed in Table 3.

+e article searching process starts by selecting the
main search term: “machine monitoring” or “machine
diagnosis.” +e second search term was “vibration analy-
sis.” So, the search sentence was as follows: “machine
monitoring” OR “machine diagnosis” AND “vibration
analysis.” +e reason why we decided to use these simple
keywords is to get good coverage of potential studies. Next,
we refine the search terms by adding the “artificial intel-
ligence” term such as SVM, NN, deep learning, fuzzy logic,
and GA as the third term.+e first and second search terms
are retained. +e aim is to obtain the missing articles after
searching with the “machine monitoring” or “machine
diagnosis” and “vibration analysis” terms. 100 related
studies were targeted to provide enough information for
categorization and research trends. Next, we classified all
the selected articles into the aforementioned categories.
+e total number of suitable articles collected was 105, and
some of the articles could be classified into more than one
category.

3. Data Acquisition Methods (RQ 1)

According to Elango et al. [10], a trained worker without
academic qualifications can carry out the data collection
work but data processing work in determining the condition
of the machine requires an engineer. Referring to Figure 2,
there are two instruments that are crucial in the data col-
lecting stage which are analyzer and sensor. Vibration

analyzer can be divided into standalone and computer-based
analyzer, whereas vibration sensor consists of accelerometer,
velocity transducer, displacement sensor, and laser Doppler
vibrometer (LDV).+e accelerometer can be further divided
into piezoelectric and microelectromechanical system
(MEMS) accelerometer.

4. Analyzer

Analyzer is an instrument used to analyze the vibration data
produced by machinery. It is composed of a sensor (which is
presented in the later section of this paper), amplifier, filter,
and A/D converter. +e signal from the vibration sensor
passes through the amplifier to increase the resolution and
signal-to-noise ratio. +e amplified signal then passes
through a filter so that aliasing would not be encountered in
the digitization stage. +e signal is digitized in A/D con-
verter, and then it goes through the processing unit where it
can be portrayed as a time waveform or can be further
processed to acquire frequency spectrum [10, 18]. +e vi-
bration analyzer can be divided into conventional and
computer-based vibration analyzer. A conventional vibra-
tion analyzer is a standalone instrument that is specifically
built for vibration. It is a complex and expensive instrument,
usually used by vibration experts. +is instrument can help
the user to determine the presence of a problem as well as its
root cause and time for the machine to fail. +ere are single,
dual, and four-channel analyzers available in the market. A
single channel analyzer can only receive an input from one
accelerometer at a time, whereas a dual-channel analyzer can
receive inputs from two differently placed accelerometers at
the same time [19]. A four-channel analyzer can accept input
from multiple sensors and capable of measuring horizontal,
vertical, axial, and early bearing detection simultaneously. It
is usually used with a triaxial accelerometer. +e key ad-
vantage of a four-channel analyzer is the ability to observe
the operating deflection shape (ODS) of a machine. Nuawi
et al. [20] used a four-channel vibration analyzer in the
monitoring process of bearing condition and the application
of a dual-channel analyzer for machine monitoring can be
seen in [21, 22]. Another cheaper alternative is a handheld
vibration meter. +is battery-powered device is equipped

Table 1: List of review articles or survey regarding vibration analysis for machine monitoring and diagnosis.

Authors Scope Comments

Vishwakarma et al.
[12]

Presented a review of some vibration feature extraction
methods applied to different types of rotating machines

No discussion on the data acquisition system and AI-
based fault recognition techniques

Kumar et al. [3]
Reviewed various techniques including the AI methods
used for fault diagnosis based on vibration analysis

methods

No discussion on the data acquisition system and the
comparison between different feature extraction and

fault recognition methods are not presented

Boudiaf et al. [13]
Presented the vibration analysis techniques in terms of
their capabilities, advantages, and disadvantages in

monitoring rolling element bearings

Only discussed four types of vibration analysis
techniques

Aherwar [14]
Discussed a variety of vibration analysis approaches in
diagnosing the rotating machinery including the AI

methods

No discussion on the data acquisition system and the
review was conducted in 2012; thus, it lacks the latest AI

methods such as deep learning
Sait and Sharaf-
Eldeen [15]

Presented a review of vibration-based analysis damage
detection techniques to monitor gearbox condition

No discussion on the data acquisition system, frequency
domain methods, and AI techniques

Sadeghi et al. [16]
Discussed on the fault diagnosis in large electrical

machines using vibration signals
Most of the vibration analysis techniques are not

discussed in this article
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with an accelerometer and provides a display of vibration
levels when in contact with machinery [19]. It requires very
little skill to use but its measurement capability is somewhat
limited and lacking in data storage performance.

A computer-based vibration analyzer is an emerging
instrument where vibration data can be processed virtually
with the help of specific software and a personal computer.
+is method has gained popularity because it is simple,
inexpensive, and easy to repair, and can perform most of the
functions available in the conventional vibration analyzer
such as oscilloscope, multimeter, and waveform generator.
LabVIEW is a widely used programming language in this
method due to numerous arrays of data acquisition cards
and measurement systems supported by it [23–25]. Ansari
and Baig [23] used the computer-based vibration analyzer to
monitor the condition of the machine, and they found that a

conventional vibration analyzer is faster and more accurate.
To overcome these limitations, dedicated hardware such as
Digital Signal Processor (DSP) or Field Programmable Gate
Array (FPGA) was used alongside a personal computer and
sensor for user control and result display [18]. +e computer
processor usually has to handle the whole operating system
in addition to the virtual analyzer whereas the DSP only
performs one task.+is makes the vibration analysis faster in
a computer equipped with DSP. In [26], vibration analysis
on the rotating machine has been conducted by employing
two DSPs. Rangel-Magdaleno et al. [27] has conducted a
vibration analysis on the CNC machine using an FPGA
device. FPGA played a role in processing the vibration data
and the computer screen portrayed the results obtained for
further analysis. Rodriguez-Donate et al. [28] developed an
online monitoring system for the induction motor with the

Start

Analyzer

Sensor

Time Domain

Frequency Domain

Time-Frequency
Domain

AI-Based

Data Acquisition

Feature Extraction/
Signal Processing

Fault Recognition

End

Figure 1: +e framework of the article where data acquisition stage is discussed first, followed by feature extraction techniques, and fault
recognition approaches based on AI.

Table 2: +e research questions aimed to be answered in this study.

RQ Motivation

RQ 1: what are the current and future instruments used for the
machine’s vibration data acquisition process?

+e answer to this question helps to determine the best instrument
to be applied for respective vibration analysis.

RQ 2: what are the most used vibration signal processing techniques
and the comparison between them including the advantages and
limitations of each method?

Answering this question can help to determine the most applied
techniques and identifying the benefits and drawbacks of each

vibration’s signal processing methods.
RQ 3: what are the latest AI techniques used in machine vibration
monitoring and diagnosis, and how does it perform compared to
other widely used AI methods?

By answering this question, the latest AI method applied in machine
vibration monitoring and diagnosis can be identified and the

performance can be compared with the widely used AI methods.
RQ 4: what are the future directions regarding vibration analysis for
machine monitoring and diagnosis?

+e answer to this question can help new researchers fill the research
gap regarding this area.

RQ 5: what are the most influential articles for each method?
Answering this question can help the readers identify the articles that

can be used as references for their research.
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implementation of FPGA, and they found that the FPGA-
based system has better processing speed compared to DSP
and all the peripheral digital structures and processing unit
can be included in a single chip. Compared to DSP, a
computer-based vibration analyzer using FPGA is better
because it can achieve true parallelism. Both devices actually
provide better performances than using only a computer-
based vibration analyzer [18]. More information regarding
DSP and FPGA analyzers can be found in [29–31].

5. Sensor

A sensor or transducer is a device that converts mechanical
signals to electrical signals [32]. +e type of sensors used is
usually based on the frequency range, sensitivity, design, and
operational limitations. No matter what type of sensors is
used, the stiffer the mounting of the sensor, the higher the
frequency range and its reading accuracy [33]. In vibration
analysis, there are three widely used sensors for acquiring the
vibration signal. +ese sensors are accelerometer, velocity,
and displacement sensor.+e noncontact LDV sensor is also
discussed in this section. +e advantages and disadvantages
of each vibration sensor can be seen in Table 4.

5.1. Sensor Mounting Method. Choosing a mounting method
as well as implementing it correctly is an important factor in
vibration data collection. For continuous or online monitoring
of machine condition, vibration sensors are usually mounted
permanently at a specific location in the machine. Mounting
can be divided into fourmainmethods, namely, stud-mounted,
adhesive-mounted, magnet-mounted, and nonmounted. Stud
mounting is usually preferable for permanent mounting ap-
plications. +e sensor is screwed in a stud and secured to the
machine. Apart from highly reliable and secure, this mounting
technique has the widest frequency response compared to
other methods. Make sure that the location where the sensor is
going to be mounted is clean and paint free because any ir-
regularities in the mounting surface will produce improper
measurements or worst, damage to the sensor itself [19]. For
adhesive mounting, no extensive machining is required as
epoxy, glue, or wax will be applied. If the machine cannot be
drilled for stud mounting, adhesive mounting is generally the
best alternative. Although this mounting technique is easy to
apply, the accuracy of the measurement is reduced because of
the presence of damping in the adhesive [19]. In addition to
that, it is also more difficult to remove the sensor compared to
other mounting methods. +e magnetic mounting method is

Table 3: +e inclusion and exclusion criteria used for articles searching in this study.

Inclusion criteria
Exclusion
criteria

Articles should fall into one of the four categories mentioned in this study
Articles that are
not written in
English

Articles should meet both the search terms

Articles that are
not related to
the vibration
analysis for
machine

monitoring and
diagnosis

Articles are published or accepted during the period between 1996 and 2021 (covering 25 years period)
Duplicated
articles

Articles should be listed at least in one of the research databases
Articles should be published or accepted at a conference, journal, magazines, or theses

Data Acquisition

SensorAnalyzer

LDVDisplacement
Sensor

Velocity
Transducer

MEMSPiezoelectric

AccelerometerComputer-Based
Analyzer

Conventional/
Standalone Analyzer

Figure 2: +e data acquisition stage of the proposed review article.
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usually limited to temporary applications with a portable
analyzer and not preferable for permanent monitoring because
the high-frequency signals might be disrupted. +e non-
mounting method is typically applied by a probe tip, where
there is no external mechanism between the transducer and the
target surface. It is usually used in areas that are difficult to
reach. +e length of the probe tip, however, will affect the
measurement, with longer probes lead to more inaccuracies.

5.2. Accelerometer. An accelerometer is a device used to
measure the vibration or acceleration of a structure in the SI
unit of g (m/). +e working mechanism is that when the
piezoelectric material in the accelerometer is subjected to a
force, it produces a charge corresponding to the force ap-
plied. Because force is directly proportional to the accel-
eration, any change to this factor will produce a change in
the charge produced, which is then amplified [33]. Uniaxial
accelerometer can only detect movement in one plane,
whereas triaxial accelerometer covers all the three dimen-
sions. Compared to the uniaxial accelerometer, triaxial ac-
celerometer has a higher memory capacity but much more
expensive [34]. Accelerometer is a widely used sensor due to
its reliability, simplicity, and robustness. It can be further
divided into a piezoelectric and MEMS accelerometer. Pi-
ezoelectric accelerometer relies on the piezoelectric effect of
quartz or ceramic crystals, which are usually preloaded, to
generate an electrical output that is proportional to the
applied acceleration. Changes in the charge produced de-
pend on this acceleration [35, 36]. Piezoelectric acceler-
ometer possesses several advantages such as better frequency
and dynamic range, lightweight, and high sensitivity.
However, it is vulnerable to interference from the external
environment [37]. It also requires electronic integration in
order to obtain velocity and displacement data because it is
AC coupled [37]. Salami et al. [38] demostrated the appli-
cation of LabVIEW in monitoring and analyzing the vi-
bration signals, where piezoelectric accelerometer was used
in their study. Igba et al. [39] installed the piezoelectric
accelerometer sensor on the operational turbines to obtain
the vibration data for time domain analysis. Khadersab and
Shivakumar [40] used the piezoelectric accelerometer to
obtain vibration data from rotating machinery to analyze the
bearing faults. Figure 3(a) shows the vibration measurement
piezoelectric accelerometer.

MEMS accelerometer usually consists of movable proof
mass with plates, supported by a mechanical suspension
system to the frame [41]. When it is subjected to acceler-
ation, the proof mass tends to resist motion due to its own
inertia and therefore the spring is stretched or compressed.
As a result, force corresponds to the applied acceleration is
created. MEMS accelerometer is DC coupled and very
suitable for measuring low-frequency vibration and accel-
eration. It requires low processing power and provides
superior sensitivity [41]. Modern MEMS accelerometer
provides quite good data quality up to several tens of kHz.
+e drawback is that it suffers from a poor signal-to-noise
ratio. Contreras-Medina et al. [42] used a low-cost MEMS
accelerometer in detecting machinery failures. Chaudhury

et al. [41] used the MEMS accelerometer in different rotating
machines for vibration monitoring. A performance com-
parison between conventional piezoelectric accelerometer
and MEMS accelerometer can be seen in [43, 44]. It was
found that MEMS accelerometer’s sensitivity is more stable
compared with the piezoelectric accelerometers and this
low-cost MEMS accelerometer can be a good alternative to
the high-cost piezoelectric accelerometer. +is sensor has
also been applied in [26, 39].

5.3. Velocity Transducer. A velocity transducer measures the
voltage produced by the relative movement of the object,
usually in the m/s or cm/s unit. It works based on the
concept of electromagnetic induction, and it can operate
without any external device [45]. As the surface where the
sensor is mounted vibrates, the movement of the magnet in
the coil will produce a voltage proportional to the velocity of
the vibration [46]. +is voltage signal represents the vi-
bration produced and is then feeds a meter or analyzer [33].
Velocity sensors are not recommended when diagnosing the
high-speed machinery because the operational frequency
range is limited from 10Hz to 2 kHz [10]. Generally, velocity
transducer costs less than other sensors and coupled with its
easy installation feature, it is favorable in monitoring the
vibration of rotating machinery. However, it is big, heavy,
and most velocity transducers are prone to reliability
problems at operational temperatures that exceed 121°C
[37, 47]. A velocity transducer was applied by Rossi [48] to
measure the frame vibration of compressor, which usually
comprises of frequencies below 10Hz. Figure 3(b) shows the
vibration measurement using velocity transducer.

5.4. Displacement Sensor. A displacement sensor, which is
sometimes called eddy current or proximity sensor measures
both relative vibration and position of the shaft. +e dis-
placement unit can be in m, cm, or mm. It is usually used in
measuring low-frequency vibration of less than 10Hz, but it
can also measure vibration up to 300Hz [45]. However, they
do not excel in measuring a shaft bending away from the
probe location [47]. Unbalance and misalignment problems
are the types of problems that can be detected by the dis-
placement probe. For the measured vibration frequencies
above 1 kHz, the amplitude is usually lost in the noise level
[47]. It has the advantages of a good dynamic range within a
specific frequency range, reasonable sensitivity, and a simple
postprocessing circuit with negligible maintenance. How-
ever, it is difficult to install, susceptible to shocks, and some
traditional displacement sensors are not calibrated for un-
known metal materials [37]. Sarhan et al. [49] used the
displacement sensor in monitoring the cutting forces of the
machining center under different cutting conditions. Sai-
mon et al. [50] developed a low-cost fiber optic displacement
sensor (FODS) for industrial applications that is immune to
electromagnetic interference. +e capability of a fiber optic
displacement sensor in capturing the amplitude and fre-
quency of vibration was studied by Binu et al. [51], and based
on the results, this sensor can solve many sensing problems
in aircraft.
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5.5. LDV. LDV is a noncontact optical measurement in-
strument that can be applied to determine the vibration
velocities of any points on the surface of a particular ma-
chine [52, 53]. +e working mechanism of LDV is based on
the laser Doppler concept where a frequency-modulated
coherent laser beam is reflected from a vibrating surface, and
Doppler shift of the reflected beam is compared with the
reference beam,. Currently, a higher power infrared (in-
visible) fiber laser is more popular in LDV compared to the
He-Ne laser.+e introduction of this technology has fulfilled
the goal of achieving long-range measurements without
compromising the signal quality [54]. Continuous-scan laser
Doppler vibrometry (CSLDV) has accelerated the mea-
surement at many points. +e laser beam will scan con-
tinuously along a defined path across a structure according
to the desired scan frequencies. One major advantage of
LDV is the ease of changing the measurement point, which
can be done by just deflecting the laser beam. Despite that,
the application of LDV in machine monitoring and diag-
nosis is limited because of the price and portability factors.

6. Feature Extraction/Signal Processing Method
(RQ 2)

Figure 4 shows the feature extraction/signal processing stage
involved in this study. It can be divided into time, frequency,
and time domain frequency analysis. +e time domain
analysis involves the statistical features of peak, root-mean-
square (RMS), crest factor, and kurtosis. +e frequency
domain analysis consists of fast Fourier transform (FFT),
cepstrum analysis, envelope analysis, and spectrum analysis,
whereas time-frequency domain analysis can be divided into
WT, Hilbert–Huang transform (HHT), Wigner–Ville dis-
tribution (WVD), short-time Fourier transform (STFT), and
Power Spectral Density (PSD).

7. Time Domain Analysis

+e simplest vibration analysis for machine diagnosis is used
to analyze the measured vibration signal in the time domain.
Vibration signals obtained are a series of values representing
proximity, velocity, and acceleration, and in time domain
analysis, the amplitude of the signal is plotted against time.

Although other sophisticated time domain approaches have
been used, the approach of visually looking at the time
waveform should not be underestimated because numerous
information can be obtained in this manner. +is infor-
mation includes the presence of amplitudemodulation, shaft
unbalance, transient, and higher-frequency components
[55]. However, simply looking into these vibration signals
cannot segregate the variations in vibration signals for
different machine failures due to the noisy data, especially at
the early stage of failure. +us, a signal processing method is
required to obtain the important information from the time
domain signals by converting the raw signals into appro-
priate statistical parameters such as peak, RMS, crest factor,
and kurtosis. Several statistical parameters are usually
extracted from the time domain signal so that the most
significant parameter, which can effectively differentiate
between healthy and defective machine vibration signals,
can be chosen [56]. In this article, the statistical parameters
of peak, RMS, crest factor, and kurtosis are discussed and the
advantages and disadvantages of each parameter can be seen
in Table 5.

7.1. Peak. +e peak is the maximum value of the signal, v(t),
over measured time and can be defined as [55]

peak � |v(t)|max. (1)

If there is a presence of impacts, the peak values of the
vibration signal will vary. Under a fault condition, the peak
value increases. +e fault’s severity and type can be assessed
based on the amplitudes of the corresponding peaks. Peak
value feature was studied by Lahdelma and Juuso [57] to
diagnose bearing and gear faults in the machine. +e pro-
posed approach is suitable for online analysis as the re-
quirements for frequency range are small. Shrivastava and
Wadhwani [58] used statistical parameters such as peak,
RMS, crest factor, and kurtosis to diagnose the rotating
electrical machine. Although all parameters can differentiate
between healthy and faulty conditions, they concluded that
determining the type of faults in this manner is not very
efficient. Igba et al. [39] used the peak values approach in
monitoring the condition of wind turbine gearboxes because
faults can be detected based on the changes in their values.

Table 4: +e advantages and disadvantages of various sensors used in vibration analysis for machine monitoring and diagnosis.

Sensors Advantages Disadvantages

Piezoelectric
accelerometer

Lightweight, high sensitivity, good
frequency, dynamic range

Needs electronic integration to acquire velocity and displacement data,
vulnerable to interference from the external environment

MEMS
accelerometer

Cheaper than piezoelectric sensor,
requires low processing power, high

sensitivity
Suffers from poor signal-to-noise ratio

Velocity
transducer

Can operate without any external device,
generally costs less than other sensors

Limited operational frequency range, most velocity transducers are prone
to reliability problems at operational frequency of more than 121°C

Displacement
sensor

Good sensitivity, simple postprocessing
circuit with negligible maintenance

Succeptible to shock, difficult to install

LDV

Ease of changing the measurement
points, ability to provide long-range
measurements without compromising

the signal quality

Extremely high cost, limited portability
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+is approach can also counter the limitations of the RMS
feature, where the RMS is not significantly affected by low-
intensity vibrations.

7.2. RMS. RMS value presents the power content in vi-
bration and useful in detecting an imbalance in rotating
machinery. According to Vishwakarma et al. [59], this is the
simplest and effective technique to detect faults especially
imbalance in rotating machines. However, detecting the
faults at the early stage is still a problem in this method and
this technique is only appropriate for the analysis of a single
sinusoid waveform. +e RMS value is more suitable for
steady-state applications and analysis of single sinusoid
waveform [1]. RMS is preferred over peak value due to the
peak value’s sensitivity to noise. RMS value of a pure si-
nusoid is equal to the area under the half-wave, which is
0.707. RMS value can be represented by

RM � .
�����������
1

T
∫T2
T1

v(t)dt,
√

(2)

where T represents time duration and v(t)is the signal.
Referring to Igba et al. [39], the RMS method has two
disadvantages. +e first one is the RMS values of a vibration
signal are not affected by the isolated peaks in the signal,
reducing its sensitivity towards incipient gear tooth failure.
Next, it is also not significantly affected by short bursts of
low-intensity vibrations. +is will produce some compli-
cations in detecting the early stages of bearing failure.
Bartelmus et al. [60] applied the RMS values as a diagnostic
feature to diagnose gearbox fault, where the models of the
behavior of gearboxes that correlate the transmission error
function and load variation are presented. Sheldon et al. [61]
used the RMS feature in diagnosing wind turbine gearbox
and stated that applying the RMS feature is not recom-
mended in detecting early stages of bearing failure. RMS was
among the statistical parameters applied by Krishnakumari
et al. [62] in fault diagnostics of the spur gear. +e pa-
rameters are then combined with fuzzy logic and diagnostics
accuracy was found to be 95%, where DT reduces the de-
mand for human expertise. Other applications of RMS
values in vibration analysis for machine monitoring can be
seen in Table 6 [63, 64].

7.3. Crest Factor. A crest factor is the ratio of the peak value
of the input signal to the RMS value and is represented as
follows [55]:

Crest Factor � peak
RMS

. (3)

For a pure sine wave, the crest factor will be
�
2

√
� 1.414,

and for normally distributed random noise, the value will be
approximately 3. Compared to peak and RMS values, the
crest factor is usually used when measurements are con-
ducted at different rotational speeds because it is inde-
pendent of speed. Crest factors are also reliable only in the
presence of significant impulsiveness [1]. Jiang et al. [65]
employed the crest factor features and SVM to diagnose gear

faults. It was found that the crest factor is the most sensitive
feature for gear failure and by applying this feature, the
achieved diagnostic accuracy is 93.33%. Shrivastava and
Wadhwani [58] applied the crest factor values along with
other time domain features for the fault detection and di-
agnosis of rotating electrical machines. +ey found that the
crest factor feature is unable to classify between healthy
bearing, bearing with defective ball, and bearing with de-
fective outer race. Aiswarya et al. [66] used the crest factor
feature along with other time domain features to diagnose
faults in the turbo pump of a liquid rocket engine. Combined
with the SVM method in the fault classification stage, the
proposed method can diagnose the fault effectively with
100% accuracy.

7.4. Kurtosis. Kurtosis is a nondimensional statistical
measurement of the number of outliers in distribution
and in vibration analysis, it corresponds to the number of
transient peaks. A high number of transient peaks and a
high kurtosis value may be indicative of wear. Kurtosis is
not sensitive to running speed or load, and its effective-
ness is dependent on the presence of significant impul-
siveness in the signal [67]. Kurtosis feature can provide
the information regarding the non-Gaussianity or im-
pulsiveness of the vibration signals [68, 69]. In machine
condition monitoring applications, kurtosis is usually
preferable to crest factor but the latter is more widely
used. +is is because the meters that can record the crest
factor value are easily available and more affordable
compared to the kurtosis meter. Kurtosis was among the
five parameters applied by Fu et al. [70] to be incorporated
with the unsupervised AI method in diagnosing rolling
bearing. Based on the results, the proposed method was
found to have a sensitive reflection on fault identifications,
including a slight fault. Runesson [67] employed the
kurtosis along with RMS value in monitoring the con-
dition of a mechanical press. +e results demonstrated
that kurtosis generally is not reliable but contains some
useful information in the monitoring of the gearbox of the
mechanical press machine. Other research studies that
applied the kurtosis approach in vibration analysis for
machine monitoring can be seen in Table 6 [63, 71].

8. Frequency Domain Analysis

Most real-world signals can be broken down into a com-
bination of unique sine waves. Each sine wave will appear as
a vertical line in the frequency domain, where the height and
position of the line represent the amplitude and frequency,
respectively. In frequency domain analysis, the amplitude is
plotted against frequency and compared to the time domain,
and the detection of the resonant frequency component is
easier. +is is one of the reasons why frequency domain
methods are favorable in detecting faults in the machine
[59]. Several characteristics of the signal that are not visible
in the perspective of time domain can be observed using
frequency domain analysis. However, frequency analysis is
not suitable for signals whose frequencies vary over time.
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+e advantages and disadvantages of each frequency domain
method can be seen in Table 7.

8.1. FFT. Fourier transform (FT) converts a signal f(t) in
the time domain to the frequency domain, generating the
spectrum F(ω). FT is given by

F(ω) � Ff(t) � ∫∞
−∞

f(t)e− iωtdt. (4)

where ω is the frequency and t is the time. It can be con-
verted back to time domain from the frequency domain by
inverse Fourier transform (IFT). +is can be obtained as

f(t) � F− 1(F(ω)) � 1

2π
∫∞
−∞

F(ω)eiωtdω. (5)

FFT is an efficient and widely used algorithm to obtain
the FT of discretized time signals. +e FFT plot of fault-free
industrial machines consists of only one peak, which rep-
resents the natural frequency of the operating machine.
+us, defect in the machine can be identified when there is a
presence of other peaks aside from the natural frequency
peak in the plot. However, Goyal and Pabla [37] claimed that
during the conversion between domains, there is a little loss

of time information. FFT is also unable to investigate the
transient features efficiently in time and can predict the fault
but cannot determine the severity of fault [3]. However, it is
the quickest way to separate the frequencies of the signal for
the diagnosis process. A combination of time domain signal
analysis and FFT is normally associated with diagnosing the
low-speed machine to produce more accurate results but the
major concern is its reliance on the magnitude of the fault
having an effect on the carrier frequency [11]. Saucedo-
Dorantes et al. [8] used the FFTand PSDmethod to diagnose
the fault in a gearbox and detect the bearing defect in the
induction motor. +ey found that the proposed method can
perfectly detect the presence of wear at low operating fre-
quencies but is not suitable at high operating frequencies.
Patel et al. [72] proposed the FFTmethod as an analysis tool
in monitoring a rotating machine, and major faults such as
misalignment and bearing can be monitored in this manner.
Other applications of FFTcan also be seen in Table 6 [23, 73].

8.2. CepstrumAnalysis. Cepstrum analysis was developed in
the 1960s and can be defined as the power spectrum of the
logarithm of the power spectrum [74]. Cepstrum analysis
can be used to detect any periodic structure in the spectrum

Feature Extraction/
Signal Processing

Frequency
Domain

Time
Domain

Peak RMS Crest
Factor

Kurtosis

FFT Cepstrum Envelope Spectrum

WT WVD HHT PSD STFT

Time-Frequency
Domain

Figure 4: +e feature extraction/signal processing stage of the proposed review article.

Piezoelectric

accelerometer

Adhesive

Measured surface

(a)

Measured surface

Mounting studVelocity
transducer

Drilled hole

(b)

Figure 3: Vibration measurement using (a) piezoelectric accelerometer by means of adhesive mounting and (b) velocity transducer, stud-
mounted on the machine’s surface.
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Table 6: Various reported vibration analysis techniques in machine monitoring and diagnosis.

Authors Methodologies Findings

[63]
Incorporated the RMS and kurtosis values in NN to diagnose

the rolling element bearings fault

+e proposed method can effectively diagnose the condition
using only a few features of vibration data but the fault types

and severity level cannot be determined

[71]
Applied the kurtosis and SVM method to diagnose roller

bearing fault
+e accuracy of the proposed method is 93.75% and can be

applied even with a limited number of samples

[23]
Used the FFTand PSDmethods to monitor the condition of the

machine
A PC-based vibration analyzer, incorporating the proposed

method was developed

[73] Applied the FFT method to diagnose induction motor fault
+e simulation results obtained from MATLAB/Simulink are

in agreement with the experimental results

[78]
Combined the cepstrum analysis and NNmethod to detect and

diagnose gear fault
NN can diagnose gear faults with high accuracy, provided that

proper measured data are used

[79]
Used two cepstrum analysis approaches, namely, automated

cepstrum editing procedure (ACEP) and cepstrum
prewhitening (CPW) to detect bearing fault

CPW approach is more suitable for applications that do not
require bandpass filtering but applying both approaches

without prior knowledge can lead to false result in detecting
bearing faults

[81]
Applied the envelope analysis to diagnose faults in rotating

machines under variable speed conditions

Squared envelope method is an optimal approach in fault
diagnosis in terms of computational cost and simplicity
compared to the improved synchronous average (ISA), the

cepstrum prewhitening (CPW), and the generalized
synchronous average (GSA)

[86] Used the envelope analysis to diagnose bearing faults
+e squared envelope method is more suitable to analyze the
cyclostationary signals compared to the envelope method

[90]
Combined the higher-order spectrum analysis and SVM to

diagnose faults in power electronic circuit
+e proposed method achieved the accuracy of up to 99%

[91]
Applied the power spectrum analysis (PSA) and SVM to

diagnose rolling bearing fault
Using the PSA with SVM classifier gives better result compared

to NN classifier

[100]
Applied the WPT method to monitor the condition of the

machine

Using the proposed method as input to a NN classifier
produced nearly 100% classification accuracy. Also, the

proposed method produced a better result compared to FFT
when the data are corrupted by noise

[102]
Combined the Hilbert transform and WPT to detect gearbox

fault
+e proposed method is capable of detecting early gar fault

[101]
Applied a denoising method based on WT to diagnose rolling

bearing and gearbox

+e proposed method is more effective and has more
advantages compared to Donoho’s soft-thresholding denoising

method

[103]
Proposed an orthonomal DWT (ODWT) method to monitor

and diagnose bearing faults at an early stage
+e proposed method outperforms the EEMD and Hilbert

envelope spectrum analysis method

[115] Applied the HHT and FT methods to diagnose machine fault
HHT outperforms FT, where FT can only differentiate

characteristic frequency in low-frequency band

[116]
Proposed a new local mean parameter to improve the HHT

method to detect gearbox fault
Introducing the new parameter improves the HHTprocess and

makes the fault detection process simpler

[120]
Applied the STFTmethod to diagnose faults in a hydroelectric

machine
+e basis for the effective fault diagnosis of hydroelectric

machines was proposed

Table 5: +e advantages and disadvantages of time domain methods.

Time domain
methods

Advantages Disadvantages

Peak Simple and easy technique Sensitive to noise

RMS
Simple and easy technique, directly
related to the energy content of the

vibration profile
Changes in RMS vibrations are only sensitive to high-amplitude components

Crest factor
Easily available and affordable crest

factor meter
Only reliable in the presence of significant impulsiveness

Kurtosis

High performance in detecting
periodic impulse force, highly

sensitive to shock, can be assimilated
with a shape factor, independent of

the signal amplitude

Costly kurtosis meter can be erroneous
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Table 6: Continued.

Authors Methodologies Findings

[121]
Combined STFT and SVM methods to diagnose faults in

induction motor
+e proposed method has a huge potential to diagnose fault

intelligently in other real-time system applications

[122]
Combined the STFT and nonnegative matrix factorization
(NMF) methods to detect rolling bearing element fault

+e proposed method is able to determine the fault types and
severity and yields 99.3% accuracy, superior to NN

[125] Applied the PSDmethod to diagnoseMassey Ferguson gearbox
+e proposed method can reliably and quickly diagnose

gearbox fault

[126] Used the PSD and SVM methods to diagnose gearbox faults
+e proposed method achieved an accuracy of 98.82% and
97.16% for spur and helical gearbox dataset, respectively

[133]
Used the SVM method to diagnose rolling bearing element

fault based on the fractal dimensions

SVM trained with 11 time domain statistical features and three
fractal dimensions provides better results compared to the
SVM trained with only fractal dimensions or with time domain

statistical features

[134]
Applied the SVM, K-nearest neighbor (KNN), and Fischer
linear discriminant (FLD) methods to diagnose engine fault

+e performance of the SVMmethod is much better compared
to the KNN and FLD method

[135]
Presented a real-time online monitoring approach for the disc

slitting machine based on WPT and SVM methods
Findings show that different types of disc slitting machines’
faults can be successfully detected with an accuracy of 95.6%

[64]
RMS values were among the statistical features employed as
input parameters for the DNN to monitor the condition of

gearbox

It was found that the deep learning methods are superior
compared to the NN method, which has low robustness in

diagnosing the condition of gearbox

[145]

Compared the combination of GA with three types of NN,
namely, multilayer perceptron (MLP), radial basis function
(RBF), and probabilistic neural network (PNN) to detect

bearing fault

+e combination of GA with MLP and PNN gave 100% success
rate whereas RBF gave 99.31% rate

[146]
Applied the combination of EMD and NNmethods to diagnose

the roller bearing fault
+e proposed method can successfully diagnose roller bearing

fault but has an end effect complication

[147]
Combined the WPT, GA, NN, and SVM methods to diagnose

fault in diesel engine
+e proposed method produced 100% classification accuracy

[148]
Proposed a CNN approach that makes use of cyclic spectrum
maps (CSMs) of raw vibration signal to diagnose the motor

bearing in the rotating machine

Based on the validation with benchmark vibration data
collected from bearing tests, the proposed technique is superior
to its referenced methods in terms of the classification accuracy

[149]
Proposed a distribution-invariant deep belief network

(DIDBN) as a basis for intelligent fault diagnosis of machines
+e proposed method is able to achieve a high diagnosis

accuracy even with new working conditions

[150]
Used the CNN method with 1D image of raw three-axis

accelerometer signal as the input
It was found that CNN trained with a higher number of kernels

in the first layer produced slightly better performance

[151]

Proposed a hybrid deep signal processing method to diagnose
bearing faults in the machine, where the signal processing,

feature extraction, and bearing fault diagnosis were
automatically conducted

+e proposed method is superior to the manual extraction
methods and commonly used deep learning structures in terms
of accuracy, and it is not affected by the operation conditions

[152]
Presented the augmented deep sparse autoencoder (ADSAE)
method in diagnosing gear faults, where data shifting technique

was incorporated to enhance the SAE model

Compared with other deep learning architectures, the proposed
method provides a higher accuracy (99%) and only requires a

few raw vibration signal data

[62]
Combined the decision tree and fuzzy logic methods to

diagnose spur gear fault based on the statistical features such as
RMS, crest factor, and kurtosis

+e performance of the proposed method in diagnosing fault
was found to be 95%

[160]
Proposed the fuzzy logic method to diagnose the operation of

rotating machines
+e proposedmethod can easily diagnose the operational status

of the rotating system

[161]
Applied the fuzzy logic method to monitor and diagnose the

condition of the pump
+e proposed method can successfully identify and classify the

faults of the five-plunger pump

[162]
Proposed the combination of DWT and fuzzy logic to predict

the presence of misalignment in rotating machinery
+e proposed approach has an error of less than 1% in

predicting the degree of misalignment

[163]
Developed a gas turbine vibration monitoring approach based

on Takagi–Sugeno fuzzy logic

Experts’ knowledge regarding the maintenance of the gas
turbine in accordance to the vibration level detected can be

successfully expressed by the proposed method

[168]
Proposed a combination of wavelet support vector machine
(WSVM) and immune genetic algorithm (IGA) to diagnose

gearbox fault

+e proposed method yielded a better diagnostic accuracy
compared to the SVM and NN method, in addition to strong

generalization capability

[169]
Combined the GA, SVM, and EEMDmethods to diagnose gear

faults

Incorporating the GA to select the parameter of SVM can
improve the generalization ability and classification accuracy of

the diagnostic system

[170]
Applied the combination of GA and SVM in bearing fault

diagnosis

Applying the cross-validation method to optimize SVM
outperforms the SVM method optimized by GA in bearing

fault diagnosis
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such as harmonics, sidebands, or echoes [66]. +is allows
faults such as bearing and localized tooth faults, which
produce low-level harmonically related frequencies to be
detected. +ere are four types of cepstrum which are real
cepstrum, complex cepstrum, power spectrum, and phase
spectrum, but power cepstrum is the most widely used
cepstrum in machine diagnosis and monitoring. According
to Goyal and Pabla [45], cepstrum analysis is important in
gearbox diagnosis. Dalpiaz et al. [75] compared the cepstrum
analysis with other methods inmonitoring the condition of a
gearbox and found that cepstrum analysis is insensitive to
gear cracks. To detect the rubbing phenomenon of the
sliding bearing in the machine, the cepstrum analysis
method was applied by Sako et al. [76]. It was found that the
proposed approach can even detect mild rubbing, which is
difficult to be achieved by using conventional abnormality
diagnostic methods. Experimental work was conducted by
Aralikatti et al. [77] to diagnose the universal lathe machine,
where cepstrum analysis was employed to the time domain
signal. +e vibration signal was obtained by a triaxial ac-
celerometer. It was concluded that analyzing the vibration
signal in the frequency domain does not guarantee the
presence of a fault. Other applications of cepstrum analysis
can be discovered in Table 6 [78, 79].

8.3. Envelope Analysis. Envelope analysis, also known as
amplitude demodulation or demodulated resonance anal-
ysis, was introduced by Mechanical Technology Inc. [80].
+is technique separates the low-frequency signal from
background noise [59]. Envelope analysis is made up of a
bandpass filtering and demodulation step that extracts the
signal envelope, and its spectrum possibly contains the
desired diagnostic information [81]. It is widely used in
rolling element bearing and low-speed machine diagnosis
and has the advantage of early detection of bearing problems
[55, 81]. +e challenge of this approach is determining the
best frequency band to envelope. Envelope analysis needs a
sharp filter and precise specification of the frequency band
for filtering in order to work smoothly [55]. Regarding
bearing failure, the noise components make the envelope
analysis difficult to determine the fault. +e introduction of
the squared envelope analysis method has solved this
problem, where a squared envelope can be computed as
shown in [82]. It is highly preferable in analyzing the
cyclostationary signals. Rubini and Meneghetti [83] com-
pared the envelope analysis with the wavelet transform (WT)
method in diagnosing the incipient faults in ball bearings.
+e results demonstrated that after 30min (48000 cycles),
the envelope analysis is no longer able to diagnose the
presence of the fault whereas theWTmethod is still relevant.
An envelope analysis approach has also been applied by
Widodo et al. [84] to preprocess the vibration signals of low-
speed bearing, and thus, determining the bearing charac-
teristic frequencies. +is method is then compared with the
acoustic emission (AE) signal analysis, and during the fault
recognition stage with the SVM technique, it produces worse
performance than the AE approach. Envelope analysis also
was applied by Leite et al. [85] to detect the bearing fault in

induction motor, and the proposed method can efficiently
detect fault without any information regarding the model.
Application of envelope analysis in machine monitoring can
also be seen in Table 6 [81, 86].

8.4. Spectrum Analysis/Comparison. Spectrum analysis is
related to FFT in a way that FFT is often used in spectrum
analysis to transform the signal from time to frequency
domain [87]. Spectrum comparison should be conducted on
a logarithmic amplitude scale (dB) as the changes on a
logarithmic axis can determine the state of the vibration.
However, ones have to deal with the small fluctuations of the
rotating speed of the machine [55]. A fault that is able to
change the vibration signature significantly over a short
period of time can be determined by this method [88].
Spectrum analysis is a complex analysis that even with the
amount of literature available, expert skills are still required
to exploit the diagnostic capabilities of spectrum analysis.
Compared to the cepstrum analysis, spectrum analysis does
not provide any information regarding the time localization
of frequency component [77]. Salami et al. [38] have
employed the spectrum analysis method for machine con-
dition monitoring, and it is observed that this approach can
produce smoothed and high-resolution spectral estimates of
the vibration signals compared to the FFT approach. +is
spectral is useful for monitoring the state of machines.
Ciabattoni et al. [89] proposed a novel statistical spectrum
analysis (SSA) where the spectral content of vibration signals
was calculated using FFT and then transformed into sta-
tistical spectral images in diagnosing faults of rotating
machines. Other applications of spectrum analysis can be
observed in Table 6 [90, 91].

9. Time-Frequency Domain Analysis

Time and frequency domains are integrated into the time-
frequency domain analysis. +is means that the signal fre-
quency component and their time-variant features can be
determined simultaneously in this analysis. Vibration
analysis approaches mentioned before (time domain and
frequency domain methods) mostly rely on the stationary
assumption that is unable to detect the local features in time
and frequency domain simultaneously [92]. +us, such
methods are inappropriate for nonstationary signal analysis.
As mentioned before, the time-frequency domain analysis
methods discussed in this study include WT, HHT, WVD,
STFT, and PSD. +e advantages and disadvantages of each
time-frequency domain method can be seen in Table 8.

9.1.WT. WTtechnique was first proposed byMorlet back in
1974 [93]. It is a linear transformation decomposing a time
signal into wavelets, which are local functions of time,
equipped with predetermined frequency content. Instead of
sinusoidal functions, wavelets are used as the basis [92, 94].
A suitable wavelet basis has to be chosen according to the
signal structure to avoid misleading diagnosis results. WT
provides a superior time localization at high frequencies
compared to STFT. WT is preferable when dealing with
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nonstationary signals and in analyzing the transient signal
from the measured vibration signal [95]. According to Zou
and Chen [96], the WT technique is highly sensitive to
stiffness variation compared to WVD. +e WTmethod can
be distinguished into discrete and continuous wavelet
transform (DWTand CWT). In DWT, the power of two acts
as a scaling factor, and it is typically applied through a pair of
lowpass and highpass wavelet filters. +e scaling factor is
selected arbitrarily or via convolution for the CWT [45].
Both DWTand CWTare referred to as standard WT, which
cannot efficiently perform feature extraction of certain types
of signals due to its incapability to produce a sparse rep-
resentation. It has a low-frequency resolution for high-
frequency components and poor time localization for low-
frequency components.+is gives birth to the wavelet packet
transform (WPT) technique. It is a more advanced form of
CWT, where it further decomposes the detailed information
of the signal in the high-frequency region and improves the
frequency resolution, making it applicable for the analysis of
various nonstationary signals. Dalpiaz and Rivola [94] ap-
plied the WT method in monitoring the condition of the
automatic packaging machine and found that WT is able to
determine the variation of vibration frequency content
within the machine cycle. +e advantage of CWT is that it
has a finer scale parameter compared to the DWTmethod,
but in terms of computational, DWT is more efficient [97].
Al-Badour et al. [98] employed the CWT and WPT in
detecting faults in rotating machinery. WPT is actually an
extension of the DWT method but with finer frequency
resolution. +ey found that in terms of speed and spectral
characterization of the vibration signal, the WPTmethod is
better than the CWTmethod. Rangel-Magdaleno et al. [99]
applied the DWTmethod to detect the incipient broken bar
in the induction motor, and the detection accuracies
achieved are 96.55% for the unload conditions, 80.5% for the
half-load, and 87.6% for the full-load condition. Other
applications of the WT technique can be found in Table 6
[100–103].

9.2. WVD. Wigner introduced the WVD method and Ville
applied it to process the signal, and thus, it was named the
Wigner–Ville distribution. It is a specific case of the Cohen
class distributions which yields a time-frequency energy
density computed by correlating the signal with a time and

frequency translation of itself [104]. +e WVD of a signal
x(t)is represented aswhere x∗ is the conjugate of x and τ is
the delay variable. WVD has several advantages such as
better resolution than STFT, excellent accuracy, and window
function is not needed for its analysis [45]. WVD is not
directly used by researchers to determine the time-frequency
structures of signals because of the cross-term interference
problem [93].

WX(t,ω) �
1

2π
∫+∞
−∞

x t + τ
2

( ) · x∗ t − τ
2

( ) · e− jτωdτ, (6)

Staszewski et al. [105] performed the fault detection
analysis on the gearbox using the original WVDmethod and
its weighted form, and they claimed that compared to the
original WVD, its weighted form can reduce interference in
the time-frequency domain, with a cost of a reduction in the
frequency resolution. Directional Wigner distribution
(dWD) was specifically developed for transient complex-
valued signal analysis and applied in rotating or recipro-
cating machines by [106]. Baydar and Ball [107] used the
smooth pseudo WVD technique on acoustic and vibration
signals to diagnose the gearbox condition, and the results
showed that acoustic signals were more effective in early
fault detection, compared to vibration signals. An applica-
tion of the WVD method in diagnosing induction machines
was demonstrated by Climente-Alarcon et al. [104]. By using
this proposed technique, more reliable diagnosis results
might be obtained in a situation where harmonics tracing is
difficult.

9.3. HHT. David Hilbert first introduced the Hilbert
transform in 1905. +en, Huang et al. [108] introduced the
HHT in 1998 to determine the characteristics of stationary,
nonstationary, and transient signals. HHT consists of em-
pirical mode decomposition (EMD) of signals and Hilbert
transform, and by combining these two methods, a Hilbert
spectrum can be obtained, where the faults in a running
machine can be diagnosed [92]. +us, in this manuscript,
any works regarding the EMD method fall into the HHT
section. A complicated multicomponent signal can be
broken down into a series of intrinsic mode functions
(IMFs) using this method. By using the EMD technique, a
complicated signal x(t) can be reconstructed with the help
of IMFs, expressed as

Table 7: +e advantages and disadvantages of frequency domain methods.

Frequency domain
methods

Advantages Disadvantages

FFT Easy to implement, fast technique Cannot efficiently analyze transient features in time

Cepstrum Analysis
Easy to implement, useful in side band

analysis
Can only be applied to the well separated harmonics, the fluctuations of

the curve of the spectrum are averaged-out due to the filtering

Envelope
analysis

Excellent application in bearing system, works
well even in the presence of a small random

fluctuation

Can lead to a gross diagnosis error, not suitable to be applied in the gear
system

Spectrum
analysis

Useful in detecting signal that changes
significantly over a short period of time, higher
spectral estimation performance compared to

the FFT

Require experts’ skills due to its complexity
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x(t) � ∫∞
−∞

ci(t) + rn(t)dt, (7)

where ci(t) is the th IMF and xn(t)is the residual signal that
represents the slowly varying or constant trend of the
signal [92]. HHT has several advantages such as low
computational time, and it does not associate with any
convolution [45]. However, EMD, which is the main part
of HHT, has certain drawbacks. People might misinter-
pret the result due to unenviable IMFs generated at the
low-frequency region, and in addition to that, the low-
frequency components’ signals cannot be separated. +us,
the ensemble EMD (EEMD) method was introduced to
overcome the limitation of EMD by introducing Gaussian
white noise to the EMD [92, 109]. However, in the low-
frequency region, the energy leakage and modal aliasing
problems still exist. +is is what motivates Torres et al.
[110] to propose the complete EEMD with adaptive noise
(CEEMDAN) method, which can produce better modal
frequency spectrum separation outputs.

Peng et al. [111] introduced a better version of HHT
that incorporated the WPT technique to decompose the
vibration signal into a set of narrowband signals. +e
proposed method was shown to have a better resolution in
the time and frequency domain compared to the wavelet-
based scalogram. Wu et al. [112] employed the HHT
approach in diagnosing the looseness faults of rotating
machinery, and the proposed technique is successful in
determining the faults at different components of the
machine. Osman and Wang [113] proposed a normalized
HHT (NHHT) technique to tackle the problem of
selecting the appropriate distinctive IMF components,
especially for bearing health condition monitoring.
However, the EMD of the proposed method only pro-
cesses signals over narrowbands. Chen et al. [114] pro-
posed a combination of CEEMDAN and particle swarm
optimization least squares support vector machine (PSO-
LSSVM) to improve the diagnosis accuracy of rolling
bearings. +e diagnosis accuracy of several rolling bear-
ings fault types was improved by this method to 100%.
Other applications of HHT in machine monitoring and
diagnosis can be observed in Table 6 [115, 116].

9.4. STFT. STFTwas pioneered by Gabor back in 1946 in the
communication field [117]. It has the ability to counter the
limitations of FFT and is mostly applied to extract the
narrowband frequency content in nonstationary or noisy
signals [37]. In the STFTmethod, the initial vibration signal
is broken down into time segments by windowing, and then
FT is applied to each time segment [45]. +e mathematical
equation for STFT is given by

STFT(f, τ) � ∫∞
−∞

x(t)ω(t − τ)e− j2πftdt, (8)

where x(t) is the interpreted signal and ω(t) is the window
function centered at time Τ. STFT depends on the width of
the window. AA large window width is chosen to obtain
greater accuracy in frequency, whereas to improve the ac-
curacy in time, a small window width is desired. +e main
drawback of this approach is that it cannot achieve high
resolution in the time and frequency domain
simultaneously.

Safizadeh et al. [118] proposed the STFT application in
machinery diagnosis and proved that although STFT pro-
vides the time-frequency information with limited precision,
and it is better than the conventional methods of machine
diagnosis. To avoid cross-term effects, Burriel-Valencia et al.
[119] implemented the STFT method for fault diagnosis of
induction machines, where the spectrums in the frequency
domain in the relevant frequency band are filtered. +e
proposed method greatly reduced the computing time and
memory resources. +e STFTmethod has also been applied
in fault diagnosis of hydroelectric machine [120], induction
motor [121], and rolling element bearing [122] (refer to
Table 6).

9.5. PSD. PSD can be applied to measure the amplitude of
oscillatory signals in the time series data and determine the
energy strength of frequencies, which may be useful for
further analysis. From the complex spectrum, the one-sided
PSD can be computed in (m/s2)2/Hz as

PSD(f) � 2|X(f)|
2

t2 − t1( ) , (9)

Table 8: +e advantages and disadvantages of time-frequency domain methods.

Time-frequency
domain methods

Advantages Disadvantages

WT
Provide a superior time localization at high frequencies
compared to STFT, more flexible compared to STFT,

availability of various wavelet functions

Suffers from the convolution of a priori basis functions
with the original signal, difficult to choose the mother

wavelet type

WVD
Has a good time and frequency resolution, does not require

window function for its implementation
Vulnerable to interference, slower than STFT

HHT
Has a good time and frequency resolution, does not require

priori basis functions
Result misinterpretation due to IMFs generated at the

low-frequency region

STFT
Straightforward method and recommended for beginners

in the time-frequency analysis, low computational
complexity

Constant frequency resolution for the whole signal,
difficult to find a fast and effective algorithm to calculate

STFT

PSD
Can be directly computed by FFT, requires very little

processing power
Frequency resolution is affected by the window size
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where t2 − t1 is the time range and X(f) is the complex
spectrum of the vibration x(t) in a time range, which can be
expressed in units of (m/s2/Hz). PSD can also be directly
calculated in the frequency domain if FFTof vibration signal
is used, by applying the following formula [123]:

PSD � Grms( )2
f

, (10)

where Grms is the root-mean-square of acceleration in a
certain frequency f. PSD can analyze the faulty frequency
bands without facing a slip variation issue and does not
necessarily focus on one specific harmonic [124]. It requires
very little processing power and can be directly computed by
FFT or by converting the autocorrelation function [45].

PSD technique has been used by Cusido et al. [124]
alongside WT to diagnose faults in induction machines, and
the proposed technique can successfully diagnose faults for
every operating point of the induction motor. However, to
improve the diagnosis accuracy, good knowledge to deter-
mine the suitable mother wavelet and sampling frequencies
are still required. Mollazade et al. [123] also used the PSD
values in the feature extraction stage and fuzzy logic in the
fault recognition stage of fault diagnosis of hydraulic pumps.
+e classification accuracy of the proposed technique for
1000, 1500, and 2000 rpm conditions is 96.42%, 100%, and
96.42%, respectively. Other applications of PSD in machine
monitoring and diagnosis can be seen in Table 6 [125, 126].

10. Fault Recognition/AI-Based Technique
(RQ 3)

+e application of AI in vibration analysis for machine
monitoring and diagnosis has become increasingly popular,
and based on this review, AI-based techniques contribute
about 57% of the overall vibration analysis method in
machine diagnosis and monitoring, as shown in Figure 5.

+is is because most of the techniques mentioned before
require huge expertise for successful implementation, which
makes them not suitable for common users [80]. Further-
more, the expert is not immediately available. +is is where
AI-based methods come in because a nonexpert user can
make reliable decisions without the presence of a machine
diagnosis expert. AI can be defined as any task performed by
a program or a machine that is difficult enough that it re-
quires intelligence to accomplish it [127]. Several AI-based
methods of vibration analysis for machine monitoring and
diagnosis are SVM, NN, fuzzy logic, and GA.

10.1. SVM. SVM was initially introduced by Vapnik and is
the most widely used classification algorithm. +is method
transforms the data set or sample space to a high-dimen-
sional, kernel-induced feature space by nonlinear trans-
formation and then determines the best hyperplane [1]. +e
best hyperplane means the one with the largest margin
between the two classes A and B, as shown in Figure 6. +e
data points from both classes that are closer to the hyper-
plane and influence the position and orientation of the
hyperplane are called support vectors.

+e learning and test data for the SVM are obtained from
the feature extraction process and after training the SVM
algorithm, the SVM matrix was obtained [128]. Optimiza-
tion methods such as GA and particle swarm optimization
(PSO) are usually incorporated with SVM in order to achieve
better results. One of the reasons why SVM is widely applied
in vibration analysis for machine diagnosis is due to its
compatibility with large and complex datasets such as data
collected in the manufacturing industry [129]. SVM is very
useful as the number of features of classified entities will not
affect the performance of SVM [130].+is means that for the
base of the diagnosis system, there is no limited number of
attributes that can be selected. +ere is no requirement for
experts’ knowledge in SVM, as is the case with fuzzy logic,
and no layers are involved in SVM structure, compared to
NN.

Poyhonen et al. [130] implemented the SVM technique
to diagnose faults in an electrical machine, and the results
showed that the classification accuracy was high, except for
the detection of eccentric rotors. Tabrizi et al. [131] com-
bined the SVM with the WPT (for signal preprocessing) and
EEMD (for feature extraction) methods to detect small
defects on roller bearings under different operating condi-
tions. A classification tree kernel-based SVM has also been
employed together with CWT to identify bearing faults, and
this combination proves to be a promising method and
superior to other SVM methods with common kernels in
diagnosing the rolling element bearing fault [132]. Pinheiro
et al. [128] used the SVM method for fault diagnosis of a
rotary machine and successfully detected several unbalance
faults. However, its performance is still questionable as a
small number of samples are used. Further implementation
of SVM in vibration analysis for machine diagnosis can be
found in Table 6 [90, 133–135].

10.2. NN. NN is made up of a large number of richly
interconnected artificial processing neurons called nodes,
connected to each other in layers forming a network [136].
NN has the ability to model processes and systems from raw
vibration data extracted from frequency and time-frequency
domain techniques mentioned before [137]. In the training
stage of NN, superior input variables might suppress the
influence of the weak variables. +us, the data must be
properly processed and scaled before being fed into the NN.
Normalizing the raw vibration data to the values between 0
and 1 can help to reduce the effect of the input variable [137].
Training time increases according to the complexity of the
network, and this directly affects the accuracy of the results.
Due to the robustness and efficiency in handling noisy data,
the backpropagation neural network (BPNN) is widely used
in machine diagnosis [138]. BPNN, pioneered by Rumelhart
and McClelland in 1986, is made up of three layers, which
are input, hidden, and output layer [93]. +e presence of
hidden layers gives the NN an ability to explain nonlinear
systems, and the higher the number of hidden layers, the
deeper the NN [139]. Similar to the SVM method, NN does
not need a knowledge base to detect the location of the faults,
unlike the fuzzy logic method. Ertunc et al. [140] compared
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the performance of NN and the combination of NN and
fuzzy logic, which is known as adaptive neurofuzzy inference
systems (ANFIS). Envelope analysis was applied for the
signal processing step. +ey concluded that the ANFIS
method was superior to the NN, especially in diagnosing
fault severity. Castelino et al. [137] used the application of
NN in the vibration monitoring carried out on industrial
rotary machines that were running in real operating con-
ditions. +e results showed that NN performed better for
nonstationary signals in the time-frequency domain com-
pared to the frequency domain. Recently, the deep learning
or deep neural network (DNN) has been applied widely in
machine monitoring and diagnosis. It is a type of NN that
contains more than one hidden layer. Compared to the NN
and SVM method, the DNN approach can adaptively learn
the hierarchical representation from raw data through
multiple nonlinear transformations and approximate
complex nonlinear functions instead of extracting the fault
feature manually [141]. However, due to its deep architec-
ture, a high number of parameters are involved, which leads
to the risk of overfitting. Widely applied DNN architectures
include autoencoders (AE), convolutional neural network
(CNN), restricted Boltzmann machines, and deep belief
networks. Table 9 shows the comparison between NN and
deep learning/DNN in machine monitoring and diagnosis.

Hoang and Kang [142] applied the CNN technique,
which is a class of DNN that is most commonly applied for
image analysis, to diagnose the rolling element bearing in
rotary machines. Raw vibration signals in time domain are
converted into a 2D form for the CNN to perform vibration
image classification. +is method achieved 100% accuracy

using the bearing datasets from Case Western Reverse
University, but hyperparameters for the CNNmodel can still
be improved. A combination of transfer learning and DNN
has been employed by Qian et al. [143] in diagnosing the
rotating machines under different working conditions.
Transfer learning focuses on how to store the knowledge or
solution obtained when solving a problem and apply it to
different but related problems so that the amount of data
collection and training costs can be reduced [144]. +e
proposed method is robust, and there is no requirement for
further training when supplied with new datasets from
different working conditions. Similar applications can also
be found in Table 6 [78, 145–152].

10.3. Fuzzy Logic. Compared to conventional logic, fuzzy
logic aims at modeling the imprecise modes of reasoning to
make rational decisions in an environment of uncertainty
and imprecision [153, 154].+ere are four main stages of the
fuzzy logic system, which are fuzzification, an inference
mechanism, rule-base, and defuzzification component. +e
fuzzification stage converts the input data into fuzzy sets
before the fuzzy inference stage makes a reliable conclusion
based on the rules created in the rule-base stage. Finally, the
defuzzification stage produces quantifiable results. Fuzzy
logic is associated with membership functions, which role is
to map the nonfuzzy input values to fuzzy linguistic terms
and vice versa. To obtain a diagnostic system with excellent
sensitivity, the rules andmembership functions can be tuned
[155]. However, properly determine the fuzzy rules and
optimize the membership functions are the biggest challenge
in fuzzy logic. Fuzzy logic is easier to implement compared
to SVM and NN. Apart from that, unlike other AI methods
such as SVM andNN, it does not rely on the datasets as there
is no training or testing stage in fuzzy logic. In particular
cases, this method can only provide a general diagnosis, as
the specific fault symptom of a machine cannot be regularly
determined. However, this is the only available alternative
when collecting the fault data is not possible [156]. Lasurt
et al. [157] compared the performance of fuzzy logic with
NN in fault diagnosis of electrical machines, and they
claimed that fuzzy logic performs better in detecting dif-
ferent faults for a wide range of operating conditions,
compared to NN. Wu and Hsu [158] combined the method
of DWT and fuzzy logic to detect gear fault and the results
obtained showed that the recognition rate of the proposed
method is over 96% under various experimental conditions.
Mukane et al. [159] applied the FFT method for signal
processing and fuzzy logic for fault recognition in identi-
fying machinery faults. Multiple faults can be identified in
this manner including the severity of the faults. Other ap-
plications of fuzzy logic in vibration analysis for machine
diagnosis can be found in Table 6 [160–163].

10.4. GA. GA, derived from a study of a biological system,
can solve both constrained and unconstrained optimiza-
tion problems based on a natural selection process
[164, 165]. At each step, GA randomly selects the best
individuals based on their quality from the current pop-
ulation to become parents for the children of the next

57%

43%

AI-Method

Non AI-Method

Figure 5: +e percentage difference between AI and non-AI
methods in vibration analysis for machine diagnosis and
monitoring.

Marging

Class B

Class A

Support Vector

Separating
Hyperplane

Figure 6: +e structure of SVM technique.
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generation, in order to reach an optimal solution. +is step
will continue until a terminating condition is reached.
+ere are three main processes that occur at each GA,
namely, selection, crossover, and mutation. GA is usually
used to optimize the monitoring system parameters and
boosting the speed and accuracy of fault diagnosis. Samanta
et al. [145] presented a combination of ANN and SVM with
GA for bearing fault detection. Based on the result, SVM
performs better than NN, and GA helps to reduce the
training time of both methods. Han et al. [166] used the GA
in the process of diagnosing the induction motor and found
that GA helps the diagnosis system to perform better by
choosing critical features and optimizing the network
structure. Hajnayeb et al. [167] claimed that removing
some features from the input features will result in quicker
and more accurate diagnosis systems. GA is usually
combined with other AI methods such as SVM, fuzzy logic,
and NN. In NN, the GA can be used as an alternative to
learning the weight values and to optimize the topology of a
NN. For the fuzzy control, the GA can be used to tune the
associated membership function parameters as well as
generating the fuzzy rules. +e applications of GA can also
be observed in Table 6 [168–170]. +e advantages and
disadvantages of each fault recognition method can be seen
in Table 10.

11. Discussion

More than 100 articles were discussed in this study, covering
a topic associated with the vibration analysis in machine
monitoring and diagnosis in terms of instruments used in
the data acquisition stage, feature extraction methods, and
fault recognition by AI techniques. Because there is a large
amount of literature on this field, a review of all the literature
is impossible, and some papers might be omitted. For the
data acquisition process and to answer the RQ 1, most of the
studies applied the simpler and cheaper alternative of the
computer-based analyzer, and with the help of DSP and
FPGA, this analyzer is nearly as good as the conventional
analyzer. Accelerometer is still the best sensor option for
vibration analysis, and this has been proved by most of the
articles reviewed. However, due to the high cost of the pi-
ezoelectric accelerometer, researchers are continuously
working towards the application of the MEMS accelerom-
eter, which can provide the same or better performance.
Velocity transducer is preferable to be applied in diagnosing
low-speed machinery compared to accelerometers as the
absolute accelerations measured are much smaller in value
for similar vibration displacements. Noncontact sensors also
have a huge potential in machine monitoring as mounting
the sensor on the machine is not a concern anymore which

in turn, produces a more accurate measurement. However,
due to its costly application, it is not widely used. LDV with
multichannel measurements is expected to be widely applied
in the future, where the cost of implementing the LDV is
reduced.

Regarding the signal processing techniques (RQ 2), the
works on improving the detection and diagnosis of faults in
the time-frequency domain have attracted numerous at-
tention from researchers. +is is because it can be imple-
mented to investigate the nonstationary signals as failure
signals are not repetitive at the earliest stage. Usually, these
nonstationary signals contain abundant information on
machine faults. Time and frequency domain techniques for
machine monitoring are based on the assumption of sta-
tionary signals, and this is not suitable for detecting short-
duration dynamic phenomena, especially in rotating ma-
chinery. However, traditional methods should not be
omitted as it is preferable in certain applications. For low-
speed machines, envelope analysis is widely applied as it can
detect low energy signals and the envelope spectrum is
further analyzed using time-frequency domain methods
such as WTand HHT, where the noise level in the vibration
signals is reduced. To make use of the advantages of a certain
method and to make up for the limitations, some researchers
applied the fusion of certain techniques. Based on
Figures 7(a)–7(c), the most applied time, frequency, and
time-frequency domain methods in machine monitoring
and diagnosis are RMS, FFT, and WT techniques,
respectively.

To answer the RQ 3, researchers also move towards
implementing the intelligence system in the vibration
analysis for automated decision making, and from the
review and referring to Figure 7(d), SVM is the most widely
used method mainly due to its high classification accuracy
and low computational time. Besides, it was found that the
application of the time domain parameters is directly
proportional to the applications of AI methods. +is is
because time domain features can improve the perfor-
mance of AI methods and have a low computational cost,
which would not put much computational burden on AI
methods. +e works on refining the algorithms for lower
computational cost and easy implementation of the vi-
bration analysis are still in progress for the AI-based
techniques. Based on the previous studies regarding vi-
bration analysis for machine monitoring and diagnosis,
most of the reported studies applied the vibration analysis
method on one test rig or machine, where the results
produced are excellent but the same performance cannot be
guaranteed when applied to other machines. +is also
applies to the environment, where most of the reported
works are conducted in a controlled environment and the
performance might differ if employed in an industrial
setting. Similar cases applied to the fault recognition using
AI, especially in SVM and NN methods. +ese data-driven
methods are based on the training of historically obtained
datasets fed to the algorithm, and when entirely new
datasets are used, generalization issues might occur. +us,
it is important to train the AI algorithms with appropriate,
diverse, and optimized datasets. It is also recommended to

Table 9: NN vs. deep learning/DNN.

Characteristics NN Deep learning/DNN

Prior knowledge Required Not required
Computational burden Lower Higher
Feature extraction Manual Automated
Accuracy Lower Higher
Robustness Lower Higher
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test the AI techniques at different operating or environ-
mental conditions than the training datasets to counter the
generalization problem. It was discovered that almost 80%
of the previous studies applied the feature extraction or
signal processing techniques such as envelope analysis,
STFT, WT, and HHT, whether with the combination of AI
method or not. Although these techniques achieved good
performance in monitoring and diagnosing the machine
condition, expert knowledge regarding signal processing is
still required. Furthermore, the feature extractor has to be
reconstructed for every specific fault diagnosis task. +is is
one of the reasons researchers are migrating to the deep
learning approach where fault features are automatically
extracted from the raw vibration signals.

In terms of noise, most of the reported existing
methods can effectively distinguish noise from vibration
signals. However, this is based on the assumption of
Gaussian distribution vibration signals. In an industrial
environment, vibration signals are usually corrupted with
non-Gaussian noise, due to the abnormal operation of
gears or bearings and random disturbances that occur in
the machine, which is not widely considered in the re-
ported techniques. +is is because industrial machines are
complex systems made up of various components such as
shafts, bearings, and gearboxes, which run simulta-
neously. +us, some fault signatures are often covered by
the machine natural frequencies and submerged by high
non-Gaussian noise, and as a result, the faulty frequencies

Table 10: +e advantages and disadvantages several AI-based methods.

AI-based
method

Advantages Disadvantages

SVM
Compatible with large and complex dataset, high

accuracy
Difficult to determine the appropriate kernel to be applied,

perform poorly when the data contain noise

NN
Fault tolerance process, have a self-learning ability Have

a strong capability to process data
Complicated design process, takes a long time to process a large

network, black box solution

Fuzzy logic Strong robustness, simple design and easy to understand
Difficult to obtain the knowledge rules, difficult to determine the

right membership function

GA
Can process an extremely large range of data, can be

applied for the optimization purpose
High computing cost, time-consuming procedure
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39%

21%

19%

21%

FFT

Cepstrum

Envelope

Spectrum
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40%

13%

14%

25%

8%
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36%
24%

10%

30%

SVM
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Figure 7: Percentage of methods used for (a) time domain, (b) frequency domain, (c) time-frequency domain, and (d) AI-based approaches,
based on the reported articles.
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become nondominant in the spectrum, which makes the
machine diagnosis and monitoring process more difficult
[171, 172].

For RQ 4, recent applications of smart machines present a
new and huge challenge in monitoring and diagnosing their
condition.+e presence of various sensors and communication
devices in the smart machine will produce very noisy data.
+us, research studies on a vibration technique that is precise
and robust and can handle a huge amount of noisy data ef-
ficiently are desired. Sometimes the collected vibration data
from the sensors are insufficient for machine diagnosis and
monitoring.+is is why the need for the Digital Twinmodeling
approach arises. According to [173, 174], the Digital Twin
model can map various characteristics of the physical machine
into the virtual world to produce a digital replica of the ma-
chine that is transferable, detachable, modifiable, reproducible,
repeatable, and erasable. +us, extrapolating the vibration data
acquired from the sensors is possible based on the mathe-
matical representation of the machine. By combining the AI-
based data-driven approach and physics-based simulation
model, Digital Twin can obtain additional information re-
garding the prediction of machine failures.+is model can also
be applied to run several simulations in different operational
and environmental conditions, increasing the robustness of the
diagnosis technique. However, producing an effective and
proper Digital Twin model remains a challenge due to the
nonlinear dynamics, and uncertainty that occurs in the op-
erating smart machines [175]. +us, works on constructing a
Digital Twin model that can properly represent the actual
conditions of the machine still can be explored. In addition, a
technique to monitor and diagnose the machine’s condition
from a remote location without the need to visit the machine is
worth exploring. For AI-based techniques, the performance
can be further evaluated by studying the effects of simultaneous
fault occurrence on the machine. In terms of AI algorithms,
incorporating the transfer learning approach into the algorithm
can be further explored since the deep transfer learningmethod
is still in its early stages. Table 11 shows the most cited articles
reviewed in this manuscript for each method to answer the RQ
5.

12. Conclusion

Vibration analysis for machine monitoring and diagnosis
has become cheaper and cheaper thanks to the emerging

technology and development in the data acquisition process
and signal processing techniques including the instrument
applied. Nowadays, even inexperienced users can conduct
effective vibration monitoring without the presence of an
expert. In this study, we have conduct a systematic review of
vibration analysis for machine monitoring and diagnosis,
which can be divided into data acquisition, feature extrac-
tion, and fault recognition stages. Several RQs have been
answered in this study which might provide useful infor-
mation on this area. From the study, several key factors are
determined:

(i) With the advancement of powerful software and the
Internet, a computer-based analyzer is preferable in
the future due to its low cost and performance,
which is as good as the standalone analyzer.

(ii) Noncontact sensor is the future of vibration analysis
for machine monitoring and diagnosis due to its
flexibility and independence of any mass-loading
effects, without compromising the signal quality.

(iii) Time and frequency domain methods are suitable
for stationary signals and time-frequency domain
techniques are preferable for nonstationary signals
and early fault detection.

(iv) Deep learning, especially the deep transfer learning
method, is starting to be applied in vibration
analysis for machine monitoring and diagnosis as it
helps in minimizing the requirement for expert
knowledge in the complicated feature extraction
step. Traditional AI methods such as SVM, NN, and
fuzzy logic still require expert knowledge in the
feature extraction stage of newly fed datasets.

(v) Traditional time domain features such as RMS and
crest factor are still relevant in the future and its
application with AI will continue to increase.
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Table 11: +e most influencing articles for each methods.

Methods Articles’s name
Number
of citation

Time domain
Fault diagnostics of rolling element bearing using the NNmethod and the time domain features of RMS
and kurtosis conducted by [63]. From the results, the proposed method can still effectively diagnose the

machine even with the reduced number of inputs.
762

Frequency domain
A research conducted by [86] to study the relationship between the classical envelope analysis and
spectral correlation analysis in the diagnostics of bearing faults. It was shown that the envelope analysis

provided the same results as the complex spectral correlation function.
613

Time-frequency
domain

A study on applying the CWT method in the feature extraction of mechanical vibration signals
conducted by [101]. +e results proved that the proposed method is more effective than the Donoho’s

“soft-thresholding denoising” method.
1050

AI Similar to [63]. 762
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