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	e relevance of the development of monitoring systems for rotating machines is not only the ability to detect failures but also
how early these failures can be detected. 	e purpose of this paper is to present an experimental study of partially damaged rotor
bar in induction motor under di
erent load conditions based on discrete wavelet transform analysis. 	e approach is based on
the extraction of features from vibration signals at di
erent level of damage and three mechanical load conditions. 	e proposed
analysis is reliable for tracking the damage in rotor bar. 	e paper presents an analysis and extraction of vibration features for
partially damaged rotor bar in induction motors. 	e experimental analysis shows the change in behavior of vibration due to load
condition and progressive damage.

1. Introduction

	e increasing need for production at low cost in a safe
manner and high quality has accelerated a change in rotating
machine maintenance from corrective to preventive [1]. 	e
relevance of the development of monitoring systems for
rotating machines is not only about the ability to detect
failures but also about how early these failures can be detected
[2]. As one of themajor equipment items inmodern industry,
induction motor constitutes around 85% of the motors [3]. A
common fault in induction motors is a broken rotor bar; this
fault corresponds approximately to 10% of the failures [4]. In
addition, this failure signi�cantly increases power consump-
tion and it is responsible for further damage to themachinery
because of the undesired vibrations and shattering that are
produced.

	emost popular techniques for fault detection in induc-
tionmotors are the motor current signature analysis (MCSA)

and the motor vibration signature analysis (MVSA). 	ere
are several current analysis techniques in literature about the
identi�cation of faults in induction motors such as broken
bars [2, 5–11] and also vibration analysis techniques [12–25].
When it comes to vibration analysis techniques, there are
several methodologies for the detection of broken bars. Su
et al. analyzed the vibration signal using an Arti�cial Neural
Network (ANN) for motor fault detection [12]. Gritli et al.
investigated the impact of the control system related to fault
diagnosis; they concluded that current signal is a
ected and
vibration analysis showed better result for fault diagnosis [13].
Betta et al. proposed a vibration analyzer based on a digital
signal processor (DSP) for fault diagnosis in rotatingmachine
[16]. Sadoughi et al. proposed an intelligent diagnosis based
on ANN and new features in vibration spectrum [19].
Climente-Alarcon et al. studied the e
ect of interbar currents
attenuation and how they are greatly reduced if the bar is
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severed at both ends. 	ey used vibration spectrum analysis
during stationary operation [25]. Several authors have used
wavelet decomposition for broken bar detection. Antonio-
Daviu et al. [20] developed an evaluation of di
erent starting
methods for motor fault detection; they showed how the
advanced analysis based on startup technique relies on identi-
fying the time-frequency evolutions of the rotor-fault-related
components contained in the startup current signal. Miceli et
al. [24] presented a time-frequency analysis from axial and
radial core vibration signal for broken rotor bar detection.
Ordaz-Moreno et al. [6] developed a methodology based
on discrete wavelet transform (DWT) for broken bar detec-
tion during transient state using current signature analysis.
Delgado-Arredondo et al. [15] presented a comparative study
of time-frequency decomposition techniques for fault detec-
tion in induction motor using vibration analysis. A review of
wavelet analysis applied to induction motor fault detection is
presented in [26]. 	e works presented above are calibrated
to one or two broken bar detections, in the better case a half
broken bar can be detected, and the reason is due to the fact
that amplitude of incipient broken bar is small and can be
absorbed by the fundamental frequency in traditional MCSA
methodology. Recently DWT has been used remarking the
importance of wavelets analysis in induction motor fault
detection, but the majority detects only one or half broken
bar. Garcia-Perez et al. [27] proposed the use ofMUSIC (Mul-
tiple Signal Classi�cation) for analysis of incipient broken
rotor bar in induction motor using current analysis. 	eir
work represents a �rst study in partially broken bars and
their detection using motor current signature analysis during
the transient state. Nevertheless, their methodology was
not tested with load variation, and then more investigation
related to incipient broken bars is mandatory.

In this paper, the use of DWT and MVSA for the study
of partially damaged rotor bar is presented. 	e contribution
of the paper is the analysis of some features extracted from
wavelets decomposition that allows detecting the change in
vibration behavior due to progressive damage. 	e novelty
of the paper is the detection of incipient broken bars (3mm,
5mm, 7mm, and 10mm) using vibration analysis during
startup transient. 	e experimental analysis under di
erent
mechanical load levels shows the change in behavior and
vibration due to progressive damage.

	e remainder of this paper is organized as follows:
Section 2 presents the theoretical background ofmotor vibra-
tion signature analysis, discrete wavelet transform, autocor-
relation, and some estimation parameters; the experimental
setup is presented in Section 3; Section 4 presents results
from several cases of study. 	e conclusions are presented in
Section 5.

2. Theoretical Background

	e identi�cation of incipient broken bars implies an appro-
priate feature extraction. 	e background of broken bar
detection and the techniques used for it are presented in this
section.
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Figure 1: Mallat algorithm for DWT decomposition.

2.1. Motor Vibration Signature Analysis (MVSA). Several
asymmetries on the rotor can be determined by the spectrum
analysis of the motor vibration. A broken bar in an induction
motor can be detected throughMVSA. A broken bar induces
a spurious component in the vibration spectrum given by [2]

��� = (1 ± 2��) ���, (1)

where � is an integer, � is the per-unit slip, and��� is the supply
frequency. Nevertheless, due to the small amplitude of fre-
quencies of partially broken bar its detection is compromised.
For this reason di
erent methodologies have been proposed
[2, 27].

2.2. Discrete Wavelet Transform (DWT). Discrete wavelet
transform has widely been used for signal processing of
nonstationary or transient signals. Mallat’s algorithm is used
to compute the DWT based on a set of discrete-time low-
and high-pass �lters. Figure 1 shows Mallat’s algorithm for
DWT decomposition [28]. 	e decomposition produced the
approximation (low-frequency component) and the detail
(high-frequency component) coe�cients. According to the
DWT �lter bank properties, the frequency bands for approx-
imation AC� and detail DC� at level � are given by

AC� = [0, ��2�+1 ] ,
DC� = [ ��2�+1 , ��2�] ,

(2)

where �� is the sampling frequency. Table 1 shows an example
of the frequency bands for detail and approximation levels.

Figure 2 shows an example of DWT decomposition of
an induction motor vibration signal at healthy condition
and full mechanical load. Seven levels were used for the
decomposition. Figure 2(a) shows the approximation levels
and Figure 2(b) shows the detail levels. Ordaz-Moreno et al.
[6] and Antonino-Daviu et al. [20] proposed the analysis of
current and vibrations signals during transient state, respec-
tively. 	ey analyzed the variability of the signal at di
erent
levels; nevertheless, for incipient broken bars the direct anal-
ysis of the signal is not enough. In this paper, an additional
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Figure 2: DWT decomposition, (a) approximation, and (b) detail.

Table 1: DWT decomposition level frequency bands for a sampling
frequency �� = 3200Hz.

Level (�) Approximation
bandwidth (Hz)

Detail
bandwidth (Hz)

1 AC1 [0, 800] DC1 [800, 1600]
2 AC2 [0, 400] DC2 [400, 800]
3 AC3 [0, 200] DC3 [200, 400]
4 AC4 [0, 100] DC4 [100, 200]
5 AC5 [0, 50] DC5 [50, 100]
6 AC6 [0, 25] DC6 [25, 50]
7 AC7 [0, 12.5] DC7 [12.5, 25]

preprocessing step by means of autocorrelation of the signals
is proposed; this helps to reduce the noise in acquired
vibration signals.

2.3. Autocorrelation. 	e autocorrelation is de�ned as the
cross-correlation of the signal with itself.	e autocorrelation
allows �nding repeating patterns and measures the linear
relationship between time series observations separated by
a lag of � time units. 	e autocorrelation has shown good
results in fault detection [29, 30].	e autocorrelation is given
by

	�� = 
 {�(�+�)�∗(�)} , (3)

where � is the vibration signal and 
 is the spectral estima-
tion. Figure 3 shows an example of DWT decomposition of
a healthy induction motor vibration signal at full mechanical
load previously preprocessed by autocorrelation. Figure 3(a)
shows the approximation levels and Figure 3(b) shows the
detail levels.

An example of a DWT decomposition of a damage
induction motor vibration signal is shown in Figure 4; it was
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Figure 3: Autocorrelation and DWT decomposition for a healthy motor, (a) approximation, and (b) detail.

obtained at full mechanical load and previously preprocessed
by means of autocorrelation.	emotor has one broken rotor
bar. 	e approximation and the detail levels are shown in
Figures 4(a) and 4(b), respectively. Figure 3(a) at level 7 shows
the expected triangle due to the autocorrelation process,
whereas Figure 4(a) at level 7 shows a noisy triangle. 	e
di
erence between a healthy and damaged motor signals
is visually clear. 	e only di
erence in condition between
the two motors is the broken rotor bar. 	en, the signal
contamination is due to the broken bar. In order to obtain a
better interpretation the use of somebasic statistic parameters
like mean, zero-crossing, and standard deviation at level 3 of

decomposition is proposed. In this level the range of frequen-
cies is from 0 to 200Hz; then the fundamental and some
harmonics are included.

2.4. Estimation Parameters. 	ree basic statistic parameters
were used, the mean (�̂) de�ned in (4), standard deviation
(SD) de�ned by (5), and zero-crossing (ZC) that counts the
number of times the signal crosses the zero value or presents
a change in sign:

�̂ = 1�
	∑

=0
�
, (4)
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Figure 4: Autocorrelation and DWT decomposition for a motor with one broken bar, (a) approximation, and (b) detail.

SD = ( 1�
	∑

=0
(�
 − �̂)2)

1/2

. (5)

Also the variability, norm, kurtosis, skewness, and RMS
valuewere computed; nevertheless, parameters like themean,
standard deviation, and zero-crossing provided better results
of the information we expected to obtain.

2.5. Classi�cation: �-Nearest-Neighbor Algorithm (�NN). A
common reference among the classi�ers due to the simplicity

of the learning rule is the �-nearest-neighbor classi�er. 	is
classi�er is memory-based and requires no model to be �t.
	e basic idea is that, given a query point �0, it is found that� training points ��, � = 1, . . . , �, are closest in distance to�0, and they are classi�ed using the majority vote among the� neighbors [31]. Assuming that the features of the objects to
be classi�ed are real-value, a commondistancemeasure in the
feature space is the Euclidean, and all objects in the training
set participate to determine �-nearest-neighbors to the query
point. A common classi�er is the 1-nearest-neighbor, which
is used in this paper.



6 Shock and Vibration
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Figure 5: Accelerometer placed on induction motor.

3. Methodology

	emethodology consists mainly in the following steps:

(1) Vibration signals of the three axes are sensed online
from the motor and saved in a PC.

(2) Feature extraction stage is as follows:

(a) An autocorrelation function is applied to each
axis.

(b) 	e decomposition at level three of each signal
is obtained using DWT algorithm.

(c) Statistical parameters like mean, standard devi-
ation, and zero-crossings are calculated for the
decomposition coe�cients.

(3) Statistical analysis of the parameter is computed.

(4) Classi�cation stage is as follows: the motor condition
is classi�ed based on �NN algorithm.

3.1. Experimental Setup. 	e experimental test was per-
formed on a 1-HP motor, the vibration signal was acquired
using MEMS-based triaxial accelerometer with a user-
selectable full scale (±2 g/±6 g); a resolution of 12 bits and
an oversampling frequency of 3.2 KHz was used. 	e signals
were acquired at the startup transient state of the motor
during 5 s. Figure 5 shows the location and orientation of the
accelerometer over themotor.	e axis “�” is perpendicular to
the rotor, where the best results to the analysis were obtained,
axis “�” provided acceptable results, and axis “�” provided
less satisfactory results.

	e data were recorded in the following states: healthy,
3mm, 5mm, 7mm, and 1 broken bar. For each state, 50 runs
for unload, 50 runs for half load, and 50 runs for full loadwere
recorded. In order to obtain the incipient conditions (3mm,
5mm, 7mm, and 1 br) the rotor was externally drilled at
di
erent depths. A total of 750 runs were analyzed in this
study.

4. Analysis Results

As it was described above, the three axes were previously pre-
processed by autocorrelation and then the DWT was applied
and level 3 of decomposition was obtained. At this level the
mean, ZC, and SDwere applied. Each database (without load,
half load, and full load) are constituted by 250 runs. 	e
results obtained for each condition are shown in Figures 6–17.
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Figure 6: Approximation coe�cients at no mechanical load, ��-
axis.

4.1. Without Mechanical Load. Figure 6 shows a section from
the approximation coe�cients at level 3 of decomposition. As
can be seen, the coe�cients show di
erences that can be eval-
uated by the proposed estimation parameters. Figure 6 shows
the �ve conditions evaluated in this test. 	e three axes were
analyzed to obtain better results.

In Figure 7, the analysis of the �ve conditions under test is
shown for the��-axis.	e analysis is performed bymeans of
the SD and mean value parameters. One can see that the �ve
regions present some degree of overlap; nevertheless, for the
healthy, 7mm, and one-broken bar conditions the separation
between classes is more evident, allowing a better classi�ca-
tion.

	e �-axis analysis is depicted in Figure 8; the results
are now obtained with the SD and ZC estimation parameters.
As it can be seen, the conditions under test present a high
dispersion degree and overlapping between them, which
complicates the classi�cation because none of the conditions
are clearly separated.

Finally, Figure 9 shows the analysis of the ��-axis, where
the mean and ZC values were selected as estimation param-
eters. It is considerably clear that the ��-axis shows the best
results for classi�cation; all the conditions are considerably
grouped and separated. It is possible to detect not only the
damage condition but also the level of such damage.	e level
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of overlapping is too low showing that the analysis in the��-
axis is the best option to obtain a clear classi�cation of the
damage level under a nonmechanical load condition.

4.2. Half-Mechanical Load. Figure 10 presents a section of
the approximation coe�cients at level 3 of decomposition
for ��-axis; all the conditions are shown. Di
erences among
amplitudes of the signals can be seen. For better results the
three axes were analyzed; mean and SD were selected for
the analysis. Figure 11 shows the analysis for ��-axis; in this
case all the conditions are totally overlapped.	is axis cannot
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Figure 9: Unload condition analysis, ��-axis.

be used for condition classi�cation; even healthy and one-
broken bar conditions are not identi�able.

Figure 12 shows the analysis for�-axis; ZC and SD were
selected for the analysis. Two main groups are presented;
one for healthy and 3mm conditions and the other one for
5mm, 7mm, and 1 br conditions. Under this condition of
half-mechanical load and for this axis, the 3mmdepth drilled
is considered as healthy whereas the damage condition is
detected at a depth of 5mm. In the second group, using
an appropriate classi�cation algorithm, the one-broken bar
condition can be detected. 	e 5mm and 7mm have more
overlapping degree.

Figure 13 presents the analysis for ��-axis; ZC and SD
were selected for the analysis. In this case, healthy condition
has less overlap with 3mm. For the rest conditions it is
di�cult to obtain a clear result due to the highly overlapping
degree.	en,� and�� axes can be used together for a better
classi�cation; using both, the healthy and damage conditions
(3mm, 5mm, 7mm, and 1 br) can be better classi�ed.
Depending on the classi�cation technique other conditions
can be estimated to obtain healthy, medium damage (3mm,
5mm and 7mm), and one-broken bar conditions.

4.3. Full-Mechanical Load. Figure 14 shows a section of the
approximation coe�cients of ��-axis for full-mechanical
load. In the �gure the di
erences among the �ve conditions
are presented. In order to measure these di
erences the three
axes were analyzed as is shown in Figures 15, 16, and 17.

Figure 15 shows the analysis of ��-axis; mean and SD
were selected for the analysis.	e conditions are totally over-
lapped. It is clear that this axis does not help in the analysis
of partially broken bars.

Figure 16 presents the analysis for �-axis; mean and SD
were selected for the analysis. Four groups in the �gure can
be seen, for the 1-bar condition and 5mm of a depth drilled
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Figure 13: Half-load condition analysis, ��-axis.

condition, a clearly division between classes is obtained,
which does not happenwith the 3mmand healthy conditions
and in certain degree of about 25% of the 7mm condition; the��-axis is developed for this last group.

Figure 17 shows the analysis in ��-axis; ZC and mean
were the estimation parameters selected for the analysis.
	ree groups are showed in the �gure, the �rst for healthy
condition; the second for 3mm; and the third is an overlap
of 5mm, 7mm, and 1 br. 	en the �ve conditions can be
detected using a combination of � and ��, � detects 1 br
and 5mm and 7mm conditions with some overlap, and ��



Shock and Vibration 9

−0.15
−0.05

0.05

Healthy

−0.15
−0.05

0.05

A
m

p
li

tu
d

e
A

m
p

li
tu

d
e

A
m

p
li

tu
d

e
A

m
p

li
tu

d
e

A
m

p
li

tu
d

e

−0.15
−0.05

0.05

−0.15
−0.05

0.05

Samples

0 50 100 150 200 250 300 350 400 450 500

Samples

0 50 100 150 200 250 300 350 400 450 500

Samples

0 50 100 150 200 250 300 350 400 450 500

Samples

0 50 100 150 200 250 300 350 400 450 500

Samples

0 50 100 150 200 250 300 350 400 450 500

−0.15
−0.05

0.05

1br

7mm

5mm

3mm

Figure 14: Approximation coe�cients at full mechanical load, ��-
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Figure 16: Full-load condition analysis, �-axis.
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Figure 17: Full-load condition analysis, ��-axis.

detects healthy and 3mm conditions. In the case of the over-
lap in 7mm in�-axis (group four) it is necessary to analyze
the third group in �� (5mm, 7mm, and 1 br), if the sample
belongs to this group then it can be classi�ed as 7mm, and
we know that it is not 5mm or 1 br because these conditions
are perfectly separable in �-axis.
4.4. �NN. A simple classi�cation technique was used to
prove the usefulness of the analysis. �-nearest-neighbors
(�NN) algorithm was used. Also tests adding white noise
weremade; the level of noise was based on the signal-to-noise
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Table 2: Classi�cation percentage for each condition using �NN.
Condition/axis �� SNR10 SNR5 SNR1

Unload 96.55% 96.70% 92.85% 89.8%

Half load 80.5% 81.5% 80.85% 80.55%

Full load 87.6% 85.85% 84.4% 85.15%

ratio (SNR). 	e values used were SNR = 10, 5, and 1. Table 2
shows the results of the classi�cation for the ��-axis with� = 1 and for the three cases of added noise. 	ese results
are obtained froma cross-validation processwith 10-folds; the
average loss for each cross-validation model is used to obtain
the accuracy level in classi�cation. We have to remark that
the simple value of � = 1 was su�cient to obtain a desirable
accuracy level in classi�cation.

5. Conclusions and Future Work

In this paper a study of incipient broken bar detection based
on vibration analysis is presented. 	e obtained results show
that information regarding partial damage in broken rotor
bar is re�ected on vibration signals. An initial damage of
3mm was detected using the autocorrelation and DWT. A
simple �NN classi�cation considering the healthy motor and
the four levels of damage (3mm, 5mm, 7mm, and 1 br)
showed results of 96.55% for unload conditions and 80.5%
for half-load and 87.6% for full-load condition.

Future work aims to employ di
erent types of classi-
�ers like the Multilayer Perceptron (MLP), Support Vector
Machines (SVM), and Arti�cial Neural Networks (ANN), in
order to improve the accuracy level in classi�cation especially
in the half- and full-load motor conditions.
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