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This paper investigates the vibration characteristics of the coupling system of a
micro scale fluid-loaded rectangular isotropic plate attached with a uniformly dis-
tributed mass. Previous literature has respectively studied the changes on the plate
vibration induced by an acoustic field or by the attached mass loading. This paper
investigates the issue of involving these two types of loading simultaneously. Based
on Lamb’s assumption of the fluid-loaded structure and the Rayleigh-Ritz energy
method, this paper presents an analytical solution for the natural frequencies and
mode shapes of the coupling system. Numerical results for micro plates with dif-
ferent types of boundary conditions have also been obtained and compared with
experimental and numerical results from previous literature. The theoretical model
and novel analytical solution are of particular interest in the design of microplate
based biosensing devices.
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1. Introduction

Microplate dynamics in fluid is an important research field in the design of bioMEMS.
This is due to the fact that most microstructure based biosensors need to interact
with biological particles in a natural fluid environment. This paper presents an ana-
lytical method to solve the dynamics of micro rectangular plates in fluid. The novel
method also takes into consideration distributive mass loading, which represents
the effect of adhesion of biological cells and particles to the surface of the biosens-
ing plate. The analytical method can be applied widely in the modelling and design
of microstructure based biosensing components.

Interest in the study of the vibration of thin plates contacting with fluid started
with the work of Lamb(Lamb, 1921), who presented a simple model and calculated
resonant frequencies of a thin circular plate in contact with water. Lamb’s model
assumes the fluid to be inviscid, incompressible and to have no effect on the vi-
bration mode shapes of the plate. The concept of added mass was first proposed
to determine the resonant frequencies with fluid mass loading on the plate. Sub-
sequently, other work analysed vibrating response for submerged or floating plates
with varied geometries and boundary conditions based on Lamb’s assumption and
the added mass method(Greenspon, 1961; Lindholm et al., 1965; Meyerhoff, 1970).
More recently Kwak and Kim(Kwak, 1991, 1994, 1996) have presented a compu-
tational method for circular or rectangular plates in water using non-dimensional
added virtual mass incremental (NAVMI) factors. Here the NAVMI factors are
predicted by the ratio of the kinetic energies of the fluid and plate respectively.
Liang et al.(Liang et al., 2001) used an empirical added mass formulation and
Rayleigh-Ritz method to analyse the vibrational frequencies and mode shape of
submerged cantilever plates. Ayela and Nicu(Nicu and Ayela, 2007) proved experi-
mentally that the Lamb’s theoretical model for plates vibrating in fluid is valid for
microscale structures. In these papers the added mass method was widely employed
to approximately evaluate natural frequencies of fluid-loaded plates and other struc-
tures. Finding a general analytical solution for rectangular plate dynamics in fluid
remains a challenge.
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The difficulty in obtaining analytical solutions to added mass or fluid loading
effects on plate dynamics is due principally to the integral singularity of acoustic
impedance(Chang and Leehey, 1996). Recently useful explicit integration meth-
ods have been developed for evaluating the acoustic impedance in special cases.
Graham(Graham, 1995, 2007) presented an asymptotic analytical solution for sim-
ply supported plates using contour integration to replace the impedance in double
Fourier transform. Pierce (Pierce et al., 2002) eliminated the integral singularity by
reducing the double integrals to single integrals and transforming Cartesian coor-
dinates into polar coordinates. While Pierce’s approach was applied only to special
cases, where each impedence integral is of finite sum with regard to the exponential
function, it can be applied more generally. In this paper Pierce’s method is applied
in the evaluation of kinetic energy in the fluid. This can be used to represent the
effect of incompressible fluid loading and is analogous to acoustic impedance.

Most published literature on the vibration of mass loaded plates is focused on
concentrated masses. Few papers study the effects of distributed mass in vacuo.
Kopmaz and Telli(Kopmaz and Telli, 2002) presented a mathematical model of a
rectangular plate carrying a uniformly distributed mass using Galerkin’s method
to discretize the partial differential equations of the plate. Wong(Wong, 2002) pro-
posed a formulation to the eigenvalue problem of plates with distributed mass load-
ing based on the Rayleigh-Ritz energy variational principle. This paper investigates
the effects of both distributed mass loading and fluid interaction on the dynamics
of microplates under different boundary conditions. It is the first presentation of
an analytical solution to this typical dynamical problem of microstructures.

2. Theoretical model of rectangular plates

In most theoretical analyses of the dynamics of a plate in the fluid, a simplified
model of the plate placed in an infinite plane baffle is usually considered. This is
also applicable to the case of a microplate as it is always fabricated on a wafer
substrate with the size of the wafer typically 1000 times that of the thin micro
plate. The schematic diagram of the sensing microplate model is shown in Figure
1. The top surfuce of microplate is used as the sensing surface with the biological
particles attached, and herein the microplate is immersed in fluid with both sides
contact with fluid. The sensing microplate is assumed thin, elastic, isotropic and
surrounded by infinite rigid baffles. A small circular distributed mass resting on the
plate sensing surface is used to simulate attached biological particles.

Insert Figure 1

Assuming that the distributed mass can be considered fixed to the plate such
that no additional strain energy is induced(Wong, 2002), and ignoring effects of
rotatory inertia and transverse shear deformation, the governing equation of the
forced vibration of the rectangular isotropic plate can be written in the following
form.

D∇4w(x, y, t) + ρph
∂2w(x, y, t)

∂t2
+ mcH(x, y)

∂2w(x, y, t)

∂t2
= p(x, y, t) (2.1)
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Where w(x, y, t) is the transverse deflection function of the plate, ρp and h are
the volume density and thickness of plate respectively, D = Eh3/12(1 − ν2) is the
flexural rigidity, E is Young’s modulus, ν is Poisson’s ratio, p(x, y, t) is the acoustic
pressure on the plate surface and mc is the mass per unit area of cells present on
the plate. The Heaviside function H(x, y) is used to describe the circular domain
of the distributed mass on plate and can be expressed in the following form, where
(xc, yc) is the location of the centre of the distributed mass and R is the radius of
the distributed mass.

H(x, y) = {H[x − (xc − R)] − H[x − (xc + R)]}·
{H[y − (yc −

√

R2 − x2)] − H[y − (yc +
√

R2 − x2)]}
(2.2)

The linear solution of Eq.(2.1) can be obtained by summing a series of eigenfunc-
tions in each separated mode(Szilard, 1974).

w(x, y, t) =
∞
∑

m=1

∞
∑

n=1

WmnXm(x)Yn(y)·θ(t) (2.3)

Where θ(t) is the time dependency of the transverse displacements, in a harmonic
vibration θ(t) = sin(ωt + ϑ) and ϑ is the initial phase difference. For the linear
vibration without acoustic pressure(p(x, y, t) = 0) and mass attachment(mc = 0),
Xm(x) and Yn(y) are the orthogonal mode shape functions that satisfy the bound-
ary conditions in x and y directions, respectively. From Leissa’s analysis(Leissa,
1969), Xm(x) and Yn(y) can be chosen as the same mode shape functions of beams
that have the same boundary conditions. Three types of plate boundary conditions
have been investigated in this paper: all clamped(C-C-C-C), cantilever(C-F-F-F)
and the case of two opposite edges free with the other two clamped(C-F-C-F). Cor-
respondingly, three types of beam function are required as follows:
(a)For clamped-clamped(C-C) boundary conditions,

Xm(x) = cosh

(

ǫmx

La

)

− cos

(

ǫmx

La

)

− αm

[

sinh

(

ǫmx

La

)

− sin

(

ǫmx

La

)]

(2.4)

cos (ǫm) cosh (ǫm) − 1 = 0, αm =
cosh (ǫm) − cos (ǫm)

sinh (ǫm) − sin (ǫm)
(2.5)

(b)The beam function of clamped-free(C-F) boundary conditions has the same
form as clamped-clamped, with different constants of ǫm and αm,

cos (ǫm) cosh (ǫm) + 1 = 0, αm =
sinh (ǫm) − sin (ǫm)

cosh (ǫm) − cos (ǫm)
(2.6)

(c)For free-free(F-F) boundary conditions,

X1(x) = 1 X2(x) =
√

3(2x − 1) (2.7)

Xm(x) = µm

[

cosh

(

ǫmx

La

)

+ cos

(

ǫmx

La

)]

− αm

[

sinh

(

ǫmx

La

)

+ sin

(

ǫmx

La

)]

(m = 3, 4, · · · ) (2.8)
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where µm =
cosh (ǫm) − cos (ǫm)

sinh (ǫm) sin (ǫm)
and αm =

sinh (ǫm) + sin (ǫm)

sinh (ǫm) sin (ǫm)
(2.9)

In this case the constant of ǫm for free-free boundary conditions is the same as that
for the clamped-clamped conditions. Yn(y) is in the same form, replacing x for y
and La for Lb within each beam shape function respectively.

3. The effects of fluid loading on plate

Many published articles in the literature show that plate vibrational characteristics
are sensitive to heavy fluid loading. Eq. (2.3) shows that a vibrating plate in vacuo
has infinite discrete orthogonal modes. In the presence of fluid, each mode of the
plate motion can generate an acoustic pressure disturbation. Therefore the total
external force applied on the plate is the sum of the excitation force and the resul-
tant acoustic pressure field. Nevertheless in general the resultant acoustic pressure
induced by a single in vacuo mode is not orthogonal to the other modes(Junger
and Feit, 1972) and will excite other modes. This implies that one in vacuo mode
can “indirectly apply” forces and transfer energy to another mode via the coupling
fluid medium(Lax, 1944). This cross-modal coupling phenomenon causes two prin-
cipal effects on the behavior of plate vibration: (a)The fluid generates additional
inertia loading on the plate, and will lower the plate resonant frequencies. (b)The
vibrating plate radiates acoustic energy into the fluid, this dissipation of the plate
vibrational energy adds a resistive term to the impedances of the plate(Lax, 1944),
and as a result the Q-factor of the vibrating plate will decrease.

The acoustic velocity field induced by plate motion is governed by the three-
dimensional Helmholtz wave equation(Junger and Feit, 1972),

∇2Φ(x, y, z, t) =
1

c2

∂2Φ(x, y, z, t)

∂t2
(3.1)

where ∇2 is the three-dimensional Laplacian operator, c is the velocity of sound
within fluid and Φ(x, y, z, t) is the velocity potential of the fluid. Boundary con-
ditions(continuity of normal velocity) at the interface between the fluid and the
baffled plate(z = 0) can be expressed as: ∂Φ/∂z|z=0 = ∂w/∂t on the plate, and
∂Φ/∂z|z=0 = 0 on the baffle plane.

For a steady-state response in harmonic motion, the acoustic velocity potential
becomes Φ(x, y, z, t) = φ(x, y, z)e−iωt. One form of the solution of the Helmholtz
wave Eq.(3.1) is given by the Rayleigh’s formula(Junger and Feit, 1972):

φ(x, y, z) =
iω

2π

∫∫

S

w(ξ, η) exp (ik
√

(x − ξ)2 + (y − η)2 + z2)
√

(x − ξ)2 + (y − η)2 + z2
dξdη (3.2)

where φ(x, y, z) is the spatial velocity potential function. k = ω/c is the acoustic
wave number and S is the integral domain for the whole rectangular plate.

When dealing with the vibration analysis of low modes of the plate, we can make
the following assumptions and simplifications for the fluid(Kwak, 1991): (a)The
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fluid is incompressible and inviscid. In general water is ideal and satisfies the “in-
compressible” assumption. Therefore the Helmholtz wave equation reduces to a
single Laplace transform(c → ∞, k → 0). The influence of fluid viscosity on the vi-
bration of plate is very small, and has been verified by Atkinsona et al.(Atkinsona
and de Lara, 2007) and Nicu(Nicu and Ayela, 2007). (b)The fluid is infinite, irro-
tational and has no wall effects. Thus the primary effect of the surrounding fluid
on the vibrating plate is the additional inertial. The fluid-induced inertial effect on
the plate can be represented by added mass factor(βmn) or NAVMI factor(Γmn),
which is simply the function of plate natural modes. They are defined as follows

βmn = (wv,mn/wf,mn)2 − 1 = Γmn

ρfεLb

ρph
(3.3)

where wv,mn and wf,mn are the natural frequencies of plate in vacuo and in fluid
respectively, ρf is the density of fluid, ε is the plate aspect ration Lb/La. From
the view of energy, the added mass effect can be evaluated as proportional to the
kinetic energies of the fluid (Tf ), which is defined as(Kwak, 1991)

Tf = −1

2
ρf

∫

∞

−∞

∫

∞

−∞

∂φ(x, y, z)

∂z

∣

∣

∣

∣

z=0

φ(x, y, 0)dxdy (3.4)

Substituting Eq.(3.2) into Eq.(3.4) with the case k = 0 and combining the
fluid-structure interface boundary conditions, we can rewrite Tf in the form

Tf =
ρfω2

4π

∫∫

S

∫∫

S

w(x, y)w(ξ, η)
√

(x − ξ)2 + (y − η)2
dxdydξdη (3.5)

Here Tf only represents the fluid energy of one side. Therefore if the plate is
submerged with both sides contacting fluid, the kinetic energy of fluid Tf should
be doubled for the computation.

4. Analytic solution using Rayleigh-Ritz method

Using Rayleigh’s quotient(Zhu, 1994), the natural frequencies of plate in vacuo
can be approximately determined by the ratio between the maximum potential
energy(Up) and the reference kinetic energy(T ∗

p ) of the plate. When dealing with
the coupling problem of a fluid-loaded plate with mass attachment, the reference
kinetic energy should be replaced by summing that of the plate, the fluid(T ∗

f ) and
the mass(T ∗

m). This relationship can be written as

ω2
c =

Up

T ∗

p + T ∗

f + T ∗

m

(4.1)

where ωc is the natural frequency of the plate in fluid with mass attached. The
potential energy and reference kinetic energy of the plate are defined by Eqs. (4.2)
and (4.3).

Up =
D

2

∫∫

S

{

(
∂2w

∂x2
+

∂2w

∂y2
)2 − 2(1 − ν)

[

∂2w

∂x2

∂2w

∂y2
−

(

∂2w

∂x∂y

)2
]}

dxdy (4.2)
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T ∗

p =
1

2
ρph

∫∫

S

w2(x, y)dxdy (4.3)

The reference kinetic energy of fluid T ∗

f = Tf/ω2. Same with Tf , T ∗

f need to be
doubled in the case of fully submerged plates.

The reference kinetic energy of the distributed mass can be obtained by em-
ploying the aforementioned Heaviside function.

T ∗

m =
1

2

∫∫

S

mcH(x, y)w2(x, y)dxdy (4.4)

By assuming that mode shapes of the plate are virtually the same with the
plate submerged, then all the above energy formulations can be evaluated using
the “dry” plate mode shapes(Eq. (2.4)-Eq.(2.9)). The total energy of the coupled
system then can be expressed as

V = Up − ω2(T ∗

p + T ∗

f + T ∗

m) (4.5)

The expanded formula of these energy equations, in terms of the plate orthogonal
shape functions, can be obtained by substituting Eq. (2.3) into Eqs. (4.2), (3.5),
(4.3), (4.4). A series of eigenfunctions can be obtained by minimizing the Eq. (4.5)
with respect to the unknown deflection coefficient Wqr, such that

∂V

∂Wqr

= 0 (4.6)

These eigenfunctions are

∞
∑

m=1

∞
∑

n=1

{

Up,mnqr − ω2(T ∗

p,mnqr + T ∗

f,mnqr + T ∗

m,mnqr)
}

Wmn = 0 (4.7)

where

Up,mnqr =
D

2

∫∫

S

{

Ẍm(x)Ẍq(x)Yn(y)Yr(y) + Xm(x)Xq(x)Ÿn(y)Ÿr(y)+

2νẌm(x)Xq(x)Yn(y)Ÿr(y) + 2(1 − ν)Ẋm(x)Ẋq(x)Ẏn(y)Ẏr(y)

}

dxdy

(4.8)

T ∗

p,mnqr =
1

2
ρph

∫∫

S

Xm(x)Xq(x)Yn(y)Yr(y)dxdy (4.9)

T ∗

f,mnqr =
ρf

4π

∫∫

S

∫∫

S

Xm(x)Yn(y)Xq(ξ)Yr(η)
√

(x − ξ)2 + (y − η)2
dxdydξdη (4.10)

T ∗

m,mnqr =
1

2
mc

∫∫

S

Xm(x)Xq(x)Yn(y)Yr(y)H(x, y)dxdy (4.11)
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Alternatively, we can rewrite Eq. (4.7) in matrix form

{[A] − ω2[I]}{x} = 0 (4.12)

where A = M−1K and I is the unit matrix. K and M are the stiffness matrix and
inertial matrix of the vibration system respectively, and their elements are

Kij = Up,mnqr

Mij = T ∗

p,mnqr + T ∗

f,mnqr + T ∗

m,mnqr

i = l(q − 1) + r, j = l(m − 1) + n, l ∈ N
+

Hence, the natural frequencies and corresponding mode shapes of the coupled plate
can be obtained by extracting the eigenvalues and eigenvectors of matrix A respec-
tively.

As mentioned before, kinetic energy of fluid T ∗

f,mnqr, Eq. (4.10), is an inte-
gral with a potential singularity in the denominator and therefore one cannot per-
form a straightforward numerical evaluation. Following Pierce’s integral methodol-
ogy(Pierce et al., 2002), the fourfold integral of T ∗

f,mnqr can be reduced to a double
integral

T ∗

f,mnqr =
ρf

4π
L2

aL2
b

∫ 1

0

∫ 1

0

1

RFX(u, m, q)FY (v, n, r)dudv (4.13)

where R =
√

L2
au2 + L2

bv
2 and inner integrand function FX(u, m, q), FY (v, n, r)

are defined as

FX(u, m, q) =

∫ 1

u

Xm(x
′

)Xq(x
′ − u)dx

′

+

∫ 1−u

0

Xm(x
′

)Xq(x
′

+ u)dx
′

(4.14)

FY (v, n, r) =

∫ 1

v

Yn(y
′

)Yr(y
′ − u)dy

′

+

∫ 1−v

0

Yn(y
′

)Yr(y
′

+ u)dy
′

(4.15)

where x
′

= x/La, y
′

= y/Lb, ξ
′

= ξ/La, η
′

= η/Lb, and u = x
′ − ξ

′

, v = y
′ −

η
′

. Substituting the plate mode shape functions(Eq. (2.4)-Eq.(2.9)) into Eq.(4.14),
Eq.(4.15) and decomposing the resulting equations into a series of single integrals,
functions FX(u, m, q) and FY (v, n, r) can be evaluated in closed forms.

In order to eliminate the square root singularity, the whole integral of Eq.(4.13)
can be transformed into a polar coordinate system. The square integral domain
within the (u, v) plane is divided into two equal and opposite right-angle trian-
gles(Pierce et al., 2002). The leading diagonal of the common hypotenuse of the
two triangles is the line from the origin to (1,1). For the lower triangle we can
define u = R cos θ/La, v = R sin θ/Lb with the new integral domain 0 < R <
La/ cos(θ), 0 < θ < tan−1(Lb/La). Analogous relationships can be defined for the
upper triangle by interchanging a with b. The integral of Eq.(4.13) becomes

T ∗

f,mnqr =
ρf

4π
LaLb

(
∫ θ1

0

∫
La

cos(θ)

0

FX(
R cos(θ)

La

,m, q)FY (
R sin(θ)

Lb

, n, r)dθdR

+

∫ θ2

0

∫

Lb

cos(θ)

0

FX(
R sin(θ)

La

,m, q)FY (
R cos(θ)

Lb

, n, r)dθdR
)

(4.16)
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where θ1 = tan−1(Lb/La) and θ2 = tan−1(La/Lb)
Normalizing the integral domain of R into [0, 1], we can rewrite Eq.(4.16) in the

following form

T ∗

f,mnqr =
ρf

4π
LaLb

(
∫ 1

0

∫ θ1

0

FX(R,m, q)FY (
RLa sin(θ)

Lb cos(θ)
, n, r)

La

cos(θ)
dRdθ

+

∫ 1

0

∫ θ2

0

FX(
RLb sin(θ)

La cos(θ)
,m, q)FY (R, n, r)

Lb

cos(θ)
dRdθ

)

(4.17)

Consequently, with the closed-form solution of functions FX and FY we can
accurately evaluate Eq.(4.17) by using normal numerical quadrature routines.

5. Numerical results

The resonant frequencies and mode shapes of the submerged microplate carrying
a distributed mass are obtained by numerically solving a truncated subset of the
infinite series of Eq. (4.7) in MATLAB codes. All of the simulation results presented
in this part are generated by using (25×25) terms of Matrix A, and the reference
kinetic energy of fluid(T ∗

f ) is doubled for the case of submerged microplate. It can
be proved that (25×25) terms are able to result in sufficient convergence. The
material properties of the plate, fluid (water) and attached mass used in numerical
computation are as follows:

• Plate Length: La = 100µm

• Plate Width: Lb = 100µm

• Plate Thickness: h = 5µm

• Plate Young’s Modulus: E = 150GPa

• Plate Poisson’s Ratio: ν = 0.17

• Plate Density: ρp = 2330kg/m3

• Fluid Density: ρf = 1000kg/m3

• Radius of Attached Mass: R = 20µm

• Surface Mass Density of Attached Mass: mc = 0.02kg/m2

From Eq.(4.7), it can be seen that when T ∗

f = 0 and T ∗

m = 0, the coupled system
reduces to the case of unloaded plate motion in vacuo, and if T ∗

m = 0, the problem
becomes the one of an unloaded plate vibrating in a fluid. Figure. 2-4 respectively
shows the plate resonant frequencies and mode shapes for three types of bound-
ary conditions in four different loading cases: (A)plate in vacuo without carrying
the mass, (B)plate only under fluid loading, (C)involved both fluid-loading and a
center mass attachment(xc = La/2, yc = Lb/2), (D)is the case with a corner mass
attachment(In Figure 2 and 4, the corner mass is at xc = La/4, yc = Lb/4. In
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10 Z. Wu, X. MA, P. N. Brett and J. Xu

Figure 3, the corner mass is at xc = 3La/4, yc = 3Lb/4).

Insert Figure 2

Insert Figure 3

Insert Figure 4

From these three data plots, we can see that both the fluid loading and the
attached distributive biological particles have significant impact on the resonant
frequencies and mode shapes of micro plates. The inertial forces of fluid sharply
reduce resonant frequencies, especially in the fundamental modes (by more than
50%). Fluid has a reduced effect on most of mode shapes, some phase changes can
be found in a few cases. On the other hand, due to the low density ratio(density
of attached mass vs density of micro plate) the distributed mass caused very small
changes on the resonant frequencies. However it induced distinct changes to the
most mode shapes, especially in high modes.

6. Comparison of results

There are very few papers that discuss the dynamics of a distributive mass-loaded
plate in a fluid. In order to verify the present method, the numerical results for
plates without mass attachment vibrating in fluid are obtained to compare with the
published results. An experimental dataset suitable for this comparison is the one
published by Lindholm (1965) for the submerged cantilever plates(Lindholm et al.,
1965). The dimensions and properties of the cantilever plate used here for compar-
ison are: La = Lb = 8inch, ρp = 7.324 × 10−4lb/in3, E = 30 × 106psi, ν = 0.3.
Table 1 compares the first five natural frequenies for this plate in vacuo and in
water respectively.

Insert Table 1

The results of Table 1 show close agreement between the method of this paper
and Lindholm’s measurements. However quite large differences exist in the first
two wet mode frequencies, as the plate used in our model is surrounded by an in-
finite baffle plane, while the plate of Lindolm’s approach is resting on a free surface.

Insert Table 2

The comparison of NAVMI factors for simple-supported and clamped plates
between the present method and Kwak’s results(read from his data plot)(Kwak,
1996) are listed in Table 2. The aspect ratio ε here is equal to 1. It can be seen that
this method can accurately calculate the NAVMI factors and therefore the natural
frequencies of the submerged plates.
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7. Conclusion

This paper presents an analytical solution for the dynamic system of fluid-loaded
plates with distributed mass attachment based on Lamb’s model and the Rayleigh-
Ritz energy method. Pierce’s integral technique is used to overcome the difficulty
of evaluating the effects of fluid loading. The numerical results calculated using the
novel methodology are compared with Lindholm’s experimental results and Kwak’s
NAVMI based results and show close agreement. It is concluded that the method-
ology proposed by this paper can be widely applied to most boundary conditions
of rectangular plates, provided that the mode shape functions are known. It is
the first analytical solution to this problem, taking into consideration both fluid
loading and distributive mass loading effects. Both of these factors are important
in micro-biosensor design using microstructures. Numerical results of plate reso-
nant frequencies and mode shapes under different loading cases are presented. The
novel methodology and the dynamical characteristics of microplates derived can be
applied in the design of microplate based biosensing systems.
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Table 1. Comparison of natural frequencies(Hz) of a cantilever plate submerged in fluid
with Lindholm’s experimental results

In Vacuo In Water

Modes Lindholm Present Lindholm Present

1 99.5 99.3 51.4 45.0

2 243.0 243.5 154.0 144.8

3 610.0 622.5 355.0 358.7

4 782.0 769.2 534.0 511.4

5 887.0 898.2 585.0 590.9

Table 2. Comparison of NAVMI factors of simple-supported and clamped plates with
Kwak’s results

S-S-S-S C-C-C-C

Modes Kwak Present Kwak Present

1,1 0.41 0.41 0.35 0.3484

1,2(2,1) 0.18 0.1823 0.16 0.1609

2,2 0.13 0.128 0.12 0.1182

Figure 1. Schematic Diagram of Microplate Model
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Figure 2. C-C-C-C Plate Resonant Frequencies(MHz) and Mode Shpaes
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Figure 3. C-F-F-F Plate Resonant Frequencies(MHz) and Mode Shpaes
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Figure 4. C-F-C-F Plate Resonant Frequencies(MHz) and Mode Shpaes
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