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Abstract. The element free Galerkin method is used to analyze free vibration of thin plates resting on Pasternak elastic foun-

dations with all possible types of classical boundary conditions. Convergence of solution is studied by increasing number of

nodes for different boundary conditions and foundation parameters. Upon comparison with available results in literature, it was

found that the method converges very fast and has very good accuracy even with small number of nodes. Applicability of the

method was shown by solving numerical examples with all possible combinations of boundary conditions and different values of

foundation parameters.
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1. Introduction

Plate is an essential part of structural members in many civil, aeronautical, mechanical and marine structures.

Vibration behavior of plates on elastic foundations is of interest for the design of many engineering problems such

as pavement of roads, footing of buildings and bases of machines. Winkler type elastic foundation is the simplest

model to describe the mechanical behavior of elastic supports. In this model interaction between lateral springs

are ignored. Two parameters elastic foundation models have been developed to consider this interaction. They are

characterized by two independent elastic constants which are derived by extension of the Winkler’s model.

Vibration analysis of plates resting on two parameter elastic foundations was subject of several researches by

various approaches. Xiang et al. [1] have studied analytically vibration of rectangular Mindlin plates with simply

supported boundary conditions on Pasternak foundation. Omurtag et al. [2] used Finite element method to study

the free vibration of thin plates resting on Pasternak foundation. Lam et al. [3] used the Green’s functions to derive

canonical exact solutions of elastic bending, buckling and vibration for Levy-plates resting on two parameters elastic

foundations. Matsunaga [4] developed a two-dimensional higher-order theory to study vibration and stability of thick

elastic plates resting on elastic foundation. Shen et al. [5] studied the free and forced vibration of Reissner-Mindlin
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plates with four free edges resting on a Pasternak elastic foundation by employing the Rayleigh-Ritz method. Zhou

et al. [6] used Rayleigh-Ritz method to study the three dimensional vibration of rectangular thick plates on elastic

foundations. Ferreira et al. [7] employed the radial basis function collocation method to analysis static deformation
and free vibration of plates on Pasternak foundations.

Meshless method is an approximate solution to many boundary value problems which approximations are en-
tirely based on nodal parameters. Varity of meshless methods have been introduced, namely the smoothed particle

hydrodynamics (SPH) [8], the meshless local Petrov Galerkin method (MLPG) [9], the reproducing kernel particle
method (RKPM) [10], the element free Galerkin method (EFG) [11] and the radial basis function approach [12–

15]. Element free Galerkin method (EFG) is considered as one of meshless methods which is used for solution of
bending, buckling and vibration of plates and shells. Yan et al. [16] have used this method for vibration analysis of

isotropic rectangular plate with interior elastic point support and elastically restrained edges. Chen et al. [17] and

Dai et al. [18] have used EFG method for vibration analysis of laminated composite plates.
The previous publications have concentrated their studies on limited types of boundary conditions. For example,

only one type of boundary condition has been used in References [1,4,5] and also two types of boundary condition
in Reference [2], three types of boundary condition in References [6,7] and six types of boundary condition in

Reference [3] have been analyzed.
It is the main objective of this paper to use EFG method for vibration analysis of thin plates with all possible types

of boundary conditions resting on two parameters elastic foundation. The plate is discretized by a set of regularly
distributed nodes. On the basis of classical plate theory (CTP) basic equation of vibration is derived. Moving least

square (MLS) approximation is employed to produce displacement shape functions and Penalty method is used for

imposing essential boundary conditions. Convergence, accuracy and applicability of the method were demonstrated
by vibration solutions of thin plates with general boundary conditions. These important results can be served as

benchmark results for researchers to verify their numerical methods and also for engineers to use such plates in their
structures in the future.

2. Moving least square approximation (MLS)

Moving least square approximation was developed by Lancaster and Salkauskas [19] for surface construction

This method has been used widely for generation of shape functions in the meshfree methods. According to the
Moving Least Square method, the unknown function u(x) is approximated by uh(x) as follows:

uh(x) =

m
∑

j=1

pj(x)aj(x) = pT(x)a(x) (1)

where p(x) is a vector of monomial basis functions, and a(x) is a vector of unknown coefficients which depend on
location x. Also, m is the numbers of terms in the basis. Commonly used bases are the linear and quadratic basis

functions. Quadratic basis in two-dimensional domain has following form:

PT = [1, x, y, x2, xy, y2] (2)

By minimizing weighted square of residual function, the unknown coefficients aj(x) in Eq. (1) can be obtained as
follows:

J =

n
∑

I=1

w(x − xI)[p
T(xI)a(x)− uI ]

2 (3)

where uI is nodal parameter of field variable at node I and n is the number of nodes in the neighborhood of x which

called domain of influence. The unknown coefficients vector a(x) can be determined by minimizing the functional
of the weighted residual as follows:

∂J

∂a
= 0 (4)
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Table 1

First and sixth frequency parameters, ω̄ = ωa2
√

ρh

D
, of a square thin plate resting on Winkler’s type elastic foundation

K1 Mode number Method Natural frequency parameter

SSSS SCSC SFSF SSSC SCSF SSSF

100 First mode Pres.(5×5) 22.1997 39.7748 13.9200 27.7797 16.6801 15.4248

Pres.(7×7) 22.1388 31.0169 13.8917 25.9713 16.1896 15.3891

Pres.(9×9) 22.1380 30.8754 13.8955 25.7790 16.1742 15.3900

Pres.(11×11) 22.1385 30.8351 13.8943 25.7450 16.1697 15.3889

Pres.(13×13) 22.1363 30.7795 13.8919 25.7246 16.1655 15.3867
Pres.(15×15) 22.1342 30.7364 13.8901 25.7121 16.1628 15.3850

Pres.(17×17) 22.1326 30.7141 13.8888 25.7041 16.1611 15.3838

Pres.(19×19) 22.1315 30.6992 13.8879 25.6983 16.1598 15.3829

Pres.(23×23) 22.1299 30.6786 13.8866 25.6906 16.1581 15.3817

Ref [3] 22.13 30.63 13.88 25.67 16.15 15.38

Sixth mode Pres.(5×5) 221.2307 2.6824×103 81.4949 559.4443 159.4388 158.5789

Pres.(7×7) 103.3783 145.4672 71.6906 121.7760 95.7161 95.2384

Pres.(9×9) 101.3152 132.1131 71.6137 116.2383 92.9194 92.6162

Pres.(11×11) 100.0937 130.9692 71.5525 114.8928 92.0405 91.7153

Pres.(13×13) 99.7609 130.9690 71.5187 114.6726 91.7934 91.4683
Pres.(15×15) 99.6474 130.8205 71.5015 114.5373 91.6701 91.3523

Pres.(17×17) 99.5727 130.6771 71.4892 114.4154 91.5865 91.2701

Pres.(19×19) 99.5162 130.5475 71.4791 114.3138 91.5233 91.2069

Pres.(23×23) 99.4325 130.3091 71.4642 114.1546 91.4292 91.1130

Ref [3] 99.20 129.48 71.44 113.67 91.16 90.85

1000 First mode Pres.(5×5) 37.3263 51.5988 33.0712 41.2286 34.3728 33.7327

Pres.(7×7) 37.2827 43.1561 33.0591 39.6853 34.0886 33.7155
Pres.(9×9) 37.2820 43.0487 33.0607 39.5528 34.0809 33.7158

Pres.(11×11) 37.2823 43.0193 33.0602 39.5304 34.0787 33.7153

Pres.(13×13) 37.2809 42.9792 33.0592 39.5171 34.0767 33.7143

Pres.(15×15) 37.2797 42.9483 33.0584 39.5089 34.0754 33.7135

Pres.(17×17) 37.2787 42.9324 33.0579 39.5037 34.0746 33.7130

Pres.(19×19) 37.2781 42.9217 33.0575 39.4999 34.0740 33.7126

Pres.(23×23) 37.2771 42.9070 33.0570 39.4949 34.0732 33.7120
Ref [3] 37.28 42.87 31.62 39.49 34.07 33.71

Sixth mode Pres.(5×5) 238.9642 3.0594×103 86.8640 630.8066 162.3892 161.5506
Pres.(7×7) 107.6658 148.6465 77.7132 125.4638 100.3083 99.8551

Pres.(9×9) 105.6708 135.4854 77.6402 120.0558 97.6396 97.3515

Pres.(11×11) 104.4904 134.3589 77.5831 118.7426 96.8028 96.4937

Pres.(13×13) 104.1706 134.3583 77.5518 118.5287 96.5678 96.2588

Pres.(15×15) 104.0618 134.2132 77.5360 118.3977 96.4506 96.1486

Pres.(17×17) 103.9903 134.0734 77.5246 18.2798 96.3711 96.0705

Pres.(19×19) 103.9362 133.9471 77.5153 118.1815 96.3110 96.0105

Pres.(23×23) 103.8561 133.7148 77.5016 118.0275 96.2216 95.9213
Ref [3] 103.64 132.91 77.49 117.56 95.97 95.67

which yields following system of linear equations:

A(x)a(x) = B(x)Us (5)

where,

A(x) =

n
∑

I=1

w(x − xI)p(xI)p
T(xI) (6)

B(x) = [w(x − xI)p(xI), . . . , w(x − xn)p(xn)] (7)

Us = {u1 u2 . . . un}
T (8)

By substituting Eq. (5) into Eq. (1), MLS approximant can be written as:

uh(x) =

n
∑

I=1

φI(x)uI = Φ(x)Us (9)
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Fig. 1. Domain of influence.

Fig. 2. Thin plate resting on two parameter elastic foundation and co-

ordinate system.

Fig. 3. Prescribed boundary conditions.

where Φ(x) is matrix of shape functions and is defined as follows:

Φ(x) = [φ1(x) φ2(x) . . . φn(x)] = pT(x)A−1(x)B(x) (10)

In order to calculate partial derivatives of Φ(x), Eq. (10) is rewritten as follows [20]:

Φ(x) = γ
T(x)B(x) (11)

where

γ(x) = A−1(x)p(x) (12)

or,

A(x)γ(x) = p(x) (13)

The partial derivatives of γ(x) can be expressed as follows:

Aγ,x = p,x − A,xγ (14)

Aγ,y = p,y − A,yγ (15)

Aγ,xx = pxx − (A,xxγ + 2A,xγ,x) (16)

Aγ,xy = p,xy − (A,xyγ + A,xγ,y + A,yγ,x) (17)

Aγ,yy = p,yy − (A,yyγ + 2A,yγ,y) (18)



E. Bahmyari et al. / Vibration analysis of thin plates resting on Pasternak foundations by element free Galerkin method 313

Table 2

Dimensionless parameter of natural frequencies, ω̄ =
ωa2

π2

√

ρh

D
, of a square SSSS plate resting on Winkler’s type elastic foundation

K1 Method Mode number

1st 2nd 3rd 4th 5th 6th

100 Pres.(5×5) 2.2493 6.8840 6.8840 15.6987 16.2849 22.4154

Pres.(7×7) 2.2431 5.2509 5.2509 8.4292 10.4681 10.4744

Pres.(9×9) 2.2430 5.1231 5.1231 8.0986 10.2630 10.2654

Pres.(11×11) 2.2431 5.1153 5.1153 8.0797 10.1380 10.1416

Pres.(13×13) 2.2429 5.1125 5.1125 8.0752 10.1074 10.1079
Pres.(15×15) 2.2427 5.1107 5.1107 8.0730 10.0961 10.0964

Pres.(17×17) 2.2425 5.1092 5.1092 8.0714 10.0886 10.0888

Pres.(19×19) 2.2424 5.1079 5.1079 8.0700 10.0830 10.0831

Pres.(23×23) 2.2422 5.1059 5.1059 8.0678 10.0746 10.0746

Ref. [1] 2.2413 5.0971 5.0971 8.0523

Ref. [6] 2.2413 5.0973 5.0973 8.0527

Ref. [7] 2.2414 5.0967 5.0967 8.0542

500 Pres.(5×5) 3.0278 7.2613 7.2613 15.8295 17.1184 23.2311

Pres.(7×7) 3.0228 5.6306 5.6306 8.6774 10.6635 10.6697

Pres.(9×9) 3.0227 5.5092 5.5092 8.3483 10.4615 10.4638

Pres.(11×11) 3.0228 5.5020 5.5020 8.3298 10.3384 10.3420

Pres.(13×13) 3.0226 5.4993 5.4993 8.3254 10.3084 10.3089

Pres.(15×15) 3.0225 5.4976 5.4976 8.3233 10.2973 10.2976

Pres.(17×17) 3.0223 5.4962 5.4962 8.3217 10.2900 10.2902

Pres.(19×19) 3.0223 5.4950 5.4950 8.3203 10.2844 10.2845
Pres.(23×23) 3.0221 5.4932 5.4932 8.3182 10.2762 10.2762

Ref. [1] 3.0215 5.4850 5.4850 8.3032

Ref. [6] 3.0214 5.4850 5.4850 8.3035

Ref. [7] 3.0216 5.4846 5.4846 8.3051

The partial derivatives of Φ(x) would be as follows:

ΦI,x = γ
T

,xBI + γ
TBI,x (19)

ΦI,y = γ
T

,yBI + γ
TBI,y (20)

ΦI,xx = γ
T

,xxBI + 2γT

,xBI,x + γ
TBI,xx (21)

ΦI,xy = γ
T

,xyBI + γ
T

,xBI,y + γ
T

,yBI,x + γ
TBI,xy (22)

ΦI,yy = γ
T

,yyBI + 2γT

,yBI,y + γ
TBI,yy (23)

Weight function plays an important role in the formulation of MLS method. This function should be non-zero in the
domain of influence and zero outside of the domain. The precise character of this function seems to be unimportant
although it is almost mandatory that it be positive and increase monotonically as ‖x− xI‖ decreases, furthermore
it is desirable that weight function be smooth [21]. Several weight functions have been proposed by researchers. In
this work quartic spline weight function is chosen,

w(x − xI) ≡ w(r) =

{

1− 6r2 + 8r3 − 3r4, r � 1

0, r > 1
(24)

where,

r =
‖x − xI‖

dI
(25)

where dI determines the size of the influence domain at node I . The most commonly used domains are circles and
rectangles (Fig. 1). For circular domain, dI is the radius of circle and for rectangular domain, dI is equal to length of
rectangle in x, and y direction which are denoted by dIx and dIy , respectively. For the latter case, weight function
can be written as follows:

w(x − xI) = w(rx).w(ry) (26)
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Fig. 4. Comparison of natural frequencies for Winkler and Pasternak’s type of elastic foundation (K1 = 100, h/a = 0.01 and number of nodes

19×19).

where rx and ry are given by

rx =
‖x− xI‖

dIx
(27)

ry =
‖y − yI‖

dIy
(28)

where

dIx = dmax.cIx (29)

dIy = dmax.cIy (30)

where dmax is scaling parameter, cIx and cIy are distance around node I which are determined in such a way that

enough nodes be in the domain in order that matrix A in Eq. (13) to be invertible at every point in the domain [21].

3. Governing equations

3.1. Strain and kinetic energies of thin plate

A thin plate of thickness h resting on a two-parametric elastic foundation with Cartesian coordinate system origin

at center is shown in Fig. 2. Displacements functions in x, y and z directions are defined by u, v and w, respectively.

Based on CPT, displacement field can be expressed as follows [17]:

u =

⎧

⎨

⎩

u
v
w

⎫

⎬

⎭

=

{

−z
∂

∂x
−z

∂

∂y
1

}T

w = Luw, (31)
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Table 3

First and sixth frequency parameters, ω̄ = ωa2
√

ρh

D
, of a square thin plate resting on Pasternak’s type elastic foundation

K1 K2 Mode number Method Natural frequency parameter

SSSS SCSC SFSF SSSC SCSF SSSF

0 0 First mode Pres.(5×5) 19.8187 38.2349 9.6837 25.8562 13.3355 11.7442

Pres.(7×7) 19.7520 29.3599 9.6430 23.9680 12.7323 11.6976

Pres.(9×9) 19.7511 29.2113 9.6485 23.7607 12.7129 11.6989

Pres.(11×11) 19.7517 29.1688 9.6468 23.7239 12.7072 11.6973

Pres.(13×13) 19.7492 29.1100 9.6433 23.7018 12.7018 11.6945
Pres.(15×15) 19.7468 29.0644 9.6407 23.6882 12.6984 11.6923

Pres.(17×17) 19.7451 29.0409 9.6388 23.6795 12.6962 11.6907

Pres.(19×19) 19.7438 29.0251 9.6375 23.6732 12.6946 11.6895

Pres.(23×23) 19.7421 29.0033 9.6356 23.6649 12.6923 11.6879

Ref [3] 19.74 28.95 9.63 23.65 12.69 11.68

Sixth mode Pres.(5×5) 219.1715 2.6372×103 80.8759 550.9448 159.1064 158.2405

Pres.(7×7) 102.8908 145.1095 70.9898 121.3593 95.1922 94.7116

Pres.(9×9) 100.8196 131.7330 70.9124 115.8063 92.3800 92.0751

Pres.(11×11) 99.5932 130.5871 70.8508 114.4571 91.4960 91.1689

Pres.(13×13) 99.2588 130.5870 70.8166 114.2361 91.2475 90.9204
Pres.(15×15) 99.1447 130.4380 70.7993 114.1003 91.1234 90.8037

Pres.(17×17) 99.0697 130.2942 70.7868 113.9779 91.0393 90.7211

Pres.(19×19) 99.0129 130.1643 70.7767 113.8760 90.9757 90.6575

Pres.(23×23) 98.9288 129.9252 70.7616 113.7161 90.8811 90.5630

Ref [3] 98.69 129.09 70.74 113.23 90.61 90.29

0 100 First mode Pres.(5×5) 48.6709 65.9214 32.9237 54.0423 38.8593 37.1864

Pres.(7×7) 48.6194 55.1007 32.9062 51.5800 38.0427 37.1545
Pres.(9×9) 48.6183 54.8322 32.9083 51.4035 37.9990 37.1548

Pres.(11×11) 48.6188 54.8028 32.9080 51.3710 37.9905 37.1545

Pres.(13×13) 48.6177 54.7798 32.9071 51.3577 37.9869 37.1536

Pres.(15×15) 48.6167 54.7552 32.9063 51.3501 37.9850 37.1529

Pres.(17×17) 48.6160 54.7431 32.9057 51.3452 37.9836 37.1524

Pres.(19×19) 48.6154 54.7349 32.9053 51.3414 37.9825 37.1520

Pres.(23×23) 48.6146 54.7225 32.9047 51.3359 37.9809 37.1515
Ref [3] 48.62 54.68 32.90 51.32 37.98 37.15

Sixth mode Pres.(5×5) 298.1788 3.9594×103 126.8551 810.8308 210.1817 191.3902
Pres.(7×7) 143.6404 178.7094 115.5538 158.8996 135.7528 135.2073

Pres.(9×9) 141.7370 167.9889 115.4758 154.3975 133.3230 132.9989

Pres.(11×11) 140.6843 166.8371 115.3670 153.1456 132.5973 132.2724

Pres.(13×13) 140.4231 166.8450 115.3114 152.9621 132.4086 132.0906

Pres.(15×15) 140.3387 166.7491 115.2892 152.8701 132.3183 132.0076

Pres.(17×17) 140.2832 166.6527 115.2765 152.7868 132.2575 131.9487

Pres.(19×19) 140.2413 166.5637 115.2671 152.7155 132.2117 131.9033

Pres.(23×23) 140.1794 166.3948 115.2541 152.6009 132.1440 131.8361
Ref [3] 140.04 165.75 115.25 152.24 131.98 131.67

100 100 First mode Pres.(5×5) 49.6881 66.8246 34.4088 54.9899 40.1342 38.5076

Pres.(7×7) 49.6370 56.0014 34.3920 52.5408 39.3351 38.4766

Pres.(9×9) 49.6359 55.7365 34.3941 52.3671 39.2927 38.4768

Pres.(11×11) 49.6364 55.7075 34.3938 52.3351 39.2845 38.4765

Pres.(13×13) 49.6353 55.6849 34.3928 52.3220 39.2810 38.4757

Pres.(15×15) 49.6344 55.6607 34.3921 52.3146 39.2791 38.4751
Pres.(17×17) 49.6336 55.6488 34.3915 52.3098 39.2778 38.4746

Pres.(19×19) 49.6331 55.6407 34.3911 52.3060 39.2767 38.4742

Pres.(23×23) 49.6323 55.6285 34.3905 52.3006 39.2752 38.4737

Ref [3] 49.63 55.59 34.39 52.29 39.27 38.47

Sixth mode Pres.(5×5) 299.6952 3.9897×103 127.2539 816.6297 210.5833 191.6662

Pres.(7×7) 143.9899 178.9988 115.9859 159.2181 136.1206 135.5767

Pres.(9×9) 142.0899 168.2871 115.9078 154.7217 133.6973 133.3742

Pres.(11×11) 141.0391 167.1364 115.7994 153.4715 132.9735 132.6496

Pres.(13×13) 140.7784 167.1442 115.7439 153.2884 132.7854 132.4683
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Table 3, continued

K1 K2 Mode number Method Natural frequency parameter

SSSS SCSC SFSF SSSC SCSF SSSF

Pres.(15×15) 140.6942 167.0484 115.7218 153.1965 132.6953 132.3856

Pres.(17×17) 49.6336 166.9522 115.7091 153.1135 132.6348 132.3268

Pres.(19×19) 140.5970 166.8633 115.6998 153.0423 132.5891 132.2815

Pres.(23×23) 140.5353 166.6948 115.6868 152.9279 132.5215 132.2145

Ref [3] 140.39 166.05 115.69 152.57 132.36 132.05

The pseudo-strains of the plate are denoted as

εp =

{

−
∂2

∂x2
−

∂2

∂y2
− 2

∂2

∂x∂y

}T

w = Lpsw, (32)

The pseudo-stresses of the plate are given by

σp =

⎧

⎨

⎩

Mx

My

Mxy

⎫

⎬

⎭

, (33)

The relationship between the pseudo-strains and pseudo-stress is expressed as

σp = Dεp, (34)

where D is stiffness matrix and is given as,

D =

⎡

⎣

D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤

⎦ (35)

For an isotropic plate, D would be as follows:

D =
Eh3

12(1− v2)

⎡

⎣

1 v 0
v 1 0
0 0 (1 − v)/2

⎤

⎦ (36)

where E is Young’s module and v is Poisson’s ratio. The strain and kinetic energies of the plate can be written as:

Up =
1

2

∫

S

ε
T

PσP dS (37)

Tp =
1

2

∫

V

ρu̇
T

u̇dV, (38)

3.2. Strain energy due to elastic foundation

The surface pressure vector induce by foundation is defined as follows;

q =
{

0 0 kf w −Gf ∇2 w
}T

(39)

where kf is the Winkler foundation stiffness while Gf is the shear stiffness of the elastic foundation. The strain

energy due to the Pasternak foundation is given as follows,

UF =
1

2

∫

S

uTqdS =
1

2

∫

S

ε
T

FσF dS (40)
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Table 4

Dimensionless parameter of natural frequencies, ω̄ =
ωa2

π2

√

ρh

D
, of a square SSSS plate resting on Pasternak’s type elastic foundation (K2 = 10)

h/a K1 Method Mode number

1st 2nd 3rd 4th 5th 6th

0.01 100 Pres.(5×5) 2.6624 7.3457 7.3457 16.0736 17.1893 23.3326

Pres.(7×7) 2.6567 5.7185 5.7185 8.9137 10.9498 10.9558

Pres.(9×9) 2.6566 5.5958 5.5958 8.5849 10.7480 10.7502

Pres.(11×11) 2.6566 5.5886 5.5886 8.5665 10.6261 10.6296

Pres.(13×13) 2.6564 5.5860 5.5860 8.5622 10.5966 10.5971
Pres.(15×15) 2.6563 5.5843 5.5843 8.5601 10.5858 10.5861

Pres.(17×17) 2.6561 5.5829 5.5829 8.5585 10.5786 10.5788

Pres.(19×19) 2.6560 5.5817 5.5817 8.5572 10.5732 10.5733

Pres.(23×23) 2.6559 5.5799 5.5799 8.5551 10.5651 10.5652

Ref. [1] 2.6551 5.5718 5.5718 8.5405

Ref. [6] 2.6551 5.5717 5.5717 8.5406

Ref. [7] 2.6559 5.5718 5.5718 8.5384

500 Pres.(5×5) 3.3461 7.7004 7.7004 16.2013 17.9808 24.1174

Pres.(7×7) 3.3412 6.0691 6.0691 9.1488 11.1368 11.1426

Pres.(9×9) 3.3411 5.9513 5.9513 8.8208 10.9377 10.9399

Pres.(11×11) 3.3412 5.9445 5.9445 8.8028 10.8174 10.8209

Pres.(13×13) 3.3410 5.9420 5.9420 8.7986 10.7885 10.7889

Pres.(15×15) 3.3409 5.9404 5.9404 8.7965 10.7778 10.7781

Pres.(17×17) 3.3408 5.9391 5.9391 8.7950 10.7708 10.7710

Pres.(19×19) 3.3407 5.9380 5.9380 8.7937 10.7655 10.7656
Pres.(23×23) 3.3406 5.9363 5.9363 8.7917 10.7576 10.7576

Ref. [1] 3.3400 5.9287 5.9287 8.7775

Ref. [6] 3.3398 5.9285 5.9285 8.7775

Ref. [7] 3.3406 5.9285 5.9285 8.7754

0.1 200 Pres.(5×5) 2.8258 7.2782 7.2782 15.3872 16.8089 22.4779

Pres.(7×7) 2.8204 5.6932 5.6932 8.6942 10.5696 10.5753

Pres.(9×9) 2.8203 5.5745 5.5745 8.3761 10.3805 10.3827
Pres.(11×11) 2.8204 5.5675 5.5675 8.3583 10.2646 10.2680

Pres.(13×13) 2.8202 5.5649 5.5649 8.3542 10.2365 10.2369

Pres.(15×15) 2.8200 5.5633 5.5633 8.3522 10.2261 10.2264

Pres.(17×17) 2.8199 5.5620 5.5620 8.3507 10.2193 10.2195

Pres.(19×19) 2.8198 5.5608 5.5608 8.3494 10.2141 10.2142

Pres.(23×23) 2.8197 5.5591 5.5591 8.3475 10.2064 10.2065

Ref. [1] 2.7842 5.3043 5.3043 7.7287
Ref. [6] 2.7756 5.2954 5.2954 7.7279

Ref. [7] 2.7902 5.3452 5.3452 7.8255

1000 Pres.(5×5) 4.0088 7.9497 7.9497 15.6297 18.2908 23.9416

Pres.(7×7) 4.0044 6.3524 6.3524 9.1412 10.9246 10.9300

Pres.(9×9) 4.0043 6.2421 6.2421 8.8244 10.7406 10.7428

Pres.(11×11) 4.0043 6.2358 6.2358 8.8073 10.6279 10.6312

Pres.(13×13) 4.0042 6.2335 6.2335 8.8033 10.6007 10.6011

Pres.(15×15) 4.0041 6.2321 6.2321 8.8014 10.5907 10.5909
Pres.(17×17) 4.0040 6.2309 6.2309 8.8000 10.5841 10.5842

Pres.(19×19) 4.0039 6.2298 6.2298 8.7988 10.5791 10.5792

Pres.(23×23) 4.0038 6.2283 6.2283 8.7969 10.5717 10.5717

Ref. [1] 3.9805 6.0078 6.0078 8.2214

Ref. [6] 3.9566 5.9757 5.9757 8.1954

Ref. [7] 3.9844 6.0430 6.0430 8.3112

Where εF and σF are regarded as strain and stress vectors associated with Pasternak foundation and are defines as

follows,

εF =

{

1
∂

∂x

∂

∂y

}T

w = Lfsw (41)

σF = DF εF (42)
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Table 5

Dimensionless parameter of natural frequencies, ω̄ =
ωa2

π2

√

ρh

D
, of a square CCCC plate resting on Pasternak’s type elastic foundation (K1 =

1390.2, K2 = 16683, h/a = 0.015 and ν = 0.15)

Method Mode number

1st 2nd 3rd 4th 5th 6th

Pres.(5×5) 11.2731 487.5740 487.5740 691.8086 749.8748 773.9894

Pres.(7×7) 8.4543 14.2932 14.2932 22.5495 25.5613 39.8698

Pres.(9×9) 8.1614 12.9504 12.9504 17.2984 19.5261 19.8530

Pres.(11×11) 8.1367 12.7800 12.7800 16.8966 19.2998 19.4499

Pres.(13×13) 8.1281 12.7478 12.7478 16.7403 19.2333 19.2945

Pres.(15×15) 8.1254 12.7336 12.7336 16.7012 19.2142 19.2536

Pres.(17×17) 8.1240 12.7261 12.7261 16.6797 19.2071 19.2358
Pres.(19×19) 8.1230 12.7214 12.7214 16.6700 19.2001 19.2236

Pres.(23×23) 8.1214 12.7152 12.7152 16.6606 19.1867 19.2058

Ref. [2] 8.1375 12.898 12.898 16.932

Ref. [6] 8.1675 12.823 12.823 16.833

Ref. [7] 8.1669 12.821 12.821 16.842

Fig. 5. Comparison of natural frequencies for Winkler and Pasternak’s type of elastic foundation (K1 = 500, h/a = 0.01 and number of nodes

19×19).

where DF is given by,

DF =

⎡

⎣

kf 0 0
0 Gf 0
0 0 Gf

⎤

⎦ (43)

3.3. Approximation of field variables

By using the MLS method the following approximation of deflection function in z direction is obtained:

wh(x) =

n
∑

I=1

φI(x)wI , (44)
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Table 6

Dimensionless parameter of natural frequencies, ω̄ =
ωa2

π2

√

ρh

D
, of a square plate on Pasternak’s type elastic foundation (K2 = 10, h/a = 0.01

and number of nodes 19×19)

B.C. K1 Mode number

1st 2nd 3rd 4th 5th 6th

SCSC 100 3.4527 6.0949 7.5255 10.1074 10.9209 13.6416

500 4.0033 6.4228 7.7934 10.3084 11.1072 13.7912

1000 4.5999 6.8105 8.1159 10.5543 11.3357 13.9759

SSCC 100 3.2945 6.6644 6.6846 9.9326 12.1658 12.1805

500 3.8677 6.9656 6.9849 10.1370 12.3332 12.3478

1000 4.4823 7.3246 7.3430 10.3870 12.5394 12.5537

SFSS 100 1.9313 3.5429 4.7833 6.5913 6.9730 9.7393

500 2.7992 4.0814 5.1947 6.8956 7.2613 9.9478

1000 3.6011 4.6679 5.6671 7.2580 7.6063 10.2023

FFSS 100 1.2994 2.6769 2.7733 4.5871 5.9674 6.1585

500 2.4072 3.3572 3.4346 5.0146 6.3019 6.4831

1000 3.3057 4.0500 4.1144 5.5024 6.6966 6.8674

FFSC 100 1.4006 2.7949 3.2738 5.0515 6.1053 7.1681

500 2.4633 3.4521 3.8501 5.4427 6.4326 7.4489

1000 3.3467 4.1290 4.4671 5.8952 6.8197 7.7856

FSFS 100 1.7330 2.4271 4.5545 4.5559 5.3624 7.8203

500 2.6663 3.1617 4.9848 4.9861 5.7323 8.0784

1000 3.4988 3.8895 5.4753 5.4765 6.1636 8.3899

FSFC 100 2.1435 2.7784 4.8181 5.5511 6.2747 8.5774

500 2.9497 3.4387 5.2267 5.9093 6.5937 8.8133

1000 3.7193 4.1179 5.6964 6.3286 6.9719 9.0997

FSFF 100 1.1427 1.7063 2.4654 3.3679 3.6260 5.7051

500 2.3264 2.6490 3.1912 3.9303 4.1536 6.0541

1000 3.2473 3.4856 3.9135 4.5364 4.7311 6.4640

SFSC 100 2.0138 4.0416 4.8327 6.9808 8.0060 9.7713

500 2.8568 4.5211 5.2402 7.2688 8.2583 9.9791

1000 3.6460 5.0568 5.7088 7.6135 8.5632 10.2328

CCCC 100 4.1067 7.9246 7.9246 11.4696 13.8906 13.9520

500 4.5793 8.1795 8.1795 11.6471 14.0375 14.0983

1000 5.1090 8.4873 8.4873 11.8652 14.2190 14.2790

CFCC 100 2.9256 4.6645 6.9083 8.4202 8.7004 12.4004

500 3.5588 5.0856 7.1993 8.6605 8.9332 12.5648

1000 4.2187 5.5672 7.5472 8.9517 9.2158 12.7672

CFSC 100 2.3923 4.3066 5.7953 7.7673 8.1903 11.2920

500 3.1351 4.7594 6.1393 8.0271 8.4371 11.4723

1000 3.8680 5.2710 6.5438 8.3405 8.7358 11.6937

CFCF 100 2.7181 3.2639 5.1602 6.6934 7.3379 8.8761
500 3.3903 3.8417 5.5437 6.9933 7.6124 9.1043

1000 4.0775 4.4599 5.9886 7.3510 7.9422 9.3817

FFCC 100 1.4975 3.2617 3.4074 5.4896 7.0872 7.3222

500 2.5197 3.8398 3.9643 5.8516 7.3710 7.5972

1000 3.3884 4.4582 4.5659 6.2747 7.7112 7.9276

FFCF 100 1.2460 1.8048 3.0164 3.7057 3.8825 6.2183
500 2.3788 2.7135 3.6337 4.2234 4.3794 6.5400

1000 3.2851 3.5349 4.2820 4.7925 4.9306 6.9211

CCSC 100 3.7221 6.9323 7.6980 10.7266 12.3447 13.7673

500 4.2379 7.2223 7.9601 10.9162 12.5097 13.9155

1000 4.8054 7.5691 8.2761 11.1487 12.7131 14.0985

CSSS 100 2.9899 5.8036 6.4784 9.2667 10.7290 12.0336
500 3.6118 6.1470 6.7878 9.4856 10.9185 12.2028

1000 4.2635 6.5511 7.1558 9.7522 11.1509 12.4112
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Table 6, continued

B.C. K1 Mode number

1st 2nd 3rd 4th 5th 6th

FFFF 100 1.0132 1.4870 1.4870 2.2656 3.1826 3.4509

500 2.2656 2.5134 2.5134 3.0395 3.7727 4.0016

1000 3.2041 3.3837 3.3837 3.7908 4.4005 4.5983

3.4. Imposing essential boundary conditions

The essential boundary conditions in the element free Galerkin method cannot be easily and directly imposed

because moving least square approximation does not satisfy the Kronecker delta function property, [22]. Various

techniques have been proposed for imposing the essential boundary conditions in the EFG method, such as Lagrange

multipliers [21], penalty method [23], coupling with FEM [24], and coupling with boundary element method [25].

In this paper, a Penalty method is used for enforcing the essential boundary condition in the EFG method.

In the absence of body forces and assumed prescribed tractions, Lagrangian of free vibration of a thin plate resting

on elastic foundation can be written as follows

L = TP − Up − UF +

∫

Γu

1

2
(ũ − ū)Tα(ũ − ū)dΓ, (45)

where α is a diagonal matrix of penalty coefficients, ū is prescribed displacement and defines as [26],

ũ = Lbw, (46)

where Lb is a vector of differential operators. Proper choice of penalty coefficients is very important on accuracy of

solution. From literature review [26], usually large numbers of order 1×104−13× max (diagonals in stiffness matrix)

can be chosen. A plate with general boundary condition is considered (Fig. 3). For clamped boundary condition Lb

is defined as,

Lb =

{

1
∂

∂n

}T

, (47)

where n denotes outward normal direction on boundary of the plate. For simply supported boundary condition Lb is

defined as,

Lb = {1 0}T , (48)

3.5. Derivation of stiffness and mass matrices for free vibration analysis

The dynamical equation of a plate resting on elastic foundation can be derived according to the Hamilton’s varia-

tional principle,

δ

∫ t2

t1

Ldt = 0, (49)

where L is the Lagrangian function of system. By substituting Eqs (37), (38) and (40) into Eq. (45) and replacing

results in Eq. (49), following variational form is found:

∫

S

δεTPσP dS +

∫

S

δεTFσF dS +

∫

V

ρδuTüdV − δ

∫

Γu

1

2
(ũ−ū)Tα(ũ − ū)dΓ = 0, (50)
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Table 7

Dimensionless parameter of natural frequencies, ω̄ =
ωa2

π2

√

ρh

D
, of a square plate on Pasternak’s type elastic foundation (K2 = 50, h/a = 0.01

and number of nodes 19×19)

B.C K1 Mode number

1st 2nd 3rd 4th 5th 6th

SSSS 100 3.8935 7.1703 7.1703 10.2777 12.3409 12.3410

500 4.3892 7.4510 7.4510 10.4754 12.5060 12.5062

1000 4.9393 7.7877 7.7877 10.7175 12.7094 12.7096

SCSC 100 4.5622 7.6189 8.9035 11.6903 12.6604 15.1832

500 4.9919 7.8837 9.1311 11.8646 12.8214 15.3177

1000 5.4819 8.2027 9.4078 12.0788 13.0199 15.4842

SSCC 100 4.4560 8.1437 8.1547 11.5434 13.8154 13.8260

500 4.8950 8.3920 8.4026 11.7198 13.9631 13.9736

1000 5.3938 8.6923 8.7026 11.9366 14.1456 14.1559

SFSS 100 2.9739 5.1403 6.3433 8.3280 8.9734 11.5147

500 3.5987 5.5252 6.6590 8.5709 9.1993 11.6915

1000 4.2524 5.9716 7.0337 8.8651 9.4740 11.9088

FFSS 100 1.9380 4.2715 4.2980 6.3562 8.0792 8.1668

500 2.8039 4.7277 4.7517 6.6713 8.3293 8.4143

1000 3.6048 5.2424 5.2641 7.0454 8.6317 8.7138

FFSC 100 2.0550 4.3485 4.8120 6.7846 8.1631 9.1225

500 2.8860 4.7974 5.2211 7.0807 8.4107 9.3447

1000 3.6690 5.3054 5.6914 7.4342 8.7103 9.6153

FSFS 100 2.6590 3.7868 6.0872 6.5713 7.0341 9.7677

500 3.3431 4.2949 6.4156 6.8765 7.3201 9.9755

1000 4.0384 4.0384 6.8037 7.2400 7.6626 10.2294

FSFC 100 3.0310 4.0790 6.7819 6.9614 7.8353 10.4368

500 3.6460 4.5545 7.0781 7.2503 8.0930 10.6316

1000 4.2925 5.0868 7.4317 7.5959 8.4040 10.8701

FSFF 100 1.5287 2.8786 4.0043 5.0427 5.7190 7.7912

500 2.5384 3.5203 4.4878 5.4345 6.0673 8.0503

1000 3.4024 4.1863 5.0271 5.8877 6.4763 8.3629

SFSC 100 3.0571 5.6181 6.3909 8.6962 9.9272 11.5463

500 3.6676 5.9722 6.7044 8.9291 10.1318 11.7226

1000 4.3109 6.3874 7.0767 9.2119 10.3819 11.9394

CCCC 100 5.1501 9.2762 9.2762 12.9650 15.4286 15.4739

500 5.5344 9.4949 9.4949 13.1223 15.5610 15.6059

1000 5.9801 9.7613 9.7613 13.3163 15.7249 15.7694

CFCC 100 3.8338 6.1366 8.2287 10.2369 10.2900 14.1867

500 4.3364 6.4624 8.4745 10.4355 10.4875 14.3306

1000 4.8925 6.8479 8.7720 10.6784 10.7292 14.5084

CFSC 100 3.3938 5.8436 7.2391 9.4024 10.0895 12.9407
500 3.9527 6.1849 7.5172 9.6182 10.2909 13.0982

1000 4.5559 6.5866 7.8511 9.8813 10.5372 13.2926

CFCF 100 3.5109 4.4624 7.0497 7.9770 8.7751 11.2077

500 4.0537 4.9009 7.3351 8.2303 9.0060 11.3893

1000 4.6438 5.3991 7.6768 8.5363 9.2865 11.6122

FFCC 100 2.1659 4.8504 4.8892 7.1927 9.0988 9.2193
500 2.9661 5.2566 5.2924 7.4726 9.3215 9.4393

1000 3.7323 5.7239 5.7569 7.8083 9.5927 9.7072

FFCF 100 1.6709 2.9646 4.5505 5.5258 5.7739 8.2012

500 2.6265 3.5909 4.9812 5.8856 6.1190 8.4477

1000 3.4686 4.2458 5.4721 6.3065 6.5248 8.7461

CCSC 100 4.8151 8.3789 9.0677 12.2733 13.9808 15.3046
500 5.2240 8.6204 9.2913 12.4393 14.1268 15.4380

1000 5.6941 8.9130 9.5634 12.6438 14.3072 15.6032
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Table 7, continued

B.C K1 Mode number

1st 2nd 3rd 4th 5th 6th

CSSS 100 4.1831 7.3679 7.9683 10.9262 12.4853 13.6884

500 4.6480 7.6414 8.2218 11.1124 12.6486 13.8374

1000 5.1707 7.9701 8.5281 11.3409 12.8497 14.0215

FFFF 100 1.0132 2.5610 2.5610 3.7055 5.3937 5.4901
500 2.2656 3.2657 3.2657 4.2233 5.7617 5.8520

1000 3.2041 3.9746 3.9746 4.7925 6.1910 6.2752

Fig. 6. Comparison of natural frequencies for Winkler and Pasternak’s type of elastic foundation (K1 = 1000, h/a = 0.01 and number of

nodes 19×19).

After substituting Eqs (31), (32), (34), (41), (42) and (46) into Eq. (50), it can be rewritten as:

∫

S

δ(Lpsw)
TD(Lpsw)dS +

∫

S

δ(Lfsw)
TDF (Lfsw)dS +

∫

V

ρδ(Luw)
TLuẅdV

−
1

2

∫

Γu

δ(Lbw − ū)Tα(Lbw − ū)dΓ = 0,

(51)

By substituting the approximated deflection function wh(x) Eq. (44) into Eq. (51), the discrete dynamical equations

for free vibration analysis of plates resting on elastic foundation is deduced as:

MÜ + (KP + KF + K̃)U = 0, (52)

where U is the vector of deflection of all nodes, and is defined by

U = {w1, w2, . . . , wnt
}T, (53)

Where nt is the total number of nodes in the entire domain of the plate. The notations of KP , KF , K̃ and M denote

the global plate stiffness matrix, the global foundation stiffness matrix, the global penalty matrix and global mass

matrix which are given by:

KP =

∫

S

BT

I DBJdS, (54)
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Table 8

Dimensionless parameter of natural frequencies, ω̄ =
ωa2

π2

√

ρh

D
, of a square plate on Pasternak’s type elastic foundation (K2 = 100, h/a = 0.01

and number of nodes 19×19)

B.C K1 Mode number

1st 2nd 3rd 4th 5th 6th

SSSS 100 5.0289 8.7599 8.7599 12.0887 14.2454 14.2455

500 5.4217 8.9911 8.9911 12.2573 14.3886 14.3887

1000 5.8760 9.2720 9.2720 12.4648 14.5658 14.5659

SCSC 100 5.6376 9.1698 10.3581 13.4012 14.5434 16.9068

500 5.9907 9.3910 10.5544 13.5535 14.6838 17.0277

1000 6.4047 9.6603 10.7947 13.7414 14.8574 17.1776

SSCC 100 5.5585 9.6676 9.6740 13.2766 15.6292 15.6370

500 5.9163 9.8776 9.8839 13.4303 15.7599 15.7676

1000 6.3352 10.1340 10.1401 13.6199 15.9217 15.9294

SFSS 100 3.8983 6.5779 7.8644 10.0715 10.9149 13.4029

500 4.3934 6.8829 8.1212 10.2732 11.1013 13.5551

1000 4.9432 7.2461 8.4312 10.5199 11.3300 13.7430

FFSS 100 2.5106 5.5992 5.6107 7.9947 10.0262 10.0714

500 3.2263 5.9545 5.9653 8.2474 10.2288 10.2731

1000 3.9423 6.3709 6.3810 8.5528 10.4766 10.5198

FFSC 100 2.6297 5.6653 6.1227 8.4042 10.0874 11.0035

500 3.3199 6.0167 6.4493 8.6449 10.2888 11.1884

1000 4.0192 6.4290 6.8355 8.9368 10.5352 11.4154

FSFS 100 3.4845 4.9657 7.5744 8.3694 8.6680 11.7228

500 4.0309 5.3632 7.8407 8.6111 8.9017 11.8966

1000 4.6239 5.8220 8.1614 8.9041 9.1853 12.1102

FSFC 100 3.8419 5.2369 8.3833 8.5583 9.4074 12.3379

500 4.3436 5.6152 8.6247 8.7948 9.6231 12.5031

1000 4.8989 6.0550 8.9172 9.0819 9.8861 12.7066

FSFF 100 1.8997 3.8433 5.2736 6.5140 7.4703 9.7105

500 2.7776 4.3447 5.6494 6.8218 7.7402 9.9196

1000 3.5844 4.8999 6.0867 7.1881 8.0649 10.1749

SFSC 100 3.9796 7.0432 7.9106 10.4253 11.8284 13.4341

500 4.4657 7.3288 8.1660 10.6203 12.0006 13.5859

1000 5.0075 7.6710 8.4743 10.8592 12.2124 13.7734

CCCC 100 6.1900 10.7124 10.7124 14.6078 17.1481 17.1820

500 6.5132 10.9023 10.9023 14.7476 17.2673 17.3010

1000 6.8959 11.1351 11.1351 14.9205 17.4152 17.4486

CFCC 100 4.6985 7.5146 9.6048 11.8496 12.1599 16.1052

500 5.1168 7.7829 9.8161 12.0216 12.3275 16.2320

1000 5.5959 8.1059 10.0741 12.2331 12.5338 16.3893

CFSC 100 4.3011 7.2528 8.6962 11.0821 11.9783 14.7354
500 4.7545 7.5305 8.9291 11.2657 12.1484 14.8740

1000 5.2667 7.8638 9.2119 11.4912 12.3577 15.0454

CFCF 100 4.2778 5.5757 8.7914 9.3159 10.2668 13.0550

500 4.7335 5.9324 9.0218 9.5336 10.4648 13.2112

1000 5.2477 6.3503 9.3018 9.7990 10.7071 13.4039

FFCC 100 2.7438 6.1706 6.1862 8.7973 11.0065 11.0719
500 3.4109 6.4947 6.5096 9.0275 11.1914 11.2557

1000 4.0948 6.8784 6.8925 9.3074 11.4183 11.4813

FFCF 100 2.0523 3.9254 5.8134 6.9810 7.5194 10.0809

500 2.8841 4.4176 6.1564 7.2691 7.7876 10.2825

1000 3.6676 4.9646 6.5600 7.6139 8.1103 10.5290

CCSC 100 5.8824 9.8819 10.5168 13.9569 15.7839 17.0247
500 6.2216 10.0874 10.7102 14.1031 15.9133 17.1448

1000 6.6212 10.3386 10.9471 14.2838 16.0736 17.2937



324 E. Bahmyari et al. / Vibration analysis of thin plates resting on Pasternak foundations by element free Galerkin method

Table 8, continued

B.C K1 Mode number

1st 2nd 3rd 4th 5th 6th

CSSS 100 5.2997 8.9436 9.4994 12.6946 14.3813 15.5064

500 5.6739 9.1702 9.7131 12.8552 14.5233 15.6382

1000 6.1094 9.4458 9.9737 13.0532 14.6988 15.8013

FFFF 100 1.0132 3.4292 3.4292 4.9146 7.1491 7.1959
500 2.2656 3.9831 3.9831 5.3159 7.4307 7.4757

1000 3.2041 4.5823 4.5823 5.7785 7.7683 7.8114

KF =

∫

S

HT

I DF HJdS, (55)

M =

∫

V

ρNT

I NJdV, (56)

K̃ =

∫

Γu

Ψ
T

I αΨJdΓ, (57)

where

B = LpsφI =

⎧

⎨

⎩

−φI,xx

−φI,yy

−2φI,xy

⎫

⎬

⎭

, (58)

H = LfsφI =

⎧

⎨

⎩

φI

φI,x

φI,y

⎫

⎬

⎭

(59)

N = LuφI =

⎧

⎨

⎩

−zφI,x

−zφI,y

φI

⎫

⎬

⎭

, (60)

ΨI depends on boundary condition. For clamped boundary condition, ΨI is defined as follows,

ΨI =

{

φI

φI,n

}

, (61)

For simply support boundary condition it is defined as follows,

ΨI =

{

φI

0

}

, (62)

Assuming a harmonic vibration form for the plate, the deflection vector U can be expressed as:

U = Ūeiωt, (63)

where Ū is the amplitude of the vibration and ω is the circular frequency. Substituting Eq. (63) into Eq. (52), the

following eigenvalue equation is obtained:

(K − ω2M)Ū = 0, (64)

where ω2 is the eigenvalue and represents the square of circular frequency of transverse vibration and Ū is the

eigenvector that represents the vector of amplitude of transverse vibration.
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4. Numerical results and discussion

In this paper, quadratic basis is adopted for basis function P(x), scaling parameter dmax is chosen as 3.9 [27] and a
4×4 gauss integration scheme is used to perform the integration in computing the system matrixes. Also the Poisson
ratio υ is assumed 0.3. To show accuracy and applicability of the present method, a computer code in MATLAB was
developed and some examples of square plates were solved. Different boundary conditions, foundation parameters
and number of nodes were considered.

To ease comparison of results, the following dimensionless parameters are defined:

1- Natural frequency of plate resting on elastic foundation,

ω̄ =
ωa2

π2

√

ρh

D
, (65)

where D is the bending rigidity of plate and defined as follows:

D =
Eh3

12(1− v2)
, (66)

2- Foundation parameters,

K1 =
kfa

4

D
, (67)

K2 =
Gfa

2

D
, (68)

4.1. Free vibration of a square plate resting on Winkler’s type elastic foundation

The convergency and accuracy of the element free Galerkin method in vibration analysis of thin plates resting
on Winkler elastic foundation is studied for different foundation parameters, various types of boundary conditions
and different numbers of modes of vibration. In Table 1 the convergency and accuracy of the first and sixth natural
frequencies are shown for different types of boundary conditions and two values of Winkler foundation stiffness.
As it is seen, the results are convergent and are in very good agreement with the exact solutions of Ref [3]. Also,
it is obvious from Table 1 that when the plate edge boundary condition is clamped or the vibrational results of
the sixth mode of vibration would be obtained, more nodes should be used in order to achieve accurate results. In
Table 2, the convergency of the first six modes of vibration is studied for a square SSSS plates resting on Winkler
elastic foundation and as it is seen the convergency is monotonic. Also the results of the first four modes of the
frequency are compared with the numerical solutions obtained by Ref [1,6,7] and good consistency is shown. It is
seen that, using 5×5 number of nodes gives very accurate solution for the fundamental frequency and by increasing
the number of mode of vibration, more nodes are needed in order to obtain precise results.

4.2. Free vibration of a square plate resting on Pasternak’s type elastic foundation

In the end vibration of square thin plates resting on Pasternak’s type elastic foundation is investigated. To show
convergency and accuracy of the method for this type of foundation, in Table 3 the first and sixth natural frequencies
of square plates with different foundation parameters and various types of boundary conditions are calculated and
compared with exact solutions of Ref [3]. As it is shown, the results are convergent and a very good agreement with
Ref [3] is seen. In Table 4, the first six natural frequencies for a SSSS plate with different elastic foundation param-
eters and thickness ratios are calculated and compared with available results. As can be seen very good agreements
is achieved in all cases. In Table 5 the first six natural frequencies for a CCCC plate are calculated and compared
with available literature and good agreements is obtained.

In order to compare the Winkler’s type of elastic foundation with Pasternak’s, in Figs 4–6 the first nine natural
frequencies of plates with these two foundations are shown. As can be seen, by increasing the mode number and the
shear stiffness parameter of elastic foundation K2, differences between these two foundations increase.

The first six natural frequencies of a square plate resting on Pasternak foundation are presented in Tables 6–8 for
all possible types of classical boundary conditions and various values of foundation parameters.
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5. Conclusions

In this paper Element Free Galerkin method has been used for free vibration analysis of thin plates resting on
two-parameter type elastic foundation with all possible types of boundary condition. Accuracy of the solution was
examined for different foundation parameters, thickness to span ratio and boundary conditions. It was found that
the method has very good agreement with available literature regardless of different parameters even with small
number of nodes. Applicability of the method was demonstrated with solution of square plates with general boundary
conditions, and foundation parameters. The numerical results provide valuable information for engineers in design
applications and may also serve as benchmarks for further reference.
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