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Viscoelastically Damped 

Sandwich Shells 

The simplified governing equations and corresponding boundary conditions of vi bra
tion of viscoelastic ally damped unsymmetrical sandwich shells are given. The asymp
totic solution to the equations is then discussed. If only the first terms of the asymptotic 
solution of all variables are taken as an approximate solution, the result is identical 
with that obtainedfrom the modal strain energy method. By taking more terms of the 
asymptotic solution with successive calculations and use of the Pade approximants 
method, accuracy of natural frequencies and modal loss factors of sandwich shells 
can be improved. The lowest three or four naturalfrequencies and modal loss factors 
of simply supported cylindrical sandwich shells are calculated. © 1996 John Wiley & 

Sons, Inc. 

INTRODUCTION 

It is well known that structural vibration can be 
reduced by utilizing layers of viscoelastic damp
ing material. The constrained layer damping treat
ment is an effective approach and is described in 
Torvik (1980) and Nashif et al. (1985). Flexural 
vibrations of damped sandwich plates and struc
tures have been investigated by a number of au
thors. The governing equations of flexural vibra
tion of symmetrical and unsymmetrical sandwich 
plates were given in Mead (1972) and Rao and 

Nakra (1973). Flexural vibration of damped sand
wich plates was also analyzed in Lu et al. (1979). 
In Johnson and Kienholz (1982) the modal strain 
energy (MSE) method was suggested for analysis 

of viscoelastically damped sandwich plates and 
structures. In He and Ma (1988) the simplified 
governing equations and corresponding boundary 
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conditions of flexural vibration of damped unsym
metrical sandwich plates were given. The analyti
cal exact solution and an asymptotic solution 
were obtained for simply supported rectangular 
plates. Ma and He (1992) gave a finite element 

analysis associated with an asymptotic solution 
method for the harmonic flexural vibration of 
damped unsymmetrical sandwich plates. Calcula

tions were carried out for rectangular plates with 
either simply supported or clamped edges. The 

numerical results verify the reliability of the finite 
element analysis associated with the asymptotic 
solution method given there. 

The constrained layer damping treatment can 

also be used to abate vibration of shells. In Vas
wani et al. (1984) the governing differential equa

tions of motion for flexural vibrations of a doubly 
curved sandwich panel, consisting of stiff face 
layers sandwiching soft viscoelastic core, were 
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derived using variational principles. Alam and 

Asnani (1984a) presented the governing equations 

of motion of a general multilayered cylindrical 

shell. The solution for a radially simply supported 

shell was obtained. Numerical results were re

ported in Alam and Asnani (1984b). In EI-Raheb 

and Wagner (1986) and Lu et al. (1991) analyses of 

the response of damped cylindrical shells carrying 

discontinuously constrained viscoelastic layers 

were presented. EI-Raheb and Wagner (1993) ex

tended their earlier techniques (1986) to analyze 

the damping of a toroidal segment of shell in

cluded in configurations enclosing an acoustic 

fluid. In Ramesh and Ganesan (1993) a finite ele

ment analysis of vibration and damping of conical 

shells with a constrained viscoelastic damping 
treatment was given. 

In the present work a set of simplified governing 

equations and corresponding boundary condi

tions of vibration of viscoelastically damped un

symmetrical sandwich shells are given, and its 

asymptotic solution is then discussed. Harmonic 
vibrations of cylindrical sandwich shells with sim

ply supported ends are calculated. The lowest 

three or four natural frequencies and modal loss 

factors of the shells are given. 

GOVERNING EQUATIONS 
OF VIBRATION 

To derive the governing equations of vibration 

of unsymmetrical sandwich shells, the following 

assumptions are made: 

1. The thickness of the shell is small compared 

with the radii of curvature of the middle 

surface; 

2. the face layers are elastic and isotropic and 

suffer no transverse shear deformation; 

3. the core carries transverse shear, but no 

tangential stresses; it is linearly viscoelastic 

and has a complex shear modulus; 

4. no slip occurs at the interfaces of the core 

and face layers and all points on a normal 

to the shell move with the same normal dis

placement; 

5. although the metallic material of the struc

tural layer and the constraining layer may 

be different, e.g., steel or aluminum, the 

values of their Poisson ratios may be ap

proximately equal; 

6. when the sandwich shell is in flexural vibra

tion. the rotatory inertia effects of the shell 

arc ignored and only the inertia effects due 

to the normal and tangential displacements 

are considered. 

These assumptions are used to establish a set of 

simplified governing equations of unsymmetrical 

sandwich shells. 
The unsymmetrical sandwich shell configura

tion is shown in Fig. 1. The thicknesses of the 

constraining layer (face 1), the viscoelastic layer 

(face 2), and the structural layer (face 3) are t) , 

t2 , and t3 , respectively. The thickness of the shell 

is h, h = t) + t2 + t3' A system of orthogonal 
curvilinear coordinates is defined by the coordi

nates a i and a i corresponding to the lines of 
curvature on the geometrically middle surface of 

the sandwich shell and the coordinate z along the 

normal to the middle surface. The Lame parame

ters and the normal radii of curvature in the direc

tions of a i and a i of the middle surface are de

noted by A r , A i and R i , R i , respectively. The 
tangential displacements of the points in face 1 

and face 3 are given as follows: 

( aw UOl) 
u(l)(a * a * Z t) = UOl - (z - z) --- - ~ 

), 2, , m ) A *a * R * ' 
) a) I 

( aw VOl) 
vOl(a* a* Z t) = VOl - (z - z) --- - .-!!:.. 

I' 2' , m ) A *a * R * ' 
2 a2 2 

( aw U(3)) u(3l(a* a* Z t)=U(3l -(Z-Z) ----~ 
), 2, , m 3 A *a * R * ' 

I al ) 

( aw V (3») 
v(3l(a * a * Z t) = V(3) - (z - z) --- - .-!!:.. 

I' 2, , m 3 A *a * R * . 
2 a2 2 

(1) 

Here Ugl, Vgl, z) and U£l, V£l, Z3 are the tangen

tial displacements and the value of the coordinate 

z of the points at the middle surface of face 1 and 

face 3, respectively. W(al' a2' t) is the normal 
displacement ofthe shell. As in He and Ma (1988) 

one can introduce 

(2) 

= (l/c)[U(\)(a* a* t) - U(3)(~* ~* t)] 
In I' 2' III "-"-I ., U.2, , 

= (l/c)[V(\)(a* a* t) - V(3)(~* ~* t)] 
m I' 2' mL.-t.l, lA2'" 
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FIGURE 1 The configuration and the displacements of a damped sandwich shell. 

where 

1'1 = EIII /(1 - v 2), 

1'3 = E313/(1 - v 2), 

1 
C = 12 + 2 (II + (3), 

(3) 

in which EI and E3 are the elastic moduli of the 
faces 1 and 3, v is their common Poisson ratio, 

U m and V m may be regarded as the weighted mean 
tangential displacements of the unsymmetrical 

sandwich shell, and 1/11 and 1/12 are the rotatory 
angles of a line connecting the two corresponding 
points at the middle surfaces of faces 1 and 3 after 
deformation. According to the assumptions, there 

are uniform transverse shear strain components 

1'13 and 1'23 in the viscoelastic layer. They can be 
expressed approximately as 
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aw Urn 
---+
Ataat Rt' 

(5) 

The expression of the strain energy density per 
unit middle surface area of the shell can be ob
tained as 

(6) 

where 

'* _ a 1/11 1 aAt 
Kl A *aa* + A*A * aa* 1/12' 

1 1 1 2 2 

(7) 

,*_I[Ai a (1/12) At a (l/Il)J 
K12-"2 Ataat Ai +Aiaai At ' 

Here Nt , Ni· . . Q i * are all generalized internal 
forces. They can be expressed in terms of defor
mation as 

Q;* = Yg(D1 + D3)(1/I1 - 'PI)/a2, 

Qi* = Yg(D I + D3)(1/I2 - 'P2)/a2, 

(8) 

where a is a tangential dimension of the shell, 

Eld E3 t j 
DI = 12(1- v 2)' D3 = 12(1- v2)' 

A = (YI + Y3)a 2/(DI + D3)' (9) 

Y = YIY3C2/(YI + Y3)(D I + D3)' 

g = yiYI + Y3)a 2/YIY3 tL Y2 = G2t2, 

in which G2 is the shear modulus of the core 2, 
which is taken as a real quantity temporarily. Y, 
A, and g are called two "geometric parameters" 

and the "shear parameter," respectively. 
For the sake of convenience later on, the fol

lowing dimensionless variables are introduced: 

Aldal = Atdat/a, A 2da2 = Aidaifa, 

Urn = Urn/a, Vrn = Vm/a, w = W/a, 

RI = Rt/a, R2 = Ri/a, (10) 

K; = aK;*, Ki = aKi*, Kb = aK;i, 

K'{ = aK'{*, K2 = aK2*' K'{2 = aK'{i· 

Here al and a2 dimensionless coordinates. AI' 

A2 and R I , R2 denote the dimensionless Lame 
parameters and the dimensionless normal radii of 
curvature, respectively. Then the strain energy 
U of the shell can be written as 



+ Q;(IfJ) - <p) + Qi(1fJ2 - <pz}]A)A2 da) da2' 

(11) 

The dimensionless generalized internal forces 
N) ... Qi are expressed as 

N) = A(e) + vez}, N2 = A(e2 + Vel)' 

S = A(1 - vfy12/2, 

H' = Y(1- V)K;2, 

(12) 

M'{ = K'{ + VK2' M2 = K2 + VK';, H" = (1 - v)K'12, 

The kinetic energy of the shell Tis approximately 

where p is the mass per unit area of the shell. 
According to Hamilton's principle, one can ob

tain a set of simplified governing equations of 
motion of unsymmetrical sandwich shells (in di
mensionless form) 
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+H,dA2_ M ,dA)1_ Q' =0 
da) ) daJ 2 , 

(14) 

where 

Q'{ = _1_ [~(M'{Az) + ~(H"A) 
A)A2 da) da2 

+ H" dA) _ M" dA2] 
da2 2 da) , 

(15) 

Q2 = _1_ [~(H" A 2) + ~ (M2A) 
A)A2 da) da2 

+ H" aA2 _ M J aA)] . 
da) aa2 

Equation (14) can be expressed in terms of um(a) , 

a2' t), um. (a), a2' t), w(a) , a2' t), 1fJ)(a) , a2' t), 

and lfJz<a) , a2' t). It is a set of 12th-order partial 
differential equations with respect to a) and a2' 

When a shell is in simple harmonic vibration, 
the forms 

um(a) , a2' t) = um(a) , a2)eiw" 

um(a) , a2' t) = um(al , a2)eiw" 

w(a) , a2, t) = w(a) , a2)eiw" (16) 

1fJ)(a) , a2' t) = 1fJ)(a) , a2)eiw" 

1fJ2(a) , a2' t) = lfJz<a) , a2)eiw" 

are introduced. The circular frequency w can be 
expressed in dimensionless form as 

Equation (16) can now be substituted into Eq. 
(14). However, as the shell is assumed to vibrate 

harmonically, the shear modulus G2 of the core 
must be changed into the complex modulus 
G2(1 + if3); here 13 is the loss factor of the visco
elastic material. The inertia terms in Eq. (14) [pa41 
(D) + D 3)]a2 (um, Um, w)/at2 = -o.2(Um, Um, w) 
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must also change correspondingly to -!),2(1 + 
iTJ*) (urn' urn' w); here the quantity TJ* is the modal 
loss factor of the shell. The physical significance 

of the complex frequency 0.2(1 + iTJ*) was dis

cussed in Mead and Markus (1969). The ampli

tudes um(a" a2), urn(a" a2)' w(a" az}, .p,(a" a2), 

and .pia" a2) are all complex quantities. They 

must satisfy the following equations: 

(18) 

- Yg(l + i(3)(.p, - r,o,) = 0, 

_l_[~(H'Az)+~(M;A')+H' ilA2_ M; ilA'J 
A,A2 ila, ila2 ila, ila2 

- Yg(l + i(3)(.p2 - r,oz) = o. 

Here the amplitudes N" N 2 , ••. , Q;, Q~ are 
expressed in terms of deformation calculated by 

the amplitudes Urn' Urn' w,.p" and.p2 as Eq. (12). 

They are all complex quantities too. Typical ho

mogeneous boundary conditions for edge a, 
a, (constant) are as follows: 

simply supported edge (type I), 

N, = 0, Urn = 0, M; = 0, 
(19) 

.p2 = 0, W = 0, M'l = 0; 

simply supported edge (type Il), 

N, =0, S=O, M; =0, 
(20) 

H' =0, w=O, M'{=O; 

clamped edge, 

Um =0, um=O, t/l, = 0, 
(21) 

.p2 = 0, w=O, r,o, = 0; 

free edge, 

N, = 0, S = 0, M; = 0, H' = 0, 

Q' + Q"+ ilH" =0 M'{=O. 
, 'A2 i1a 2 ' 

(22) 

At a corner there is 

w = 0 or M~s(s + 0) - M~s (s - 0) = O. (23) 

Thus, to investigate transverse vibration of a vis

coelastically damped unsymmetrical sandwich 

shell, one must first solve Eq. (18) for a given set 

of boundary conditions to find the natural fre

quencies 0., the modal loss factors TJ*, and the 

corresponding complex modes Urn' Vrn , W, .p" 

and .p2. 

ASYMPTOTIC SOLUTION OF 
GOVERNING EQUATIONS 

Solving Eq. (18) is not easy. The exact solution 

can be obtained only in some particular cases. 

To obtain an approximate and practical solution 

and to avoid calculation with complex values, an 

asymptotic solution with JL = if3 as a complex 

parameter can be introduced. The same proce

dure was used in He and Ma (1988) to find the 

loss factors of sandwich plates. One first expands 

the solution in the power series 

Um = UmO + JLUm, + JL 2Um2 + JL 3urn3 

+ JL4Urn4 + JL5Um5 + ... , 

Um = UrnO + JLUm, + JL 2Um2 + JL 3um3 

+ JL4Urn4 + JL5 Um5 + ... , 

w = Wo + JLW, + JL2W2 + JL3W3 

+ JL4W4 + JL5W5 + .. 



t/1) = t/1),0 + ILt/1),) + IL2t/1),2 + IL 3t/1),3 

+ IL4t/1),4 + IL5t/1),5 + .. " 

t/12 = t/12,0 + ILt/12,) + IL2t/12,2 + IL 3t/12,3 

+ IL 4t/12,4 + IL 5t/12,5 +. . " 

.0,2 = nij + IL2n~ + IL4n~ + .. " 

(24) 

The amplitudes N), N 2 , ••• , Qz, Qi are also 
expanded in the power series. Substituting Eq. 

(24) into Eq. (18) gives the successive equations 

that the asymptotic solution must satisfty 

L3,0 "'" LiumO' VmO' Wo, t/1),0' t/12,~ 

"'" - A)~2 {a~) [YgA2(t/1),0 - 'P),~ + A2Q'{,01 

+ a~2 [YgA)(t/12,0 - 'P2,0) + A)Q~,o1} 

+ N),O + N 2,0 _ n2w = 0 
R) R2 0 0 , 

L4,0 "'" L4(umO, vmO' Wo, t/1),0' t/12.~ 

""'AlA [-aa (Mj,oA:z) + -aa (HOA) 
) 2 a) a2 
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Yg { a 
= A)A2 aa) [A2(t/1),; - 'P),;)] (26) 

+ a~2 [A)(t/12,; - 'P2)]} + R;(w), 

= Yg(t/1),; - 'P),;), 

= Yg(t/12,; - 'P2)' 

(i = 0,1,2,3,4, ... ), 

where 

(the expressions of R;(w) (i > 4) are omitted). 

Here L), L 2, L 3 , L4, and L5 are linear partial 

differential operators defined in Eq. (25) where 
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all generalized internal forces can be expressed 

in terms of the displacements and the rotatory 

angles in accordance with Eqs. (12) and (7). The 

expressions of Ri(um ) and Ri(vm ) are similar to 

these of Ri(w) in Eq. (27) with only Wj replaced 

by Umj and vrnjU = 0, 1,2,3,4). Substituting Eq. 

(24) into the boundary conditions (19)-(23), one 

finds that, except for the fifth of Eq. (22) for free 

edges that must be expanded in the power series 

of jL, the expressions for all other types of bound

ary conditions that the successive terms Urni , Vrni , 

Wi' t/1"i' and t/12,i (i = 0, 1, 2, 3, 4, 5, ... ) must 
satisfy are the same form as before. Therefore, 

from Eq. (25) and the boundary conditions with 

respect to UmO ' VrnO' W o, t/1 ',0' and t/12,0' one can 
solve first a real eigenvalue problem and obtain 

all the eigenvalues fi~ and corresponding modes. 

The modes can be normalized as follows. 

If all the boundary conditions of the shell are 

homogeneous, one can prove that orthogonality 

exists between two complex modes. This means 

that if there are two different complex eigenval

ues fif(1 + iYJj) and fii(1 + iYJ() and their corre

sponding complex modes UrnI , VrnI WI, t/1 'I, t/12I and 

UmI' VmI' WI' t/1 11' t/12I' then 

Therefore, the normalization of the complex 

modes can be stated as 

Substituting the first three equations of Eq. (24) 

into Eq. (29), one can obtain 

II [2(UmOUm2 + VmOVm2 + WOwz) 

+ (U;n' + V~, + wi)] (32) 

A,A2 dcx, dCX2 = 0, 

II [2(UmOUm3 + VrnOVm3 + W OW 3) 

+ 2(um,um2 + Vm,Vm2 + W, wz)] (33) 

A,A2 dcx, dCX2 = 0, 

II [2(UmOUm4 + VmOVm4 + W OW 4) 

+ 2(um,um3 + Vm,Vm3 + w, W3) 

+ (U~2 + V;n2 + wm 

II [2(UmOUm5 + VmOVrn5 + W OW 5) 

+ 2(Um ,Um4 + VmlVm4 + W I W4) 

+ 2(Um2Um3 + Vm2Vm3 + W 2W3)] 

(34) 

(35) 

successively. In accordance with Eq. (30) one can 

normalize the real mode UmO' VmO' W o, t/11,0' and 

t/12,0' From Eq. (25) 

(36) 

Through integrations by parts and other calcula

tions one obtains 

+ [(K';'O + K~,O>2 - 2(1 - v) (K';'OK~,O - K~2.i)] 

+ Yg[(t/1I,o - c,ol,o>2 + (t/12,O - c,02,O)2]} 

AIA2dcxldcx2' (37) 

Next one solves Eq. (26) for i = 0. First the 

value of YJ i in the expressions of RO(um) , RO(vrn), 

and Ro(w) must be determined. By using a similar 

procedure as before when Eq. (37) was obtained, 

one can obtain 

YJi = ~2II Yg[(t/1I,o - c,ol,of 
o 

(38) 

YJ i is the fraction of strain energy attributable to 

the viscoelastic core when the damped shell de

forms in the mode UmO' VmO' W o, t/11,O' and t/12.0· 
All the first terms of each expression in Eq. (24) 

can be regarded as an approximate solution, 

which are the same as the results obtained by 

means of the MSE method suggested in Johnson 

and Kienholz (1982). 

To improve accuracy, one must calculate suc

cessive terms of the asymptotic solution. Having 

determined the value of YJ i , one can obtain the 



unique solution for Urn I , Urnl , WI' 0/1,1' and 0/2,1 of 
all modes in accordance with Eq. (26) for i = 

o and corresponding boundary conditions. The 

general solution for Urn I , Urn I , WI' 0/1,1' and 0/2,1 
may be written in the following form: 

WI = w lp + klWo, 0/1,1 = o/I.Ip + klo/I,O' (39) 

0/2,1 = 0/2,lp + kI0/2,0' 

Here urnlp ' urnlp ' w lp ' o/l,lp, 0/2,lp are a set of par tic
ular solutions where kl is an undetermined con

stant. The value of kl can be given by means of 

the normalization condition, Eq. (31). Then the 

expressions for Urn I , urnl , WI' 0/1,1' and 0/2,1 can 
be determined completely. 

Through calculations similar to previous ones, 

the solutions of the successive Eq. (26) for i = 1, 

2,3,4 can be obtained. The expressions for nL 
1] j , n Land 1]! are as follows: 

n~ = JJ Yg[(o/I,o - <P1,~(0/1,1 - <PI,I) 

+ (0/2,0 - <P2,~(0/2,1 - <P2,1)]AIA 2 dal da2' 

1]j = ~2f f {Yg[(o/I,o - <P1,~(o/l,2 - <pd 
o 

- 1] t nij(umOurn2 + UmO um2 

+ WOWz}}AIA2 da l da2 - 1] t ~~, 

n~ = JJ {Yg[(o/I,o - <P1,0)(0/1,3 - <P1,3) 

+ (0/2,0 - '1'2,0)(0/2,3 - <Pz)] 

- 1] tnij(urnOurn3 + umOurn3 + wow0 

- n~(UmOUrn2 + urnOum2 

+ wowz}}A IA 2dal da2, 

1]! = ~2f f {Yg[(o/I,o - <P1,~(0/1,4 - <P1,4) 
o 

+ (0/2,0 - <P2,~(0/2,4 - <P2,4)] 

-(1] tn~ + 1] jn5)(umOurn2 + umOum2 

+ WOWz}}AIA2 dal da2 

- ~ij(1]tn~ + 1]jnD· 

(40) 

(41) 

(42) 

(43) 
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Using the normalization conditions (32)-(35), 

one can obtain the unique solutions for urn,i+ I , 

Urn,i+I' Wi+I, ifJl,i+I, and 0/2,i+1(i = 1,2,3,4) succes
sively in accordance with Eq. (26) and corre

sponding boundary conditions. If the calculation 

is not to be continued, one is left with the expres

sions for the asymptotic solution given explicitly 

in Eq (24), without the residual terms indicated 

by ( ... ) on their right sides. The last two solu

tions of Eq. (24) may be rewritten as 

(44) 

Equation (44) and (45) can be obtained by using 

the Pade approximants method (see appendix B 

in Ma and He, 1992). By calculating with Eqs. 

(44) and (45), one can often obtain better results. 

EXAMPLE 

Consider a circular viscoelastically damped sand

wich cylindrical shell of radius a and length 1 

with simple support (type I) ends. Introduce the 

dimensionless coordinates al = xl a = ~ and 

a2 = 0 and let the ends of the shell be ~ = 0 and 

~ = ~ I = 1 I a. The following solution form that 

satisfies the boundary conditions for the ends is 

assumed: 

Urn = A cos(1T~/~I) sin mO, 

urn = B sin(1T~/~I) cos mO, 

W = C sin(1T~/~I) sin mO, 

ifJl = D cos(1T~/~I) sin mO, 

ifJ2 = E sin(1Tg!~I) cos mO. 

(46) 

Here we only attempt the lowest several natural 

frequencies and take the number of axial half 

waves to equal one. However, the circumferential 

wave number m is to be selected to associate with 

the lowest several natural frequencies. Substitut

ing Eq. (46) into Eq. (18) leads an algebraic com

plex eigenvalue equation. The exact solution in 

the form as Eq. (46) can be obtained directly from 

the algebraic equation. We are only interested in 

the transverse modes of vibration. The motions 

are mostly radial and the amplitudes C are pre

dominant. The asymptotic solution is also calcu-
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FIGURE 2 Ratio of the asymptotic solutions of natural frequencies of simply supported 

cylindrical shells (Y = 3.5, A = 12 X 104) to the exact ones vs. the variable g (m = 4 and 

5). (- . -) nfitn~x; (-)n2tn~x. 

lated for comparison. It can be obtained by ex
panding the amplitudes in Eq. (46) in the power 

series and using the procedure as given in the 
preceding section. 

Numerical calculation was done for a shell with 

a = 100 cm and 1 = 200 cm. Both the structural 

layer and the constraining layer are made of alu

minum. Their common Poisson ratio v equals 0.3. 

The thicknesses of the layers are t) = t3 = 1 cm 

and t2 = 0.08 cm. The loss factor of the core f3 
equals 1. The two geometric parameters are Y = 

3.5 and A = 12 X 104. The value of the shear 

parameter g varies from 0.1 to 1000. The circum

ferential wave number m associated with the low

est natural frequency depends on the value of the 

variable g. Wheng = 0.1,1, and 10, m = 5. When 

g = 100 and 1000, then m = 4. In Fig. 2 curves 

showing the variation nij/n~x and n21n~x with 

the variable g are given with m = 4 and 5. The 

values of n 2 are calculated according to Eq. (44). 

n~x is the exact solution obtained from the alge

braic complex eigenvalue equation. Figure 3 

shows '1/* / f3 as a function of the variable g, where 

the values of '1/* were calculated according to 

'1/ if3 or Eq. (45). The latter in this example is 

nearly identical with the exact value '1/:x, which 

was also obtained from the complex eigenvalue 

equation. Table 1 gives the values of nij, nL 
n~, and n 2 calculated according to Eq. (44) for 

corresponding values of g of 1, 10, 100, and 1000 

and m of 3, 4, 5, and 6. The exact values n~x are 

also given for comparison. The values of '1/ i , 
'1/j, '1/5, and '1/* calculated according to Eq. (45) 

and the exact values '1/:x for the same values of 
g and m are given in Table 2. 

For comparison numerical calculation was also 

done for a simply supported (type I) thinner cylin

drical shell with a = 50 cm and 1 = 200 cm. The 

thicknesses of the layers are t) = t2 = t3 = 0.25 
cm. However, the materials of the face layers 

and the core are the same. The two geometric 

parameters of the shell are quite different from 
those of the above-mentioned shell. They are 

Y = 12 and A = 48 X 104• The value of g varies 

as well. The values of nij, n~, n~, and n 2 calcu

lated according to Eq. (44) and the exact values 

n ~x for corresponding values of g to be 0.1, 1, 
10, 100, and 1000 and m to be selected to associate 

with the lowest three natural frequencies are 

given in Table 3. The values of '1/ i , '1/ t , '1/ 5 , and 
'1/* calculated according to Eq. (45) and the exact 

values '1/:x for the same values of g and mare 
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FIGURE 3 Ratio of 'Y/* to f3 vs. the variable g (m = 4 and 5) for simply supported 

cylindrical shells (Y = 3.5, A = 12 X 104). (- . -) 'Y/f; (-) 'Y/*/f3. 

Table 1. Dimensionless Frequencies of Simply Supported Cylindrical Shells 

g m 05 o~ O~ 0 2 

3 4628.37 -2.026 -0.0134 4630.39 

4 2158.26 -2.497 -0.0066 2160.75 

5 1596.75 -2.794 -0.0035 1599.54 

6 1918.90 -2.983 -0.0019 1921.88 

10 3 4759.90 -39.534 -8.593 4792.37 

4 2457.06 -79.764 -9.851 2528.06 

5 2140.39 -122.507 -8.732 2254.75 

6 2781.56 -161.059 -6.859 2936.04 

100 3 4906.89 -28.213 -22.709 4922.52 

4 2947.94 -110.623 -78.827 3012.54 

5 3354.33 -311.017 -191.434 3546.85 

6 5240.13 -690.522 -360.179 5693.94 

1000 3 4938.08 -3.776 - 3.691 4939.99 

4 3085.13 -17.409 -16.783 3094.00 

5 3796.95 -59.380 -56.248 3827.44 

6 6387.46 -163.680 -151.780 6472.39 

{3 = 1.0, Y = 3.5, A = 12 X 104. 

O~x 

4630.37 

2160.74 

1599.55 

1921.87 

4792.37 

2528.05 

2254.75 

2936.03 

4922.52 

3012.54 

3546.86 

5693.93 

4939.99 

3093.99 

3827.46 

6472.37 
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Table 2. Modal Loss Factors of Simply Supported Cylindrical Shells 

g m 7/f 7/j 

1 3 0.005441 0.000038 

4 0.022499 0.000086 

5 0.049794 0.000149 

6 0.061344 o 000135 

10 3 0.017822 0.004020 

4 0.092391 0.014407 

5 0.214412 0.027552 

6 0.280598 0.028196 

100 3 0.006409 0.005195 

4 0.044454 0.033345 

5 0.118185 0.083702 

6 0.182459 0.119215 

1000 3 0.000773 0.000757 

4 0.005747 0.005573 

5 0.016068 0.015472 

6 0.026611 0.025358 

(3 = 1.0, Y = 3.5, A = 12 X \04. 

given in Table 4. In Figs. 4 and 5 the variations 

nijln~x and n2/n~x and TJ*/f3 with the variable g 

are respectively given with m = 4. 

From Figs. 2 to 5 and Tables 1 to 4 it is evident 

that for the both types of cylindrical shells with 

quite different values of Yand A. the errors in the 

values of n~ and TJ f are somewhat appreciable 

in a certain range of the value of g in comparison 

with the exact values of fl ~x and 7) ~x' while the 
values of fl2 and TJ* obtained from Eqs. (44) and 

(45) are nearly equal to the exact ones. 

From the results calculated it is shown that the 

maximum damping occurs at somewhere in the 

range of the value of g for a definite circumferen-

7/? 7/* 7/:x 

0.000000 0.005404 0.005404 

0.000000 0.022414 0.022414 

0.000000 0.049646 0.049645 

0.000000 0.061210 0.061210 

0.000908 0.014542 0.014542 

0.002248 0.079929 0.079929 

0.003541 0.189998 0.189998 

0.002833 0.254976 0.254977 

0.004212 0.003539 0.003539 

0.025012 0.025401 0.025401 

0.059280 0.069186 0.069185 

0.077893 0.110355 0.110355 

0.000740 0.000391 0.000391 

0.005404 0.002918 0.002918 

0.014898 0.008186 0.008186 

0.024164 0.013626 0.013626 

tial wave number m. It is quite analogous to the 

vibration analysis of viscoelastically damped 

sandwich plates of He and Ma (1988) and sand

wich beams of Plunkett and Lee (1970). There

fore, careful attention must be paid to geometric 

configuration of a sandwich shell to achieve maxi

mum effectiveness for vibration control. 

CONCLUSIONS 

In this article a set of simplified governing equa

tions and corresponding boundary conditions of 

viscoelastically damped unsymmetrical sandwich 

Table 3. Dimensionless Frequencies of Thinner Cylindrical SheDs 

g m nij n~ n 2 
4 n2 n~x 

0.1 4 809.812 -0.0976 -0.3507 x 10-5 809.909 809.918 

5 851.937 -0.1051 -0.1591 x 10-5 852.042 852.074 

6 1393.931 -0.1095 -0.0802 x 10-5 1394.041 1393.957 

3 1745.583 -6.314 -0.0571 1751.910 1751.898 

4 949.117 -8.340 -0.0269 957.429 957.433 

5 1087.008 -9.483 -0.0134 1096.478 1096.446 

10 3 2075.220 -101.045 -26.271 2155.415 2155.396 

4 1823.935 -241.720 - 34.129 2035.756 2035.739 

5 2784.250 -395.705 -31.200 3151.035 3151.031 

100 2 6220.304 -4.892 -4.470 6222.860 6222.831 

3 2394.386 -57.892 -48.181 2425.982 2425.966 

4 3145.337 -287.345 -211.299 3310.921 3310.884 

1000 2 6225.100 -0.552 -0.547 6225.378 6225.313 

3 2456.394 -7.409 -7.269 2460.134 2460.146 

4 3491.275 -43.371 -41.965 3513.317 3513.300 

{3 = 1.0, Y = 12, A = 48 X \04. 
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FIGURE 4 Ratio of the asymptotic solutions of natural frequencies of thinner cylindrical 

shells (Y = 12. A. = 48 X 104) to the exact ones vs. the variable g (m = 4). (- . -) niVn~x; 

(-) n2m~x' 

103 
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10-1 

FIGURE 5 Ratio of 71* to f3 vs. the variable g (m = 4) for thinner cylindrical shells 

(Y = 12, A. = 48 X 104). (- . -) 'Y/T; (-) 'Y/*/f3. 

g 
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Table 4. Modal Loss Factors of Thinner Cylindrical Shells 

g m 1/f 1/t 

0.1 4 0.020143 0.000003 

5 0.031732 0.000004 

6 0.028833 0.000002 

1 3 0.038781 0.000487 

4 0.154747 0.001859 

5 0.232158 0.002353 

10 3 0.095501 0.029477 

4 0.352706 0.096539 

5 0.506151 0.111843 

100 2 0.000823 0.000752 

3 0.026503 0.022698 

4 0.106535 0.088072 

1000 2 0.000089 0.000088 

3 0.003045 0.002997 

4 0.012629 0.012376 

f3 = 1.0, Y = 12, A = 48 X 104• 

shells in vibration are given. To avoid calculation 
with complex values, an asymptotic solution of 
the simplified governing equations was intro
duced, with the loss factor of the viscoelastic 
material ofthe core as a parameter. As examples, 

calculations were carried out for two types of 
circular cylindrical shells With simply supported 
ends. The lowest three or four natural frequencies 
and modal loss factors of the shells are given. If 
in the asymptotic solution only the first terms 
of all quantities are adopted, then the result is 
identical with that as given in accordance with 
the MSE method. However, the results of the 
examples indicate that the errors in the values of 
the natural frequencies and modal loss factors are 
somewhat appreciable in a certain range of the 
value of the shear parameter g. By taking more 
terms of the asymptotic solution, with successive 
calculations and use of the Pade approximants 
method, accuracy can be improved. For the sam
ple problems, the values of ,n2 and 71* calculated 
according to Eqs. (44) and (45) give the accurate 

prediction. Although the asymptotic solution in 
analytical form can only be obtained in simpler 
cases, in other cases one can use approximate 
methods, e.g., finite element methods, to obtain 
numerical solutions. With the character of the 

free transverse vibrations of a shell thus calcu
lated, it is then possible to analyze further the 
response of the shell to various types of dynamic 

normal loads in order to provide a reliable basis 
for design. 

1/5 1/* 1/~x 

0.000000 0.020140 0.020140 

0.000000 0.031727 0.031726 

0.000000 0.028830 0.028832 

0.000006 0.038300 0.038301 

0.000022 0.152910 0.152910 

0.000024 0.229828 0.229835 

0.009100 0.072978 0.072978 

0.026426 0.276913 0.276915 

0.024714 0.414549 0.414550 

0.000688 0.000430 0.000430 

0.019440 0.014276 0.014276 

0.072810 0.058321 0.058321 

0.000088 0.000045 0.000044 

0.002949 0.001535 0.001532 

0.012129 0.006378 0.006376 
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