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Abstract  
In this paper, a general analytical method based on Re.f. [1] is presented to .~tudy the 

bending vibration o f an  elliptical column partially submerged in water. Besides. it is pointed 

out that there is a limitation to the methodmentioned in Re./'. [2].As a special examph,, the 

natural frequencies of  circular column submerged in water considering compressibility are 

calculated, and the extent of compressible effect is given. 

I. I n t r o d u c t i o n  

In recent years, a great attention is paid to the vibrational problems of a column in water by 
some engineers. The equation of column-water coupled vibration is a differential-integral equation. 

The usually analytical methods are: (1) The column is dealt with rigid bodyl31; (2) The function of 

mode of vibration in water is substituted by that of mode of vibration without wotert41 ;(3) With the 
function of vibrational mode without water as a basis, the function of vibrational mode with water is 

expanded as an unlimited seriesltl,i (4) The integral term of the differential-integral equation of the 
coupled system is considered as the non-homogeneous term of the differential equationt211-~.61. The 

column with elliptic cross-section were discussed only in Refs.[1 -3] .  

The general analytical me~hod presented in this paper starts with the differ.ential-integral 
equation of column-water coupled vibration given by Ref. [1 ]. According to the basic idea of Ref. 

[7], the modal functions of column a:nd water are expanded as the same complete orthogonal series 

for uncoupling the mode of column and water. Then the mode function is represented as a sum of a 
uniform convergence series and a linear polynomial, so that the problems of convergence and 

differentiation of mode series are solved. Finally, we can obtain an exact solution of the mode 

function and a Corresponding frequency equation denoted by limited order determinent of column 

partically, subrderged in water with arbitrary boundary condition and with several mediated 
constraints. 

II. Column-Water Coupled Vibration Equation and I t s  U n c o u p l i n g  

2.1 Establ ishment  of  co lumn-water  coupled v i b r a t i o n a l  e q u a t i o n  H 

Assume that height of an eil!ptical column (shown in F~g. 1) is H, the elliptical half major axis is 
a and minor half axis is b, the thickness is d, and the'depth of water is h (h< H). 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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We suppose that the water is not viscous ideal fluid, motion is not curl and the influence of 
surface wave is often neglected. If the column is vibrating alongy direction and water is disturbed. 
According to the supposition, in the fluid velocity field, there exists a potential function 
r (~, r/, z, t) which satisfies Laplacian equation: 

a~r .- oz~b z O~d 1 ?z . h " os  Oz~ 
+ ~ ( e h 2 ~ - - c ~  c' 2 O~z t--~-~z = (e 2g--c 2r/)-~-~--- (2 .1)  

where ~,Z=aZ--b t , and c is the velocity of sound in water. 

ff(~, r/, z', t)satisfies the following boundary conditions: 

or  
8 z  : 0 ,  z : O  ; ( 2 . 2 a )  

0r 
Ot = 0 ,  z = h ;  (2.2b) 

0r au 
- ~ -  : - ~ - a ~ .  star/, $,,-~o ), (2 .2e)  

q~:0, ~----~1 (_~>)~0) (2 .2d)  

where y = y ( z ~ t )  =Y(z)expr icot ]  is the displacement 
along the y, direction of the elliptical column, and 
~o=-,th-lb/a is the elliptical surface coord/nate. 

Using separation of variables, .we take 

~(~ ,  ~7, z ,  t ) = i c o H ( ~ ) G ( r I ) Z ( z ) e x p [ i c o t ]  

( 2 . 3 )  

1! / /  / / / / /10" / 

I 
J 
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/ / / ~- 

x 2b 

Fig. 1 Elliptical column 

Substituting it in.to the above equations,, we obtain: 

f' 
�9 -1 s~(~o,qo){B~ 1) }~ Y(z)eos2~ 

2 a { ~  1 Jo . r  ~, z,t. ) =io~exp[ i<ot ] . 
O 0  

" s f ( L , q . ) f x - ,  , o . ,  ,z~ 
I t = O  

".COS~mZ 

where 

,,1~ I> }2 [h Y ( z ) cosg , z  . d z  s i ($o,--q t, )1 O0 

J o  

B - $  s f ( $ o , _ q t ) { ~ . :  , . A t , - , z ' t  
r - O  ~ ' " ' t 2 r + l l  f 

eos2,z} (2.4) 

,~ 2s--1 

2 2 
'F / co . 2 \  

q .  = 

�9 - 4 v " - ~ ) '  "•/l's ! i 
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st(_~,q~ q , ) - -  Se f ($ , ,q . )  Get(~,q . )  
Gef($t ,qo)  

st(~, -q:)=Se~($, - q ; )  Sef(~e,--qt) Get(~e,--qt) 

Set and Get are modified Mathieu functions, Se f and Ge[ are their first order derivation, A~+ ~and 
B Ct) are the cdefficients of Mathieu seriestSl. 

2 , r+ l  

In accordance with Bernoulli's function, it is very easy to determine the ~-axis projection of the 
resultant constituted by the water dynamic pressure of column per unit height along the z direction. 

.,Oje=~e0-------/9 I i  jr 0._~ ~----~0 "aslintIdTI 

2~raXPco2 exp[ icot ]{ 
= h 

sfGeo,q~ ,--,,+t ) 
TmO 

o-1 
COS~,oZ 

p ~ N s l l " r J ' l  }9. 
"~- ~'~ oo 0 Ycos / l " " ' d ' z  cos~,oZ ) 

~ sf (~o, - q  ,--~,+t ) 
r~O 

(2.5) 

where p is the density of water. When the compressibility of water is ignored, only the second 
term is retained in expression (2,5), so the derivation in Ref. [2] is wrong in comparison with 
expression (2.5)12L By use of Dalembert's principle, we obtain the equation of free bending'vibration 
of section O,~h of column as 

d'Yt(z) (oS(p.F+m(z))yt(z)__.O (2 .6 )  
E Z  d z  4 

where Y~(z) is the mode of the section O~h of column, co is the corresponding ]'requency, and 
P.t is the density of column. 

re(z) Ya(z)h2Pt [ ~ .  N , I : .  Y,(z)cos;~,zdz ].cos2.z (2 .7)  

No = 

~ra~ p. 
plF 

s~(~o, q.) { B ~ ]  -~ 

E t,~ct) xz'~ 
r ~ e  

( l~<s~<j -D 

=a 'p  s t ( S , , - q : )  { A ~ I  .: 

, - , , ,  , , l  
- - r m O  ~*JaS'r§ | J f 

It .can be seen from equatibn (2.6) that the influence of water to the column is equivalent to the 
distributed mass m(z) attached to the column. 
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2.2 U n c o u p l i n g t h e  m o d e  o f  c o l u m n  a n d  w a t e r  [7] 

Equation (2:6) is a differential-integral equation. Based on the idea of Ref.[7], we take 

Y t ( z ) =  ~ aseos2sz (2 .9)  
# - 1  

Substituting it  into equation (2.6) and by use of the complete orthogonal property of 
{eos2sz}in (O,h) interval, we obtain: 

oo  

e l  = 0  
dz" o. l 

The term d*yt(z) /dz  ' can be obtained by the method in the next section, but can't be done by 
term-by-term derivation. This process from equation (2.6) to equation (2.10) makes column-water 

coupled differential-integral equation into column-water uncoupled differential equation, so that 
the equivalent mechanics model of column-water coupled vibration can be established. 

I H .  F r e e  V i b r a t i o n  C h a r a c t e r i s t i c s  o f  C o l u m n - W a t e r  S y s t e m  
3.1 Bas ic  e q u a t i o n  
The column-water coupled vibration equation is 

F ' . d  4 
El--~-~z ~ --coZp,FY~----- 0 

Boundary forces and displacements are 

Mff i - -E,[Y ~, Q f - - E I Y "  

(O<z<h)} 
( h < z < H )  

(3.1) 

(3.2) 

Different mode function are selected according to the water depth. 'G :--S' set with water*, 
' S -  S' set without water**are selected, thst is, 

where 

Yt = Y-~. a.cos,Lz ( 0 ~ z < h )  
~  

Y s =  ~ ~l~  ( h ~ z ~ H )  
#.11 

.4 

(s=1,2,3, ..-) 

(3 .3 )  

series. {cos2oz}, 

3.2- C o n v e r g e n c e  and  d l t l ' e ren t ia t ion  o f  t h e  m o d e s  

Any mode function can be expressed by a set of complete orthogonal 

* 'G - S' set respresents the exact solution for the beam with boundary conditions at one end guided and 
at the other simply-supported. 

** ' S - S '  set represents the exact solution for the beam with simply-supported boundary 
condition at both ends. 
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{sin~,z~. in expression (3.3), are complete, iorthogonal series !~asis. The combination of 
them converges uniformly only in [0,h] or [h,H] interval as usual~ but would not be Consistent at the 
end- points, and its derivative can not be represented by term-by-term differentiation of series. 
However, we can solve those problem of the convergence and differentiation of mode by reform of 
the series. For example let uS consider 

Yt(z)-- ~a,cosAoz (O<~z~h) 

only when Yl(h)= O, the series continuous in interval [0,h] and converges uniformly to Yl(z) and 
expresses Y~(z) term-by-term differentiation. In the case of !Yt(h)~-0, we take 

ota 

z Yl(h) --Zh-Yl(h) (3 .4a)  Y~(z)= ~ a . e o s L z + -  h- 
# m l  

Expanding the last term right ofequality (3.4) as~osine series and adding to the first term, we obtain 

Y l ( z ) =  
. - 1 "  As L'.A. 

Depending on the definition, the series right of equality (3.4b) converges uniformly in close interval 
[0,hi and its derivative Yf(z) can be represented by term-by-term differentiation of the series as 
follows: 

Y f ( z )  t i  (3 .5)  

For the similar reason given above we can obtain the correct form of the successive derivations of 
series (3.3) (see appendix). 

It can be proved that not only the convergence of the series is ensured but it is, indced,improved 
by this approach. 

3.3 Column-water frequency equation with different water depth 
According to the method of derivative of the mode series mentioned in section 3.2 we obtain 

successive derivatives of series (3.3), and substitute the result into expressions (3.1), (3.2). The result 
canbe  written as: 

(2:_P_~(l+N,)co=}a --dtY~(O)-I-d~Q(o)-t-daYt(h)-l-d,yex(h) ~(3.6a) 

(X:~,}a,til,r',(k)+~,Y:(h)+e,Y,(~)+i[,M(H) (3.6b) 

Except for G -  S - S  boundary condition, expression (3.6) is written as follows: 

a, = qtY I ( 0 ) +  qlO( 0 ) -I: qsY l(h) + q,YI (h) 

a.ffi~,Yt(h)+qzY~(It)+qsY:(H)+q,M(H) } (3 .7 )  

Generally, for the end-supported case S - G set (simply-supported down the end, guided up the 
end) must satisfy the boundary conditions: 

Y~(0) t i M ( 0 ) =  Y'  ( H )  ~ Q(H)-:-- 0 (3 .8a )  
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continuous conditions: 

Y,(h)=Y2(h)' Yl(h)=Y'(h),  Y'(h)=Y;,(h), Y~.(h)=Y;(h) (3.8b)  

Substituting expression (3.3) into expression (3.8) and utilizing equation (3.7), we obtain a 
frequency equation as: 

[e,j]~• Q(0) ,  Y~(h), Y'~(h), Y~(H), M ( H ) } ~ = { 0 }  (3 .9)  

and a corresponding frequency determinant [ e~  I e • 6 = 0 . (3.10) 
We can obtain the exact coupled natural frequency of column-water from expression (3.10) and 

its corresponding mode from expressions (3.9), (3.7), (3.3). Here, we can establish a most general 
frequency equation (3.9) to solve the problem with S - G boundary condition by G - S - S set. The 
frequency equati .or, s with the other boundary conditions and constrained conditions can be obtained 
by deleting inapplicable rows and column from determinant (3.9). If there is a constraint at z = h 
which makes I?,(h)= 0, expression (3.9) Will be reduced to 

[e,~]5• Q(0) ,  Y~(h), Y2(H), M(H)}~ '={0}  (8.11) 

If the height of column is the same depth of water, expression (3.9) will be reduced to: 

[e,s],• Q(0),  Yl(h) ,  M ( h ) } r = { 0 }  (3.12)  

3.4 The  f r e q u e n c y  e q u a t i o n s  for  s eve ra l  c a se s  o f  b o u n d a r y  cond i t i ons  
(l) C - F  (clamped-free beam) 

[..e,s],~,{Q(o), Yl(h), Y~(h), Y~(H)}~'={0} (8.13.) 

(2) F - F  (free-free beam) 

[e~],~,{Y~(O), Yt(h), Y~(h) ,  Y z ( H ) } l ' = { 0 }  

(3) G - S  (guided-simply-supported beam) 

[e~]zxz{Yl(h), Y~'(h) }~'={0} (3 , !5 )  

(8 .14)  

{2;--P~j (l+No)co~ }= 0 

(s= 1,2,3,..-) (3.1z) co. = ~ p,F(1 + N , ) / E I  

Without water expression (3.17) will be reduced to 

co,=2~./(plF/El) �89 (s=1,.2,3,-..) (3.18~ 

Because of N a ~ o ,  the wet frequency of column in water is lower than the~lry frequency of 
column without water. Here, N s reflects the effect of  added water mass. By the way, the 'general 
solution' may lose the partial solution in Refs.[2,5,6] in which the integral term i~eonsidered as the 
non-homogeneous term of differential equation. Thegeneral solution is 

(3.16) 

then 

If the height of column is equal to the depth of water, the frequency equation can not be reduced 
from expression (3.9), but it becomes a simple analytical expression given by expression (3.6), that is 
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here 

Yt (z) ---- Dteoskz + D~siakz + Dsehkz + D,shkz 

,,-1 1 - - h E i  - 
2 

( a )  

k' Pl Fc~ 
=" EL (b) 

The G - S  boundary condition must satisfy: 

YI ( O ) = Y ~ ( O ) = Y t ( h ) ~ Y m t ( h )  = 0 ( c )  

Substituting expression (a) into expression (c), the series term right of equation (a) will vanish 

naturally since eosAoz satisfies (c). Therefore, the effect ofwater can not be reflected. The result is 

agreeable with that obtained from expression (3.14) for the day frequency of column without water. 
This result is wrong. 

IV .  N u m e r i c a l  R e s u l t s  a n d  D i s c u s s i o n s  

In order to show the reliability o f  this method and consider the effect of compressibility of 

water quantitatively the vibrational characteristics of cantilevei- circular column in water is 
calculated. 

E x a m p l e  1 Variation of natural frequencies due to radius of column. The material 

properties are: H = h = 2 O m ,  d=0,  E=2.94x 10t~ Pt---- 2450kg/m s, ,o=  1000kg/m s, 

c = 1438.027m/s, co~ , coy, co,c. w stand for the i-th natural frequencies in air, in water neglected 

compressibility and considered compressibility. Table 1 shows that the result in this paper is in 

agreement with that in Ref. [6], so this method is reliable. Because of the effects of added mass of 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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smaller and the effect of compressibility on higher number of mode is greater. From this example, 

the effect of  compressibility of  water on slender can be neglected. 

E x a m p l e  2 Variation of  natural frequencies due to thickness of  column. The material 

properties are: H = h = 8 0 m ,  a =  10m, E=2.94 x 101~ p i = 2 4 5 0 k g / m  s, .. p~=1000kg/mS~ 
c~1438.027m/s~the thicknnes of  column is d. Table 2 shows the natural frequenciesl Fig.2 and Fig.3 

show the vibrational mode of displacement of column and hydrodynamics, when d[a = 0.01.  

From table 2 the thinner the thickness of column, the greater the effect of  water and its 

compressibility. When the thickness of column is quite thin, the effect ot compressibility of  water 

on natural frequency can not be neglected. 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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resultPl has alittle error in replacing the mode with water by that without water. The effect of 
compressibility of water on higher number of mode is greater. 

From Fig.3, the effect of compressibility of water on higher number of hydrodynamic mode is 
greater. 
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E x a m p l e  3 Variation of natural frequencies due to water depth. The material prooerties 

are: H=80m,  a=  10m, d=5m,  E=2.94 x 1010pa, /91=2450kg/m a, p = 1 0 0 0 k g / m S ,  

c= 1438.027m/s. Table 3 shows the law of vibration of natural frequencies due to water depth. 

Fig.4, Fig.5 show the mode of displacement of column and mode of hydrodynamics when h/H = 0.5. 

From Table 3, the deeper the water, the greater the effect of added mass of water and the 

compressibility. 

Fig.4 and Fig.5 show the same law in Fig2, Fig.3. 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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Table 3 Variation of natural frequencies due to water depth. 
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(1) The existence of water reduces the natural frequency and changes the mode shape of the 
column in air. Usually, the deeper the water and the more slender thecolumn!an~the~thinner the 

thickness and the "lower the number of mode, the greater the effect of added mass of water. The 

fundamental mode with water is sithilar to that in air, but the higher modes are not. 
(2) The natural frequency considering the compressibility is lower than that neglecting 

compressibility. Usually, the deeper the water and the squatter the column and the thinner the 
thickness and the higher the number of  mode, the greater the effect of  compressibility of  water. In 

most cases the compressibility can be neglected, but only in the case of o,.h/c~(2s--1)/5(sinthe 
number of.mode), the effect of the ~;ompressibility becomes significant. 

(3) This analytical method presented in this paper can be used to solve the problem of free 

bending vibration of an elliptical column partically submerged in water. The elliptical column is 

with different water depth, arbitrary boundary condition and with several intermediate constraints 

and in the case of h < H. The effect of compressibility of water can be shown quantitatively. Besides, 

it is pointed out that there is a limitation to the method in ReT.[2]. 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 


