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Abstract. A simple and accurate method is proposed for the vibration analysis of rectangular plates with one or more guided edges,

in which bicubic B-spline interpolation in combination with a new type of basis cubic B-spline functions is used to approximate

the plate deflection. This type of basis cubic B-spline functions can satisfy simply supported, clamped, free, and guided edge

conditions with easy numerical manipulation. The frequency characteristic equation is formulated based on classical thin plate

theory by performing Hamilton’s principle. The present solutions are verified with the analytical ones. Fast convergence, high

accuracy and computational efficiency have been demonstrated from the comparisons. Frequency parameters for 13 cases of

rectangular plates with at least one guided edge, which are possible by approximate or numerical methods only, are presented.

These results are new in literature.
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Notation

[Ax], [Bx], [Cx], [Fx] spline matrices;

[Ay], [By], [Cy], [Fy]
a, b Plate lengths in x and y directions, respectively;

ai Undetermined spline nodal coefficient of beam;

ai,j Undetermined spline nodal coefficient of plate;

[D] Rigidity matrix of plate;

d Plate thickness;

E Young’s moduli of plate material;

[H ], [N ] Spline interpolation matrices;

h Spline section length of beam;

hx, hy Spline section length in x and y directions, respectively;

[K] Stiffness matrix;

l Beam length;

[M ] Mass matrix;

N, M Spline section in x and y directions, respectively;
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r = b/a, aspect ratio;

T Kinetic energy;

U Strain energy;

w(x) Displacement of beam;

w(x, y, t) Plate deflection;

W (x, y) Amplitude of the plate deflection;

ω Circular natural frequency;

{δ} Undetermined spline nodal coefficient vector;

{χ} Curvature vector;
∏

Functional of plate;

µ Poisson’s ratios of plate material;

ρ Mass per unit area of plate;

ϕ3(x) Standard cubic B-spline function;

φi(x), ψj(y) Local basis cubic B-spline functions in x and y directions, respectively;

⊗ Kronecker product of two matrices or two vectors.

1. Introduction

Flexural vibration of rectangular plates under various combinations of the three classical edge conditions, i.e.

simply supported, clamped and free edges, has been studied extensively. The three classical edge conditions are

simply three of the four possible combinations of essential and natural conditions. The fourth mathematically possible

boundary condition has zero rotation (essential condition) and zero effective shear force (natural condition), which

has been referred to in the literature as the guided [2] or sliding edge [11]. Although the fourth edge condition is not

as important as the three classical ones, it may be encountered in various disciplines of engineering. For example,

in mechanical engineering, the bearings may have guided contact with the supported member. The boundary of a

piston inside a circular cylinder with narrow clearance may appropriately be modeled as a guided edge.

There exist 21 possible combinations of the three classical edge conditions for rectangular plates, and accurate

results for the free vibration of rectangular plates with all 21 combinations of edge conditions have been presented by

Leissa [6]. The number of all possible combinations gives rise to 34 additional ones when at least one guided edge

is involved. Of all these 34 cases, analytical solution is possible for 21 cases only, and the analytical solutions of the

frequency parameters for the 21 cases have been presented by Bert and Malik [2]. The solutions of the remaining

13 cases are possible by approximate or numerical methods only, however, no investigation has been reported. The

main purpose of this study is to provide accurate results of frequency parameters for the remaining 13 cases via

bicubic B-spline method.

The concept of bicubic spline interpolation was first introduced by Boor [3]. The first application of bicubic

B-splines in engineering analysis was reported by Antes [1] for bending analysis of plates. Shen, He and Le [9]

presented so-called multivariable spline element method for vibration analysis of rectangular plates. However, their

work was limited to plates with clamped or simply supported edges only due to the restrictions of the basis cubic

B-spline functions adopted [5].

In this paper, firstly, a new type of basis cubic B-spline functions is constructed. This type of basis cubic B-spline

functions can effectively satisfy simply supported, clamped, free and guided edge conditions with easy numerical

manipulation. Any beam functions can be accurately approximated by the new type of basis B-spline functions. The

plate deflection is chosen as field function and expressed as the product of basis cubic B-spline functions in both x

and y directions. The frequency equation is formulated based on classical thin plate theory by performing Hamilton’s

principle. The validity of the present approach is well established by demonstrating the excellent agreement between

the present results and those of analytical solutions by Bert and Malik [2]. As an application of the proposed

method, frequency parameters of 13 cases of rectangular plates with at least one guided edge, which are possible by

approximate or numerical methods only, are presented.
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2. Functional of free vibrating plate

Consider a thin, isotropic rectangular plate of length a, width b, uniform thickness d, and mass per unit area ρ.
For small amplitude free vibration, the plate deflection w(x, y, t) may be written by

w(x, y, t) = W (x, y) sin ωt (1)

where W (x, y) is the amplitude and ω is the circular natural frequency of the plate. The curvature is given by
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The strain energy U and the kinetic energy T are expressed, respectively, by

U =
1

2

∫ a

0

∫ b

0

{χ}T [D] {χ}dydx (3)

T =
1

2

∫ a

0

∫ b

0

ρ

(

∂w

∂t

)2

dydx (4)

in which [D] is flexural rigidity matrix, as follows:

[D] =
Ed3

12(1 − µ2)

⎡

⎣

1 µ 0
µ 1 0
0 0 (1 − µ)/2

⎤

⎦ (5)

where E is Young’s modulus, µ is Poisson’s ratio.
The functional of a thin plate for free vibration is:

Π =
2π

ω

∫ a

0

∫ b

0

({χ}T [D]{χ} − ρω2W 2)dydx (6)

3. Bicubic B-spline interpolation

The mathematical expression of standard cubic B-spline function can be expressed as
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(7)

The graphical representation of standard cubic B-spline function is shown in Fig. 1. It’s seen from Fig. 1
that standard cubic B-spline function is a piecewise cubic polynomial. Cubic B-spline function has mathematical

properties which are advantageous in numerical analysis. The mathematical properties of cubic B-spline functions
are well documented by Boor [4] and Schumaker [8].

Consider a uniform beam of length l. The beam is divided into N equivalent spline sections by means of spline

nodes. The beam deflection can be taken as the summation of N + 3 terms and each term can be represented by a
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Fig. 1. Standard cubic B-spline function.
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Fig. 2. Beam function interpolation by ordinary cubic B-spline functions.

local dimensionless cubic B-spline function, as shown in Fig. 2. It’s observed from Fig. 2 that, at any spline node,

the displacement expression has three non-zero terms only, e.g. only ϕ 3(
x
h
− (i−1)), ϕ3(

x
h
− i), and ϕ3(

x
h
− (i+1))

have non-zero contributions to the displacement at the ith spline node. However, it’s difficult to account for different

boundary conditions using ordinary cubic B-spline interpolation. The three local B-spline functions at the boundary,

therefore, must be constructed to accommodate different edge conditions. Several kinds of basis cubic B-spline

functions have been proposed by Qin [7] and one of which has been commonly used by other researchers [9,10,

12]. This commonly used kind of basis cubic B-spline functions can satisfy simply supported and clamped edges

conveniently, however, free and guided edges may not be satisfied [5].

3.1. The new type of basis cubic B-spline functions

In the present paper, a new type of basis cubic B-spline functions is constructed, as follows
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Fig. 3. Plate deflection interpolation by basis cubic B-spline functions (x-direction).
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(8)

The three boundary cubic B-spline functions at both ends are linearly combined to satisfy different edge conditions,

as sketched in Fig. 3. By virtue of the new type of basis cubic B-spline functions in Eq. (8), the beam deflection can

be expressed as

w(x) =
N+1
∑

i=−1

φi(x)ai (9)

where ai(i = −1, 0, 1, . . ., N − 1, N, N + 1) is undetermined coefficient at the ith spline node.

It’s well known that in energy approaches admissible functions have to satisfy geometrical boundary conditions

but need not satisfy natural boundary conditions. However, from a practical consideration of the rate of convergence,

it is desirable to satisfy natural boundary conditions if possible [13]. The new type of basis cubic B-spline functions

has desirable characteristics for numerical analysis since it can satisfy all geometrical boundary conditions and part

of natural boundary conditions of the four kinds of edge conditions. For example, at the end x = 0, Eq. (9) yields

w(0) = a−1φ−1(0) + a0φ0(0) + a1φ1(0) (10)
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Table 1

Convergence study of bicubic B-spline solutions of frequency parameters for SSSG

square plates

Num. of Frequency parameters

sections 1st. 2nd. 3rd. 4th. 5th. 6th.

6 × 6 12.33745 32.08115 41.98588 61.71575 71.71681 91.92226

8 × 8 12.33714 32.07767 41.95718 61.69363 71.59787 91.45260

10 × 10 12.33706 32.07679 41.95024 61.68836 71.57095 91.35205

12 × 12 12.33703 32.07649 41.94789 61.68658 71.56216 91.32023

14 × 14 12.33701 32.07636 41.94692 61.68585 71.55858 91.30756

16 × 16 12.33701 32.07630 41.94646 61.68551 71.55691 91.30168

18 × 18 12.33701 32.07627 41.94621 61.68532 71.55604 91.29865
20 × 20 12.33701 32.07625 41.94608 61.68522 71.55554 91.29696

Exact∗ 12.33701 32.07622 41.94582 61.68503 71.55464 91.29385

∗Bert and Malik [2].

Table 2
Comparison of frequency parameters for SCSG plates

Mode r = 0.4 r = 1.0 r = 2.5

sequence Present Exact∗ Present Exact∗ Present Exact∗

1 10.34459 10.34454 13.68579 13.68577 41.18469 41.18466

2 14.04479 14.04455 38.69439 38.69393 65.27708 65.27632

3 21.15134 21.15106 42.58779 42.58662 111.25348 111.24204

4 31.48613 31.47916 66.30066 66.29910 178.53572 178.45914

5 39.91245 39.91111 83.49563 83.48830 197.06605 197.06296
6 43.36284 43.36022 91.71810 91.70417 222.30722 222.30413

7 45.00561 44.97255 111.01629 111.00916 266.23690 266.16636

8 50.20771 50.20251 114.37324 114.35987 266.50405 266.22905

9 60.37257 60.36157 147.92791 147.87515 330.11816 330.07159

∗Bert and Malik [2].

And at the end x = 0, Eq. (8) gives

φ−1(0) = 1, φi(0) = 0 (i = 0, 1, 2, · · · , N + 1) (11)

φ′

0(0) = 1, φ′

i(0) = 0 (i = −1, 1, 2, · · · , N + 1) (12)

φ′′

1(0) = 1, φ′′

i(0) = 0 (i = −1, 0, 2, · · · , N + 1) (13)

It’s observed from Eqs (10–13) that only one term has contribution to the deflection, slope and second derivative

of the deflection at the boundary. Therefore, except the prescribed values for third derivatives of the deflection at the

boundary, the new type of basis cubic B-spline functions can satisfy geometrical boundary conditions and prescribed

second derivative of deflection for the four kinds of edge conditions.

For example, for clamped end of the beam at x = 0, the boundary conditions are w(0) = 0, w ′(0) = 0 and

w′′(0) �= 0. Those undetermined coefficients corresponding to φ−1(0) and φ0(0), i.e. a−1 and a0, thus should

be equal to zero. For simply supported end of the beam at x = 0, the boundary condition is w(0) = 0, w ′(0) �=
0, w′′(0) = 0, thus a−1 and a1 should be equal to zero. For free end of the beam at x = 0, the boundary condition

is w(0) �= 0, w′(0) �= 0, w′′(0) = 0, thus a1 should vanish. Likewise, for guided end of the beam at x = 0, the

boundary condition is w(0) �= 0, w ′(0) = 0, w′′(0) �= 0, thus a0 should vanish. The case for the end at a = l
is similar. Hence, simply supported, clamped, free and guided edges can be implemented with ease by using the

new type of basis cubic B-spline functions. It should be noted that the numerical manipulation to eliminate the

corresponding coefficients can be easily carried out in computer programme.

3.2. Bicubic B-spline interpolation

To express the plate deflection by bicubic B-spline approximation, the plate is divided into N and M equivalent

spline sections in x and y directions, respectively, as shown in Fig. 3. Thus
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Table 3

Comparison of frequency parameters for SGGF plates

Mode r = 0.4 r = 1.0 r = 2.5

sequence Present Exact ∗ Present Exact∗ Present Exact∗

1 2.44325 2.44001 2.41070 2.40785 2.37357 2.37104

2 3.77012 3.76564 9.18348 9.18141 21.76868 21.74211

3 7.79626 7.79427 22.02673 21.99667 39.03164 39.03119

4 14.82359 14.82200 30.55345 30.51000 60.93475 60.85150

5 22.14358 22.10998 33.42682 33.42615 65.94330 65.92023

6 23.60167 23.55383 56.21210 56.18961 110.63301 110.53142

7 25.01826 25.00849 61.40349 61.31043 119.88639 119.68813

8 28.09377 28.05593 70.35809 70.11123 172.64695 172.39071

9 35.52962 35.50419 77.61083 77.60132 192.17749 192.17367

∗Bert and Malik [2].

0 = x0 < x1 < · · · < xi < · · · < xN = a, xi = x0 + ihx, hx = a/N

0 = y0 < y1 < · · · < yi < · · · < yM = b, yi = y0 + ihy, hy = b/M

where N and M are integers and N, M > 4, hx and hy are spline section lengths in x and y directions, respectively.
Based on the technique of separation of variables, the amplitude of the plate deflection may be represented in the

form

W (x, y) =

N+1
∑

i=−1

M+1
∑

j=−1

ψj(y)φi(x)ai,j (14)

where ai,j is undetermined coefficient at the spline node (i, j), φ i(x) and ψj(y) are the ith and jth local basis cubic

B-spline functions in x and y directions, respectively, as in Eq. (8). In matrix form, Eq. (14) can be written as

W (x, y) = [ψ(y)] ⊗ [φ(x)] {δ} (15)

where [φ(x)] and [ψ(y)] are basis cubic B-spline functions vectors in x and y directions, respectively, as follows

[φ(x)] = [φ−1(x)φ0(x)φ1(x)φ2(x) · · · φN−1(x)φN (x)φN+1(x)] (16)

[ψ(y)] = [ψ−1(y)ψ0(y)ψ1(y)ψ2(y) · · ·ψM−1(y)ψM (y)ψM+1(y)] (17)

and

{δ} =
{

{a}T
−1 {a}

T
0 {a}T

1 · · · {a}T
M {a}T

M+1

}T
(18)

is undetermined spline nodal coefficient vector, in which

{a}j = {a−1,j a0,j a1,j · · · aN,j aN+1,j}
T

, j = −1, 0, 1, · · · , M, M + 1

and the symbol, ⊗, means the Kronecker product of two matrices or two vectors.

4. Frequency characteristic equation

The amplitude of the plate deflection in Eq. (15) can be further written as

W (x, y) = [ψ(y)] ⊗ [φ(x)] {δ} = [N ] {δ} (19)

The curvature vector in Eq. (2) can, therefore, be expressed as

{χ} =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−
∂2W

∂x2

−
∂2W

∂y2

−2
∂2W

∂x∂y

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭
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Table 4

Comparison of frequency parameters for GGGG plates

Mode r = 0.4 r = 1.0 r = 2.5

sequence Present Exact∗ Present Exact∗ Present Exact∗

1 1.57914 1.57914 9.86962 9.86960 9.86962 9.869620

2 6.31673 6.31655 19.73923 19.73921 39.47958 39.47842

3 9.86962 9.86960 39.47958 39.47842 61.68514 61.68503

4 11.44876 11.44874 49.34896 49.34802 71.55473 71.55464

5 14.21448 14.21223 78.95801 78.95684 88.84053 88.82644

6 16.18624 16.18615 88.84053 88.82644 101.16397 101.16345

7 24.08319 24.08184 98.70876 98.69605 150.51997 150.51148

8 25.27991 25.26619 128.31508 128.30486 157.99945 157.91368

9 35.14584 35.13579 157.99945 157.91368 219.66152 219.59871

∗Bert and Malik [2].

Table 5

Bicubic B-spline solutions of frequency parameters for CCCG plates

Mode Aspect ratio r = a/b

sequence 2/5 2/3 1 3/2 5/2

1 22.63272 23.19655 24.57795 28.70100 46.70085

2 24.86870 30.74236 44.77075 67.54214 82.05066

3 29.97003 47.96869 63.98760 80.19072 139.49409

4 38.50371 62.62624 83.27823 115.82573 199.23378
5 50.64564 70.44395 87.26174 126.64734 217.67627

6 61.99886 75.06327 123.28343 173.24566 230.55915

7 64.60543 86.90657 123.69770 179.13252 283.30350

8 66.37193 111.59241 142.40142 205.67903 316.34459

9 69.97816 112.67860 150.60841 212.52122 357.55418

Table 6

Bicubic B-spline solutions of frequency parameters for CCSG plates

Mode Aspect ratio r = a/b

sequence 2/5 2/3 1 3/2 5/2

1 15.77075 16.53117 18.34855 23.45847 43.44845

2 18.69489 25.78157 41.25078 56.70824 72.92613

3 24.86585 44.61565 52.63283 77.98472 124.64896

4 34.44482 51.06220 74.08709 108.68130 197.38366

5 47.41460 59.93062 85.15311 110.58450 198.09013

6 50.33792 72.68709 106.86083 160.52812 226.12866

7 53.32496 77.97819 116.82442 177.82731 274.27814
8 59.39298 105.28626 127.68015 184.49038 290.73972

9 63.75092 105.37240 149.14356 207.77138 343.21661

Thus we have

[N ] = [ψ(y)] ⊗ [φ(x)] (21)

[H ] =

⎧

⎨

⎩

−[ψ(y)] ⊗ [φ′′(x)]
−[ψ′′(y)] ⊗ [φ(x)]
−2[ψ′(y)] ⊗ [φ′(x)]

⎫

⎬

⎭

(22)

Upon substitution of Eqs (19) and (20) into Eq. (6), the following expression is obtained

Π =
2π

ω
{δ}

T
([K] − ω2[M ]) {δ} (23)

where [K] and [M ] are the stiffness matrix and the mass matrix of the plate, respectively, as follows

[K] =

∫ a

0

∫ b

0

[H ]T [D][H ]dydx (24)
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Table 7

Bicubic B-spline solutions of frequency parameters for CCGF plates

Mode Aspect ratio r = a/b

sequence 2/5 2/3 1 3/2 5/2

1 5.82781 6.39955 7.78816 11.52535 24.93200

2 8.25672 13.98630 25.85303 35.53868 47.46232

3 13.87844 30.89554 32.29520 53.12424 90.53861

4 22.92983 31.03902 51.23587 78.60378 141.03696

5 30.46421 39.20468 64.92146 79.56457 153.69023

6 33.27805 55.74725 76.53554 123.99143 166.47386

7 35.33239 56.95635 89.29651 141.87340 213.48687

8 39.00428 75.36847 95.95572 143.37222 236.93056

9 47.78803 81.08415 123.94247 165.66525 279.53734

Table 8

Bicubic B-spline solutions of frequency parameters for CCGG plates

Mode Aspect ratio r = a/b

sequence 2/5 2/3 1 3/2 5/2

1 5.91096 6.75124 8.99631 15.19030 36.94347

2 8.85439 16.63070 32.89572 37.41907 55.33993

3 15.37489 31.32443 33.05174 70.47996 96.09306

4 25.35216 36.05379 55.00942 81.12103 158.45099

5 30.59011 40.30721 77.23363 90.69122 191.18820

6 33.54399 58.66116 77.29907 131.98762 209.64994

7 38.64062 64.45888 98.19975 145.03248 241.50389

8 39.62308 75.74074 98.48365 170.41666 247.64425

9 48.98082 84.55412 140.54532 190.24676 306.13010

[M ] =

∫ a

0

∫ b

0

ρ[N ]T [N ]dydx (25)

By Hamilton’s principle, the functionalΠ in Eq. (23) can be minimized with respect to the undeterminedcoefficient

vector {δ}. The minimization procedure results in the generalized eigenvalue equation as follows

([K] − ω2[M ]) {δ} = 0 (26)

With the definition of the following spline matrices

[Ax] =

∫ a

0

[φ′′(x)]
T
[φ′′(x]dx (27)

[Bx] =

∫ a

0

[φ(x)]
T
[φ′′(x]dx (28)

[Cx] =

∫ a

0

[φ′(x)]
T
[φ′(x]dx (29)

[Fx] =

∫ a

0

[φ(x)]T [φ(x]dx (30)

Equations (24) and (25) can be written as

[K] =
Ed3

12(1 − µ2)

(

[Fy] ⊗ [Ax] + [Ay] ⊗ [Fx] + µ[By]T ⊗ [Bx] + µ[By] ⊗ [Bx]T

(31)
+2(1 − µ)[Cy ] ⊗ [Cx])

[M ] = ρ[Fy ] ⊗ [Fx] (32)
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Table 9

Bicubic B-spline solutions of frequency parameters for CGCF plates

Mode Aspect ratio r = a/b

sequence 2/5 2/3 1 3/2 5/2

1 22.34398 22.31794 22.28514 22.23789 22.15524

2 23.16445 24.62271 27.53553 34.19715 55.85023

3 25.98568 33.21762 48.55258 61.36610 61.14986

4 31.42507 50.46883 61.47959 76.53181 101.62957

5 40.05130 61.55633 68.31690 84.88648 120.12019

6 52.13970 64.61253 90.30401 120.46857 165.04976

7 61.61644 74.50666 90.89954 128.07138 198.93900

8 62.71886 77.23182 120.64817 137.17803 204.37870

9 66.23537 92.06798 128.15189 182.36948 246.49511

Table 10

Bicubic B-spline solutions of frequency parameters for CGSF plates

Mode Aspect ratio r = a/b

sequence 2/5 2/3 1 3/2 5/2

1 15.38026 15.34938 15.31182 15.25870 15.16871

2 16.47848 18.36153 21.92477 29.54055 49.40109

3 20.06276 28.49989 45.06977 49.63005 52.58593

4 26.48754 47.12309 49.75065 66.56775 93.34186

5 36.05374 49.83304 57.50045 82.53528 103.40695

6 48.90650 53.32429 82.09721 103.77033 151.55991

7 49.89882 64.37345 88.09754 121.01804 177.24671

8 51.16345 74.79419 103.95881 121.97817 203.01177

9 55.16032 83.37999 112.18399 177.74621 227.91396

Table 11

Bicubic B-spline solutions of frequency parameters for CSGF plates

Mode Aspect ratio r = a/b

sequence 2/5 2/3 1 3/2 5/2

1 5.75830 6.05969 6.61272 7.70546 10.39906

2 7.65028 11.69383 19.95748 33.68319 39.29193
3 12.42087 26.15263 31.74735 38.96296 84.96153

4 20.57671 30.86898 47.07998 67.27730 100.38533

5 30.43234 37.80435 53.63521 78.32008 129.82887

6 32.10642 49.83552 76.18947 114.79794 149.52489

7 32.95762 52.39028 80.10300 115.91148 181.24692

8 38.15401 75.27012 92.85304 142.32923 233.63307

9 46.23710 75.40192 107.56692 142.49455 251.08769

where [Ay], [By], [Cy], [Fy] are the spline matrices similar to [Ax], [Bx], [Cx] and [Fx], but in the y direction. The

dimension of the spline matrices [Ax], [Bx], [Cx] and [Fx] is (N +3)× (N +3) and the dimension of spline matrices

[Ay], [By], [Cy] and [Fy] is (M + 3) × (M + 3). The spline matrices are given in Appendix.

Edge conditions can be imposed by eliminating rows and columns of the spline matrices associated with zero

spline nodal coefficients at the boundaries of the plate. For example, for a clamped edge at x = 0, as stated earlier

in last section, the spline nodal coefficients a−1,j and a0,j (j = −1, 0, 1, · · · , M,M + 1) should be equal to zero.

Accordingly, the first two rows and columns of the spline matrices [Ax], [Bx], [Cx] and [Fx] should be eliminated.

Similarly, for a simply supported edge at x = 0, the first and third rows and columns of the spline matrices should

be eliminated; and for a free edge at x = 0, the third row and column of the spline matrices should be eliminated.

Likewise, for a guided edge at x = 0, the second row and column of the spline matrices should be eliminated. The

case for the end at x = a, y = 0, y = b is similar. Upon application of edge conditions, the free vibration problem

of the rectangular plate is reduced to generalized eigenvalue problem in Eq. (26).
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Table 12

Bicubic B-spline solutions of frequency parameters for CGGF plates

Mode Aspect ratio r = a/b

sequence 2/5 2/3 1 3/2 5/2

1 5.57607 5.56300 5.54792 5.52898 5.50107

2 6.41026 7.91727 10.90588 17.72148 29.81596

3 9.62376 17.75265 30.06285 29.97633 39.83580

4 16.07221 30.12290 34.22535 45.84235 70.73926

5 25.92440 33.43747 37.38449 71.77492 73.93128

6 30.17148 36.85899 61.21624 74.22668 120.24959

7 31.37563 44.08551 74.38073 91.89574 137.83999

8 35.20760 62.80136 78.09442 99.22643 187.40569

9 39.11793 65.07106 82.41132 138.27153 192.48870

Table 13

Bicubic B-spline solutions of frequency parameters for CFGF plates

Mode Aspect ratio r = a/b

sequence 2/5 2/3 1 3/2 5/2

1 5.56171 5.54016 5.51922 5.49518 5.46053

2 6.26823 7.32162 9.00242 11.87375 18.03545

3 8.96880 15.13892 27.36397 29.77589 29.55495

4 14.57315 30.03512 29.92623 42.76309 58.71603

5 23.51690 31.75483 36.29256 55.13088 73.36098

6 30.12570 33.01511 57.04120 73.86955 111.28386
7 31.22434 42.73659 65.79679 87.00912 136.99304

8 34.87247 57.58303 74.15486 89.40988 144.42500

9 35.82138 59.73655 81.41000 137.78089 178.21389

Table 14

Bicubic B-spline solutions of frequency parameters for SGFF plates

Mode aspect ratio r = a/b

sequence 2/5 2/3 1 3/2 5/2

1 2.833583 5.153985 8.710524 14.44969 14.92445

2 7.197001 15.03607 15.29102 16.77704 38.26339
3 14.13896 16.25319 16.39972 37.02406 49.48403

4 15.43609 20.89188 32.93346 49.50993 64.47378

5 17.51225 34.45655 49.63856 69.95977 102.9047

6 23.17969 35.70995 53.91768 73.52203 106.1977

7 24.56755 49.77296 60.83301 93.63335 162.7142

8 31.83681 54.58633 76.89855 103.8243 176.6324

9 37.78603 55.81457 91.10221 126.9152 191.6661

5. Numerical results

Based on the bicubic B-spline method presented in the foregoing sections, a general unified computational

program is developed for vibration analysis of rectangular plates with one or more guided edges. For the purpose

of description, a notation will be adopted as follows. Consider the rectangular plate shown in Fig. 3, the symbolism

FSGC, for example, will identify a rectangular plate with edges x = 0, y = 0, x = a, y = b having free(F), simply

supported(S), guided(G), and clamped(C) edge conditions, respectively.

5.1. Convergence study

Before making detailed computations it is considered imperative to decide the suitable number of spline sections

used and investigate the accuracy of the solutions. The rectangular SSSG plate is used for convergence study. The

exact solutions of the dimensionless natural frequency Ω = ωa2
√

ρ/D. are given by Bert and Malik [2]. These

results are used to check the accuracy of the results obtained from the present method and determine the suitable

number of spline sections.
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Table 15

Bicubic B-spline solutions of frequency parameters for CGFF plates

Mode Aspect ratio r = a/b

sequence 2/5 2/3 1 3/2 5/2

1 3.50985 3.50385 3.49611 3.48488 3.46558

2 4.83473 6.84778 10.19646 16.97070 21.48501

3 8.61754 16.95434 21.86353 22.05229 39.27830

4 15.24552 21.98069 31.48405 42.08476 60.95759

5 21.95659 26.73682 34.08862 61.11062 69.00911

6 23.65443 36.08935 58.15338 71.06789 114.27546

7 25.30255 39.78884 61.49358 82.81370 120.13440
8 29.00165 59.63750 71.25972 97.34350 175.95907

9 36.85770 61.43003 77.55365 120.40683 190.98657

Table 16
Bicubic B-spline solutions of frequency parameters for GGFF plates

Mode Aspect ratio r = a/b

sequence 2/5 2/3 1 3/2 5/2

1 0.85908 2.38190 4.90505 5.35928 5.36923

2 4.66279 5.55157 6.07341 12.49104 29.14244

3 5.61770 10.99370 15.93748 24.73582 35.11061

4 7.87228 13.35196 29.32022 30.04191 49.20175

5 11.80246 23.47643 30.64494 52.82196 73.76539
6 13.34751 30.02651 40.44186 67.55964 83.42192

7 21.13354 32.91008 42.17589 74.04768 132.08461

8 22.03992 35.47088 70.36587 79.80949 137.74953

9 30.09736 43.39231 73.55692 97.63271 188.10852

Table 17

Bicubic B-spline solutions of frequency parameters for GFFF plates

Mode Aspect ratio r = a/b

sequence 2/5 2/3 1 3/2 5/2

1 3.40206 5.34374 5.37730 5.37070 5.35875

2 5.60836 9.91575 14.63677 20.81380 29.24565

3 7.61444 10.61721 22.02883 29.37640 33.31023

4 9.87651 21.63366 29.75201 50.06930 72.76770
5 12.89197 27.08493 36.08762 50.25363 72.96237

6 19.17776 30.00296 40.16609 64.59443 124.18050

7 20.14829 34.78236 61.35288 74.25586 133.93105

8 29.46422 39.62941 66.93716 95.03981 141.18779

9 30.49951 48.55998 74.01804 101.69672 155.95143

The rate of convergence of the frequencies corresponding to the first six modes is presented in Table 1. The

number of spline sections in both x and y directions is varied from 6 × 6 to 20 × 20. It can be observed from Table 1

that the rate of convergence for the fundamental frequency is very fast. Full convergence is achieved with N ×M =
14 × 14. Based on the convergence study, 14 × 14 spline sections are used hereafter for calculating frequencies.

5.2. Numerical examples

Bert and Malik [2] presented analytical solutions of frequency parameters for 21 cases of rectangular plates with

one or more guided edges. The 21 cases have been sorted into three groups, i.e. plates with two opposite edges

simply supported, plates with one edge simply supported and opposite edge guided, and plates with two opposite

edges guided. The first nine frequency parameters of three cases from the three groups, i.e. SCSG, SGGF, and

GGGG, are computed by the present method and compared with the analytical solutions in Tables 2–4, respectively.

The agreement between the present solutions and analytical ones is impressive.
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5.3. Bicubic B-spline solutions for plates with guided edges

As has been stated in the introduction, for rectangular plates with at least one guided edge there exist 34
combinations of edge conditions, among which 21 cases have analytical solutions and have been given by Bert and
Malik [2]. However, no study has been reported for the remaining 13 cases that have approximate or numerical
solutions only. Nevertheless, the numerical accuracy and versatility of the present bicubic B-spline approach have
been well validated from the above comparisons. Bicubic B-spline solutions for the first nine frequency parameters

of the 13 cases of rectangular plate over a range of aspect ratios are given in Tables 5–17 for future comparison. The
plate geometrical description is the same as shown in Fig. 3 and the aspect ratio r = a/b. The frequency parameter
is ωa2

√

ρ/D.

6. Conclusions

This work concerns the free vibration of thin isotropic rectangular plates with at least one guided edge. A versatile

type of basis cubic B-spline functions has been first developed to satisfy simply supported, clamped, free, and guided
edge conditions with easy numerical manipulation. Incorporating the new type of basis cubic B-spline functions,
bicubic B-spline interpolation is used to represent the plate deflection. The frequency characteristic equation is
derived on classical thin plate theory by performing Hamilton’s principle.

There exist 34 combinations of edge conditions for rectangular plates, with at least one guided edge, among which

21 cases have analytical solutions and have been given by Bert and Malik [2]. The present solutions are compared
with the analytical ones by Bert and Malik [2]. Rapid convergence, high accuracy and computational efficiency of
the present method have been demonstrated from the excellent agreement of the comparisons.

By using the present bicubic B-spline approach, extensive computations were performed for natural frequencies
of 13 cases of rectangular plates having one or more guided edges with various aspect ratios. These numerical results
provided in this paper are believed to fill the gap in literature on rectangular plates with guided edge(s).

Appendix

The elements of the spline matrices in Eqs (27)–(30), i.e. [Ax], [Bx], [Cx] and [Fx], are as following. The
dimension of the spline matrices is (N + 3)× (N + 3). The spline matrices [Ay ], [By], [Cy ] and [Fy] are in similar
form as [Ax], [Bx], [Cx] and [Fx], and the dimension is (M + 3) × (M + 3).

[Ax] =
1

36h3
x

⎡

⎢

⎢

⎢

⎢

⎢

⎣

36 54 15 −48 6 6 0 0
96 27 −60 0 6 0 0

18 −16 −1 2 0 0
96 54 0 6 0

Sym.
. . .

. . .
. . .

. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(N+3)×(N+3)

[Bx] =
1

720hx

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−396 −954 −57 240 150 6 0 0
−234 −624 −165 84 144 6 0 0

−54 8 47 2 0 0
−480 90 144 6 0

Sym.
. . .

. . .
. . .

. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(N+3)×(N+3)

[Cx] =
1

720hx

⎡

⎢

⎢

⎢

⎢

⎢

⎣

396 234 57 −240 −150 −6 0 0
624 165 −84 −144 −6 0 0

54 −8 −47 −2 0 0
480 −90 −144 −6 0

Sym.
. . .

. . .
. . .

. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(N+3)×(N+3)
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[Fx] =
hx

30240

⎡

⎢

⎢

⎢

⎢

⎢

⎣

36756 19854 5055 7872 726 6 0 0
13776 3819 7140 720 6 0 0

1098 2264 239 2 0 0
14496 7146 720 6 0

Sym.
. . .

. . .
. . .

. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(N+3)×(N+3)
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