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ABSTRACT 

Heavy industries such as mining and steel mill rely on machinery that has a number 

of rotating parts. When unforeseen failure occurs, the plant may suffer from significant 

production loss. One of the most important rotating parts is slew bearing that supports 

highly loaded rotation. In order to prevent failure and reduce maintenance cost, a 

condition monitoring method for early damage detection of the slew bearing is 

required. 

It is more difficult and complicated to analyse the condition of slew bearings that 

operate at a very low speed than to analyse that of typical rolling element bearings. 

Slew bearing signal has a low energy. It is non-stationary, chaotic and practically hard 

to analyse. Due to its low energy, the signal is masked by a higher background noise 

level. Therefore, it is difficult to extract the pertinent bearing signal. It is necessary to 

have reliable condition monitoring parameters or features that could extract accurate 

information about the bearing condition from the signal. 

Recently, there has been increasing number of studies on slew bearing-based 

condition monitoring and fault detection. The studies mainly focused on the 

identification of bearing fault frequencies signalling the occurrence of the damaged 

bearing parts. However, a study on an entire slew bearing service life has not been 

presented. This thesis focuses on the slew bearing service life, and aims to investigate 

reliable features and to develop a methodology for slew bearing health assessment. To 

collect condition monitoring data for the entire bearing life, two laboratory tests were 

conducted. The tests were performed on a slew bearing test rig rotating at 1 rpm. The 

first laboratory test produced run-to-failure vibration data from slew bearing rotating 

in one direction. The second test produced vibration and acoustic emission (AE) data 

from reversibly rotated bearing. 

To address the above-mentioned research challenges such as the difficulty in 

extracting features for slew bearing condition monitoring and prognostics, this thesis is 

divided into three parts: (1) vibration-based condition monitoring; (2) acoustic 

emission-based condition monitoring; and (3) integrated condition monitoring and 

prognostic method. 
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Part (1) includes a review of recent study on vibration condition monitoring of 

rolling element bearings and feature extraction methods. In the past five years, studies 

have been conducted on bearings operated at speed greater than 600 rpm with 

artificially defective bearings instead of bearings with natural defect. In terms of 

feature extraction methods, six categories are reviewed, namely (i) time-domain 

feature extraction; (ii) frequency-domain feature extraction; (iii) time-frequency 

representation; (iv) phase-space dissimilarity measurement; (v) complexity 

measurement; and (vi) other features. Among the six categories, time-domain feature 

extraction method is found to be the most dominant method in typical rolling element 

bearings. In addition, methods in the third and fourth categories are suitable for non-

stationary, non-linear and chaotic signals. Therefore, a method of the fourth category, 

Largest Lyapunov Exponent (LLE) algorithm is selected and employed in this thesis. 

The LLE algorithm can detect changes in the condition of the bearing. It 

demonstrated a better tracking of the progressive deterioration of the bearing during 

the test than comparable methods in the first category such as root mean square 

(RMS), skewness and kurtosis. This algorithm is also better than a method in the third 

category, empirical mode decomposition (EMD) method. The application of the 

method has been demonstrated with laboratory and industrial slew bearing condition 

monitoring data. 

The thesis also develops a new feature extraction method based on circular domain 

analysis. The method employed data reduction process by adopting piecewise 

aggregate approximation (PAA) to detect frequency alteration in the bearing signal 

during the occurrence of the fault. From the processed data, circular domain features 

were extracted and monitored. The method can identify the incipient slew bearing 

damage; it is also compared to RMS, skewness, kurtosis, EMD and wavelet 

decomposition. 

Part (2) presents a review of AE and complexity analysis of rolling element bearing. 

The review include (a) the application of AE in typical rolling element bearings running 

at different speed levels, i.e. high speed (> 600 rpm), low speed (10 – 600 rpm) and 

very low speed (< 10 rpm); (b) the commonly used AE hit parameters in rolling element 

bearings; and (c) AE signal processing, feature extraction and pattern recognition 
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methods. While most AE studies focus on high and low speed, this thesis focuses on 

very low speed. In addition, the commonly used AE hit parameters such as counts, 

energy, duration and RMS were tested and found to be effective monitoring 

parameters in high and low speed bearings. 

This thesis investigates the AE hit parameters for slew bearing signals. In the 

experiment, significant changes in the slew bearing condition were detected from 

these parameters after the new bearing had run continuously for approximately 15 

months. However, these changes are drastic and in practice cannot provide adequate 

warning for the maintenance engineers. The LLE algorithm, which has been effectively 

used with vibration signals, was also employed to extract feature of the AE waveform 

signals. It was shown that LLE algorithm can detect sign of failure earlier and 

demonstrate better progressive trend of the defect than AE hit parameters. At the end 

of the experiment, the slew bearing was dismantled and the surface defect / wear was 

analysed. 

Part (3) presents a brief review of four prognostic approaches in rolling element 

bearings: (i) model-based approaches; (ii) reliability-based methods and probability 

models; (iii) data-driven approaches; and (iv) combined data-driven and reliability-

based methods. 

This thesis also develops an integrated condition monitoring and prognostic method 

based on multivariate state estimation technique (MSET), sequential probability ratio 

test (SPRT) and kernel regression. Both MSET and SPRT were used to analyse the 

recorded reliable features obtained from a previous work and clearly picked up the 

sign of early bearing damage. After the early damage detection signal had been 

acquired, kernel regression was used to predict the future condition of the bearing. 

In summary, this thesis presents six major contributions to the study on very low 

speed slew bearing condition monitoring and prognosis: (1) review of studies on 

vibration and AE-based condition monitoring of rolling element bearing; (2) selection 

of reliable features for slew bearing condition monitoring parameters from features 

that were reported in the literatures; (3) development of alternative features based on 

circular domain analysis and LLE algorithm; (4) development of incipient damage 
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detection method based on MSET and SPRT; (5) development of future state 

prediction using kernel regression method; and (6) implementation of online 

monitoring system based on File Transfer Protocol (FTP). 

 

Keywords: Acoustic emission-based condition monitoring, Feature extraction, Low 

speed slew bearing, Vibration-based condition monitoring, Prognostics 
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Chapter 1 - Introduction 

 

“You don’t have to be great to start, but you have to start to be 
great” 

(Zig Ziglar) 

 

1.1 Background and motivation 

Steelmaking industry has many critical processes that rely on low rotating slew 

bearings. The bearings often endure harsh conditions and have high replacement costs 

with long delivery lead time. Therefore, it is important that their conditions are 

monitored at all times. However, due to their low speed operating condition and low 

energy vibration signal, traditional vibration analysis methods are unable to accurately 

process the signal and extract information about the bearing condition. As a result, 

some mills either run the bearings to failure or replace them after predetermined 

number of hours of operation. Both approaches lead to a high level of risk and the sub-

utilization of the bearing. To avoid sudden bearing failure and to optimise the use of 

the bearing, it is necessary to have a condition monitoring method for the early 

damage detection. 

It is more difficult and complicated to analyse the condition monitoring of slew 

bearings than to analyse that of typical rolling element bearings. This is because slew 

bearings are used at a much lower speed than typical rolling element bearings. 

Additionally, they are geometrically different from typical rolling element bearings. 

Slew bearings are large thrust bearings that are commonly used in large industrial 

machineries such as turntables, steel mill cranes, offshore cranes, rotatable trolleys, 

excavators, reclaimers, stackers, swing shovels and ladle cars. They typically support 

high axial and radial loads. The outer diameter of slew bearings can vary from 200 mm 

to 8000 mm and weigh up to 11.3 tonne [1]. 

Slew bearings are typically operated at very low rotational speed ranging from 0.5 

to 15 rpm in continuous, intermittent and reversible rotation modes. Three axis slew 
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bearing was used in the experimental work of the thesis. The bearing is designed to 

support high axial and radial loads. Two slew bearings, YRT260 from Schaffler 

(Germany) and YR260 from Dalian Goldbull (China) were applied in this thesis. The 

bearings have an inner diameter of 260 mm and an outer diameter of 385 mm. A 

photograph of slew bearing YR260 is shown in Figure 1.1. Table 1.1 shows the detailed 

specifications of the slew bearing. 

 

 

    

 

 

Figure 1.1 Photo of axial/radial bearing, YR260. 

To monitor the daily condition of the degrading highly loaded slew bearings, 

parameters termed “features” are required to represent the bearing condition. For 

typical bearings, when spall occurs, the bearing emits detectable energy that will result 

in a significant level of vibration signal. Different from this, the vibration signal on a 

slew bearing is hard to detect. Therefore, the commonly accepted features used for 

monitoring typical bearings tend to be less effective when applied to slew bearings. 

This is because at low speed, the vibration amplitude of the bearing signal from the 

impact between the rotating elements and the defect is lower than the background 

noise signal. When some commonly accepted features applied in the signal with high 

amplitude noise level, the condition of the bearing is hard to detect. These features 

will show obvious changes when the damage is large. Once the damage is large, the 

vibration bearing signal is stronger than the background noise. This is why the features 

Axial rows 
(Axial rolling elements) 

Radial row 
(Radial rolling elements) 
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show obvious changes. Once the damage is large, the vibration bearing signal is 

stronger than the background noise. However, by this stage the slew bearing has 

already been severely damaged. Therefore, the condition monitoring and prognostic 

systems for slew bearing need appropriate, sensitive and reliable features. 

 

Table 1.1 Dimensions and properties of axial/radial bearings. 

Dimension or Property                              YRT260 YR260 

 Inner diameter (Di) 260 mm 260 mm 

 Outer diameter (Do) 385 mm 385 mm 

 Width (w) 55 mm 55 mm 

 Mass (m) 18.3 kg 19.5 

 Basic dynamic load rating (C) 109 kN (axial) 109 kN (axial) 

 102 kN (radial) 102 kN (radial) 

 Basic static load rating (Co) 810 kN (axial) 810 kN (axial) 

 310 kN (radial) 310 kN (radial) 

 Number of rolling element (z) 161 (axial) 119 (axial) 

 66 (radial) 82 (radial) 

 Diameter of rolling element (dr) 6 mm (axial) 8 mm (axial) 

 5 mm (radial) 8 mm (axial) 

 Pressure angel    0o (axial) 0o (axial) 

 90o (radial) 90o (radial) 

 Mean bearing diameter (dm) 325.6 mm (axial) 325.1 mm (axial) 

 304 mm (radial) 307.82 mm (radial) 

 

Recently, there have been an increasing number of studies on slew bearing-based 

condition monitoring and early fault detection. The studies employed a range of 

different methods such as vibration analysis [2-4], finite element method (FEM) [5-10] 

and oil analysis [11, 12]. The brief review of each research outcome is described below. 

Slew bearing damage identification-based vibration analysis. Žvokelj et al. [3] 

proposed combined ensemble empirical mode decomposition (EEMD) and multi-scale 

principal component analysis (MSPCA) vibration analysis method. EEMD has been used 

to decompose signals into different time scales or intrinsic mode functions (IMFs). The 

significant IMFs are determined by features such as the kurtosis and crest factor of the 

signals. MSPCA is used to extract useful information from a large IMFs database. The 
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combined method is then used to control the time scale of the decomposition, the 

multivariate and multi-scale filtering or the reconstruction of the filtered signal. 

An experiment has been designed to simulate a localized (single-point) defect. The 

double-row four-point contact ball bearing slewing ring with external gear was used as 

the test bearing. The test was conducted at 8 rpm. Ref. [4] is the extension work of Ref. 

[3] using the combination of EEMD with kernel PCA. Although the proposed vibration 

analysis method presented in [3] and [4] were successful, the method was only applied 

for the case of slew bearing with an artificial single defect. Further studies on the slew 

bearing with a natural defect need to be conducted. In addition, due to the extreme 

working conditions such as low rotational speed, reversible rotation and high load that 

are applied on slew bearing, in practice, slew bearing usually experiences multiple 

defects rather than single defect. 

Slew bearing research based on finite element method or finite element analysis. 

Kania [5] analyses the deformation of slew roller bearing using finite element model. 

There are two objectives for the study: (1) the maximum roller-raceway contact force 

and (2) the maximum deformation of the bearing parts (raceway-roller-raceway) at the 

maximum force. The applied slew bearing was three-row roller bearing. Static load had 

been considered and applied on the radial and axial directions. Göncz et al. [6] 

develops a numerical model for fatigue life estimation of three-row slew bearing 

raceway based on a stress-life approach. In another study, Göncz et al. [7] presents a 

calculation procedure for the determination of dynamic load capacity of a large three-

row roller slew bearing. Gang et al. [8] presents the finite element analysis (FEA) of a 

large-scale cross-roller bearing used in special propeller under the eccentric axial load. 

The objective is to calculate the contact stress between the rollers and the rings. The 

result of FE analysis has been compared to the theoretical analysis result. Glodež et al. 

[9] proposes a comprehensive computational model for determination of static 

capacity and the fatigue life of raceways of large slew bearing. Aguirrebeitia et al. [10] 

presents a mathematical model of the static load-carrying capacity of a three row 

roller slew bearings under axial load and tilting-moment. The critical value of the loads 

acting on a three row roller slew bearing is estimated based on the model. 
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Slew bearing condition monitoring-based oil analysis. Liu [11] proposes the 

condition monitoring of low speed heavily loaded bearing based on grease analysis. Bai 

et al. [12] presents the condition monitoring of a large slew bearing based on the oil 

analysis method by ferrography and spectrometric analysis. The oil analysis was 

considered in the study due to the difficulty in conducting vibration monitoring on slew 

bearing of ship loader and stacking crane in the Port. This method can detect element 

concentration of wear particle and contaminant as well as characterize and analyse the 

wear debris morphology that exist in lubricant. The element trace and the wear debris 

characteristics can indicate the running conditions of slew bearing. The three-row 

roller slew bearing with a large outer diameter of 5400mm was used. The rolling 

elements of this bearing are made of bearing steel and the cage is made of high 

polymer materials. 

According to the above preliminary reviews, it can be highlighted that recent slew 

bearing studies have mainly focused on finite element method or finite element 

analysis to determine stress or strain for failure detection and prediction. The vibration 

analysis based on slew bearing condition monitoring is still being studied without a 

definite recommended guideline. 

1.2 Scope of research 

From the literature review in Chapter 2, it can be concluded that condition 

monitoring and prognostic methods for rolling element bearings have predominantly 

focused on speeds higher than 600 rpm and artificially generated single defect. This 

thesis focuses on the condition monitoring of bearing operating at 1 rpm with naturally 

generated multiple defects. The term naturally means that the defect is generated by 

introducing contaminants in the form of coal dust particles. The condition monitoring 

employed vibration and acoustic emission (AE) measurements. This study involves two 

laboratory accelerated life tests. The first test produced run-to-failure vibration data 

from slew bearing test rig rotating in one direction. The contamination was inserted in 

the bearing during the experiment. The second test produced the vibration and AE 

data from reversible test rig rotation (180 degree), and under dynamic and eccentric 

loading. 
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This thesis identifies appropriate features for slew bearing condition monitoring. 

Some features have been investigated using slew bearing vibration signals collected 

from the first test. It can be concluded from the results that most of the features have 

shown no obvious degradation trend of bearing condition. However, some features 

such as impulse factor, margin factor, approximate entropy and largest Lyapunov 

exponent (LLE) algorithm have been found to be appropriate for slew bearing 

condition monitoring. In particular, the LLE algorithm was further investigated in this 

thesis. This thesis also proposes a new feature extraction methods based on circular 

domain analysis and piecewise aggregate approximation (PAA). 

This thesis also develops an integrated condition monitoring and prognostic 

method. The method employed combines multivariate state estimation technique 

(MSET) and sequential probability ratio test (SPRT) as an early damage detection 

method. Based on the incipient damage detection results, kernel regression was 

applied to predict the future condition of slew bearing. 

This thesis also presents a review of AE in rolling element bearings and complexity 

analysis of AE waveform signal. The AE hit parameters were examined using slew 

bearing AE signals. Based on the results, the LLE algorithm was employed for feature 

extraction method. 

1.3 Scientific contributions 

Contribution 1: There have been a number of studies in vibration and AE-based 

condition monitoring of rolling element bearing. However, most of them focused on 

high rotational speed with artificially generated bearing defects, and a limited number 

of studies on very low speed with naturally defective bearing can be found. Rotating 

machinery running in very low rotational speed has been increasingly used with the 

development of more sophisticated technology. Bearing plays a major part in 

maintaining the sustainability of those machines. Therefore, it is important to develop 

an effective condition monitoring method for very low speed bearings. 

Contribution 2: Monitoring of the slew bearing condition requires selection and 

extraction of features from both vibration and AE signals. Based on the study on 

feature extraction methods that have been reported in literatures, it is difficult to 
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select the most appropriate features for condition monitoring of slew bearings. This 

thesis reviews existing features and their extraction techniques in areas such as 

vibration signal, biomedical signal and financial time series data. Based on the 

literature review, LLE algorithm has been applied for slew bearing feature extraction 

method. However, it has not been used in bearing vibration signal generated from low 

rotational speed. This thesis also presents a new feature extraction technique based 

on piecewise aggregate approximation (PAA) and circular domain analysis. 

Contribution 3: The outcome of Contribution 2 produces several reliable features 

for slew bearing condition monitoring. These features are processed in the integrated 

condition monitoring and prognostic method. The method employ MSET and SPRT on 

the recorded reliable features and provide a sign of early bearing damage. Based on 

the early damage detection warning, kernel regression is used to predict the future 

condition of slew bearing. 

Contribution 4: A comprehensive review of AE method in rolling element bearing in 

three different speed levels (high speed, low speed and very low speed) is presented. 

While most AE studies focuses on high and low speed, this thesis focuses on very low 

speed. This thesis presents the investigation of AE hit parameters for slew bearing 

signals. In the experiment, significant changes in the slew bearing condition have been 

detected from the changes in the values of these parameters after the new bearing 

had run continuously for approximate 15 months. However, these changes, are drastic, 

and practically cannot provide adequate warning for the maintenance engineers. 

Based on the results, the LLE algorithm, which has been used effectively with vibration 

signals, was also employed for feature extraction of AE waveform signals. It is shown 

that LLE algorithm can detect signs of failure earlier and demonstrate better 

progressive trend of the defect than the AE hit parameters. 

1.4 Thesis outline 

This thesis includes 8 chapters. The subtopics contained in each chapter and how they 

are interlinked are described as follows. 
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Chapter 1 introduces the background and motivation of the research including slew 

bearing overview, literature review in slew bearing studies, scope of research and 

scientific contributions. 

Chapter 2 first presents a comprehensive review of rolling element bearing vibration-

based condition monitoring and feature extraction methods. The review presents the 

classification of literatures which is categorized into two different speed levels i.e. 

speed less than 600 rpm and greater than 600 rpm. Each category is divided into two 

types of damages i.e. natural (seeded) damage and artificial damage. The literature 

review then provides the investigation result of existing feature extraction methods or 

algorithms in wide range applications such as vibration analysis, time series analysis, 

bio-medical engineering and time series analysis. Some features are tested using 

vibration slew bearing data of the first laboratory test. The result of chapter 2 is the 

selected reliable features such as impulse factor, margin factor, approximate entropy 

and LLE. 

Chapter 3 describes experimental work on the low speed slew bearing and presents 

the details of laboratory slew bearing test rig. The experiment consists of two 

laboratory tests. The first laboratory test produced run-to-failure vibration data from 

slew bearing test rig rotating in one direction. The second test produced the vibration 

and AE data from reversible test rig rotation (180 degree). This chapter also describes 

the slew bearing data obtained from industrial companies. 

Chapter 4 proposes a new feature extraction-based condition monitoring method for 

low speed slew bearing. The method employs data reduction process using piecewise 

aggregate approximation (PAA) to detect frequency alteration in the bearing signal 

during the occurrence of fault. From the processed data, circular domain features such 

as circular mean, circular variance, circular skewness and circular kurtosis are 

calculated and monitored. This chapter demonstrates the application of the LLE 

algorithm for feature extraction method in low speed slew bearing condition 

monitoring. The LLE algorithm is employed to measure the degree of non-linearity of 

the vibration signal that is hard to be monitored by existing methods. 

Chapter 5 applies the selected feature extraction results such as circular-domain 

kurtosis, time-domain kurtosis, wavelet decomposition (WD) kurtosis, empirical mode 
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decomposition (EMD) kurtosis and LLE feature that have been previously presented in 

Chapter 4. An application of multivariate state estimation technique (MSET) and 

sequential probability ratio test (SPRT) for early damage detection of slew bearing is 

also presented in this chapter. In addition, the chapter provides the damage analysis of 

slew bearing subject to high load, irregular greasing and eccentric loading. 

Chapter 6 presents a review of AE in rolling element bearings and complexity analysis. 

The review includes (a) the application of AE in typical rolling element bearings running 

at different speed levels, i.e. high speed (> 600 rpm), low speed (10 – 600 rpm) and 

very low speed (< 10 rpm); (b) the commonly used AE hit parameters in rolling element 

bearings; and (c) AE signal processing, feature extraction and pattern recognition 

methods. This chapter also presents the investigation of AE hit parameters for slew 

bearing signals. Based on the investigation results, the LLE algorithm which has been 

effectively applied with vibration signals was employed for feature extraction of AE 

waveform signals. 

Chapter 7 presents a review of prognostic methods applied in rolling element bearings. 

The review starts with the classification of prognostic approaches from the previously 

published studies. From the classification results, detailed prognostic classifications 

including the prognostic methods, their aims and the condition monitoring and 

prognostic features are summarized. A review of recent studies on slew bearing 

service life prediction is also presented. This chapter also presents the prediction of 

the selected features’ trends and the estimation of the remaining useful life (RUL) of 

the slew bearing using kernel regression. This prognostic method is linked to condition 

monitoring features presented in Chapter 5. 

Chapter 8 presents the conclusions of the work conducted to date and the essential 

future work. 
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Chapter 2 - Review of vibration-based 

condition monitoring and feature 

extraction 

 

“A journey of a thousand miles begins with a single step” 
(Chinese philosopher Laozi) 

 

In order to identify the research gap and make the scientific contributions, this 

thesis conducts literature review on three areas: (1) vibration-based condition 

monitoring and feature extraction methods in Chapter 2, (2) acoustic emission-based 

condition monitoring in Chapter 6 and (3) prognostic approaches for rolling element 

bearings in Chapter 7. 

2.1 Review of vibration-based condition monitoring 

2.1.1 Vibration-based condition monitoring in general 

For decades, vibration analysis has been used as a condition-based maintenance 

(CBM) tool by maintenance engineers to investigate whether a part or equipment is 

suitable for further use. Randall (2011, p3) [13] states that machines generate 

vibrations even in good condition. However, if faults occur, the machine’s vibration 

signals will differ from standard vibration signals. In addition, vibration analysis 

distinguishes between the vibration signature during standard conditions and faulty 

conditions. A pioneering study on machines in standard conditions has been presented 

by Braun [14], which proposes the term ‘mechanical signature analyses’. 

A commonly used method for bearing vibration analysis and fault diagnosis is 

spectral analysis [15]. Yang and Widodo [15] claim that the spectral analysis of 

vibration signal is the most reliable method of assessing the rotating machine 

condition particularly the bearing condition. Usually, when bearings operate in rotating 

machines, coupled parts of machines, including the bearing, transmit the vibration 
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signals. From the vibration signals, related frequency spectrum that characterizes 

standard machine condition can be identified using spectral analysis. When a bearing 

either wears or becomes damaged, some frequency components in the spectrum will 

change. In fact, each fault in a machine produces vibrations with distinctive 

characteristics that can be measured and compared with standard condition in order 

to perform the fault detection and diagnosis. 

As the technology involved becomes more sophisticated, the rotating machinery 

that uses rolling element bearings to support their operational work is also more 

complex. It is because the machine is sometimes operating at low speed and in non-

stationary condition. This will generate chaotic vibration signals emanating from a 

nonlinear system. In this particular case, it is necessary to have an appropriate 

condition monitoring method, especially feature extraction method. 

2.1.2 Very low rotational speed 

According to the SPM (Shock Pulse Measurement) HD company website [16]: 

“Condition monitoring on machinery operating at low speed is more complicated 

than on industrial machinery in general. Signals originating from bearing and gear 

problems are typically low in energy content, jumbled up and practically unanalyzable. 

Distinguishing these signals from background noise in order to extract meaningful 

bearing information can be a very difficult task. Measurement data collected at low 

speeds are often mistakenly dismissed as being “just noise”. Hence, bearing wear and 

damage often goes undetected until it is too late.” 

The challenge of bearing condition monitoring at very low speed as mentioned 

above is the main problem addressed in this thesis. In order to narrow the literature 

review, the classification of bearing speeds should be initially determined. Although 

there is no accepted standard criterion for speed classification of rotating machinery, 

some literatures mentioned that speed below 600 rpm is “low rotating speed 

machinery” [17-19] and speed greater than 600 rpm is “high speed machinery” [20, 

21]. Hence, the review on the two speed classifications: (1) low speed (lower than 600 

rpm) and (2) high speed (greater than 600 rpm) are used in this thesis.  
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Figure 2.1 Recent bearing vibration condition monitoring studies classified into two 

different speed levels and damage types. (Note: the year of publication is limited from 

2009 to 2014, extensive literature for specific topics will be presented in different 

chapters). 

 

Rotational speed greater than 600 rpm 

Figure 2.1 indicates that a number of studies on bearing speed greater than 600 

rpm in the past five years are still greater than that below 600 rpm. In the category of 

bearing with a natural defect, methods such as support vector regression (SVR) [22], 

Kolmogorov-Smirnov test [24], singular value decomposition (SVD) [25] and correlation 

dimension and approximate entropy [26] have been used. These methods have been 

applied in vibration data collected from bearing accelerated life test rotating at 3000 

rpm. In addition, an online detection method for naturally progressing defect bearing 

was presented by Shakya et al. [27] based on Mahalanobis distance (MD). Due to the 

difficulties and the time issue in obtaining the entire bearing service life data (normal-

fault-failure condition), the bearing accelerated life test was considered in more 

studies. In conclusion, there have been more studies on artificially damaged bearings 

Ref.   Publ. year Speed (rpm)    Ref.  Publ. year Speed (rpm) 

[1] 2009 1 and 4.3  [22] 2013 3000 

[23] 2010 300  [24] 2011 3000 

    [25] 2013 3000 

    [26] 2014 3000 

    [27] 2014 1220 and 

       

       

Ref.   Publ. year Speed (rpm)    Ref.  Publ. year Speed (rpm) 

[28] 2011 47  [29] 2011 1200 ~ 1772 

[30] 2011 520  [30] 2011 1009 and 

[3] 2010 8  [31] 2009 1123 

[4] 2011 8  [32] 2014 1000 ~ 2350 

    [33] 2011 1800 

    [34] 2011 1496 ~ 1796 

Speed < 600 rpm Speed > 600 rpm 

Naturally 

defective 

bearing 

Seeded dirt, 

artificial or 

known defect  
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than on naturally defective bearings. The research in vibration analysis of rolling 

element bearing has mainly focused on high speed bearings with artificially damaged 

bearings so far. The methods include e.g. K-means clustering [29], mathematical 

morphology (MM) method [30], difference histograms [31], fault characteristic order 

(FCO) analysis [32] and antisymmetric real Laplace wavelet [33]. The bearing speeds in 

the above mentioned papers were varied from 1000 to 2350 rpm. 

Rotational speed below 600 rpm 

Very few studies on low speed bearings below 600 rpm, particularly the studies on 

naturally defective bearings, have been found during the past five years. The vibration 

signals generated from low speed bearings are more difficult to analyse than those 

generated from high speed bearings. Thus, acoustic emission (AE) is the preferred 

method used in analysing low speed bearings than the vibration analysis. 

Prior to the present slew bearing study, an investigation into the condition 

monitoring of low speed slew bearings was initiated by Moodie [1]. The study focuses 

on (1) the design and construction of experimental slew bearing rig and (2) the 

detection of bearing fault frequencies such as ball pass frequency outer race (BPFO), 

ball pass frequency inner race (BPFI) and ball spin frequency (BSF) based on spectral 

analysis. Some novel signal processing methods including symmetric wave 

decomposition (SWD), compressed eigenvector deconvolution spectral analysis 

(CEDSA) and ring matric fault values (RMFV) were proposed for slew bearing condition 

monitoring. The SWD combined with fast Fourier transform (FFT) has been formed into 

one integrated method called SWDFFT. The CEDSA and RMFV methods are integrated 

into a method named CECDFFT (compressed eigenvalue compressed discrete fast 

Fourier transform). The result shows that SWDFFT can identify the BPFO, BPFI and BSF. 

Based on these findings, the progression of bearing fault frequencies is presented. 

However, the discussion on the selection of the number of wave (nwave) in SWD 

method is not presented, thus the operator needs to select the nwave arbitrarily, and 

this is time consuming. In addition, the study uses two different sampling frequencies 

of 4880 Hz and 625000 Hz. The result of SWDFFT indicates that the progression of 

bearing fault frequencies from 625000 Hz sampled data is clearer than that from 4880 

Hz sampled data. However, using 625000 Hz sampled data will affect the 
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computational time. Similarly, CECDFFT has also been used initially to calculate the 

bearing fault frequencies followed by the calculation of the progressions of bearing 

fault based on the fault frequencies amplitude. However, the analysis of vibration data 

with 625000 Hz sampling rate; and the selection method of a number of upsampling 

(times) and downsampling (times) were not studied. In addition, both SWDFFT and 

CECDFFT are less applicable in practice due to their complex computational 

procedures. For example, the CECDFFT have to pass several methods to calculate the 

bearing fault frequencies as shown in Figure 2.2. 

 

Vibration data

Upsampled dataset

Downsampled dataset

Compressed dataset

Form the ring matrix

Solve the eigenvalue problem

Extract the principal real eigenvalues and eigenvectors

Extract the associated spectra using CDFT

Highlight the power at each fault frequency
 

Figure 2.2 Flowchart of CECDFFT method [1]. 

One other study of very low speed bearing condition monitoring utilizing vibration 

signal was presented by Žvokelj et al. [3] and [4]. A review of these studies has been 

presented in Chapter 1. The methods work effectively for slew bearing vibration 

signals with artificial single defects [3] and [4]. However, further studies on multiple 

defects are necessary because the multiple defects are the common issue in practice 
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due to the extreme slew bearing operating conditions such as low speeds, reversible 

rotations and high loads. 

Another study in low speed below 600 rpm presents the angular resampling 

method for the study on bearing in the wind turbines operating at 47 rpm under non-

linear speed fluctuations [28]. The morphological method employed in bearing speed 

at 520 rpm is presented in [30]. 

As condition monitoring methods requires reliable features, a review on feature 

extraction methods is conducted in this thesis. This will be described further in Section 

2.2.  

2.2 Review of feature extraction methods 

The terms and the utilization of features have been widely applied in some areas 

such as in vibration analysis [19], [29], [35], biomedical engineering [36], [37] and time 

series analysis [38]. In vibration analysis, especially for bearing condition monitoring, 

features can be defined as representative values to indicate bearing conditions. This is 

because the features are extracted from raw vibration signals acquired from rolling 

element bearing. The features identifying certain values indicate whether the 

condition of the bearing is normal or failing. The classification and the summary of 

features in a wide range application are presented in Table 2.1. 
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Table 2.1 Feature classification in wide range applications. 

Category                                       Name of Features                                      References 

Time-domain Mean, peak value and peak-to-peak [19],[39],[40],[41],[18],[42],[43] 

feature extraction Standard deviation and variance [29],[19] ,[39],[40]  

 Root mean square (RMS) [29],[19] ,[39],[41],[18],[44],[42],[45],[46] 

 Skewness [29],[19] ,[39],[40],[41],[18],[42] 

 Kurtosis [29],[19] ,[39],[40],[41],[18],[42],[45],[46],[47] 

 Crest factor [29],[19],[41],[18],[42],[43] 

 Shape factor [29],[19] ,[43] 

 Entropy estimation [19],[40],[41] 

 Upper, lower and difference histogram [31],[19],[41]  

 Autoregressive (AR) coefficients [41],[48],[49] 

 1st Hjort  parameter (activity) [36],[50]  

 2nd Hjorth parameter (mobility) [36],[50] 

 3rd Hjorth parameter (complexity) [36],[50] 

 Mathematical morphology operators [30],[35],[51],[52] 

 5th to 9th central moment [29] 

 Impulse factor (IF) [29],[42],[43] 

 Clearance factor or margin factor (MF) [29],[42],[43] 

 Zero-crossing [53] 

Frequency-domain Discrete and fast Fourier transform [54] 

feature extraction Mean frequency  or frequency centre (FC) [19],[41],[55],[43] 

 Root mean square frequency (RMSF) [19],[41],[43] 

 Median frequency [36] 

 Root variance frequency (RVF) [19],[41],[43] 

 Spectral entropy [36],[50],[56] 

 Shannon entropy [36],[57] 

 Spectral skewness [58] 

 Spectral kurtosis [58],[59],[60],[61] 

 Energy [29] 

 Residual energy [62] 

 

Power ratio of max defective frequency to 

mean (PMM) 

[42],[63] 

Time-frequency Short-time Fourier transform (STFT) [39] 

representation Wigner-Ville spectrum (WVS) and Wigner- [64] 

 Ville distribution (WVD)  

 Instantaneous power spectrum distribution [65] 

 Wavelet transform [39],[66],[67]  

 Empirical mode decomposition (EMD) [68],[69] 

 Ensemble EMD (EEMD) [70] 

 S transform [71] 

Phase-space Fractal dimension [36],[72],[73] 

dissimilarity Correlation dimension [26],[74]  

measurement Approximate entropy [26],[36],[75], 

 Largest Lyapunov exponent [36],[37] 

 Permutation entropy [76] 

Complexity Kolmogorov-Smirnov test [26] 

measurement Sample entropy [77] 

Other features Singular value decomposition [66],[78] 

 Piecewise aggregate approximation [38],[79] 

 Adaptive piecewise constant approximation [78] 

 Particle filter [55] 

 Mahalanobis distance [27] 
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2.2.1 Category 1: Time-domain feature extraction 

Statistical-based features 

Statistical features such as mean, root mean square (RMS), standard deviation and 

variance were usually used in past studies to identify the differences between one 

vibration signal and another. These features are called time-domain dimensional 

features, because they are calculated directly from the vibration signals (in time-

domain). More advanced statistical-based features such as skewness and kurtosis can 

be applied to the signal which is not purely stationary. These features examine the 

probability density function (PDF) of the signal. It is a well-known fact that if the 

condition of the bearing changes, the PDF also changes, thus the skewness and 

kurtosis might be able to detect the changes. Furthermore, skewness is used to 

measure whether the signal is negatively or positively skewed. Kurtosis measures the 

peak value of the PDF and indicates that the signal is impulsive in nature. Based on the 

definition of moment, skewness is equal to zero for a signal with a normal distribution 

i.e. normal bearing signal. A negative value is due to skewness towards lower value 

while a positive value indicates non-symmetry towards higher values. 

In addition, kurtosis, as the fourth-order moment is obtained from the peak of the 

PDF of the vibration signal, while skewness is obtained from the mean value of the PDF 

of the vibration signal. It is well known that the vibration signal of normal bearing has 

the kurtosis value of three [80] and the skewness value of approximately zero. Then, 

when the vibration signal changes due to faults, the kurtosis value will increase to 

greater than three and the skewness value will shift to either negative or positive. In 

higher order statistics (HOS), the kurtosis and skewness based on the definition of 

cumulant have value zero for Gaussian signals. Other features which can be calculated 

from PDF of the vibration signal includes: entropy, which calculates the histogram of 

the PDF and measures the degree of randomness of the vibration signal; lower bound 

and upper bound histogram, which measure the lower and upper values of the PDF 

respectively. 

Aside from the time-domain dimensional features, there are other non-dimensional 

features such as shape factor (defined as RMS divided by mean) and crest factor 
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(defined as standard deviation divided by RMS). Both features will change as the mean, 

RMS and standard deviation change. The summary of these features is presented in 

Table 2.2. 

Table 2.2 Brief review of common time-domain feature extraction applied in condition 

monitoring of typical rolling element bearings [81]. 

Feature 

Name 

Description 

Brief Definition Formula 

R
M

S
 

As fault developed the RMS value will 

increase progressively. However, RMS has 

the shortcoming that it is unable to provide 

the information of incipient fault stage while 

it increases with the fault development [45]. 
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or a data set around their mean reference. 
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Skewness measures the asymmetry of 

probability density function (pdf) of vibration 

signal. 
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Kurtosis measures the degree of flatness of 

the probability density function (pdf) near its 

centre. In high speed bearing rotation, the 

kurtosis value of bearing normal is well-

recognized as 3. 
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Refers to a value that is affected by an 

object’s shape but is independent of its 
dimensions [29]. 
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Crest factor (CF) is a measure of how much 

impact. CF is appropriate for “spiky signals” 
[29].  
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Entropy, )( pe , is a measure of the 

uncertainty and randomness of  a sampled 

vibration data. Given a set of probabilisties, 

),...,,( 21 nppp , the entropy can be calculated 

using the formulas as shown in the right 

column. 
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Upper and lower bound of histogram 

The histograms or a discrete probability density function, is calculated in the 

following way [15]. Let d  be the number of divisions that is desired to divide the 

ranges into, and let ih  with di 0  be the columns of the histogram. For the time ix  





n

j

iii diixrh

0

0,),(           (2.1) 





 





otherwise

d

xxi
x

d

xxi
if

r
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i
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))min())(max(1())min()(max(
,1

     (2.2) 

The upper bound Uh and lower bound Lh of histogram are defined as 

2/)max(  iU xh            (2.3) 

2/)max(  iL xh            (2.4) 

where )1/())min()(max(  nxx ii . 

According to the feature extraction results presented in Figure 2.3, some features 

show the fluctuation in the last measurement day approximately from the 90th day to 

the 139th day such as RMS, variance, kurtosis and histogram lower. These indicate that 

some features are sensitive to the slew bearing condition whilst others are less 

appropriate. The fluctuation is associated with roller and outer race defects as shown 

later in Figure 2.16. However, more appropriate and reliable features are necessary for 

the condition monitoring of slew bearing to detect an impending damage and to 

estimate the degradation index for prognostics. 
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Figure 2.3 Statistical time-domain features: RMS, skewness, kurtosis, shape factor, 

crest factor, entropy, histogram upper bound and histogram lower bound extracted 

from the vibration slew bearing signal. 

 

Autoregressive (AR) coefficients 

In other studies, the autoregressive (AR) coefficients of the vibration signal are 

calculated and used as a bearing vibration feature. It is known that faulty vibration 

signal of typical rolling element bearings produces different autoregressive coefficients 

from normal vibration signal. Coefficients of AR models are selected through Burg’s 

lattice-based method using the harmonic mean of forward and backward squared 

Incipient damage 

Incipient damage 
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prediction errors [15]. A common approach for modelling univariate time series is the 

AR model as follows: 




 
n

i

ttitntnttt yayayayay

1
12211 ...        (2.5) 

where 1a  to na  are the autoregressive coefficients, ty  is the time series under 

investigation, n  is the order of the AR model ( 8n ) and   is the residual which 

always assumed to be Gaussian white noise. An AR model (Eq. 2.5) is simply a linear 

regression of the current value of the series against one or more prior values of the 

series [15]. 

The RMS, skewness, kurtosis, entropy and AR coefficients have been tested using 

vibration datasets from induction motor [48] and rolling element bearing [19]. These 

papers have made great contributions to the research areas on the bearing condition 

monitoring and fault diagnosis. However, the features were tested for artificially 

bearing damage. In practice, the damage is typically developed naturally rather than 

artificially. 

The AR coefficient results are presented in Figure 2.4. It is shown that most of 

features are less appropriate to represent the slew bearing condition except AR 

coefficient 4 which is shown to be fluctuating in the last measurement. 
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Figure 2.4 AR features (up to 8 coefficients) extracted from the vibration slew bearing 

signal. 

 

Other time domain features such as impulse factor, margin factor or clearance 

factor have been recently used [29, 42, 43]. Similar to crest factor (CF), impulse factor 

(IF) is used to measure how much impact is generated from the bearing defect. CF 

measures the impact by dividing the maximum absolute value of vibration data and 

RMS value, while IF divides the maximum absolute value by the mean of absolute 

value. The formula is defined as follows: 
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Margin factor (MF) or clearance factor is used to measure the level of impact. MF is 

calculated using the maximum absolute value of the vibration signal divided by the 

square of the mean of the square root of the absolute values of the vibration signal. 

The formula is defined as follows: 
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The progression of slew bearing deterioration of IF and MF features are clearer than 

RMS, variance, kurtosis and histogram lower features as presented in Figure 2.5. 
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Figure 2.5 Impulse factor and margin factor feature extracted from the vibration slew 

bearing signal. 

 

Hjort’s parameter 

In addition to the time-domain features mentioned above, Hjort’s parameter can 

also be put into this category [58]. The first Hjorth’s parameter is called ‘activity’. The 
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activity of vibration signal can be computed by simply calculating the variance of the 

vibration signal amplitude 
2

x , where x  is the standard deviation of the sampled 

vibration signal )...,,,,( 321 Nxxxxx , and N  is the number of samples. 

The second parameter is termed ‘mobility’ and defined as the standard deviation of 

the first derivative of the vibration signal and the standard deviation of the vibration 

signal. 

x

x


 '

mobility              (2.8) 

In the time series context, the numerical values for the derivatives are obtained as the 

differences between samples as follows. Note that the derivatives without 

normalisation are dimensional and will depend on the arbitrary sampling frequency. 

ii xxx   )1(
'

  1...,,1  Ni          (2.9) 

The third parameter called ‘complexity’ which is defined as the ratio of mobility of 

the first derivative and the mobility of the vibration signal. 

xx

xx




/

/
complexity

'

'"

          (2.10) 

These parameters have been used in electroencephalography (EEG) signals to 

detect the epileptic seizures [36]. They have never been used in vibration bearing 

signal except for activity feature which is similar to the variance feature in the time 

domain feature extraction. It can be seen from Figure 2.6 that the progression of 

bearing condition is difficult to track using mobility and complexity. In contrast, the 

activity or variance feature shows one highest peak at approximately the 90th day and 

continue fluctuation on the last measurement days.  
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Figure 2.6 Hjorts’ parameters: activity, mobility and complexity extracted from the 

vibration slew bearing signal. 

 

Mathematical morphology (MM) operators 

Mathematical morphology (MM) was initially introduced as a non-linear image 

processing method to analyse two dimensional (2D) image data including binary 

images and grey-level images based on set theory [82]. The basic principle of the MM 

method is to modify the shape of the original signal by transforming it through its 

intersection with another object called the ‘structuring element’ (SE). Four operators 

including erosion, dilation, closing and opening are used to achieve the transformation. 

After having been applied successfully in 2D image processing, the MM method has 

been used in biomedical research field to analyse one dimensional (1D) EEG signals 

[83-85] and electrocardiography (ECG) signals [86]. The first known study of MM in 1D 

vibration signals was presented by Nikolaou and Antoniadis [52], who used the MM 

method for vibration data with inner race and outer race faults. The effects of four 

morphological operators on the enveloping impulse-type signals were examined. The 

result shows that the ‘closing’ operator is more suitable for extracting the impulse 

signal corresponding to the bearing fault type. The SE value was empirically 
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investigated within the range of 0.2T to 1.2T. The optimum SE for a signal with additive 

noise was selected as 0.6T (0.6 times the pulse repetition period). 

The original discrete one dimensional (1D) signal and structuring element (SE) have 

to be first determined to use the four basic operators in the MM method. Suppose the 

discrete 1D vibration signal )}(...,),2(),1({)( Nxxxn x , which functions over a domain 

) ..., ,2(1, Nn  . Let )}(...,),2(),1({)( MSSSmS   be the SE, which is the discrete function 

over a domain )...,,2,1( Mm  , where N  and M  are integers and MN  . Then, the 

four morphology operators for the discrete 1D vibration signal can be defined as 

follows: 

 Erosion: also refer to as min filter. 

 )()(min))(( mSmnxnSx         (2.11) 

 Dilation: also refer to as max filter. 

 )()(max))(( mSmnxnSx         (2.12) 

 Closing: Dilates 1D signal and then erodes the dilated signal using the same 

structuring element for both operations. 

  )()())(( nSSxnSx         (2.13) 

 Opening: Erodes 1D signal and then dilates the eroded signal using the same 

structuring element for both operations. 

  )()())(( nSSxnSx         (2.14) 

where )...,,2,1( Nn  and )...,,2,1( Mm , the notations ,,,   denote the erosion 

operator or Minkowski subtraction, dilation operator or Minkowski addition, closing 

operator and opening operator in the MM method, respectively. 

The original simulated 1D signal is shown in Figure 2.7(a). The various effects of the 

basic MM operators application in the simulated 1D vibration signal are presented in 

Figures 2.7(b)-(e). The simulated signal has zero mean value which is typical of 1D 

vibration signals. The work principle of the basic MM operators can be summarized as 

follows: erosion of )(nx  by the structuring element )(mA  reduces the positive part 

and enlarges the negative part of )(nx , while dilation of )(nx  by the structuring 
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element )(mA  reduces the negative part and enlarges the positive part of )(nx . In 

addition, closing of )(nx  smoothens the signal )(nx  by cutting down any impulses in 

the negative part and opening )(nx  smoothens the signal )(nx  by cutting down its 

impulses in the positive part.  
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Figure 2.7 Illustration of four MM operators: (a) the original 1D signal, (b) the effect of 

erosion, (c) the effect of dilation, (d) the effect of closing and (e) the effect of opening. 

(Note: the solid blue line is the original signal and the dashed red line is the signal after 

being processed or transformed by the MM operators). 

 

In rolling element bearing, the MM method has been studied. The multi-scale 

morphological analysis was developed by Zhang et al. [51]. The method shows 

independency of empirical rules in terms of SE selection, but the technique is quite 

complex. The vibration bearing data used in this paper was gathered from open access 

data from Case Western Reserve. Wang et al. [87] proposed an improved 

morphological filter for the feature extraction of periodic impulse signals. An average 

weighted combination of open-closing and close-opening morphological operators was 

a 

b 

c 

d 

e 
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employed to eliminate the statistical deflection of amplitude and to extract the 

impulse component from the original signal. To optimize the SE, they used a new 

criterion called impulse attenuation (IMA). Dong et al. [30] presented the fault 

diagnosis of rolling element bearings using the modified morphological method. The 

morphological operator used in their method was the average weight combination of 

the closing and opening operator. They proposed a new criterion called SNR criterion 

to optimize the length of SE.  Another recently published research on MM was 

presented by Raj and Murali [88]. The authors combined the MM operators with fuzzy 

inference to classify the bearing faults. The vibration data from the artificially defective 

bearing used in the paper are similar to Zhang et al. [51]. 

The effectiveness of the MM application in detecting the bearing fault frequencies 

from among impulsive-type signals have been demonstrated [30, 51, 87, 88]. These 

signals are generated from known bearing conditions such as inner and/or outer race 

faults. It has been acknowledged that the signals from artificial defect are easier to be 

identified than those from naturally defective bearing. Besides, typically, the impulse-

type signals are easily identified visually without any additional tool or processing step 

[30]. The application of MM method to the naturally defective slew bearing in this 

thesis is presented in Figure 2.8 to Figure 2.10. 

The MM method has been used effectively for the damage detection of high speed 

rolling bearing. It is because when the damage occurred, the contact between the 

damage spot and rolling element generates detectable impulse. In the case of naturally 

degraded low speed slew bearing, the multiple damage e.g. outer race, inner race and 

roller typically occurred at close sequence time and the magnitude of impulse is very 

low. Thus it is difficult to identify the origin of impulse from outer race, inner race or 

roller damage. Therefore, the feature extraction result of MM for the three conditions: 

BPFO, BPFI and BSF present an identical figure. 
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Figure 2.8 RMS feature extracted from MM operators for 0.9T (T = 1/BPFI): (a) erosion, 

(b) dilation, (c) closing and (d) opening. 
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Figure 2.9 RMS feature extracted from MM operators for 0.9T (T = 1/BPFO): (a) 

erosion, (b) dilation, (c) closing and (d) opening. 

a b 

c d 

a b 

c d 
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Figure 2.10 RMS feature extracted from MM operators for 0.9T (T = 1/BSF): (a) 

erosion, (b) dilation, (c) closing and (d) opening. 

 

2.2.2 Category 2: Frequency-domain feature extraction 

To apply frequency-domain features, the time-domain vibration signals must 

initially be converted into frequency-domain signals using Fast Fourier Transform (FFT). 

FFT is a common method in vibration analysis for bearing fault detection. FFT performs 

effectively in stationary periodic signals, however, it is less effective for non-stationary 

signals that arise from time-dependent events [89]. For sinusoids, FFT can be used to 

identify the dominant frequency event if the sinusoids plus noise. In practice, FFT has a 

limitation to measures the dominant frequency of the repetitive impulse period of 

certain faults due to the contact between rolling elements and defective spot. It is 

because the impulse responses are measured instead of the forcing impulses, in terms 

of acceleration, which contain almost nothing additive at the fault repetition 

frequencies. Frequency analysis of the demodulated envelope, does give clear 

information of the repetition frequencies, even if they come from resonances. 

a b 

c d 
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Other frequency-domain features such as frequency centre (FC), root mean square 

frequency (RMSF) and root variance frequency (RVF), have been studied in [15]. When 

fault exists, the frequency element changes, and the values of the FC, RMSF and RVF 

also change. The FC and RMSF indicate the position changes of main frequencies, while 

the RVF shows the convergence of the power spectrum. Another feature called median 

frequency is sometimes used. Graphically, the median frequency is the frequency 

which divides the area of the amplitude spectrum into equal halves. These features 

can be calculated as follows: 
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Figure 2.11 Frequency-domain features: FC, RMSF and RVF extracted from the 

vibration slew bearing signal. 
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Recently, new methods such as spectral skewness, spectral kurtosis, spectral 

entropy and Shannon entropy have been developed which are included in frequency-

domain features category. Spectral skewness (SS) and spectral kurtosis (SK) are the 

statistical measures applied to the amplitude spectrum. In fact, the mean frequency 

(FC) can be interpreted as the first-order moment of the Fourier spectrum, RVF as the 

second-order moment, SS as the third-order moment and SK as the fourth-order 

moment of the Fourier spectrum [58]. 

The SS measures the symmetry of the distribution of the spectral magnitude values 

around their arithmetic mean [90]. It is defined by 
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The SK measures whether the distribution of the spectral magnitude values is 

shaped like a Gaussian distribution or not. It is defined by 
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Figure 2.12 Schematic visualization of block-based processing: the input signal with the 

input sample index i  is split into overlapping blocks of length L  and block index n ; 

the hop size s  is the distance from the start of one block and the following block. 
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Antoni and Randall [60] presents the development of classical kurtosis analysis called 

spectral kurtosis (SK) to deal with the transient behaviour in a signal. SK can be used to 

detect incipient faults even in the presence of strong masking noise. The concept of 

spectral statistic is adopted in this method to supplement the classical power spectral 

density (PSD). PSD ideally gives zeros values at those frequencies when the signal has 

stationary Gaussian noise, and it gives high positive values at those frequencies during 

the occurrence of the transients. When the noise-to-signal ratio is high, the transient 

signal will be buried in the background noise, thus the incipient fault cannot be clearly 

detected. SK can overcome this problem by analysing the whole frequency domain to 

find out in which frequency bands the fault signal can be best detected. 

 

2.2.3 Category 3: Time-frequency representation 

Time-frequency domain representation methods such as short-time Fourier 

transform (STFT), wavelet transform and Wigner-Ville distribution (WVD) are 

commonly used for non-stationary or transient signal. These methods perform a 

mapping of one-dimensional time-domain signals to a two-dimensional function of 

time and frequency. The objective is to provide a true time-frequency representation 

of a signal. A recent review of time-frequency analysis methods for machinery fault 

diagnosis has been presented by Feng et al. [91]. 

Short-time Fourier transform (STFT) 

Due to its low computational complexity and definite physical meaning, STFT is 

often used as an initial pre-processing tool to analyse non-stationary vibration signals. 

The STFT maps the vibration signal into a two-dimensional (2D) function of time and 

frequency [92]. STFT divides a non-stationary signal into small windows of equal time. 

The Fourier transformation is then applied to the time segment. Unlike FFT where the 

frequency transformation includes the whole original signal, in STFT original signal is 

decomposed using FFT at pre-defined time intervals. By doing this, the defect signal 

frequency can be identified in a particular window of time. The key to this method is 

the selection of the time interval. The difficulty in using the STFT is that the accuracy of 

extraction frequency information is limited by the length of the window relative to the 
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duration of the signal. Once the window function is defined, the area (time-bandwidth 

product) of the window function in the time-frequency plane remains fixed. This 

means that the time and frequency resolutions cannot be increased simultaneously. 

The STFT can be expressed as follows [93]: 







2/

2/

2)()(),(

Tt

Tt

fj
dextwtfSTFT  

      (2.21) 

where ),( tfSTFT  is short term frequency spectrum, t  is the time variable, f  is 

frequency, )( tw  is the shifted window, )(x denotes the input vibration signal, 

)2(exp  fj  is the complex exponential, T  is the window interval and )(w is the 

windowing function which satisfies 0)( w  for 2/T . 

Using the STFT transform (2.21), an energy density can be achieved by computing 

the spectrogram ),( ftS , which is the squared magnitude of the STFT 

2
),(),( ftSTFTftS          (2.19) 

which represents the energy density of the original signal )(x windowed by )(w . 

The STFT result of one day slew bearing signal measurement is shown in Figure 

2.13. Figure 2.13 is the STFT result for 10 seconds vibration signal with window length 

of 2048, hop size of 256 and number of FFT points of 16384. It can be seen that during 

10 seconds sampled signal, the amplitudes of lower frequencies were higher than the 

amplitude of high frequencies (approximately 1300 Hz and 1750 Hz). This indicates 

that slew bearing frequencies were dominated by low frequency contents. 
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Figure 2.13 STFT of the vibration slew bearing signal (data May 3rd). 

Wavelet transform and wavelet decomposition 

It has been studied that wavelet transform is an appropriate method to analyse 

non-stationary and transient signal [34, 48]. Wavelet transformation employs wavelet 

instead of sinusoidal functions as the basis function. It adds a scale variable in addition 

to the time variable in the inner product transformation [91]. For any limited energy 

signal )()( 2
RLtx  , the wavelet function is defined as [91] 

 d
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where wavelet ]/)[( at  is derived by dilating and translating the wavelet basis 

)(t , a  is the scale parameter )0( a , t  is the time shift and a/1  is a normalisation 

factor to maintain energy conservation. 

A review of the wavelet transform applications in machine condition monitoring 

and fault diagnostics is presented by Peng et al. [94]. Apart from the original intention 

of the wavelet transform for the analysis of non-stationary signals, another very 

important and successful application of wavelets in machine fault diagnostics is fault 

feature extraction [94]. Since the wavelet transformations have good energy 

concentration properties due to the uses of the basis function; the wavelet transform 

can represent the signal with a certain number of coefficients. The process is usually 

called wavelet decomposition. 
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Wavelet decomposition decomposes a non-stationary input signal into a linear 

combination of time-scale units. It decomposes and organizes original signal into 

several signal components according to the translation of the mother wavelet (or 

wavelet basis function). This changes the scale and shows the transition of each 

frequency component [95].  Through this decomposition, a selected coefficient can be 

used directly as the fault feature. In wavelet decomposition, the input signal is 

basically decomposed into two coefficients. The input signal that passes through the 

low-pass filter becomes the ‘approximation coefficient’. The input signal which passes 

through the high-pass filter becomes the ‘detail coefficient.’ Since the low-frequency 

content is the most important part, the ‘approximate coefficient’ is passed to the next 

wavelet decomposition loop in multilevel wavelet decomposition process. Figure 2.14 

shows three level wavelet decomposition structure. The structure illustrates the 

decomposition of slew bearing vibration signal into approximate coefficient (A) and 

detailed coefficient (D) at each level. For further processing, features such as mean, 

variance, skewness and kurtosis can be extracted from the detailed coefficients of level 

3 (D3) [96]. The feature extraction results are presented in Figure 2.15. From the 

feature extraction result, it can be seen that kurtosis can predict the damage 

compared to mean, variance and skewness extracted from signal D3 of the wavelet 

decomposition. 

Niu et al. [97] employs wavelet decomposition for fault diagnosis of induction 

motor using transient stator current signal. Statistical features have also been used to 

extract the fault information from the selected coefficients. Another study that uses 

the wavelet coefficients as fault features for ball bearing has been presented by Liu et 

al. [98]. 
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Figure 2.14 Three level wavelet decompositions of the vibration slew bearing signal. 
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Figure 2.15 Statistical-based features: mean, variance, skewness and kurtosis extracted 

from D3 signal of wavelet decomposition. 

 

Empirical mode decomposition-based Hilbert Huang transform 

Empirical mode decomposition (EMD) [99] has been shown to be adaptable in 

applications where the signal is non-stationary (e.g. Braun and Feldman [68]). A recent 

review of EMD applications in fault diagnosis of rotating machinery is discussed in 

[100]. The review gives a detailed introduction to EMD application in various areas 

such as bearings, gears and rotors etc. The authors also reviewed existing EMD 

methodologies and classified them into three different groups namely: (1) original 

EMD method alone, (2) improved EMD methods and (3) combinations of EMD with 

other methods such as artificial neural network and support vector machine. 

The main function of EMD is to decompose the original vibration signal into several 

signals which have specific frequency called intrinsic mode functions (IMFs) based on 

the enveloping technique (Hilbert-Huang transform). The results of IMFs are from high 

frequencies to low frequencies. In condition monitoring of rolling element bearing, 

EMD is used to reveal the frequency content of vibration signal by decomposing the 

original signal into several IMFs. The aim is to determine whether the bearing signal 

has a specific frequency content that corresponds to the bearing fault frequencies or 
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not. In preliminary studies on condition monitoring [96, 101], the original EMD [69] is 

used for non-stationary slew bearing data. A bearing fault such as outer race, inner 

race or rolling element fault has occurred when one of the IMF frequencies is identical 

to one of the bearing fault frequencies (for example as shown in Table 2.3) [101]. 

Table 2.3 Fault frequencies of slew bearing (run at 1 rpm and 4.3 rpm from the slew 

bearing test rig and slew bearing bridge reclaimer, respectively). 

Defect mode 

Fault frequencies (Hz) (calculation is given in Appendix A) 

    Slew bearing test-rig              Slew bearing Bridge Reclaimer 

     Axial   Radial                        Axial                      Radial 

Outer ring (BPFO)       1.32    0.55                          13.41                      11.38 

Inner ring (BPFI)       1.37    0.55                          13.58                      11.56 

Rolling element (BSF)       0.43    0.54                            5.65                        4.87 

 

Table 2.4 Decomposition result of EMD method for the slew bearing test-rig data on 

February 24. 

IMFs of EMD (Hz) (vibration data on February 24th) 

IMF2 641.807 IMF7 52.591   IMF12 1.439 

IMF3 694.521 IMF8 18.831 IMF13 0.687 

IMF4 390.350 IMF9 9.019 IMF14 0.327 

IMF5 190.387 IMF10 4.849 IMF15 1.990 

IMF6 89.751 IMF11 2.474 IMF16 0.106 

 

Table 2.5 Decomposition result of EMD method for the slew bearing test-rig data on 

May 3. 

IMFs of EMD (Hz) (vibration data on May 3rd) 

IMF2 702.880 IMF7 69.199   IMF12 1.227 

IMF3 684.340 IMF8 17.568 IMF13 0.638 

IMF4 346.227 IMF9 8.570 IMF14 0.432 

IMF5 1371.492 IMF10 4.026 IMF15 0.194 

IMF6 74.370 IMF11 2.042 IMF16 0.069 
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Table 2.6 Decomposition result of EMD method for the slew bearing test-rig data on 

August 30. 

IMFs of EMD (Hz) (vibration data on August 30th) 

IMF2 651.717 IMF7 28.891   IMF12 0.682 

IMF3 679.862 IMF8 13.682 IMF13 0.331 

IMF4 245.923 IMF9 6.464 IMF14 0.099 

IMF5 121.319 IMF10 3.052   

IMF6 63.554 IMF11 1.374   

 

According to Table 2.4 to Table 2.6, the bearing fault frequencies were not 

identified on February 24th. In contrast, the fault frequency of rolling element (BSF 

axial) appeared on May 3rd with 0.432 Hz. This frequency is associated with roller 

defects as shown in Figure 2.16(a). Interesting result was obtained from data on 

August 30th. The fault frequency of rolling element disappeared and another fault 

frequency in the outer raceway of 1.37 Hz emerged. The reason could be that the 

amplitude of signal 0.432 Hz is weak and is buried in the background noise. The photo 

of the outer raceway damage is shown in Figure 2.16(b). The roller and outer race 

damage photo was taken after final failure upon dismantling on September 2nd. The 

detailed vibration data used from the slew bearing test rig is presented in Chapter 3. 

Statistical features from the extraction results of EMD method are shown in Figure 

2.17. The mean, variance, skewness and kurtosis features are extracted from the 

summation of the low IMF frequencies (from IMF 9 to the lowest IMF with frequency 

band from 100 to 0.01 Hz) of the EMD results. The selection of these IMFs is based on 

the characteristic of slew bearing signal being dominated by low frequency 

components as presented previously in STFT result. 

               

Figure 2.16 (a) A view of damaged rollers in axial plane; (b) outer raceway damage. 

a b 
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Figure 2.17 Statistical-based features: mean, variance, skewness and kurtosis extracted 

from EMD decomposition. 

 

Wigner-Ville distribution (WVD) 

The Wigner distribution (WD) can be derived by generalising the relationship 

between the power spectrum and the autocorrelation function for non-stationary, 

time-variant processes [102]. The correlation function is a product of the function at a 

past time with the function at a future time [103]. The original WD for real signal )(tx  

is defined as [104] 

 
detxtxftW

fj
x
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        (2.24) 

The symbol ( ) in Eq. (2.24) denotes the complex conjugate. 

When the WD is applied for the analytical signal )(txA , it is called the Wigner-Ville 

distribution (WVD). The analytical signal is defined as  

)()()( tjxtxtx hA           (2.25) 

where )(txh  is the Hilbert transform of )(tx  being 
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The WVD has been used for gear fault detection [102, 103] and it is recently used for 

rolling element bearing to represent the time-frequency features of signals [64]. 

2.2.4 Category 4: Phase-space dissimilarity measurement 

Phase-space dissimilarity measurements, such as fractal dimension, correlation 

dimension approximate entropy and largest Lyapunov exponent (LLE), are developed 

based on the chaos theory. These methods have been applied in biomedical 

engineering studies [36, 37] and vibration signals [74, 105]. Present studies have 

conducted investigations into these methods in the slew bearing condition monitoring 

for feature extraction. The motivation is that multiple defects occur more frequently 

than single defects in slew bearings, therefore the phase-space dissimilarity 

measurements can be used to analyse the irregular or chaotic vibration signals. The 

phase-space can be computed as follows: 
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where J  represents reconstruction delay and can be computed by time lag / t , m  

represents the embedding dimension and M  represents the number of reconstructed 

vectors. The relation between N , J , m  and M  can be defined in the following form: 

JmMN )1-(  or JmNM )1-(-  . Thus the dimension of phase-space is a mM   

matrix. 

Fractal dimension 

Fractal dimension is used to quantify the complexity of signals by characterizing 

fractal patterns. The complexity can be quantified by examining the dynamical 

behaviours of phase-space or reconstruction vectors. The commonly used algorithm of 
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fractal dimension was proposed by Higuchi [106]. The field is rapidly growing as 

estimated fractal dimensions for statistically self-similar phenomena. These may have 

many practical applications in various fields including image analysis [107], 

neuroscience [72, 108], medicine [109], physics [110] and acoustics [111]. The 

application of fractal dimension in vibration signal of rolling element bearing has been 

presented in [73, 81]. The algorithm of fractal dimension is shown in Eq. (2.25) [81]. 

Once the phase-space matrix, X  is obtained (2.27), the mean absolute length 

between 
th

j  and ( 1th
j ) element of X  is defined as follows: 

end

end

LmeanjiL

jijijiL

mjfor

Jifor

m )()1-,(

))1-(,(-),()1-,(

:2

:1

1

1







XX
       (2.28) 

where J  represents reconstruction delay and m  is embedding dimension. Assuming 

that mL  is proportional to 
D

m
-

, then take the logarithmic natural of )/1( m  and mL . 

Hence, the fractal dimension D  can be computed using standard least-square fitting 

method. 

Correlation dimension 

Correlation dimension provides a tool to quantify self-similarity. A larger correlation 

dimension corresponds to a larger degree of complexity and less-similarity.  An earlier 

application of correlation dimension in bearing fault diagnosis was proposed by Logan 

and Mathew [74]. The correlation dimension was applied for vibration signals acquired 

from four different conditions: (1) normal (new bearing), (2) outer race fault, (3) inner 

race fault, and (4) roller fault. The damages were artificially introduced to the bearing 

parts. The bearing was operated at 3000 rpm. The method is able to identify the four 

different bearing conditions. 

The frequently used procedure to estimate the correlation dimension was 

introduced by Grassberger and Procaccia [112]. To calculate correlation dimension, the 

reconstructed matrix Eq. (2.27) are used as the input for the correlation dimension 

algorithm. The correlation dimension formula is given by: 
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where iX  and jX  are the position vectors on attractor, l  is the distance under 

consideration, )(x  is the Heaviside step function, 0)(  x

 
if 0≤X , 1)(  x

 
if 

0X , k  is the summation offset, M  is the number of reconstructed vectors from the 

original vibration signal and )(lC  is the correlation dimension. 

Approximate entropy 

The approximate entropy computes the value of regularity in the signal. Smaller 

value indicates more regular behaviour, while higher value of it indicates less regularity 

on the data set. An earlier application of approximate entropy in bearing signal was 

proposed by Yan et.al. [75]; however, the method is applied in high speed rolling 

element bearing signal. Yan et al. [75] mentioned that the deterioration of machine 

condition was followed by the increase of number of frequency components. This 

condition will decrease the regularity and increase the corresponding approximate 

entropy value. Similar to fractal dimension and correlation dimension, approximate 

entropy also uses phase-space matrix, X  in Eq. (2.27) as an input. According to [75] 

the initial step of approximate entropy is to measure the distance ))(),(( jXiXd  

between two vectors )(iX  and )( jX  which can be defined as the maximum difference 

in their respective corresponding elements: 

)|)1-(-)1-(|(max))(),((
,...,2,1

kjxkixjXiXd
mk




      (2.30) 

where 1...,,2,1  mNi , 1...,,2,1  mNj  and N  is the number of data points 

contained in the time series. For each vector )(iX , a measure that describes the 

similarity between the vector )(iX  and all other vectors )( jX , where ij   can be 

constructed as 

  ∑
≠

)(),(-
)1-(-

1
)(

ij

m
i jXiXdr

mN
rC        (2.31) 

the Heaviside step function, )(x  is similar to the symbol in correlation dimension 

where 0)(  x

 
if 0≤X , 1)(  x

 
if 0X . 
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The symbol r  in (2.28) denotes a predetermined tolerance value, defined as 

)(. Ystdkr            (2.32) 

where )(Ystd  means is the standard deviation of original time series or vibration 

signal, Y and k  is a constant )0( k . By defining 

  1-...,,2,1,)(ln
1-

1
)( ∑ 


 mNirC

mN
r

i

m
i

m      (2.33) 

the approximate entropy value of time series can be calculated as 

)](-)([lim),( 1

∞→
rrrmApEn

mm

N

         (2.34) 

Largest Lyapunov exponent 

The largest Lyapunov exponent (LLE) algorithm is an old method and has been used 

in some areas such as biomedical engineering field especially in the analysis of 

electroencephalography (EEG) signal [36]. The LLE algorithm measures the exponential 

divergence (positive or negative) of two initial neighbouring trajectories in a phase-

space. The objective is to quantify the appearance of disturbances corresponding to 

the signal abnormality. In other words, the LLE algorithm measures the degree of 

chaos in certain time due to any disturbances. In this thesis the term disturbances 

refers to any local instability vibration signal due to the dynamic contact between 

rolling elements and defect spots. A detailed description and further study of LLE 

algorithm for feature extraction of low speed slew bearings signals are presented in 

Chapter 4. 

The feature extraction result for correlation dimension, fractal dimension and 

approximate entropy extracted from slew bearing vibration data is presented in Figure 

2.18. It can be seen that approximate entropy shows better result in presenting the 

degradation condition of the slew bearing than correlation dimension and fractal 

dimension. A fluctuation in approximate entropy Figure in the last measurement (after 

the 90th day) indicates the slew bearing condition has changed. 
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Figure 2.18 Fractal dimension, correlation dimension and approximate entropy 

features extracted from the vibration slew bearing signal. 

 

2.2.5 Category 5: Complexity measurement 

Kolmogorov-Smirnov test 

The Kolmogorov-Smirnov (KS) test is a nonparametric test which can be used to 

compare or to measure the similarity of two cumulative distribution functions (CDFs), 

)(T x  and )(R x  [113]. )(T x  is a target CDF and )(R x  is a reference CDF. Because the 

signature of bearing condition can be identified by its CDF, therefore the K-S test can 

be applied in bearing condition monitoring to distinguish bearing health signal and 
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faulty signal. In order to distinguish the two CDFs, )(T x  and )(R x , a statistical distance 

D  is calculated. We can define this distance D  as the maximum absolute distance 

between )(T x  and )(R x . Mathematically, this is represented as follows 

)()(max xRxTD
x




        (2.35) 

The KS feature of slew bearing vibration data is presented in Figure 2.19. The ‘0’ 

represents normal condition and ‘1’ represent abnormal condition. It can be seen that 

at the beginning of the measurement, the condition of bearing was still normal. Then it 

changed to abnormal condition when bearing had run for a couple of days. This result 

needs further investigation as the abnormal detection was too early. 

0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1

t, days

K
S

 f
e
a
tu

re

 

Figure 2.19 KS test feature extracted from the vibration slew bearing signal. 

 

Sample entropy 

Sample entropy has been proposed by Richman and Moorman [114] to improve 

approximate entropy. The sample entropy is applied for feature extraction of gearbox 

vibration signals by Chen et al. [115]. However, the application of sample entropy for 

bearing vibration signal is still limited [116]. The sample entropy feature for slew 

bearing vibration data is shown in Figure 2.20. It can be seen from Figure 2.20, the 

sample entropy feature is not effective for slew bearing damage detection. 
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Figure 2.20 Sample entropy feature extracted from the vibration slew bearing signal. 

 

2.2.6 Category 6: Other features 

Singular value decomposition (SVD) 

SVD is usually applied to detect the periodicity of the time series [117]. A 

comparison study [118] has been shown that SVD is more powerful and sensitive than 

Fourier decomposition in terms of information content and robustness. Formula of 

SVD can be found in [66]. 

Piecewise aggregate approximation (PAA) and adaptive piecewise 

constant approximation (APCA) 

In online bearing condition monitoring cases, the changes of bearing condition can 

be effectively identified by measuring the similarity between two vibration signals (i.e. 

normal or reference and monitored signal) using Euclidean distance. However, the size 

of the measured data is a problem in Euclidean distance method. The most promising 

similarity search methods are techniques that perform dimensionality data reduction 

methods such as PAA [38, 79] and APCA [119]. APCA [119], is another approach of PAA 

that allows arbitrary length segments. PAA and APCA have some advantages. For 

example, PAA has twice as many approximating segments, and APCA is able to place a 

single segment in an area of low activity and many segments in areas of high activity 
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[119]. PAA is applied in this thesis for data pre-processing stage of circular domain 

feature extraction. The detailed discussion and the application of PAA in slew bearing 

vibration data is presented in Chapter 4. 

2.2.7 Conclusion 

Feature extraction methods in wide range application including mechanical area 

(bearing vibration signals), biomedical engineering area (EEG and ECG signals) and 

finance area (time series signal) have been presented. According to their basic 

principles, the methods were classified in six categories: (1) time-domain feature 

extraction; (2) frequency-domain feature extraction; (3) time frequency 

representation; (4) phase-space dissimilarity measure; (5) complexity measure; and (6) 

other features. Most of feature extraction methods in each category have been 

investigated and tested using real slew bearing vibration signal. It was shown that 

some features do not show bearing degradation trend clearly and the others are 

shown to be potential slew bearing condition parameters. The potential features are: 

impulse factor, margin factor, MM operators, wavelet kurtosis and approximate 

entropy. 

Some contents of Chapter 2 have been published in the following papers: 

 W. Caesarendra, P.B. Kosasih, A.K. Tieu, C.A.S. Moodie, B.K. Choi, Condition 

monitoring of naturally damaged slow speed slewing bearing based on ensemble 

empirical mode decomposition, Journal of Mechanical Science and Technology 27 

(8) (2013) 2253-2262. 

 W. Caesarendra, B. Kosasih, A.K. Tieu, C.A.S. Moodie, Circular domain features 

based condition monitoring for low speed slewing bearing, Mechanical Systems and 

Signal Processing 45 (2014) 114-138. 

 W. Caesarendra, B. Kosasih, A.K. Tieu, C.A.S. Moodie, Application of the largest 

Lyapunov exponent algorithm for feature extraction in low speed slew bearing 

condition monitoring, Mechanical Systems and Signal Processing 50-51 (2015) 116-

138. 
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Chapter 3 - Laboratory experiment and 

industrial measurement 

 

“The whole purpose of education is to turn mirrors into windows” 
(Sydney J. Haris) 

 

3.1 Laboratory slew bearing experiment 

The experimental run-to-failure bearing data, vibration and AE data used in this 

study were collected from a slew bearing test rig [1]. The test rig is designed to 

simulate real working conditions of a local steel making company such as high applied 

load and very low rotational speed. The rotational speed of the lab test rig can be 

varied from 1 to 12 rpm by using an inverted motor controller. This low rotational 

speed variation was achieved using two devices: (1) a motor to main gear reducer 

double vee belt system and (2) a final drive polychain belt drive. The test rig design 

specifications such as design rationale, safety, test rig stress frame design 

specifications, stress frame loading, speed requirements, power requirements, drive 

strength requirements and vibration isolation were explained in detail in [1]. A photo 

of the test rig is shown in Figure 3.1. 

 

Figure 3.1 A photo of slew bearing laboratory test rig. 
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The laboratory slew bearing experiment consists of two measurements: (1) slew 

bearing with continuous rotation and (2) slew bearing with reversible rotation. Each 

measurement operates the bearing from new to damage. 

3.1.1 Slew bearing with continuous rotation (first laboratory test) 

The vibration data for continuous rotation was acquired from four accelerometers 

installed on the inner radial surface at 90o to each other with the sampling rates of 

4880 Hz and 620 kHz [1]. The accelerometers were IMI 608A11 ICP type sensors. The 

accelerometers were connected to a high speed Pico scope DAQ (PS3424). The bearing 

was subjected to axial load of 15 tonne.  The bearing began running in 2006, however 

in order to provide continuous monitoring and produce run-to-failure bearing data, the 

bearing data was collected from February to August 2007 (139 days). In order to 

accelerate the bearing service life, coal dust was injected into the bearing in mid-April 

2007 (58 days from the beginning). In practice, especially in steel making companies, 

the slew bearing is located in the open air where the bearing is exposed to a dusty 

environment. For this reason, the coal dust was inserted in mid-April to simulate the 

real working conditions. 

3.1.2 Slew bearing with reversible rotation (second laboratory 

test) 

The similar test rig used in continuous rotation measurement was also used for 

reversible rotation experiment. The test rig was also operated at 1 rpm, but this time 

the bearing was run continuously in reversible rotation at 180 angle rotation. To 

enable reversible rotation, which is one of the typical movements of slew bearing 

applications in practice, the test rig was then modified by adding a control mechanism, 

as shown in Figure 3.2. Each day, the vibration and AE data were collected from the 

reversible rotation (clockwise and anti-clockwise). The illustration of reversible 

rotation is presented in Figure 3.3. 
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Figure 3.2 A photo of control mechanism to enable reversible rotation. 

 

Front side 
(0o)

Left side 
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Back side 
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PolyChain belt drive
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Figure 3.3 Illustration of reversible rotation from top view. 

 

Vibration data 

Four accelerometers, two AE sensors and four temperature sensors were used 

during the experiment. Two accelerometers of IMI 608A11 ICP type sensors with 

sensitivity 100mV/g and frequency range 0.5 to 10 kHz, and two accelerometers of IMI 

626B02 ICP type sensors with sensitivity 500mV/g and frequency range 0.2 to 6 kHz 
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were used. The IMI 608A11 ICP type sensors were installed on the inner radial surface 

at 180 degrees to each other and the IMI 626B02 ICP type sensors were attached on 

the axial surface at 180 degrees to each other. Similar to the measurement in 

continuous rotation, these accelerometers were connected to a high speed Pico scope 

DAQ (PS3424). The IMI 626B02 ICP type accelerometers were selected because of the 

minimum frequency range of 0.2Hz and because the sensitivity is higher than that of 

the IMI 626B02 ICP type accelerometer. The vibration signal was acquired using 4880 

Hz sampling rate. Figure 3.4 shows the schematic of the slew bearing test rig including 

the main drive gear reducer, the hydraulic load and how the bearing is attached. A 

detailed sensors placement is presented in Figure 3.5. 

 

Electric 

motor

Belt 

reducer

Main drive gear reducer

Rpm sensor

PolyChain belt drive

Slewing 

bearing

(INA YRT260)

Drive ring

Hydraulic jack

(locking nut)

 

 

 

 

 

 

Figure 3.4 Schematic of laboratory slew bearing rig. (a) A larger front view of test rig 

showing a slew bearing attached on the drive ring and the applied load from hydraulic 

jack and (b) sensors placement. 

 

a 
b 
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Figure 3.5 A detailed sketch of accelerometers and AE sensors location. 

 

Acoustic emission data 

Two integral AE PAC WD35A type sensors with a frequency range from 200 kHz to 1 

MHz were used. These sensors are attached using magnetic mounting onto the top 

outer raceway of the slew bearing in the axial direction with 180 degrees to each 

other, as shown in Figure 3.5. Each integral sensor has internally installed preamplifier. 

These sensors were connected directly to an AE PCI-2 card with 2 channel inputs, 18 

bit A/D conversion and 40 MS/second acquisition using coaxial cable with specified 

impedance (RG-58). The AE PCI-2 card was inserted into the computer. Similar to the 

vibration measurement, two data sets: clockwise and anti-clockwise, were acquired 

each day. Each data set was acquired for 35 seconds. The 35-second timeframe was 

determined based on the rotational speed of the slew bearing (1 rpm) and the 

reversible rotation angle (180o). In order to obtain an accurate condition monitoring 

and damage detection result, the recording time must encompass sufficient shaft 

revolutions in a data set. Hence, the 35 second measurement was selected. The 

parameter set-up of AE measurement on an AEwin data acquisition software was as 

follows: the fixed threshold level was 30 dB, pre-amp 40 dB, lower analog filter 1 kHz 

and upper analog filter 2 kHz. In the waveform set-up: sample rate was 1 MSPS, pre-
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trigger 5120 and 5k length were predefined. For low rotational speed rolling element 

bearings, the threshold has been studied and suggested to be 30 dB by Kim et al. [120]. 

Accelerated failure mechanism 

The bearing run started on 22 November 2012. To accelerate failure, irregular 

greasing was applied in the following procedures. First, when the bearing was ordered 

and purchased, the slew bearing had already been lubricated by the manufacturer. 

Second, the slew bearing was relubricated after it had run continuously for two 

months from the commissioning of the lab experiment. A third lubrication was done 

after the slew bearing had run for 5 months. The type of grease for lubricating the slew 

bearing was Lithium base grease. During the experiment, dynamic load ranging from 7 

to 15 tonnes was applied to the slew bearing through the hydraulic jack to accelerate 

the damage. This load is still below the maximum range of slew bearing requirement 

as shown in Table 1.1. The slew bearing was also subjected to an eccentric load about 

10 mm to the right as illustrated in Figure 3.6. The measurement was stopped on 30 

January 2014 for the identification of incipient damage which is already detected by 

time-domain feature extraction from the monitoring process. The bearing was then 

cleaned, and the damages on outer race, inner race and roller were analysed. The 

feature extraction results such as RMS, skewness, kurtosis and entropy was presented 

in Chapter 5. The bearing is assembled and attached to the test-rig. The second 

measurement was conducted from August to November 2014. The potential cause of 

the accelerated damage is investigated and the result is presented in section 5.5. 
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Figure 3.6 An illustration of eccentric loading. 
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3.2 Industrial measurement 

3.2.1 Coal bridge reclaimer 

Industrial bearing data used in this study was acquired from a slew bearing used in a 

coal bridge reclaimer. The bearing usually rotates at approximately 4.3 rpm. The type 

of slew bearing used is Rothe Erde 4.2 m diameter. The accelerometers are IMI512, 

500 mV/g ICP type piezoelectric. Data was collected from 2003 to 2006 at each sample 

point, approximately once per month. It was captured via an industrialized portable 

DAQ unit (NI 5102) with a sampling rate of 240 Hz. The bearing specification is shown 

in Table 3.1. 

Table 3.1 Specification of slew bearing used in coal bridge reclaimer. 

Specification 
Description  

     Dimension                Row  

  Outer diameter (D0)         4.2m   

  Number of rollers (z)         306 (axial)  

           360 (radial)  

  Diameter of rollers (dr)         32mm (axial)  

           28mm (radial)  

  Pitch circle diameter (PCD) of rollers         4159mm (axial)  

           4224mm (radial)  

 

The fault frequencies of the bearing are presented in Table 3.2. 

Table 3.2 Fault frequencies of coal bridge reclaimer (Rothe Erde) bearing rotating at a 

nominal speed 4.3 rpm [calculation is given in Appendix A]. 

Defect mode 
Fault frequencies (Hz)  

        Axial             Radial  

  Rotating race speed         0.075              0.075  

  Outer ring (BPFO)         13.41              11.38  

  Inner ring (BPFI)         13.58              11.56  

  Rolling element (BSF)         5.65              4.87  

  Rolling element (BSF)         0.037              0.037  
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3.2.2 Slew bearing data from industrial company in Korea 

The vibration data used in this study is acquired from an industrial company in 

Korea. The Wilcox accelerometer used during the data acquisition has a sensitivity of 

100 mV/g. This sensor is installed on the radial direction of the slew bearings, as shown 

in Figure 3.7. The slew bearing under test is a single-row Koyo from Japan with an inner 

and outer diameter of 1093 mm and 1107 mm, respectively. The bearing runs 

continuously in one direction at a rotational speed of 15 rpm. The 15 rpm is achieved 

using a gear reducer mechanism. The driving motor rotational speed is 1800 rpm and 

the gear ratio is 17:1. The output shaft speed of the driving motor is 106 rpm. The gear 

motor has 18 gear teeth and the slew bearing has 123 gear teeth. Thus, the 15 rpm 

speed can be obtained. A figure of the slew bearing under test and the sensor 

placement is presented in Figure 3.7. 

This bearing had been used for seven years. The maintenance engineer of the 

bearing company informed that it must be changed after years in use. Therefore, these 

data are treated as bearing damage data, supposedly including outer race, inner race 

or ball damage. If there is a fault in the outer race, inner race or even in the rolling 

element, the bearing fault frequencies must appear in the FFT. The bearing fault 

frequencies were calculated and presented in Table 3.3, where the gear mesh 

frequency is denoted by GMF. 

 

 

Figure 3.7 Slew bearing under test: (1) driving motor, (2) motor gear, (3) slew bearing 

gear and (4) sensor placement (radial). 
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Table 3.3 Frequency content of slew bearing signal from Korea. 

FTF 0.24Hz GMF 30Hz 

BSF 5.16Hz 2x GMF 60Hz 

BPFO 11.31Hz 3x GMF 90Hz 

BPFI 11.87Hz Bearing speed 0.24Hz 

 

Four data sets were acquired on 26 May 2010, 7 December 2010, 19 July 2011 and 1 

November 2011. These data are acquired within 1.6 seconds with a sampling 

frequency of 20480 Hz. 
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Chapter 4 - Condition monitoring 

based on feature extraction 

 

“If you can’t stand the fatigue of study, you will feel the poignant of 
stupidity” 

(Imam Syafi’ie) 

 

There has been no standard criterion for speed classification of rotating machinery 

so far. However, some published literatures have found that a rotating speed lower 

than 600 rpm is categorized as “low rotating speed machinery” [17-19] and a speed 

greater than 600 rpm is considered as “high speed” [20, 21]. Based on the above claim 

and the literature review presented in Chapter 2, this chapter classifies the speed in 

more details into three levels: (1) high speed (greater than 600 rpm), (2) low speed 

(below 600 rpm) and (3) very low speed (below 10 rpm). The literature review 

presented in Chapter 2 indicates that studies in low speed bearing condition 

monitoring (< 600 rpm) especially in case of naturally defective bearings has not been 

reported as widely as for high speed bearing with artificial damage. In the cases of high 

speed rolling element bearing, vibration analysis is a more commonly used method 

than AE method in both industrial application and research. It can be compared to the 

simpler and well developed data acquisition and analysis of vibration method. In 

contrast, recent studies claim that the application of the AE method for low speed 

bearing condition monitoring and early failure detection have offered an advantage 

compared with vibration analysis [19, 121, 122]. This project conducted both vibration 

and AE measurement to study the most effective and useful method for low speed 

slew bearing. In fact, both vibration and AE analysis required appropriate features in 

order to monitor the bearing condition. This chapter focuses on the development and 

application of feature extraction for low speed slew bearing vibration data. 

Two feature extraction methods have been developed in this study. The first 

developed method employs data reduction process using PAA to detect frequency 
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alteration in the bearing signal. From the processed data, circular domain features are 

extracted and monitored. The second developed method applied one of the phase-

space dissimilarity measures to analyse the chaotic characteristic of slew bearing 

vibration signal. Detailed introduction of each method is presented in the following 

sub-chapters. 

4.1 Circular domain features-based condition 

monitoring 

4.1.1 Introduction 

There have been extensive studies on vibration analysis and feature extraction for 

condition monitoring, fault diagnosis and prognosis of high speed rolling element 

bearing [123-126]. The results show that these techniques can effectively monitor the 

changes of bearing condition. In high speed rolling bearing, once a fault has initiated, 

the bearing can deteriorate rapidly within a few hundreds or thousands of revolutions. 

This will result in changes of vibration within a very short time from the onset of the 

fault [126]. In this case, the use of feature extraction methods such as time domain 

and frequency domain feature calculation is effective to distinguish the bearing 

condition. However, the methods and features suitable for a high speed bearing 

cannot be effectively applied for identifying the abnormal condition of low rotational 

speed bearings [18] particularly in extremely low rotational speed ( 1 rpm) slewing 

bearings [1]. This is because the low impact energy emission from the rotating 

elements are in contact with a defect spot and might not show an obvious change in 

vibration signature corresponding to the bearing damage condition. Thus they will 

become hardly detectable using conventional vibration analysis [127]. Moreover, the 

bearing signal is also deeply masked by the background noise. Therefore, although 

time domain features [123-126] are extracted from the signal where the noise is 

dominant, the onset of bearing fault is still undetectable [1]. Eventually the amplitude 

is greater than the background noise. However, the features’ value will have increased 

substantially by this stage. This shows that a significant change of bearing condition 

has already occurred. Typically, the bearing condition is already close to unsustainable 

operation or near failure by then. 
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This study presents a novel application of circular domain feature extraction based 

condition monitoring methods for low speed slewing bearings. The aim of the study is 

to investigate alternative features to identify the incipient fault and prevent the 

occurrence of a sudden breakdown. In contrast to the previous angle and cyclic 

domain analysis discussed in §4.1.2, this study employed circular analysis to extract the 

circular domain features. Different from general time domain statistical analysis, 

circular analysis is a sub-class of the field of statistics. In circular analysis the statistical 

features such as mean, variance, skewness and kurtosis are calculated from the data 

distributed in circular domain or angular domain. Circular features were initially 

introduced in biological and medical science fields [128-130]. 

This study combines piecewise aggregate approximation (PAA) data reduction 

processes and circular feature calculations (inspired by Berens [130]) as the monitored 

variables. The study demonstrates the efficiency of the proposed method in detecting 

the onset of slew reversible bearing fault. A reversible slew bearing alternately rotates 

in clockwise and anti-clockwise directions. The general steps of the proposed method 

are illustrated in Figure 4.1. The method consists of three main steps; (i) reduction of 

the vibration data using PAA process and construction of neighborhood correlations 

from the reduced data, (ii) determination of the shape of the neighborhood 

correlations using ellipse least-square fitting for pattern classification and (iii) plotting 

the distribution of the ellipse shape in the angular domain, and calculating the circular 

domain features (in this thesis, the first laboratory slew bearing data was used as the 

test case). The detailed description of Figure 4.1, especially the signals output between 

the boxes from original vibration signal to ellipsoid pattern classification, is presented 

in §4.6. The proposed method is compared to time domain features and advanced 

signal processing methods such as wavelet decomposition and empirical mode 

decomposition (EMD).  

4.1.2 Angular resampling 

Angular resampling is a useful signal processing methodology in vibration analysis. It 

has been proven to work well in rotational machineries with variable speed. The first 

known attempt used angular resampling by means of angle domain analysis [131]. The 

paper demonstrates the different results obtained from simulated sinusoidal signal 
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sampled at time domain and angular domain. Moreover, the sinusoidal signal is 

simulated with impulse signal that represents the bearing fault and varying speed 

using mathematical function. It is shown that the simulated fault is clearly identified in 

angular domain analysis even though the speed changes. Many researchers have used 

angular resampling to perform order domain analysis or order tracking method [132, 

133]. 

Unlike frequency domain analysis which reveals the dominant frequency content of 

the vibration signal, the order domain analysis or order tracking method calculates 

multiple running speed content of the variable shaft rotation. Fyfe and Munck [132] 

stated that speed-related vibrations can be easily identified using order tracking 

method. The authors presented the two existing order tracking methods, namely 

conventional order tracking and computed order tracking. The conventional order 

tracking employed special instrumentations such as ratio synthesizer and anti-aliasing 

tracking filter to directly sample the analog vibration signal at constant increment 

angle (i.e.  ).  Computed order tracking method resamples the acquired discrete 

vibration data that are sampled at uniform t into constant angular increments  . 

Once a specified block of data sampled at constant   (angle domain samples) from 

both methods has been obtained, the order spectrum is computed using Fast Fourier 

Transform (FFT). Moreover, the effect of various factors on the accuracy of the 

computed order tracking method was investigated. However, the data used for 

computing the order tracking is the simulation data. These are generated from run-up 

simulation model instead of actual data.  An extended work of the two previous order 

tracking methods described in [132] was proposed by Bosssley et al. [133]. The focus of 

these works was to assess the accuracy of the three different order tracking methods: 

conventional order tracking, computed order tracking and hybrid of the two. The 

methods were applied in simulation vibration signals produced from a power station 

gas turbine shaft. 

Case studies of angular resampling application include rolling element bearing [134, 

135], gearbox [136-138], wind turbine [139, 140], and induction motor [141] analyses. 

The angular resampling application in [136] used the acceleration signals directly, and 

it does not require an encoder signal. The resampling algorithms developed in the 
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above published literatures [136-138] are applicable for small speed fluctuation cases. 

Ref. [139] offered an improved angular resampling algorithm for variable speed 

machineries such as wind turbine. A recent and promising method for natural roller 

bearing fault detection based on instantaneous angular speed measurement has been 

presented by Renaudin et al. [135]. The instantaneous angular speed measurement 

with a true angular sampling is conducted using magnetic and optical encoders. The 

instantaneous angular speed measures the kinematics of the device using the principle 

of pulsed timing method. This study proved that instantaneous angular speed exhibits 

small periodic fluctuations in the angular frequency domain in time of the occurrence 

of spall damage. 

The application of angular resampling in ‘slew bearing’ has been considered in 1990 

[142] as an internal steel metal making company report. However, the report only 

presented the theoretical analysis without any example in real case. To date, there 

have been limited literatures that discuss the application of angular resampling in slew 

bearing cases.  

4.1.3 Piecewise Aggregate Approximation (PAA) 

Theory 

PAA data reduction process was introduced by Yi and Faloutsos [143] and Keogh et 

al. [144] independently. It was first developed as a data reduction technique for large 

time series data whilst keeping its characteristic. To reduce the data length, one 

sequence of sampled vibration data, ),...,,( 21 Nyyyy

 

with N number of data points 

is divided into w window of equal size termed frames. The mean value of the data in 

each frame and the vector of these mean values becomes the reduced data 

representation or PAA result. The mean value of data in one frame is given as follow: 





nw

nwj

jn y
w

x

1)1(

1
           (4.1)

 

The PAA result of Eq. (4.1) is the vector ),...,,( 21 nxxxx . One cycle of sinusoidal signal 

and the reduced data representation are shown in Figure 4.1. In the next step, the PAA 

result is used as processed data to identify the frequency alteration. 
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Figure 4.1 One cycle of sinusoidal signal (1 Hz) sampled with 64Hz sampling frequency 

is shown with solid blue curve. The data is divided into 8 frames (solid red line). The 

calculated mean value of sampled data in each frame is shown in yellow square shape. 

All mean values notated by the vector of ),...,,( 821 xxxx are the PAA results. The 

index 8...,,2,1 www  is the equal window size or “frame”. 

 

The saved vibration data are obtained from extremely low rotating speed bearing ( 

1 rpm) that is acquired at certain sampling rate over one minute or more. The data 

reduction process is required for these saved data. In this study, PAA data processing is 

used to reduce the saved data but still can extract the high frequency component from 

short-duration signal (1 second). This is suitable for the present analysis, because slew 

bearing signal were sampled few times over long-duration each day during the months 

long experiment duration. The high frequency signal indicates the presence of fault 

initiation. The more high frequency component identified in one data set indicates that 

the bearing condition deteriorates further. 

In addition, when slew bearing condition is normal, the bearing vibration signal 

amplitude is much lower than the background noise amplitude. As bearing condition 

deteriorates and the onset of damage occurs, the bearing signal amplitude will 

increase, but it may still be lower than the background noise amplitude. Therefore, if 

time-domain features are calculated from this signal, the feature values are still 

indistinguishable from normal condition bearing feature values. When bearing 
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condition is close to unsustainable operation, the bearing signal becomes stronger. 

Sometime later, the signal will be greater than the background noise. At this stage the 

time-domain features will be more sensitive. With PAA method combined with 

circular-domain features calculation, the onset of damage can be identified.  This will 

allow an appropriate planning of the preventive maintenance program. 

Identification of frequency alteration from the shift of the ellipsoid 

orientation 

The question regarding the application of PAA is how frequency alteration is 

detected. The investigation is conducted using simulated data. Two different signals 

(1Hz and 5Hz frequency) sampled with sampling frequency of 64Hz are shown in 

Figures 4.2 to 4.4. Signals with amplitude 1 are simulated in one second. Each signal is 

analyzed using PAA method with equal frame or window size. Three different window 

sizes namely 2, 4 and 8 are used in Figures 4.2, 4.3 and 4.4 respectively. The reduced 

data or PAA result, ),...,,( 21 nxxxx  is plotted in the form of neighborhood correlation 

plot, )1( nx  against )(nx . For 1Hz signal, the neighborhood correlation plots show 

the ellipsoid axis is oriented at 45 degree angle as depicted in Figures 4.2(a) to 4.4(a) 

for window size of 2, 4 and 8. While, in case of 5Hz signal, the ellipsoid still inclines at 

45 degree angle with window size of 2, but it changes to 135 degree angle when 

window sizes of 4 and 8 are used. Based on the result, it can conclude that the 

frequency alteration is highly dependent on the window size used. A detailed 

discussion of the selection of window sizes is presented in Appendix B. 

Moreover, the effect of different frequency with fixed window size is investigated 

with four different frequencies namely 1Hz, 2Hz, 3Hz and 6Hz sampled at 64Hz. A 

window size of 4 is employed for each signal. It can be seen in Figure 4.5 in the 

neighborhood correlation plots, the ellipsoid of frequency 1Hz, 2Hz, and 3Hz is 

oriented at 45 degree angle (right ellipsoid pattern). But it is shifted to 135 degree (left 

ellipsoid pattern) when the frequency is 6Hz. This implies that frequency alterations 

can change the angle of the ellipsoid axis of the reduced data obtained from PAA 

process. The frequency alterations mean the apparent of one or more bearing fault 

frequency in the vibration signal and/or the apparent of high frequency content 
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excited from the bearing damage. In addition the impact between the damage spot 

and rolling element will also generates the signal with high frequency. Therefore, the 

used of PAA process can detect this sudden change. 
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Figure 4.2 Neighborhood correlation plots of 1Hz and 5Hz sinusoidal signals with 

window size = 2. 
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Figure 4.3 Neighborhood correlation plots of 1Hz and 5Hz sinusoidal signals with 

window size = 4. 
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Figure 4.4 Neighborhood correlation plots of 1Hz and 5Hz sinusoidal signals with 

window size = 8. 
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Figure 4.5 Sinusoidal signal and PAA process (left) and neighborhood correlation plot 

based on PAA result (right) for different frequencies with fix window size of 4: (a) 1Hz; 

(b) 2Hz; (c) 3Hz; (d) 6Hz. 
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PAA application in laboratory slew bearing rig and coal bridge reclaimer 

data 

PAA data reduction process with w = 32 and 16 were used in processing the 

laboratory slew bearing data and the reclaimer data, respectively. The result is plotted 

in neighborhood correlation plot, )1( nx against )(nx as shown in Figure 4.6. Three 

different neighborhood plot orientations are clearly visible namely (1) centered; (2) left 

shifted at 135 degree; and (3) right shifted at 45 degree. When the bearing is in good 

condition, the neighborhood plot appears to have centered orientation; when the 

condition starts to deteriorate, the ellipsoid is oriented to 135 degree (left shifted); and 

when the condition of bearing is close to failure the neighborhood plot is at 45 degree 

(right shifted). The 135 degree (left shifted) and 45 degree (right shifted) are the result 

in the plotting of neighborhood correlation plot. The question is what triggers the 

change of the orientation. The answer is the change of frequency explained in 

subsection 4.2. Furthermore, the data scattered in neighborhood plot with centered 

orientation is due to the background noise. The background noise is the common issue 

in practice. When the acquired signal contains dominant background noise, the 

neighborhood plot produce centered orientation. When the bearing is in good 

condition, the bearing signal is very weak and is deeply masked by the background 

noise. This is because the low amplitude of bearing signal is associated with good 

bearing condition. 

To demonstrate the effect of the change of bearing signal magnitude, another 

simulated signal is produced as shown in Figure 4.7. The 5Hz frequency signal is 

sampled with sampling frequency identical to the sampling frequency of laboratory 

slew bearing rig data i.e. 4880Hz for 2sec. The first one-second signal contains the 

sinusoidal signal plus white noise where the amplitude of sinusoidal signal is greater 

than the amplitude of white noise shown with blue signal. The last one-second 

simulates the weak 5Hz signal that is deeply buried in white noise as shown in red in 

(Figure 4.7(a)). A window size of 40 was used for each type of signal resulting in 122 

segments. When the 122 reduced data in the form of neighborhood correlations plot, 

)1( nx against )(nx , the data is scattered in the right ellipsoid orientation (45o) as 

shown in the left plot in Figure 4.7(b). 
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When the amplitude of background noise is larger than the bearing signal, the data 

is scattered in circular formation. This demonstration illustrates the suitability of 

neighborhood correlation plot for bearing signal detection. An amplitude ratio 

denoted in Figure 4.7 was computed by 
RMSRMS AV / , where 

RMSV

 

is the root mean 

square of vibration signal amplitude and 
RMSA  is the root mean square of white noise 

amplitude. The green color signal is the PAA reduced data. 

Elliptical least-square fitting method for PAA results 

The right or left ellipsoid oriented patterns presented in Figures 4.2-4.5 only occur 

in pure sinusoidal signal. In practice, the PAA result or data reduced representation is 

scattered in neighborhood correlation plots as shown in Figure 4.6. Even though the 

PPA result is scattered but it still has ellipsoid outline. Thus, to establish the ellipsoid 

outline curve from the scattered data, direct least-square fitting method of ellipses 

[145] is used. This method [145] has a high computational efficiency compared to 

conventional elliptical fitting method [146, 147]. 

From the fitted ellipse three possible ellipsoid orientations are obtained labelled as 

0 for centred orientation, 1 for right shifted orientation (45 degree) and 2 for left 

shifted orientation (135 degree). This method is used as the ellipsoid classification 

recognition in the circular feature analysis. 
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Figure 4.6 Results of PAA data reduction of the laboratory test data: (a) March 2007; 

(b) May 2007; (c) August 2007; and results of coal bridge reclaimer data: (d) May 2004; 

(e) January 2005; (f) September 2006. 

 

a 

b 

c 

d 

e 

f 



Chapter 4 - Condition monitoring based on feature extraction  

71 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-5

0

5

Time (s)

A
m

p
lit

u
d
e

Sinusoidal signal + White noise

-2 0 2
-2

0

2

x(n)

x
(n

+
1
)

0 0.5 1
0

0.5

1
- Sampling frequency : 4880

- Window size : 40

- PAA data reduced : 122

- Amplitude ratio : 0.56296

-2 0 2
-2

0

2

x(n)

x
(n

+
1
)

0 0.5 1
0

0.5

1
- Sampling frequency : 4880

- Window size : 40

- PAA data reduced : 122

- Amplitude ratio : 0.07037

 
Figure 4.7 (a) Simulated 5Hz signal with added white noise for different amplitude 

ratio; (b) PAA result or data reduced representation plotted in neighborhood 

correlation plot. 

Simulated defective bearing condition monitoring using PAA process 

Simulated progressive deteriorating condition of the bearing can be viewed as 

composed of four stages shown in Figure 4.8. During stage I, the bearing is still in good 

condition and the amplitude of the background noise is larger than the amplitude of 

the bearing signal. In this stage, there is no fault in the bearing and the weak bearing 

signal is deeply buried in the background noise. Using a window size of 40, the 

neighborhood correlation plot shows centered or circle orientation. Stage II is defect 

inception stage. In this stage, the onset of damage starts to occur as signified by the 

increased amplitude of bearing signal. This stage usually does not last long. The 

neighborhood correlation plot of this stage has evolved from circle into a right ellipsoid 

orientation (45 degree). In stage III, the progressive fault occurs signified by the 

presence of unknown high frequency signal. The neighborhood correlation plot 

ellipsoid orientation is switched over from right to left. In the slew bearing case, this 

can occur when bearing defect frequency increases suddenly after faults initiation. As 

the defects strike another surface, they excite the resonance frequency of the sensor, 

bearing or test-rig itself [148] and produce the typical frequency signals which are 

a 

b 
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higher than bearing fault signals. These resonances would be higher than half the 

sampling frequency of 4880 Hz and therefore be aliased. In the last stage, the bearing 

is in a severely damaged condition signified by high bearing fault signal amplitude. At 

this stage, the ellipsoid has the right orientation again. The simulation demonstrates 

that any change of the bearing condition will be manifested in the change of ellipsoid 

orientation. 

The question now is what if the orientation shift is an isolated instance. Can it still 

be a reliable parameter for monitoring the progressing fault? To get a definitive 

detection of bearing condition, the ellipsoid orientation is considered as a bearing 

signal feature and presented in the circular domain. 
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Figure 4.8 Progression of simulated bearing signal degradation and the detection of 

fault occurrence using PAA. This signal is simulated with sampling frequency of 4880 

and PAA window size of 40. Stage I: 5Hz signal + white noise for amplitude ratio of 0.1. 

Stage II: 5Hz signal + white noise for amplitude ratio of 0.4. Stage III: 55Hz signal + 

white noise for amplitude ratio of 0.4. Stage IV: 5Hz signal + white noise for amplitude 

ratio of 1. The four neighborhood plots show the evolution of the ellipsoid and its 

orientation change. 
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Signal processing flow process from original slew vibration signal to 

ellipsoid pattern classification 

Figure 4.9 shows the illustration of signal processing based on PAA and elliptical 

least-square fitting method for slew bearing signal acquired on May 25th. Each 1 

second data set is examined instead of whole data set in 30 seconds to extract the high 

frequency component in short duration. Using the neighborhood correlation plot 

combined with elliptical fitting method, this high frequency component can be 

identified. It is well known that in one second, high frequency signal has more cycles 

than lower frequency signal. If the window size is constant, the mean value of samples 

in one window size will be different between the signals with more cycles and lower 

cycles. This result in the different neighborhood correlation plot, sample 

)1( nx against sample )(nx . 

The three different data at 4 second, 14 second, and 23 second were selected for 

illustration. As shown in Figure 4.9, each second of data set which contains 4880 

samples was reduced using PAA method with window size of 8. The 4880 samples 

were reduced into 610 samples. Then, the data reduced (610 samples) are plotted in 

neighborhood correlation plot, )1( nx against )(nx . Using elliptical least-square fitting 

method [145] explained previously, the shape of neighborhood correlation plot can be 

identified and classified into three different orientations: ‘left shifted ellipsoid’, ‘right 

shifted ellipsoid’, and ’centered’. The onset of bearing fault is signified by the presence 

of high frequency signal component and represented by the right shifted ellipsoid. 

Therefore, the right shifted ellipsoid is recorded as the term of ‘occurrence’ and is used 

in the next step of circular domain transformation (Figure 4.7) and circular domain 

features calculation (Figures 4.8 and 4.9). 

The combined PAA and circular domain features is used to detect the defect 

inception stage. As mentioned earlier that the defect inception stage occurs in stage 2 

(see Figure 4.8). The neighborhood correlation plot of stage 2 is right ellipsoid. 

Therefore, the right ellipsoid is recorded for further processing step as presented in 

Figure 4.9. 
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Figure 4.9 Illustration of signal processing based on PAA method and ellipse least-

square fitting method using vibration data acquired on May 25th (the 90th day). 
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4.1.4 Circular feature analysis 

Circular domain transformation 

The working principle of circular features calculation is different from time domain 

features calculation. In time domain features calculation, the features are calculated 

directly from vibration signal. The time domain features calculated from normal 

bearing signal are different from faulty bearing signal. This condition has been 

recognized in typical speed bearing (>600 rpm). In slewing bearing case, the bearing 

fault signal is weak and background noise is dominant. Thus time domain features 

become undetectable to the change of bearing condition especially the onset of 

bearing fault. This is because features are calculated in noisy signal. This drawback is 

addressed in this thesis by introducing an alternative method called circular domain 

features calculation. 

To calculate features in circular domain, the PAA processed data should be first 

transformed into angular domain. The purpose is to identify the changes of bearing 

condition, particularly to identify the presence of high frequency signal component. 

This component is due to the contact between rolling element and defect spot within a 

definite sampling period e.g. one second ( 6 degree of rotation) for bearing run at 1 

rpm. In practice, the slewing bearing rotates in reversible mode at predefined span   

e.g. 360o, 180o, 120o or 90o. Therefore the time domain when the vibration data is 

collected and is converted initially to an angular scale in degree by 











maxt

t
             (4.2)

 

where θ
 
is the angular scale vector in degree, )...,,,( 21 Ntttt  is time occurrence (the 

member of vector t  is depends on the time occurrence of each 1 second ( 6°) 

analysing using PAA method), and Ntt max  is the total time the bearing rotate in one 

direction. If the bearing is run at 1 rpm with   = 180o
, the duration of slewing bearing 

to complete one angular span, maxt  is 30 second. It should be noted that the interval 

t  corresponds to the sampling frequency, fs  of the vibration data. Then from the 

angular scale in degree, it is converted to an angular scale in radians by 
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180

θα             (4.3)
 

where α  is the angular scale in radians. Alternative straight forward equation to 

transform time vector, )...,,,( 21 Ntttt  into angular quantity, )...,,,( 21 Nα  is 


2

360max


















t

tα           (4.4)

 

Note that Eq. (4.4) computes the entire linear vector (time domain) and converts it 

into angular vector (circular domain). α
 
is calculated according to PAA result (each 

sample of occurrence). Therefore, the new vector of α  is )...,,,( 21 Nα  where C  is 

the number of occurrences and each data point of occurrence 
i ...,,, 21  is denoted 

as i . 

The PAA method as frequency alteration identification and circular domain 

transformation is illustrated in Figure 4.10. One second (≈ 6°) of time series vibration 

(May 25th 2007) containing 4880 sampled points is used as an input for PAA method. 

The occurrence and non-occurrence is identified as “1” and “0” respectively. The 

distribution of circular occurrence “1” in circular-domain is shown. Subsequently 

circular features such as circular mean, circular variance, circular skewness and circular 

kurtosis are calculated to obtain the statistical behaviour of scatter data in circular-

domain. The detailed description about the application of circular features on the 

laboratory slew bearing data based PAA result is explained as following. 
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Figure 4.10 Illustration of PAA method as frequency alteration identification and time 

domain to circular domain transformation using the vibration data acquired on May 

25th (the 90th day). 

 

Circular features calculation 

To apply circular features calculation, the second when class 1 orientation occurs is 

recorded. The time occurrence is transformed into angular dimension α  using Eq. 

(4.4). 
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Circular mean and mean resultant vector: The mean of vector α  cannot be 

estimated using simple linear averaging data points. Since α  is in angular directions, 

the members of vector α
 

are initially transformed to unit vectors in the two-

dimensional plane by 

ii rZ cos       or       ii rZ sin          (4.5) 

where r  is the radius of two-dimensional circular plane and 1r  is used in this thesis. 

This is illustrated in Figure 4.11(b), where all data points, α  (occurrences) marked by 

blue circles lie on the unit circle. As indicated further in Figure 4.11(b), the x-

coordinate of a point ( i ) corresponds to cosine of the angle and the y-coordinate to 

the sine. For the ease of implementation in MATLAB, this transformation is written in 

the following equation 

)(exp)sin(cos iiii irirZ            (4.6) 

After this transformation, the mean of Z  can be computed from the vectors iZ  by 


C

i

iZ
C

Z
1

            (4.7)

 

where C  is the number of data points (occurrence). The vector Z  is called mean 

resultant vector. To yield the circular mean  , the built-in function angle in MATLAB is 

used to transform Z  into the circular mean  . Moreover, i  indicates point in the 

circular domain where the correlation plot has the right orientation (45 degree) or 

class 1. 

Resultant vector length: The length of the mean resultant vector is a fundamental 

quantity for the measurement of circular spread in circular domain [130]. If the 

samples are concentrated, the resultant vector length is around the mean direction. 

The resultant vector length is estimated by 

ZR              (4.8)
 

Circular variance: The circular variance is closely related to the length of the mean 

resultant vector. It is defined as 

RV 1             (4.9) 
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Moreover [130] mentioned the difference between the variance on a linear scale and 

the circular variance. The circular variance is bounded within the interval [0, 1]. It 

indicates the spread of a data set. If all sample points lie on the angular scale with the 

same direction, the resultant vector will have a length close to 1 and the circular 

variance will correspondingly be small. If the samples spread out evenly around the 

circle, the resultant vector will have length close to 0 and the circular variance will be 

close to maximum. 

Circular skewness: As the third order statistical moment, circular skewness 

measures the symmetry of distribution data with respect to the circular mean. It can 

be calculated as follows [128] 

 



C

i

i
C

m

1

2sin
1          (4.10)

 

Circular kurtosis: Similar to time domain kurtosis, circular kurtosis measures the 

degree of spread of the distribution around the peak. Kurtosis indicates the condition 

of bearing and provides potential damage detections at an earlier stage. When defects 

impact rolling element parts, they produce a response signal that has a probability 

density sharper than a normal condition [149]. Circular kurtosis can be estimated as 

[128] 

 



C

i

i
C

k

1

2cos
1          (4.11) 

A large positive sample value of k  close to one indicates a sharp distribution. Circular 

kurtosis value will increase when the class 1 ellipsoid orientation occurs more 

frequently and data are distributed uniformly in circular domain. On the contrary, 

kurtosis value will decrease when the data is few and distributed randomly. This 

enables the onset of bearing fault to be identified using circular kurtosis coupled with 

PAA data reduction method in the slew bearing condition monitoring case. 
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Application of circular features on laboratory slew bearing data based PAA 

result 

To obtain a clearer detection of bearing condition, the ellipsoid classification is 

considered as bearing signal feature and presented in circular domain. In order to 

determine whether a shift is an isolated instance or not, the ellipsoid orientation 

classification is conducted every second ( 6 degree) for one minute equivalent to 

reversible full rotation for 1rpm. The highlights of circular domain transformation and 

circular features calculation result are depicted in Figures 4.11 and 4.12. Figures 4.11 

and 4.12 show the difference of circular features result based on PAA method 

obtained on day 9th and day 90th of the bearing running time. Day 9th is selected to 

represent the normal condition and day 90th is selected based on the observation 

result of circular domain features as shown in Figure 4.13. The time domain signal 

representation in circular domain is shown in part (a). The vibration signal plotted in 

circular domain is the slew bearing data in 30 seconds ( 180 degree). After the 

application of PAA process with the window size of 8 and the ellipse least-square 

fitting method, the ellipsoid shape classification based on the neighborhood 

correlation plot of PAA result is obtained. The classification result of every second is 

called occurrence. The result of right ellipsoid occurrence 1 is shown in part (b) 

(shown in circle blue line). Finally, the four circular features based on the result plotted 

in part (b) are calculated to reflect the statistical behavior of the occurrences of the 

minute. The circular features calculation is presented in part (d). The process is then 

applied on the lab slew bearing data from February to August (139 days). The solid red 

line in Figures 4.11 and 4.12(b) and (c) is the resultant vector length, R . The R  value 

decreases when the data is spread out to angular domain. 
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Figure 4.11 First laboratory slew bearing data acquired on March 1 (the 9th day): (a) 

vibration data in circular domain; (b) the ‘occurrence’ results plotted in circular domain 

(in radian); (c) circular histogram (in degree) (note: blue line and red line is circular 

histogram and resultant vector length (R), respectively); (d) circular feature extraction 

results. 

 

 

Figure 4.12 First Laboratory slew bearing data acquired on May 25 (the 90th day): (a) 

vibration data in circular domain; (b) the ‘occurrence’ results plotted in circular domain 

(in radian); (c) circular histogram (in degree) (note: blue line and red line is circular 

histogram and resultant vector length (R), respectively); (d) circular feature extraction 

results. 
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(c) Feature 3: Skewness 
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(d) Feature 4: Kurtosis 

Figure 4.13 Circular-domain feature extraction results and comparable methods (time-

domain features, wavelet decomposition and EMD) from February to August 2007 (139 

days measurement). 
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The entire circular domain features calculation results from February to August (139 

days period) are shown in Figure 4.13. The circular domain features are compared to 

time domain features, features calculated from detail coefficient (D3) of wavelet 

decomposition and features calculated from the summation of the low IMF 

frequencies (from IMF 9 to the lowest IMF) of the EMD results. Further discussion is 

presented in §4.1.5. It is shown that the onset of bearing fault can be detected in 

angular domain. This allows the engineer to make better scheduling of maintenance 

work. In detail, the circular features show steady condition in the early stage of the 

bearing operation indicating the bearing is still in normal condition as shown in Figures 

4.13(a)-(d). When fault occurred, features show the peak value in the 90th day 

indicates the onset of bearing fault and fluctuates starting from the 90th until the 139th 

day (end of August 2007). The circular features can indicate the onset, however, a few 

tiny spikes from the day 90th to the day 139th hardly conclusive. Therefore, a more 

robust condition monitoring parameter is needed. 

The effect of different window size is investigated in this study due to the 

importance of the proper window size in the detection of the frequency alteration. In 

order to obtain the same data points in one frame, the window size should be element 

of the factors of sampling rate. In this study, the sampling rate is 4880Hz and thus the 

window size should be the member of the factors of 4880. Five different window sizes 

which are the member of factors of 4880 were selected. The selected window sizes are 

61, 40, 16, 8 and 4. In addition, eight different frequencies are also selected from 50Hz 

to 225Hz with the interval of 25Hz. Calculate the shift factor,  as presented in Eq. (B3) 

using the predetermined window sizes and frequencies. The shift factor is used to 

identify the ellipsoid changes orientation from right to left or vice versa based on the 

threshold of   = 2 (see Appendix B). The result of the calculated shift factors for 

different window sizes and different frequencies is presented in Table 4.1. It can be 

seen from Table 4.1 that for window size of 8, the shifting factor is greater than 2 for 

frequency less than 150Hz. On the contrary, the shifting factor is less than 2 for 

frequency greater than 150Hz. The clearer illustration is shown in Figure 4.14. This 

condition is confirmed by the FFT result of May 25 as shown in Figure 4.15, where the 

frequency of approximately 145 Hz is clearly shown. This frequency is much higher 
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than the bearing fault frequencies presented in Table 4.1. It is assumed that this 

frequency triggers the ellipsoid shifting orientation detected by PAA result. 

Table 4.1 The effect of different window sizes on different unknown frequencies. 

Window size, w   

Shift factor,   for different unknown frequency alteration and 

different window size (calculated using Eq. (B3)) 

50Hz 75Hz 100Hz 125Hz 150Hz 175Hz 200Hz 225Hz 

w = 61 0.8 0.533 0.4 0.32 0.267 0.229 0.2 0.178 

w = 40 1.22 0.813 0.61 0.488 0.407 0.349 0.305 0.271 

w = 16 3.05 2.033 1.525 1.22 1.017 0.871 0.763 0.678 

w = 8 6.1 4.067 3.05 2.44 2.033 1.743 1.525 1.356 

w = 4 12.2 8.133 6.1 4.88 4.067 3.486 3.05 2.71 
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Figure 4.15 FFT of slew bearing data on May 25 data i.e. 90 days after the start. 

 

4.1.5 Discussion 

A new circular domain analysis for slew bearing condition monitoring based on PAA 

and circular domain features calculation has been introduced and presented. The 

method employed the different technique of calculation with previous and existing 

angular domain analysis as discussed in section 4.1.2. In order to present the unbiased 

performance comparison between the proposed method and other methods, the 

proposed method is compared to time domain features calculation directly from 

vibration signal and features. These were calculated from two advanced signal 

processing: wavelet transform and EMD. The performance comparison is summarized 

in Table 4.2 and Table 4.3. The performance comparison is based on two key questions 

with regard to advanced and effective condition monitoring method for slew bearing: 

(1) Can the method identify the onset of bearing fault? 

(2) Can the method present the progressive deterioration from the onset of bearing 

damage to the complete failure? 

For question (1), it can be seen from Figure 4.13 that the features of the proposed 

method show the maximum feature value in the 90th day, while this is not observable 
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from time domain features calculation and wavelet transformation based features 

calculation. The maximum feature value in the 90th day is also identified in EMD based 

features calculation results especially in variance and kurtosis features. It is assumed 

that this phenomenon is the onset of slewing bearing fault. Therefore, for question (1), 

it is proved that the proposed method is able to identify the initial onset of bearing 

fault consistently as shown in four circular domain features compared to the other 

methods (see Figure 4.13 and Table 4.2). However, the proposed method is unable to 

determine the failure degradation trend or progressive deterioration from the 

identified onset of bearing fault to complete failure. The progressive deterioration is 

more visible in features calculated from wavelet decomposition particularly in 

variance, skewness and kurtosis features; and time domain features especially in 

variance and kurtosis. Therefore, for question (2), the wavelet transform is superior to 

the other methods (see Figure 4.13 and Table 4.3). During the slew bearing lab 

experiment, the complete failure is unpredictable. Sudden burst vibration signal on 

September 2nd 2007 occurred and the test-rig had to be shut down. To discover the 

severe damage of slew bearing and clarify the result of the features calculation, the 

slew bearing was dismantled for inspection after the test-rig was shut down which is 

after the 139th day. Some of the defective regions can be clearly seen in Figure 2.16. 

Table 4.2 Comparison methods in identifying the initial onset of damage. 

Feature 
Methods comparison  

Circular-domain Time-domain  Wavelet decomposition     EMD  

 Mean                       
 

 Variance         

 Skewness          

 Kurtosis          

 

  Indicates clearly visible 

  Indicates not visible 
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Table 4.3 Comparison methods in estimating the progressive deterioration. 

Feature 
Methods comparison  

Circular-domain Time-domain  Wavelet decomposition     EMD  

 Mean                       
 

 Variance         

 Skewness          

 Kurtosis          

 

  Indicates clearly visible 

  Indicates not visible 

 

4.2 Largest Lyapunov Exponent (LLE) feature 

4.2.1 Introduction 

To date, signal processing technique based on vibration has been the main 

technique used in the detection of change of bearing conditions and has been used as 

a warning of impending deterioration of rotating machinery. In the case of slew 

bearings, special signal processing is necessary to detect the changes in the condition 

of the bearing based on the vibration signal. With appropriate signal processing, the 

fault signal can be detected from the processed signal. It is well known that the 

vibration characteristic of rotating machinery is altered when a bearing has failed. As 

the change is identified by the non-linear trend, a non-linear dynamical analysis 

technique is necessary for fault detection and diagnosis [150]. Linear dynamic systems 

have constant natural frequencies and vibrate at the frequency of an externally 

applied harmonic excitation. However, in non-linear systems there are amplitude-

dependant natural frequencies called ‘internal resonances’. Furthermore, this kind of 

system may vibrate at a frequency different from an externally applied harmonic 

excitation [151]. 



Chapter 4 - Condition monitoring based on feature extraction  

89 

In practice, a rolling element bearing has internal resonances due to the different 

parts of the system (e.g. interactions between shaft and bearing, between rolling 

element and raceway) vibrating at different frequencies. The combination of these 

internal resonances appears in the chaotic vibration signal. Certain methods to analyse 

the chaotic time series characteristic (in this paper referred to as the ‘vibration signal 

characteristic’) are phase-space dissimilarity measures [152, 153] including 

Kolmogorov entropy, fractal dimension, correlation dimension, approximate entropy, 

permutation entropy, and the largest Lyapunov exponent (LLE). These techniques use 

reconstruction vectors or phase-space as the input matrix to identify the existence and 

to measure the degree of non-linearity of the time series data. Most of these 

techniques have already been applied to vibration signal monitoring for machine 

health diagnostic such as the Kolmogorov-Smirnov test [154], fractal dimension [155], 

correlation dimension [156], approximate entropy [157], and permutation entropy 

[158]. 

This section presents an application of the LLE algorithm as a feature extraction 

method for low speed slew bearing vibration signals. Although the LLE algorithm has 

been widely used in some disciplines such as the bio-medical [159, 160] and finance 

[161] areas, this is the first time that it has been used in vibration-based condition 

monitoring. For instance, in biomedical applications [159, 160], the LLE algorithm is 

used to analyse the EEG signals to detect epileptic seizures; in finance [161], the LLE 

algorithm is used to analyse the stability of electricity prices. The LLE algorithm is 

usually used for non-linear time series analysis to quantify the appearance of signal 

non-linearity. Basically, the LLE algorithm measures the exponential divergence 

(positive or negative) of two initial neighbouring trajectories in the phase space based 

on the Euclidean distance. The LLE algorithm is presented in details in Section 4.2.2.  

4.2.2 The LLE algorithm 

To analyze the non-linearity or chaotic characteristic of the vibration signal, 

)...,,,( 21 Nxxxx
 
with N samples is first reconstructed. The reconstructed vector is 

done in phase-space [162]. The phase space reconstruction technique used is the 

method of delays (MOD) introduced by Takens [163]. The phase space has been used 
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in non-linear time series analyses [152-158] where the phase space matrix is defined as 

follows: 
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where J  is the number of samples delay to construct the phase-space matrix X , m  

represents the embedding dimension, M  represents the number of reconstructed 

vectors and N  is the number of samples of the vibration data. The parameter of J  

can be computed by time lag / t . By selected samples with predetermined time lag, 

the regularity of the signal can be measured. The relation between N , J , m  and M  

can be defined in the following form: JmMN )1-(  or JmNM )1-(-  . The 

preparatory LLE algorithm flowchart including the phase-space and the initial 

Euclidean distance calculation is presented in Figure 4.16. A detailed discussion of the 

physical meaning of the reconstruction delay J  is presented in Appendix C. 
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Figure 4.16 The flowchart of preparatory LLE algorithm (note: 15N , 2J  and 

6m ). 

 

Further explanation of the LLE algorithm in this section is based on the actual slew 

bearing data. In the case of slew bearing data, the parameters J and m have been 

determined as 48J  and 100m . The parameter J is calculated from the dominant 
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frequency of FFT and m is determined empirically. A detailed discussion for the 

parameter selection is presented in section 4.2.3. The number of samples of slew 

bearing data N  is 4880. Hence, the number of reconstructed vector M  can be 

calculated, 128M . The reason why these values were selected is explained in details 

in Section 4.2.3. Once the phase-space matrix X  and the replicated matrix repX  have 

been obtained, the initial Euclidean distance, vector 0d , can be calculated as shown in 

Figure 4.16. It should be noted that the calculation of the Euclidean distance vector in 

the LLE algorithm plays an important role. The divergence of the LLE result ( 1 ) can be 

analysed based on the Euclidean distance. The divergence represents the characteristic 

of the vibration signal being analysed. If the bearing vibration signal is linear, typically 

in normal condition, the calculated Euclidean distance between each row in the phase-

space matrix is constant and divergence is not detected, and thus the 1  will be 

negative. On the other hand, if the vibration signal has non-linear characteristics, the 

Euclidean distance between each row in the phase-space matrix is no longer constant 

(it typically manifests exponentially), and thus the value of 1  will be positive. The 

physical reason for the LLE result ( 1 ) mentioned above is discussed again in detail at 

the end of the LLE algorithm procedure in this section. However, the important 

Euclidean distance vector for the LLE result ( 1 ) is not 0d . To obtain the appropriate 

Euclidean distance vector for calculating 1 , the initial Euclidean distance vector 0d  

described above needs to be processed by the two following steps: 

Step 1: Calculate the new initial Euclidean distance value new_0d  

The first step to process the Euclidean distance vector )(0 id  is to determine the 

identifier of the minimum value of the Euclidean distance vector )(0 id  for each index 

i . The index i  in the case of slew bearings is .128...,,2,1i  Prior to the calculation of 

the minimum identifier, it is necessary to calculate the minimum value of )(0 id  for 

each i , then the identifier of the minimum value of )(0 id  for each i  can be obtained. 

If the minimum value is directly computed from )(0 id  as i  progresses from 

128...,,2,1 , the minimum value will always be ‘zero’. The reason for the ‘zero’ value 

is that at a particular index i , for instance at 1i , the )1(0d  is computed from 
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)1(repXX  . As mentioned before, )1(repX  is obtained by replicating the 1st row of 

the phase space matrix X . If the Euclidean norm between X  and )1(repX  is 

calculated, the first row of the Euclidean distance vector 0d  will be zero value. This is 

because the first row element of the phase space matrix X  and the replicated matrix 

repX  are identical. When i  progresses up to, for example, 64i , the )64(0d  is 

computed from )64(repXX  . In a similar way, the matrix )64(repX  is obtained by 

replicating the 64th row of the phase space matrix X . If the Euclidean norm between 

X  and )64(repX  is applied, the 64th row of the Euclidean distance vector 0d  will also 

be zero. The process, which produces the zero value of 0d  as i  progresses, is repeated 

up to the last i  index, that is 128i . The illustration of the three calculation examples 

of 0d  at three different i  (at 1i , at 64i  and at 128i ) are shown in Figures 

4.17(a)–4.19(a). 

To overcome the problem mentioned above, an additional constraint is employed in 

the LLE algorithm. The aims are to remove the ‘zero’ value as i  progresses and to 

change the nearest zero value neighbours to a constant value (to provide a clearer 

illustration figure, a maximum value of 0d  is used as a constant value). The reason why 

the nearest zero value neighbours need to be changed to a constant value is that the 

nearest zero value neighbours of 0d  shows some transient behaviours as shown in 

Figures 4.17(a)–4.19(a). This is important to ensure an accurate measurement of the 

new initial distance value new_0d . Once the transient part of 0d  has been removed, 

the minimum value of the Euclidean distance vector )(0 id  will be calculated from the 

stationary part. To determine the constraint mentioned above, another index called j  

is used inside the sub-routine of index i  in the LLE algorithm. The constraint is defined 

as follows: 

≤- ji           (4.13)
 

where Mj ...,,2,1  and   is the number of nearest zero value neighbours that need 

to be changed to a constant value. The μ in this paper is selected as 50 (the reason is 

given in Section 5.4). In addition, Eq. (4.13) means: if the absolute value of subtraction 
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th
i  and th

j  as i  and j  progressing from 1 to 128 is less than or equal to the  , the 

element of 0d  (with respect to current j ) is replaced by the highest value of )(0 id . A 

more detailed explanation of Eq. (2) is presented in the LLE algorithm in Table 4.4. The 

updated Euclidean distance vector after the LLE algorithm is shown in Table 4.4 and is 

called the new Euclidean distance vector )(new_0 jd . It can be seen from Table 4.4 

that the algorithm consists of two sub-routines based on the indices i  and j . The 

results of new_0d  are presented in Figures 4.17(b)–4.19(b). It can be seen in Figure 

4.17(b) that when 1i , the fifty data points after the nearest neighbours of the zero 

value are replaced by the maximum value and became constant. Furthermore, when 

64i , the nearest neighbours which need to be changed are 50 points before the 

zero value and 50 points after the zero value. Thus the result is shown in Figure 

4.18(b). When i  reaches the last number i.e. 128i , the fifty points before the 

nearest neighbours of the zero value are replaced by the maximum value and became 

constant as well, as shown in Figure 4.19(b). Note that the fifty points are the result of 

Eq. (4.13) or line 6 in the LLE algorithm for j’s progression from 128...,,2,1 . 

Once the )(new_0 jd  is computed, the minimum value of )(new_0 jd  denoted by 

)(ia  and the index of the minimum value denoted by )(ib  are defined as follows: 

 )(min])(),([ 0_new jii ba d        (4.14)
 

Eq. (4.14) is incorporated in the LLE algorithm shown in Table 4.4 line 11 inside the 

sub-routine of index i . It should be noted that the minimum value )(ia  is no longer 

used for further calculations. Only the identifier of the minimum distance value )(ib  

is used again in the next step. This index is necessary to create a new matrix, matrix 

 )(ibX . The element of the matrix  )(ibX  at a particular index i  is based on the 

result of )(ib . The use of matrix  )(ibX  is further illustrated in Eq. (4.15) and Table 

4.5 line 19. 
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Table 4.4 The LLE algorithm showing the subroutines of i  and j  in order to calculate 

the new Euclidean distance new_0d . 

LLE Algorithm 

  1: X , repX  and 0d  (are calculated from Figure 4.16) 

  2:   is predetermined mean period (e.g. 50 ) 

  3: Create the new matrix new_0d . Set 0new_0 dd   initially 

  4: for  1i  to M  do 

  5:   for  1j  to M  do 

  6:         if   ij   do 

  7:              )max()( 0new_0 dd j  

  8:         end if 

  9:       end for j  

10:       Vector new_0d  obtained. This vector contain M...,,2,1  row 

11:       Find the minimum value of )(new_0 jd  and its identifier: 

   )(min)(),( new_0 jii ba d  

12: end for i  
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Figure 4.17 (a) The initial Euclidean distance 0d  at 1i ; (b) The new initial Euclidean 

distance value new_0d  at 1i . 
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Figure 4.18 (a) The initial Euclidean distance 0d  at 64i ; (b) The new initial Euclidean 

distance value new_0d  at 64i . 
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Figure 4.19 (a) The initial Euclidean distance 0d  at 128i ; (b) The new initial 

Euclidean distance value new_0d  at 128i . 
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Step 2: Calculate measured distance d  and new measured distance newd  

The next step is the calculation of measured distance )(id  by estimating the 

distance between the phase space )(iX  and the new matrix  )(ibX  (with respect to 

i ). The elements of matrix  )(ibX  are the row vector data set of the phase space X  

based on the minimum index )(ib . 

 )()( ii b XXd         (4.15) 

Even though the LLE result ( 1 ) can be computed using the measured distance )(id , 

Sato et al. [164] used k  iteration to improve the accuracy of the measured distance 

)(id . In this study, the iteration with 70...,,2,1k  is used. In order to show an 

adequate exponential graph of the measured distance, d  and to decrease the 

computational time, it is recommended that k  be any value greater than the mean 

period,   and less than the embedding dimension, m . The algorithm used to improve 

the accuracy of the measured distance )(id  is presented in Table 4.5. The algorithm in 

Table 4.5 is an extension of the algorithm shown in Table 4.4. The result after the k  

iteration is called the new measured distance matrix, )(new id . 

The final step is the calculation of the LLE result ( 1 ). Using the original largest 

Lyapunov exponent formula [165], the relation between )(new id  and the LLE result 

)(1 i  is defined by the following: 

).(
new

1)( ti
ieSi

 
d          (4.16) 

By taking the natural logarithm of both sides and removing the part ‘ iSln ’, the Largest 

Lyapunov Exponent can be computed using a least-square fit equation defined by 

)(ln
1

)( new1 i
t

i d


          (4.17)
 

where 01   indicates normal condition and 01   indicates non-linear condition. 

The physical interpretation of negative LLE ( 01  ) and positive LLE ( 01  ) is shown 

in § 4.2.3 Figures 4.21(a) and (b). 
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Table 4.5 The algorithm to calculate )(new id  based on k  iteration and the index of 

minimum value, )(ib . 

LLE Algorithm (Cont.) 

13: for  1k  to 70  do  

14: kM bound  

15: 0evolve   

16: 0point   

17: for  1i  to M  do  

18: if boundi  and bound)(  ib  do 

19:     2,.:)),1()((:)),1((( 2^ kikisumsqrtd bXX  

20: if 0~d  do 

21: )log(evolveevolve d  

22: 1pointpoint   

23: end if 

24: end if 

25: end for i  

26: if 0point   

27: point/evolve)(new kd  

28: else 

29: 0)(new kd dnew(k) = 0 

30: end if 

31: end for k  

Note: the algorithm written in Table 4.4 and 4.5 are in the form of MATLAB syntax.  

4.2.3 LLE feature 

LLE algorithm for one second vibration data (slew bearing data from Lab 

test 1) 

The objective of using the LLE algorithm in this thesis is to identify the onset of the 

deterioration of the bearing. As the slew bearing rotates at very low rotational speed 

( 1  rpm), the bearing signal generated from the contact between the rolling element 

and the defective point is very weak and buried in unwanted noise. Therefore, the 

onset of the deterioration in the condition of the bearing and the progression of the 

deterioration cannot be clearly identified. This has been as shown in the extracted 
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statistical moment features of the raw vibration data and the extracted features from 

wavelet decomposition and EMD as studied previously in [166]. 

The total data length for laboratory slew bearing data is calculated as follows: 60 

seconds multiplied by the 4880 samples produced 292800 samples that were acquired 

at the same time each day. In the first application of the LLE algorithm for laboratory 

slew bearing data, the 30 second data containing 146400 samples was processed by 

the LLE algorithm. To identify non-linear characteristic of the vibration data, every one 

second containing 4880 samples ( 4880N ) was inputted into the LLE algorithm. The 

illustration of the LLE algorithm applied at one second intervals is presented in Figure 

4.21. The result is the LLE feature denoted by 1 . As seen in the table in Figure 4.21, 

the result of the LLE feature ( 1 ) can be positive or negative depending on the input 

data at a certain time (second). The detailed 1  result for each second during the 30 

second vibration signal is depicted in Table 4.6. It can be seen from Figure 4.21 and 

Table 4.6 that during 30 seconds’ measurement in one day, the majority of the LLE 

results are negative 1  ( 1 ) and only a few are positive 1  ( 1 ). The negative or 

positive 1  is the computational result of Eq. (4.17), where, negative 1  indicates 

the newly measured distance )(new id  is unchanged or fixed. 

The physical interpretation of negative 1  is given at the 9th second of the vibration 

data on April 26, as shown in Figure 4.21(a). If, the newly measured distance )(new id  

increases exponentially, the value of 1  is positive. The physical interpretation of 

positive 1  is given at the 16th second of the vibration data on April 26, as shown in 

Figure 4.21(b). In addition, the negative 1  means the processed vibration data at one 

particular second is in a stable or normal category, while positive 1  indicates the 

vibration data is chaotic. As time progresses and the condition of the slew bearing 

deteriorates or an unsustainable fault develops, the count of positive 1  is expected to 

increase. This is shown by the plotted count of positive 1  against 139 days’ 

measurement as seen in Figure 4.22. It can be seen that in the last measurement 

period (i.e. August 2007), the count of positive 1  increases significantly. This indicates 

the vibration data in August 2007 is more chaotic than those in the previous months. 
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The LLE parameters to obtain the LLE features ( 1 ), as shown in Figure 4.21, are 

determined as described below. It has been mentioned in section 4.2.2 that J  is equal 

to 48. This value is determined based upon the dominant frequency of the vibration 

signal and the number of samples, N . From Figure 4.20(b), it can be seen that the 

dominant frequency of the vibration signal is 103.1 Hz. J  is calculated as follows: 

(1/103.1 Hz) multiplied by 4880 samples = 47.33 (rounding it up to the nearest integer, 

thus 48J ). For selection of  , it is recommended to remove the first sinusoidal 

cycle of )(0 id  which is the nearest neighbor of zero value at particular i , as shown, for 

example, in Figure 4.17 (at 1i ). This is because the first sinusoidal cycle that is close 

to zero value at a particular i  typically demonstrates some transient behavior. Thus, 

  is selected as 50. In addition, to achieve a faster computation time, m  is 

determined empirically to get M  as low as possible (note that it is possible to get a 

negative M  value if the combination of the value m  and J  are inappropriate). If 

48J , the optimal 100m , using the equation JmNM )1(  , 128M . If 

48J  and m  is changed to 110 , M  will be negative ( 352M ). On the other hand, 

if J  is still 48 and m  is decreased ( 90m ), the value of M  is increased to about 608 

(if M  is higher, the computational time will be longer). 
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Figure 4.20 Vibration data acquired on 30 August: (a) raw vibration data and (b) FFT. 
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Table 4.6 The LLE result ( 1 ) at one second intervals during the 30 second vibration 

signal (data April 26). 

Time (sec) LLE result ( 1 )  Time (sec) LLE result ( 1 ) 

1 -7.3658  16 12.9481 

2 -61.2420  17 -24.1665 

3 -20.6105  18 -33.0387 

4 -62.2330  19 -37.3419 

5 -75.1535  20 -53.4996 

6 11.2430  21 -9.4541 

7 -52.0686  22 -63.5334 

8 -49.3602  23 -10.2493 

9 -10.1467  24 -65.9973 

10 -60.8948  25 -24.5865 

11 -2.9959  26 -36.1825 

12 -74.9254  27 -7.0326 

13 -52.4728  28 -50.9032 

14 -49.9062  29 -6.5783 

15 -101.4999  30 -21.7180 
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Figure 4.21 One day LLE result (data April 26): (a) at the 9th second (stable condition, 

negative 1 ); (b) at the 16th second (non-linear condition, positive 1 ). 
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Figure 4.22 Number of positive 1  over the 139 measurement days from February to 

August 2007. 

LLE algorithm for ten second vibration data 

A practical challenge in monitoring low speed slew bearings is the large amount of 

data acquired over a long duration (e.g. 30 to 60 seconds). It is, therefore, necessary to 

have an efficient method to be applied for only short duration vibration. The method 

must also be able to provide rapid condition information for maintenance engineers to 

shorten the computational time. Instead of using the 30 second or 60 second vibration 

data, 10 second vibration data is used. The LLE algorithm is applied to every one 

second, as shown previously, but in this case, the duration of the vibration data used is 

only 10 seconds. The maximum ( 1 ) is collected from 10 results for each day. 

To explain the advantage of the proposed method, the LLE feature (largest 1 ) 

extracted from the 10 second vibration data each day during the 139 days 

measurement is plotted in the same figure with other comparable methods: kurtosis 

feature extracted from raw vibration data and kurtosis feature extracted from EMD, as 

shown in Figure 4.23(a). The LLE feature is normalized to the minimum and maximum 

values of the kurtosis feature extracted from raw vibration data before it is plotted in 

the same figure. Although the three comparable kurtosis features presented in Figure 

4.23(a) show fluctuations in the last measurement days which indicates changes in the 

condition of the bearing, the LLE has an additional benefit. It can be seen that the LLE 
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feature also increases exponentially over the last measurement days (approximately 

from the 110th day to the 139th day) indicating the increased deterioration. Such an 

exponential trend cannot be extracted using time domain features extracted from raw 

vibration signals and features extracted from EMD. It should be noted that increasing 

deterioration is a warning of complete bearing failure. The LLE feature is supported by 

the inspection of the slew bearing damage after the 139th day as shown in Figure 2.16. 

Some defective regions in the roller element and the outer race can be clearly seen in 

Figure 2.16. 
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Figure 4.23 Comparison condition monitoring performance between the LLE feature 

and other features: time domain features of raw vibration data and features of EMD. 

 

4.2.4 LLE feature applied in bridge reclaimer data 

The RMS, skewness, kurtosis and LLE features extracted from 45 vibration data sets 

of the slew bearing coal bridge reclaimer are presented in Figure 4.25. Because the 

slew bearing is located in an open environment, the degradation of the bearing is 

expected to increase during the approximately 3.5 years’ measurement from May 

2003 to November 2006. However, the time domain RMS, skewness and kurtosis 

features did not show such a condition. It can be seen from Figures 4.25(a) to (c) that 

the RMS, skewness and kurtosis features did not show the progressive deterioration 

over 3.5 years. It can only be determined that the two high peaks appear in the 
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skewness and the kurtosis feature. The LLE algorithm was then applied to the similar 

data. 

In contrast to the result of the time domain features, the LLE feature ( 1 ) presented 

in Figure 4.25(d) shows a significant increase in the last measurement dates, especially 

in measurements 44 and 45. It is also clearly seen that the two high peaks on the 

skewness and the kurtosis feature were also seen in the LLE feature. The first peak 

indicates the onset of deteriorating bearing condition and the second peak shows the 

deterioration of the bearing will increase in the future. Additional information can also 

be found from the LLE feature that the second peak is greater than the first peak. This 

indicates that LLE feature can extract more information regarding to the development 

of bearing deterioration. In contrast, the second high peak of the time domain kurtosis 

remains in the same level as the first high peak, while it is difficult to evaluate the 

bearing deterioration for the first high peak. Unfortunately, the measurement had to 

be stopped at measurement 45 on the 30th November 2006, due to the 

commencement of preparation for the acquisition of vibration data from the 

laboratory slew bearing test rig. The LLE feature of the bridge reclaimer data shows 

that the actual vibration slew bearing data is more chaotic than the laboratory slew 

bearing vibration data. This is proven by the number of positive λ1 is greater than the 

number of negative λ1. At the beginning, λ1 is negative, but as time progresses, 1  

swiftly becomes positive. As wear develops, the value of the positive 1  will increase 

correspondently. 

The parameters of LLE algorithm to calculate the LLE features ( 1 ) as shown in 

Figure 4.25(d) are determined as follows: based on the known sampling rate of 240 

samples per second acquired for 17.067 seconds, 4096 samples were produced. The 

first step for the LLE algorithm is to determine the variables J  and m . Once J , m  and 

N  are known, M  can be calculated. As shown in section 4.2.3, J  can be calculated 

based upon the first dominant frequency of the vibration signal being analyzed. As 

shown in Figure 4.24, the first dominant frequency is 16.7 Hz. Thus J  is calculated in 

the following way: (1/16.7 Hz) multiplied by 4096 Hz = 14.37. The numerical 

computation required the non-negative integer of J  and also required that J  should 

be the element of factorial 4096. Thus we round up 14.37 to a greater integer number 
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16. The integer 16 is selected because it is an element of factorial 4096. The reason 

why it needs to be an element of factorial 4096 is the phase-space requirement. If J  is 

an element of factorial 4096, it will be easy to calculate the embedding dimension, m . 

Once J  is known, the next variable which needed to be determined is m . As shown in 

section 4.2.3, m  is selected to get the M  as low as possible in order to speed up the 

computation time. The computation time of the feature extraction method is 

necessary in practice to provide a rapid condition monitoring result. Thus m  in this 

paper for the coal bridge reclaimer data is 248. The variables   and k  are selected as 

30 and 40, respectively. 
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Figure 4.24 FFT of coal bridge reclaimer: (a) data 28 July 2003; (b) data 16 September 

2004 and (c) data 14 September 2005.  
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Figure 4.25 Comparison between time domain features and LLE feature extracted from 

the coal bridge reclaimer data: (a) RMS feature; (b) skewness feature; (c) kurtosis 

feature and (d) LLE feature. The measurement in the x-axis is related to Table 4.7. 
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Table 4.7 Details of LLE result ( 1 ) related to the measurement dates. 

Measurement 

day 

1   Measurement 

day 

1  Measurement 

day 

1  

1 -0.01667  16 -0.031 31 0.05518 

2 -0.06506  17 0.0296 32 0.01014 

3 0.0003934  18 0.002878 33 0.007898 

4 -0.0008573  19 0.02163 34 0.1046 

5 0.0106  20 0.03241 35 0.02563 

6 0.03377  21 0.06081 36 0.557 

7 0.01959  22 0.03731 37 0.3844 

8 0.02359  23 -0.007276 38 0.1947 

9 0.01857  24 0.007093 39 0.1491 

10 0.005054  25 -0.01873 40 0.0309 

11 0.004379  26 -0.01511 41 0.1214 

12 0.0271  27 -0.02856 42 0.2491 

13 0.3485  28 -0.02158 43 0.1337 

14 -0.008846  29 0.004501 44 0.8137 

15 0.02722  30 0.1925 45 0.8475 

 

4.2.5 Evaluation criteria in tracking progressive slew bearing 

failure 

In this study, four evaluation criteria for tracking the progressive failure of low 

speed slew bearings have been proposed. The criteria are: 

1. Count of high peaks 

2. High peak difference 

3. Relative time from first peak detection 

4. Interval between peaks 

In order to substantiate the benefits of the LLE method, the four criteria above were 

applied to the time domain kurtosis feature, the EMD kurtosis feature and the LLE 

feature for laboratory slew bearing data. They were also applied to the kurtosis and 

the LLE feature of coal bridge reclaimer data. The result is presented in Tables 4.8 and 

4.9. The definition of and the formula for each evaluation criterion are described 

below: 

1st peak 

2nd peak 

2 highest 

levels 
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1. Count of high peaks ( 1E ): Since the deterioration of the slew bearing can be 

detected by the peaks in the monitored parameter or feature, this criterion counts 

the number of peaks which exceed the predetermined threshold level. The greater 

the number of such peaks detected, the more damaged the slew bearing. The 

formula for this calculation ( 1E )  is as follows: 

cCE 1
 

         (4.18) 

where C  is the number of peaks which exceed the predetermined threshold level 

(threshold = 12), and c  is a normalization 1E  value of less than 1  ( 1.0c ). It 

should be noted that each criterion value is expected to have a normalization value 

of less than 1 in order to be compared with other criterion value. The count of high 

peaks is illustrated in Figure 4.26. The threshold of 12 is arbitrarily determined 

according to the peaks fluctuation of the LLE feature. If the threshold of 10 is 

selected, a number of count of high peaks value will not be increase because it 

already detected from the beginning where the bearing is still in normal condition. 
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Figure 4.26 Count of peaks of features extracted from laboratory slew bearing data. 
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2. High peak difference ( 2E ): This criterion calculates the difference in the high peaks 

between following peaks and the detection of the first peak ( 1P ). 2E  is given by: 

 

P
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a



 2

1
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1

1

         (4.19) 

where aP  is the following peaks and P is the average peak amplitude. If the most 

following peak levels aP  are lower than the detection of the first peak 1P , the result 

will be a negative value. This is illustrated in Figure 4.27. 
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Figure 4.27 Peaks identification of features extracted from laboratory slew bearing 

data. These peaks were used further to calculate high peak difference ( 2E ). 

 

3. Relative time from first peak detection ( 3E ): The initial failure of the slew bearing 

can be identified by the day of first peak detection, according to the monitored 

parameter or feature. The formula of the relative time from first peak detection 
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( 3E ) is given as follows: 
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DFDL
E3           (4.20) 

where DL  is the last measurement day (i.e.139) and DF  is the day of first peak 

detection, as shown in Figure 4.28. 
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Figure 4.28 First peak detection of features extracted from laboratory slew bearing 

data. 

 

4. Interval between peaks ( 4E ): This criterion measures the interval between two 

adjacent peaks. If the two adjacent peaks are close, it indicates the advance of the 

deterioration in the condition of the slew bearing. The interval between peaks ( 4E ) 

is calculated as follows: 
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DL

IDL
E


4           (4.22) 

where I is the average day interval, aD  and 1aD  are the anterior and the 

posterior day of two adjacent peaks, respectively, as shown in Figure 4.29. 
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Figure 4.29 Interval between peaks of features extracted from laboratory slew bearing 

data. 

 

In the case of laboratory slew bearing data, it can be seen that the overall 

evaluation score of the LLE feature in Table 4.8 was higher than the time domain 

kurtosis feature and the EMD feature. An overall evaluation score is the mean value of 

the evaluation criteria. A negative value of the 2E  criterion of EMD kurtosis feature is 

due to the fact that the next peaks are lower than the detection of the first peak. In 

the same way, the overall evaluation score of the LLE feature was greater than the 

kurtosis feature extracted from original vibration data for the case of coal bridge 

reclaimer data. 
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Table 4.8 Evaluation comparison result for laboratory slew bearing data. 
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1 
Count of high 

peaks (E1) 
0.4 0.3 0.6 

2 
High peak 

difference (E2) 
0.413 -0.264 0.416 

3 

Relative time from 

first peak 

detection (E3) 

0.338 0.179 0.345 

4 
Interval between 

peaks (E4) 
0.913 0.938 0.939 

 
Overall evaluation 

band score 
0.516 0.288 0.575 

 

Table 4.9 Evaluation comparison result for coal bridge reclaimer data. 
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1 Count of high peaks (E1) 0.2 0.5 

2 High peak difference (E2) 0.007 0.311 

3 
Relative time from first peak 

detection (E3) 
0.711 0.711 

4 Interval between peaks (E4) 0.555 0.822 

 Overall evaluation band score 0.368 0.586 
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4.3 Conclusion 

The circular domain feature extraction method has been developed. It is shown that 

the slight changes of bearing condition during operation can be identified more clearly 

in circular domain analysis compared to time-domain features, wavelet decomposition 

and EMD. This allows the maintenance engineers to better schedule the maintenance 

work. Four circular domain features were shown to consistently and clearly identify 

the onset (initiation) of fault from the peak feature value. This value, however, is not 

clearly observable in time-domain feature extraction, wavelet decomposition combine 

with time domain feature extraction and EMD combine with time-domain feature 

extraction. The application of the method is demonstrated with simulated data, 

laboratory slew bearing data and industrial bearing data from coal bridge reclaimer 

used in a local steel mill. The method has been published in the following title: 

 W. Caesarendra, B. Kosasih, A.K. Tieu, C.A.S. Moodie, Circular domain features 

based condition monitoring for low speed slewing bearing, Mechanical Systems and 

Signal Processing 45 (2014) 114-138. 

LLE algorithm, one of the phase-space dissimilarity measurements, has been 

employed as a feature extraction method for low speed slew bearing vibration data. 

The tested data are collected from the lab test condition monitoring and a coal bridge 

reclaimer that is used in a local steel mill industry. According to the result, this method 

can be used as an alternative method to deal with low energy chaotic vibration bearing 

signals in cases where the existing methods feature extraction are not suitable. Such 

existing methods have been applied for rolling element bearing condition monitoring 

such as vibration-based FFT, time domain feature extraction (e.g. RMS, skewness, 

kurtosis, etc) and advance fault diagnosis methods, e.g. EMD. The step-by-step 

computational algorithm has been presented in details. It must be noted that the most 

important LLE parameter is reconstruction delay, J . This parameter must be 

calculated before the other parameters m  and M  are determined. A simple and 

effective technique to select parameter J  is has been proposed. Four evaluation 

criteria have also been proposed and introduced to substantiate the benefits of LLE 

method. The method has been published in the following title: 
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 W. Caesarendra, B. Kosasih, A.K. Tieu, C.A.S. Moodie, Application of the largest 

Lyapunov exponent algorithm for feature extraction in low speed slew bearing 

condition monitoring, Mechanical Systems and Signal Processing 50-51 (2015) 116-

138. 
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Chapter 5 - Incipient defect detection 

method and damage analysis 

 

“The real voyage of discovery consists not in seeking new landscape, 
but in having new eyes” 

(Marcel Proust) 

 

5.1 Introduction 

This chapter presents an application of multivariate state estimation technique 

(MSET) and sequential probability ratio test (SPRT) to detect the incipient slew bearing 

defect. MSET was first introduced by Singer [167] and was further developed in the 

Argonne National Laboratory [168, 169]. Over the years, the technique has been 

applied successfully in many applications such as in the analysis of nuclear power 

reactor signals [167-170]. Recently, MSET has been used in condition monitoring 

studies such as the monitoring of lithium-ion battery performance [171], the detection 

of the onset of software aging [172] and early fault diagnosis of wind turbines [173]. 

However, the application of MSET as rolling element bearing condition monitoring and 

incipient defect detection method has not been explored. SPRT was introduced by 

Wald [174, 175] as a sequential statistical method. This method has been proven to 

work well either as a stand-alone decision-making method [176-180] or as an 

integrated method together with MSET [169, 172, 181]. When integrated with MSET, 

SPRT can be used to analyze the MSET result. SPRT can also be combined with auto-

associative kernel regression algorithm [182]. 

5.2 Multivariate State Estimation Technique (MSET) 

MSET is an effective technique for real-time signal monitoring. It is a method to 

analyse process behavior based on the sensor readings. MSET basically computes the 

correlation between the statistical characteristics of the past data and the monitored 
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signal. MSET numerically flags anomalous process behaviour as early as possible. This 

technique has been applied in process monitoring, signal validation and surveillance 

applications [167-173, 181]. However, the study on MSET for rolling element bearing 

condition monitoring, especially for low speed slew bearings, has not been explored. In 

the present study MSET combines multiple extracted features to provide information 

about the condition of the slew bearing. This is useful in practice because in this way, 

the site maintenance engineer only needs to monitor single reliable information 

extracted from multiple condition monitoring parameters or features. 

The MSET algorithm is applied systematically in 5 steps [183] as shown in Figure 5.1 

in the first and second blocks. First, data matrix P is created where the row elements 

of P are the extracted features and the columns are the measurement time i.e. days. 

Data matrix P of size m  features × n  days is defined in Eq. (5.1). 
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Second, data matrix P  is subdivided into two matrices: training matrix, T  and 

observation matrix, obsP . T  is further divided into memory matrix, D  and remaining 

training matrix, L . It should be noted that T  holds data from the normal state while 

obsP  holds the monitored state, as shown in Eq. (5.2). 
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  (5.2) 

where Dn  is the number of days in D  matrix and Ln  is the number of days in L  

matrix. 

Third, the weight vector for the normal state, 1w  and the monitored state, 2w  are 

calculated as follows [183] 

)()( T1-T
1 LDDDw                       (5.3) 

)()( obs
T1-T

2 PDDDw           (5.4) 

Operator   is a non-linear operator. Several non-linear operators can be selected for 

MSET [184]. The most popular operator is the Euclidean distance, which is the one 

adopted in this thesis. 

Fourth, the normal estimate matrix ( estL ) is computed by Eq. (5.5) 

1est wDL                                  (5.5) 

and the monitored estimate matrix ( estP ) is calculated by Eq. (5.6) 

2est wDP                         (5.6) 

Fifth, the normal residual matrix ( NR ) is the difference between estL  and L  and 

calculated by Eq. (5.7). 

LLR  estN                                 (5.7) 

Normal state Monitored state 

[ obsP ] 
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And the monitored residual matrix ( MR ) is the difference between estP  and obsP  and 

calculated by Eq. (5.8). 

obsestM PPR             (5.8) 

5.3 Sequential Probability Ratio Test (SPRT) 

SPRT, a sequential statistical binary hypothesis technique [174, 175], has been used 

as a simple and effective stand-alone decision-making technique for engineering 

systems. Such systems include the surveillance of nuclear power plant components 

[177], statistical damage classification of an automotive system [178], long-term 

radiation monitoring [179], and multiple fault recognition in gearboxes [180]. SPRT has 

been integrated with MSET to analyse the output of the MSET and to digitally assess 

the condition of the system being monitored [169, 181]. With this capability, SPRT is a 

potential early warning method embeddable in online monitoring systems. In this 

thesis, SPRT was used to analyse observations sequentially to determine whether the 

bearing is still in normal condition or already in defective condition. 

To detect the incipient slew bearing defect, SPRT utilizes the outputs of MSET, the 

normal residual matrix ( NR ) and the monitored residual matrix ( MR ) as shown in 

Figure 5.1. Statistical features of the training data, such as mean and standard 

deviation, were extracted from normal residual matrix ( NR ) to create a detection 

baseline. In the detection procedure, the similar features are also extracted from 

monitored data, namely the monitored residual matrix ( MR ). The detection of the 

changes in bearing condition is conducted by comparing the baseline and the 

monitored data. The SPRT work is based on binary hypothesis tests. The binary 

hypothesis includes one null hypothesis and some alternative hypotheses. For a 

normal distribution, the null hypothesis 0H  represents the healthy state, with 

mean 0  and standard deviation  . The alternative hypotheses zH  represent an 

abnormal state, with mean 0 , or standard deviation  , where z  is the number of 

alternative hypothesis. Because the SPRT in this thesis was used to analyse the 

features matrix, the normal bearing condition denoted by a null hypothesis ( 0H ) is 

mean M  and standard deviation  . The defect condition was denoted by the 



Chapter 5 - Incipient defect detection method and damage analysis  

120 

alternative hypotheses 1H , 2H , …, zH  that have a mean M  and standard deviation 

 . And z  is the number of the alternative hypothesis corresponding to the changes 

of bearing condition. A detailed application of these hypotheses for slew bearing 

damage detection is presented in Table 5.4. 

In SPRT analysis (see Figure 5.1), the probability ratio, L  was calculated by dividing 

the probability of statistical properties is  that fall within the alternative hypotheses 

zH  and the probability of statistical properties is  that fall within the null hypotheses 

0H . The decision is then made based on the SPRT index calculated as follows [185]: 

∑
1 0 )H|(Pr

)H|(Pr
ln)(ln

n

i i

zi
index

s

s
LSPRT



             (5.9) 

where L  is given by 

∏
1 0 )H|(Pr

)H|(Pr
n

i i

zi

s

s
L



                              (5.10) 

where is  are the statistical properties e.g. mean, M  and standard deviation,   of the 

observed features at the monitored measurement day. 
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Figure 5.1 Flowchart of the proposed combined MSET and SPRT method in step (1). 

5.4 Results and discussion 

Twelve features have been extracted from four different methods [186]. Not all 

features are sensitive to the change of the bearing condition. Consequently, the 
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method only uses five of the most sensitive features as the input to the MSET. The five 

features are (1) kurtosis extracted from accelerometer signal, f1(t) [96]; (2) kurtosis 

extracted from the piecewise aggregate approximation (PAA) combined with circular 

analysis, f2(t) [96]; (3) kurtosis extracted from the wavelet decomposition, f3(t) [96]; (4) 

kurtosis extracted from the EMD, f4(t) [96]; and (5) LLE feature obtained from the 

largest Lyapunov exponent algorithm, f5(t) [186]. The five features were extracted over 

the 139 days test period. The plot of the aforementioned features is shown in Figure 

5.2. These features are used to establish the data matrix P . Thus, the dimension of 

data matrix P  in Eq. (5.1) is 5 by 139, where 5 is the number of features and 139 is the 

number of days. 

To detect the incipient slew bearing defect (Step 1), the MSET algorithm calculates 

the normal residual matrix ( NR ) and the monitored residual matrix ( MR ) (see Figure 

5.1). In Step (1), the following inputs are required: training matrix T , memory matrix 

D , remaining training matrix L  and observation matrix obsP . In this paper, T  of 50 

days was used. In the computation, the sizes of matrices, D  and L  have to be half of 

T  i.e. 25 days each. The reason why 50 days was used is that coal dust was not 

injected until the 58th day. In other words, during the first 50 days, the vibration signal 

had been acquired when the condition of the bearing was still normal. In practice, 

matrix obsP  is obtained from daily observation or measurement. The number of 

measurement days from normal to failure has been set as 139 days. obsP  is the matrix 

from the 51st to 139th day. 
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Figure 5.2 (a) Circular kurtosis; (b) Time-domain kurtosis; (c) Wavelet kurtosis; (d) EMD 

kurtosis; (e) The LLE feature. Note: t = dayth. 
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After D  and L  have been determined, the weight of normal state vector ( 1w ) is 

then calculated using Eq. (5.3) by employing the Euclidean distance as the non-linear 

operator. Vector 1w  represents the weight of normal data points in the training data. 

1w  is used to calculate the normal estimate matrix ( estL ) using Eq. (5.5). And the 

normal residual matrix ( NR ) is estimated by taking the difference between estL  and 

L , as shown in Eq. (5.7). It should be noted that prior to the calculation of the 

statistical properties, matrix NR  is normalized with a mean of zero. This is necessary 

for the next process in the SPRT method because under normal bearing conditions the 

mean value of the normal residual matrix ( NR ) is expected to be 0 . The result of 

normalized matrix ( NR ) is presented in Table 5.1. A similar procedure is also employed 

to obtain the monitored residual matrix ( MR ). Eq. (5.4) is used to calculate the weight 

of monitored state vector ( 2w ), Eq. (5.6) is then used to calculate the monitored 

estimate matrix ( estP ) and Eq. (5.8) to calculate the monitored residual matrix ( MR ). 

Matrix MR  is then normalized within a range between maximum value and minimum 

value of the normalized normal residual matrix ( NR ). The calculation of NR  and MR  

is the final step of MSET. Both results are then fed into the SPRT. 

In SPRT, statistical characteristics such as mean value, standard deviation and the 

range between maximum and minimum values are calculated from each column of the 

normalized matrix, NR . These statistical properties belong to the normal condition of 

the bearing and are used as the reference normal data. These properties also form the 

set of hypotheses in SPRT. For the monitored state, prior to the calculation of the 

mean value and the standard deviation, the monitored residual matrix, MR  is 

normalized within the range between the maximum and minimum value of the normal 

state. The mean and standard deviation values of the normal state (up to days 25) are 

presented in Table 5.2 and Table 5.3, respectively. The detection of the incipient slew 

bearing defects is obtained by comparing the statistical characteristics, the mean value 

and the standard deviation) of the monitored state to the statistical characteristics of 

the normal state. 

This comparison is repeated from the 51st to 139th columns of the obsP  matrix. If the 

mean value or the standard deviation in each day lies outside the range of the 
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reference mean values (Table 5.2) or standard deviation values (Table 5.3), then the 

incipient defect is considered to have occurred. This step is part of the SPRT procedure. 

To make a comparison, the list of hypotheses must be determined first including the 

normal condition ( 0H ) represented by mean value normalM  and the standard 

deviation normal . Alternative hypotheses, 1H  to 4H , indicate the abnormal 

conditions. The set of hypotheses is given in Table 5.4. 

Table 5.1 Normalized NR  matrix. 

day 1 day 2 day 3 day 4 day 5 day 6 day 7 day 8 day 9 day 10 day 11  day 12 day 13 

0.044 0.042 0.042 0.042 0.042 0.043 0.042 0.043 0.044 0.042 0.042 0.042 0.043 

0.025 0.021 0.021 0.022 0.022 0.023 0.021 0.024 0.025 0.022 0.022 0.021 0.022 

0.016 0.015 0.015 0.015 0.015 0.016 0.015 0.016 0.016 0.015 0.015 0.015 0.015 

0.018 0.017 0.017 0.017 0.017 0.018 0.017 0.018 0.018 0.017 0.017 0.017 0.018 

-0.955 -0.957 -0.957 -0.957 -0.957 -0.956 -0.957 -0.956 -0.955 -0.957 -0.957 -0.957 -0.957 

 
day 14 day 15 day 16 day 17 day 18 day 19 day 20 day 21 day 22 day 23 day 24 day 25 

0.043 0.042 0.043 0.043 0.042 0.043 0.044 0.042 0.042 0.042 0.042 0.042 

0.022 0.021 0.023 0.023 0.022 0.023 0.024 0.021 0.021 0.022 0.022 0.021 

0.015 0.015 0.016 0.016 0.015 0.016 0.016 0.016 0.015 0.015 0.015 0.015 

0.018 0.017 0.018 0.018 0.017 0.018 0.018 0.017 0.017 0.018 0.018 0.017 

-0.957 -0.957 -0.956 -0.956 -0.957 -0.956 -0.955 -0.957 -0.957 -0.957 -0.957 -0.957 

 

Table 5.2 Mean ( M ) values of normal state. 

day 1 day 2 day 3 day 4 day 5 day 6 day 7 day 8 day 9 day 10 day 11  day 12 day 13 

-0.169 -0.172 -0.171 -0.171 -0.171 -0.171 -0.172 -0.170 -0.170 -0.171 -0.171 -0.172 -0.171 

 

day 14 day 15 day 16 day 17 day 18 day 19 day 20 day 21 day 22 day 23 day 24 day 25 

-0.171 -0.172 -0.170 -0.171 -0.171 -0.171 -0.170 -0.172 -0.172 -0.171 -0.171 -0.172 

Note: minM  = -0.172, maxM  = -0.169 

 

Table 5.3 Standard deviation ( ) values of normal state. 

day 1 day 2 day 3 day 4 day 5 day 6 day 7 day 8 day 9 day 10 day 11 day 12  day 13 

0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 

 

day 14 day 15 day 16 day 17 day 18 day 19 day 20 day 21 day 22 day 23 day 24 day 25 

0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 

Note: 439.0normal   
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Table 5.4 Hypotheses for SPRT. 

Hypothesis 
Statistical properties  

                 Mean (M) Standard deviation (σ)  

  1. Normal condition ( 0H ) maxmin MMM   normal   
 

  2. Abnormal condition 1 ( 1H ) maxMM   normal    

  3. Abnormal condition 2 ( 2H ) minMM   normal    

  4. Abnormal condition 3 ( 3H ) maxmin MMM   normal    

  5. Abnormal condition 4 ( 4H ) maxmin MMM   normal    

 

To mathematically measure the comparison, the ratio of the probability of 

alternative hypotheses ( 1H  to 4H ) and the probability of the null hypothesis ( 0H ) are 

calculated as in Eq. (5.10). Once probability ratio iL  is obtained, the SPRT index can be 

calculated by taking the natural logarithm of probability ratio iL . The result of Step (1) 

is shown in Figure 5.3. It can be seen from the monitored data from the 51st to 89th day 

that the bearing is still in normal condition. The impending deterioration of the bearing 

is identified on the 90th day. Note that the impending deterioration is required in Step 

(2) to predict the future state and to estimate the RUL estimation. A sample calculation 

of iL  for one day (the 51st and 90th day) is presented in Table 5.5. When the condition 

of the bearing is still normal, the probability of statistical properties is  that fall within 

the alternative hypotheses zH , )|(Pr zi Hs is much lower than the probability of 

statistical properties is  of the null hypothesis 0H , )|(Pr 0Hsi . To illustrate the normal 

condition (the 50th day), the natural logarithmic of iL  is given in Table 5.5 and shown in 

Figure 5.3. On the contrary, on the 90th day, the condition of the bearing started to 

deteriorate. When the bearing start to deteriorate, the probability of statistical 

properties is  that fall within the hypotheses, zH , )|(Pr zi Hs will increase and the 

probability of statistical properties is  that fall in the null hypothesis 0H , )|(Pr 0Hsi will 

decrease as shown in Table 5.5. The SPRT index is then given in Figure 5.3. 
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Figure 5.3 SPRT index result for detecting impending bearing deterioration. 

Table 5.5 Example calculation of iL  in one day observation. 

dayth observation )|(Pr zi Hs  )|(Pr 0Hsi  iL  (Eq. 5.10) 

day 51 0.04 0.99 -3.209 

day 90 0.08 0.98 -2.506 

Note: )|(Pr zi Hs  is probability of statistical properties is  given zH  is true and 

   )|(Pr 0Hsi  is probability of statistical properties is  given 0H  is true. 

 

5.5 Damage analysis 

The slew bearing damage photographs of the first laboratory test has been 

presented in Figure 2.16. It is shown the damages are caused by the contamination 

injected to the bearing in the middle of experiment. This section presented the 

damages of the slew bearing from the second laboratory test. Prior to the damage 

description, the selected time-domain features such as RMS, skewness, kurtosis and 

entropy are extracted first. The features are shown in Figure 5.4. From Figure 5.4 the 

Normal 

condition 

Change of 

bearing 

condition 

Training data 

Incipient 

bearing defect 



Chapter 5 - Incipient defect detection method and damage analysis  

128 

changes in the slew bearing condition can be seen from RMS, kurtosis and entropy 

feature on approximately December 2013 (red dashed line) and remained at a high 

level (up to red dotted line). These results are similar to the AE hit parameters of the 

AE signals in Chapter 6. The test rig was stopped on 30 January 2014 and the slew 

bearing was dismantled on 5 February 2014. The inner raceway, outer raceway and 

roller condition of the slew bearing were investigated. It was found that slew bearing 

parts such as the inner and the outer race were defective. The damage in the outer 

race was more severe than that in the inner race. The damage on the outer raceway is 

more than that on the inner raceway and the damage on the outer raceway is also 

denser than that on the inner raceway. According to Figure 5.5 and Figure 5.6 both 

outer race and inner race damages occurred on the right side due to the eccentric 

loading. This is shown in Figure 5.5 for the outer race damage and Figure 5.6 for the 

inner race damage. The damage clearly indicates a spalling which was initiated by 

subsurface cracking due to the fatigue caused by low frequency high loading and poor 

grease lubrication. Several similar wear scars can be seen in the dismantled rollers as 

presented in Figure 5.7. 

In addition, it is shown in Figure 5.7 there is a rolling mark on the rollers. These 

rolling marks appeared partly on the rollers as there is a shinning part on the top side 

of the rollers. This is due to the poor grease lubrication and eccentric loading. The 

spalling damages were also shown in Figure 5.7. The SEM tests were conducted to 

identify the spalling damages. From the SEM tests, it is shown that the damages were 

probably due to the rolling fatigue between metal-to-metal contacts. Due to the 

eccentric loading, high load and reversible rotation, the crack was initiated from the 

part of roller surface with high stress contact points. This crack was developed into 

subsurface and finally make some amounts of material were chipped off and spall 

remained on the rollers. 
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Figure 5.4 RMS, skewness, kurtosis and entropy features extracted from slew bearing 

data from the second laboratory test. 

 

After cleaning, the bearing parts were assembled back to the test rig and the 

second measurement was restarted in 22 August 2014. The similar features are 

extracted and the results are shown in Figure 5.4 from the red dotted line to the last 

measurement day on day 381 (25 November 2014). 

It noted that the circular domain and LLE feature extraction were not applied to the 

second laboratory test because the time domain features such as RMS, kurtosis and 

entropy have been shown to be effective in monitoring the bearing condition. 
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Figure 5.5 Naturally generated outer race damage photographs. 

 

                 

Figure 5.6 Naturally generated inner race damage photographs. 
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(a) (b) 

     

(c) (d) 

Figure 5.7 Naturally generated roller damage photographs and SEM images: (a) a 

photo of roller number 40; (b) a SEM of roller number 40; (c) a photo of roller number 

81 and (d) a SEM of roller number 81. Note that the total number of roller is 82. The 

roller was marked in clockwise direction. 
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5.6 Conclusion 

Manuscripts based on this chapter have been submitted to the Mechanical Systems 

and Signal Processing Journal with the following titles: 

 W. Caesarendra, B. Kosasih, A.K. Tieu, C.A.S. Moodie, Integrated condition 

monitoring and prognosis method for incipient defect detection and remaining life 

prediction of low speed slew bearings, (under review in Mechanical Systems and 

Signal Processing Journal, Paper ID MSSP14-393). 

 W. Caesarendra, B. Kosasih, A.K. Tieu, H. Zhu, C.A.S. Moodie, Acoustic emission-

based condition monitoring methods: Review and Application for low speed slew 

bearing, (under review in Mechanical Systems and Signal Processing Journal, Paper 

ID MSSP14-741). 
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Chapter 6 - Acoustic emission-based 

condition monitoring 

 

“Life is like riding a bicycle. To keep your balance, you must keep 
moving” 

(Albert Einstein) 

 

6.1 Introduction 

Recently, there have been an increasing number of studies on slew bearing-based 

condition monitoring and early fault detection. The researches have employed a range 

of different methods such as vibration analysis [3, 4], finite element method (FEM) [5, 

6, 8-10], oil analysis [11, 12] and acoustic emission (AE) [187-191]. AE has not been as 

largely used for slew bearings as it is in typical rolling element bearings. A pioneering 

study by Rodgers [2] used AE for monitoring slow rotating anti-friction slew bearings 

on cranes used in gas production. 

In the present work, an experimental study on AE for condition monitoring and 

early fault detection of slew bearings was conducted. In the case of typical rolling 

element bearings, vibration analysis is more commonly used than AE. This is because it 

is simpler and has well developed data acquisition and analysis tools. In other 

scenarios, however, AE-based condition monitoring has been widely studied and has 

shown some advantages over vibration-based condition monitoring [80, 192-195]. One 

example is the comparison between AE and vibration analysis over a speed range of 

600, 1000, 2000 and 3000 rpm and load range of 0.1, 4.43 and 8.86 kN [192]. AE 

achieved the early fault detection and provided an indication of the size of the 

artificially made defect. In another study [194] on the comparison of the used of 

vibration, AE and shock pulse methods (SPMs) on a bearing run at 1440 rpm with an 

artificial outer race defect. This study highlighted that the AE peak amplitude 

performed more reliable detection of the bearing defect than RMS of the vibration 
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signal. Another comparison study of AE and vibration analysis of naturally degraded 

roller bearings [80] applied a kurtogram for signal processing to both vibration and AE 

data from a defective bearing before root mean square (RMS) feature extraction. 

According to the overall trend of vibration and AE RMS, it was shown that AE is more 

sensitive in tracking the progression of the defect than the vibration-based method. 

This chapter divides the previous studies into three categories: the AE method 

applied to rolling element bearings running at three different speed levels; the most 

widely used AE hit parameters for rolling element bearings; and the recent 

development of condition monitoring and fault detection methods using AE signals. 

The results of the first category are summarized in Table 6.1. It appears that there is no 

existing standard criterion for speed classification of rotating machinery, though some 

articles mentioned that rotating speed below 600 rpm is categorized as low [18, 19, 

196] and speed greater than 600 rpm is considered as high [20, 21]. For this reason, 

three speed classifications: high-speed (> 600 rpm), low-speed (10 – 600 rpm) and very 

low-speed (< 10 rpm) have been adopted in this thesis. At low-speed, the AE signal is 

the transient elastic wave generated by the contact interaction of the rolling element 

and the raceway. At high speed, the AE signal is generated primarily by the impact 

between the rolling element and the raceway. At very low speed, the impact is lower 

than at high speed. This means that the transient wave generated by the interaction of 

the two metal surfaces is considered to be primarily due to friction and rubbing [127]. 

Several papers have indicated that for speeds below 100 rpm, and especially below 10 

rpm, the signal is difficult to analyse [127, 197-202]. For example Jamaludin et al. [127] 

studied bearing condition monitoring at 1.12 rpm. Wu et al. [199] presented the 

characteristics of AE signals of the rolling bearing in a giant wheel rotating at 0.32 rpm. 

Miettinen et al. [202] conducted the AE measurements on the bearing when the 

rotational speed of the shaft was from 0.5 to 5 rpm. Each speed classification is further 

sub-divided into artificially and naturally induced damage. 

It can be seen from Table. 6.1 that from more than 30 articles, even the most recent 

AE applications still focus on rolling element bearings rotating at speeds greater than 

600 rpm and subject to artificial (seeded) damage. It can be concluded that condition 

monitoring at very low-speed (< 10 rpm) bearings has not yet been fully investigated. 
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Artificially 

(seeded) 

damage 

Naturally 

induced 

damage 

High speed 

(> 600 rpm) 

Low speed      

(10 - 600 rpm) 

Very low speed 

(< 10 rpm) 

The second category of the literature review identifies the most widely used AE hit 

parameters for bearing condition monitoring and fault detection of rolling element 

bearings. This is presented in Section 6.2.1. 

Table 6.1 AE application in rolling element bearing for different speed levels and 

damage types. 

 

 

 

 

 

 

 

 

 

What makes slew bearings different from typical rolling element bearings? Slew 

bearings are large thrust bearings commonly used in heavy industrial machinery such 

as turntables, cranes, rotatable trolleys, excavators, reclaimers, swing shovels, and 

ladle cars founds in steel mills and mining. Recently, slew bearings have also been used 

in medical and military equipment [222, 223]. Slew bearings are usually attached at the 

base of the equipment or machine to enable rotation of the supported structure. The 

rotation of slew bearings is usually reversible and intermittent running at a very low 

speed (0.5–15 rpm). The inspection of slew bearings is challenging due to the difficulty 

in accessing them [224]. This often requires major disassembly of the larger system, 

resulting in productivity loss and higher maintenance cost. Therefore, this bearing 

tends to be poorly maintained and may increase the probability of sudden failure. 

These unexpected failures can be avoided if a condition monitoring system which is 

able to predict failure is integrated in the bearing condition monitoring system. 

Refs. [187], [191], [2], 

[192], [194], [203], 

[204], [205], [206], 

[207], [208], [209], 

[210], [120], [211] 

 Refs. [190], [2], [19], 

[197], [208], [209], 

[120], [212], [213], 

[214] 

 Refs. [127], [197], 

[198], [199] 

 

Refs. [80], [215], 

[216], [217], [218], 

[219], [220] 

 Refs. [188], [189], 

[200], [122], [221] 
 

Refs. [199], [200], 

[201], [202] 
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Because slew bearings have a typically long life, ranging from 5 to 10 years, an 

accelerated life test is required in the laboratory. Through this laboratory experiment, 

slew bearing condition monitoring data from brand new to impending failure was 

collected. In order to accelerate the failure, several defect accelerating methods such 

as:  (1) irregular greasing; (2) application of continuous, heavy and excessive load; (3) 

presence of contamination; and (4) application of partial load, asymmetric or eccentric 

load acting, have been employed. The combination of continuous load and 

contamination has been studied [1] but did not include AE measurement during the 

period of bearing service life. 

In the present study, a combination of irregular greasing, eccentric and continuous 

load were adopted. As the real faults would be hidden by lubricating the bearing and 

thus the AE signal is difficult to identify [225], irregular greasing is selected in this 

study. The objective is to identify which AE feature was the most appropriate and 

reliable one to indicate imminent failure. Due to low rotational speed, the signal 

generated from the metal-to-metal contact between the rolling element and defective 

spots is not as strong as that generated under similar conditions at high speed. The 

features commonly used for high speed bearings are not sensitive enough when 

applied to the slower slew bearing [120]. Features extracted from the low energy 

signal would not be clear because the weak signal is usually hidden behind the 

background noise. 

6.2 AE-based condition monitoring in rolling element 

bearings 

The study on AE condition monitoring in rolling element bearings can be classified 

into two main categories: (1) investigation of AE parameters and (2) development of 

AE-based signal processing, alternative feature extraction and pattern recognition. 

6.2.1 AE hit parameters 

The literature presents many studies on AE hit parameter-based methods 

associated with rolling element bearing defects. For example, AE hit parameters such 

as counts and peak amplitude have been used [187] to detect the changes 
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corresponding to the different sizes of simulated defects on the inner race and roller of 

radially loaded cylindrical roller bearings rotating at 1500 rpm. The study found that 

‘counts’ is a good parameter for the detection of small defects. For larger defects, 

however, counts is unable to track the progression of the defect because it stops 

increasing after a certain defect size. In addition to counts, other AE hit parameters 

such as RMS, amplitude and energy were investigated by Morhain and Mba [206] for 

radially loaded bearings with artificially seeded defects in the inner race and the outer 

race. This study also investigated how well to determine the most appropriate 

threshold level for counts parameter. Another study [191] used the AE waveform of 

the rolling element bearings to correlate the AE parameters and the actual geometric 

size of the defect. Incremental seeded defect sizes were introduced on the four tested 

bearings. Energy, maximum amplitude and AE burst were extracted for each defect 

size. Two speeds were used: 1500 and 3000 rpm. 2.7, 5.3 and 8 kN forces were applied 

in sequence and AE data was acquired at each load condition. It was concluded that 

the geometric defect size of the outer race defect was easier to be determine from the 

AE waveform than that of the inner race defects. The AE burst at 3000 rpm was also 

clearer than that at 1500 rpm. The amplitude of the AE burst also became higher as 

the load increased. 

In practice, multiple defects occurred naturally in rolling element slew bearing. This 

means that an artificial single defect is not appropriate for slew bearings. An attempt 

to correlate AE with natural defect generation and location in rolling element bearings 

was made by Elforjani and Mba [122]. The focus is to detect and monitor the natural 

growth propagation and locate natural defect initiation of high speed rolling element 

bearings using AE measurements. The accelerated natural degradation of a bearing 

raceway was generated from a special purpose test-rig. It is worth noting that the 

research discussed in [122] extended the work of Yoshioka [226] which attempted to 

identify the onset of natural degradation in bearings with AE. However, the tested 

bearing used in [226] only had three rollers and this is not representative of a typical 

operational bearing. In another study, Elforjani and Mba [188] studied the correlation 

between AE activity and natural defect generation in slow speed rotating shafts by 
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monitoring the mechanical integrity of rotating shafts. A special test-rig was designed 

in the study to generate the experimental data. 

The summary of the extracted information about the use of certain AE hit 

parameters in the literature are presented in Table 6.2. It can be seen that amplitude 

and RMS are the AE hit parameters that are most often used in rolling element 

bearings rotating at greater than 10 rpm. For the case of rotational speeds of less than 

10 rpm, counts and amplitude are most commonly applied. 

AE hit parameters are shown in Figure 6.1. The definition of the AE hit parameters and 

their application on AE signals at two different speeds are summarized in Table 6.2. 

 

 

 

Figure 6.1 AE hit parameters on one event. 
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Table 6.2 Seven common AE hit parameters based on two speed classification. 

AE         

parameters 
              Definition 

Speed classification 

< 10 rpm > 10 rpm 

 Amplitude The maximum (positive or negative) AE 

signal excursion during and AE hit [227]. 

The amplitude is expressed in dB using the 

relationship: 

)GainPreamp()voltμ1/Vlog(20dB max   

Refs. [190], 

[205], [228], 

[229], [230], 

[231], [232], 

[199] 

Refs. [191], 

[192], [212], 

[207], [218], 

[221], [120], 

[233], [234], 

[214] 

 RMS RMS is a measure of the continuously 

varying AE signal “voltage (V)” into the AE 
system [227]. The RMS of raw AE signal 

can be expressed as follows [235]: 





Tt
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T

AE

0

0

)(V
1 2 = 



N

i

i
N 1

2 )(V
1

 

where V  is the voltage signal from an AE 

sensor, 0t  denotes the initial time, T  is 

the integration time of the signal, and N  

is the number of discrete AE data within 

the interval T . 

Refs. [190], 

[206], [200], 

[228], [199] 

Refs. [16], 

[38], [217], 

[200], [218], 

[221], [120], 

[233], [236], 

[237] 

 Energy The integral of the square voltage signal 

over the duration of the AE hit [120], 

[227]. The numerical integration method 

within the time period (t1, t2) can be 

written as follows: 
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where )(tV  is an AE signal and MSV reflects 

the energy distribution of the AE signal 

[238]. 

Refs. [206], 

[228], [239], 

[199] 

Refs. [188], 

[191], [122], 

[207], [221], 

[120], [233] 

 Counts The number of detected AE signal 

excursion over the AE threshold. Also 

known as “ringdown counts”. 

Refs. [187], 

[190], [206], 

[199], [228], 

Refs. [188], 

[219], [221], 

[120], [233], 



Chapter 6 - Acoustic emission-based condition monitoring  

140 

[229], [230], 

[231], [232], 

[239] 

[214], [240] 

 Events The phenomenon which releases elastic 

energy into the material, which then 

propagates as an elastic wave [23]. 

Refs. [190], 

[197], [228], 

[232] 

Refs. [197], 

[220], [241], 

[240] 

 ASL Average signal level (ASL) is a measure of 

the continuously varying and “averaged” 
amplitude of the AE signal [227]. ASL is 

defined as follows [242]: 
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N
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1
log20 VASL

ASLdB   

where VASL  is an average signal level in 

volts and dBASL  is an average signal level 

in decibel (dB) . 

 Refs. [188], 

[221], [233] 

 AE Burst A qualitative description of the discrete 

signal related to an individual emission 

event occurring within the material. 

 Refs. [191], 

[192], [234], 

[243], [216] 

 

6.2.2 AE signal processing, feature extraction and pattern 

recognition 

In very noisy environments, in order to extract the information to be used in fault 

detection of rolling element bearings, the AE signal needs to be further processed by 

AE signal processing, feature extraction or pattern recognition. Much research has 

been done to develop methods to process the raw AE signal. This research is 

summarised in Table 6.3. Some reviews can be summarised as follows: 

AE signal processing methods 

Cyclostationarity, a new method which has been used effectively for monitoring 

vibration signals [244], has been used for monitoring AE signals [203]. The construction 
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of cyclostationarity concepts is based on statistical moments. The latter are defined as 

mathematical expectations. The th
n  order moment of a signal )(tx  is given by 

)}({)( txEtm
n

n             (6.1) 

where E  is the mathematical expectation. If this moment presents a periodicity T , 

the signal is considered to be cyclostationary at order n . Hence, one can write: 

)()( Ttmtm nn             (6.2) 

An interesting quantity deduced from the concept of statistical moments is the 

instantaneous autocorrelation defined by 

)}2/τ(*)2/τ({)τ,(  txtxEtRxx          (6.3) 

where *x  denotes the conjugate of x . The autocorrelation function expresses the 

internal similarity of the signal at two instants taken with a lag τ . 

The implementation of wavelet packet decomposition together with Hilbert Huang 

transform (WPD – HHT) for spindle bearings condition monitoring was presented by 

Law et al. [215]. This method is used to extract the crucial characteristics of AE data 

and correlate them with spindle running condition. The focus of the study is to detect 

the fault frequencies of the bearings under different load and running times. Other 

established methods for AE such as Wigner-Ville distribution (WVD), wavelet 

scalogram and adaptive line enhancer (ALE) have been presented by Bin et al. [245], 

He et al. [246] and Shiroshi et al. [247], respectively. The time-frequency method, 

WVD, is considered by He et al. [245] because the AE signals exhibit a multi-frequency, 

multi-mode and multi-modal spectrum. Hence, WVD can be used to extract the 

characteristic signals acquired from the multi-frequency AE signal [245]. Eftekharnejad 

et al. [80] presents the applicability of AE and vibration technology in monitoring 

naturally degraded rolling bearings. They also investigate the comparative 

effectiveness of applying the kurtogram to both vibration and AE data from a defective 

bearing. Spectral kurtosis (SK) is applied in the paper. It is based on the transformation 

of the signal into the time-frequency domain using short-time Fourier transform 

(STFT). SK is also used as a de-noising technique to improve the signal-to-noise ratio of 

AE and the vibration signal. To date, the most comprehensive calculations of SK have 

been developed by Antoni [248] as the fourth order cumulant of the spectral moment 

(K): 
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),( ftYW is estimated using the STFT: 









 nfj
W etnWnYftY

2)()(),(          (6.6) 

where )(nY  is the sampled version of the signal, )(tY , and )(nW  is the window 

function having zero value outside a chosen interval. For the above calculations to be 

valid, the size of window )(wN  must be smaller than the length between two 

consecutive impulses [80]. 

A new signal processing method for low speed bearings, the peak-hold-down-

sample (PHDS) algorithm, was developed by Lin et al. [209]. The method is useful to 

overcome the problem of large data size acquired from AE measurement with high 

sampling rates in low speed machine applications. The PHDS algorithm is an 

improvement on the traditional down-sample process in signal processing which 

selects the nth sample at equal intervals. Besides, it discards the rest of the samples 

from the original data to reduce the data size. The PHDS method is effectively the 

same as the Piecewise Aggregate Approximation (PAA) method presented in Chapter 

4. The difference is that the PHDS method takes the peak value between samples 

rather than the mean value. A mathematical description of the down-sampled data 

series of an original discrete data series [209],  ...),(,...),(),(),()( 210 itststststs  , 

10  Ni , can be written as: 

 ...),(,...),(),(),()( 210 jTSTSTSTSTS  , 10  Mj ,      (6.7) 

where )/int( rNM   and do ffr /  is the down-sample ratio. )/(1 1 iio ttf    is the 

sampling frequency of the original data and )/(1 1 jjd TTf    is the sampling frequency 

of the down-sampled data series. 

PHDS algorithm comprises of data segmentation step and enveloping method. The 

data segment described in [209] is given by 

 )(...,),(),(),()( 21 riiiij tstststsTX  ,        (6.8) 
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where ji Tt   and 1  jri Tt . 

The enveloping method consists of three steps: (1) data rectification, (2) Hilbert 

transformation to obtain the imaginary component to form the envelope and (3) fast 

Fourier transform (FFT) to obtain the power spectra of the envelope signals. 

The main parameter of the PHDS algorithm is the down-sample ratio, r, which is the 

ratio between the sampling frequency of the original data and the sampling frequency 

of the down-sampled data series. The results show that the PHDS algorithm can reduce 

the size of data while retaining the critical bearing defect information such as ball pass 

frequency outer race (BPFO), ball pass frequency inner race (BPFI) and fundamental 

train frequency (FTF). However, there is no further explanation for how the down-

sample ratio is determined. 

AE feature extraction methods 

A number of methods have been used for feature extraction of rolling element 

bearing AE signals. Some of them adopt established methods such as auto-regression 

(AR) coefficients [198, 201], complex Morlet wavelet [249], Mahalanobis distance [250] 

and zero-inflated Poisson (ZIP) regression [214], approximate entropy (ApEn) [251]. 

Others have proposed new methods such as energy index (EI) technique [211], short-

time energy function [252], peak ratio (PR) [253] and ratio of AE mean and AE standard 

deviation [254]. The present study does not include discussion on the first four of 

these methods. 

ApEn is one of the phase-space dissimilarity measures [155] that can be used to 

compute the value of the regularity in the vibration signal. A smaller value indicates 

more regularity and a higher value indicates less regularity in the vibration data set 

[155]. ApEn is based on phase-space or reconstruction vectors. Suppose 

),...,,( 21 NyyyY is the original time series or vibration signal in one second with 

sampling rate, N , then the phase-space of the original time series can be defined as 

follows: 
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where J represents reconstruction delay and can be computed by time lag / t , m  

represents the embedding dimension and M  represents the number of reconstructed 

vectors. The relation between N , J , m  and M  can be defined in the following form: 

JmMN )1-(  or JmNM )1-(- . The dimension of phase-space is a mM   matrix. 

According to [251], the initial step of approximate entropy is to measure the distance 

between two vectors )(iX  and )( jX  which can be defined as the maximum difference 

in their respective corresponding elements: 

)|)()(|(max)](),([
1...,,2,1,0

kjxkixjXiXd
mk




     (6.10) 

where 1...,,2,1  mNi , 1...,,2,1  mNj  and N  is the number of data points that 

are contained in the time series. For each vector )(iX , a measure that describes the 

similarity between the vector )(iX  and all other vectors )( jX , where 1j  can be 

constructed as 

  ∑
≠

)(),(
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ij
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      (6.11) 

where 1...,,2,1  mNj  and the Heaviside step function, )(x  is similar to the 

symbol in correlation dimension where 0)(  x  if 0≤X  and 1)(  x if 0X . 

The symbol r  in (K) denotes a predetermined tolerance value, defined as 

)(. Ystdkr           (6.12) 

where )(Ystd  is the standard deviation of original time series or AE signal, Y , and k  

is a constant )0( k . By defining 

  1...,,2,1,)(ln
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1
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the ApEn value of time series can be calculated as 

)](-)([lim),( 1

∞→
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For practical applications, a finite time series consisting of N  data points is used to 

estimate the ApEn value of the time series, which is defined as 

)(-)(),,( 1
rrNrmApEn

mm   .       (6.15) 

An alternative feature extraction method, the energy index (EI) technique, was 

introduced by Al-Balushi et al. [211]. This method is used to detect the early symptoms 

of defects from the masked AE signatures. The identification of the earliest signs of 

damage can be achieved by improving the signal-to-noise ratio. However, the high 

sampling rates of the AE signal is a significant problem. Thus, the EI technique 

overcomes the problem by conducting subsequent signal processing. In addition, the EI 

technique is defined as a square of the RMS ratio of a part of a signal to the RMS of the 

entire signal. It was found that the EI technique works successfully in detecting the AE 

bursts associated with seeded bearing defects. The EI is expressed by the following 

equation: 

N











total

segment

RMS

RMS
(EI)IndexEnergy        (6.16) 

where N  is the power of EI. In case of bearing signal, N  is selected of 10 [211]. 

The EI value for a stationary signal is expected to be 1.0. For a signal with transient 

or non-stationary activities, the EI value will be higher than 1.0. The higher the value of 

the EI, the higher the energy activity is in a specific segment. However, there is no 

further discussion on how to determine the segment for calculating the segmentRMS . 

Future study on the EI technique for the low speed bearings is required as this method 

has been employed for bearings running at speeds greater than 1000 rpm. This 

method is also suitable for the AE signal with one periodic impulse generated by a 

single defect. For multiple defects, the method needs to be tested. 

Because the bearing AE signal has significant fluctuations in the peak amplitude of 

the signal and there is also considerable frequency variation content, the short-time 

energy function method was proposed by Li and Li [252]. The source of these time-

dependent variations is the periodic impulses generated by a damaged bearing. To 

extract these meaningful impulses which change relatively slowly over time, short 
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segments of the bearing signal are used and processed. Such processes produce a new 

time-dependent sequence which can serve as a representation of the signal [252]. The 

formula for the short-time energy function is: 







m

mnwmxnE )()()( 2
        (6.17) 

where )(nx is the sampled signal and 1)( nw  if 10  Nn , 0)( nw  otherwise ( N  is 

the width of window). This method has been tested for AE signals with obvious 

periodic impulses generated by a seeded defect bearing running at high speed i.e. 

2200 rpm. However, the selection criteria for N  must be explained and the application 

of this method for low speed bearings also requires further study. 

A peak ratio (PR) feature was proposed by Kim et.al. [253]. PR is the formula derived 

from the average of the defect frequency and the peak harmonic value. The PR is given 

in terms of dB and can be expressed as follows: 

s
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10
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A simple AE parameter defined by the ratio of AE mean,   and AE standard deviation, 

  formulated as  /  has been proposed by Niknam et al. [254]. The parameter was 

tested in dry and lubricated bearings. Radial loads were varied for 2268, 4537, 6805 

and 9073 N. Each test on one load, the rotational speed was increased incrementally 

from 10, 20 to 100 Hz. The results show that the calculated parameters of lubricated 

bearing case were higher in most tests than the parameters of dry bearing. 

AE pattern recognition methods 

Compared to the previous two categories, there has not been research conducted 

in this category. Fuzzy c-mean for bearing condition monitoring using AE has been 

studied [213]. The application of the relevance vector machine (RVM) and the support 

vector machine have been studied [19, 212]. Recent AE-based fault diagnosis and 

clustering methods have also been studied [238, 255]. An AE-based fault diagnosis 

method using asymmetric proximity function combined with K-nearest neighbour 

(APF-KNN) has been presented [238]. The AE signal was processed initially using HHT 

to estimate the intrinsic mode functions (IMFs). A number of statistical and acoustic 
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features were also calculated from the IMF signal. The sensitive features are selected 

using KNN. A number of classifiers were compared to APF-KNN. The result showed that 

the APF-KNN is the most efficient supervised learning classifier compared to seven 

supervised classifiers. In [255], the adaptive sequential k-means (ASK) clustering 

algorithm was presented. 

Table 6.3 Classification of AE-based condition monitoring and fault diagnosis methods. 

Category 1: Signal 

processing methods 

 Category 2: Feature 

extraction methods 

 Category 3: Pattern 

recognition methods   

Cyclostationary [203].  Auto-regression (AR) 

coefficients  [198], [201]. 

 Fuzzy c-mean clustering 

[213]. 

Wavelet packet 

decomposition – Hilbert 

Huang transform (WPD-

HHT) [215]. 

 Approximate entropy 

[251]. 

 Relevance vector 

machine (RVM) and 

support vector machine 

(SVM) [19]. 

Kurtogram-based short-

time Fourier transform 

(STFT) [80]. 

 Energy index (EI) 

technique [211]. 

 Multi-class RVM [212]. 

Peak-hold-down-sample 

(PHDS) algorithm [209]. 

 Complex Morlet wavelet 

[249]. 

 Asymmetric proximity 

function combined with     

k-nearest neighbour 

(APF-KNN) [238]. 

Self-adaptive noise 

cancellation (SANC), 

spectral subtraction and 

wavelet denoising [210]. 

 Short-time energy 

function, short-time 

average zero crossing rate 

and median smoothing 

[252]. 

 Adaptive sequential k-

means (ASK) clustering 

algorithm [255]. 

Spectral kurtosis [256].  Peak ratio (PR) [253].   

Wigner-Ville distribution 

[245]. 

 Zero-inflated Poisson 

(ZIP) regression [214]. 

  

Wavelet scalogram [246].  Mahalanobis distance 

[250]. 

  

Adaptive line enhancer 

(ALE) and high-frequency 

resonance technique 

(HFRT) [247]. 

 Ratio of AE mean and AE 

standard deviation [254]. 
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6.3 Results and discussion 

6.3.1 AE hit parameters 

Detailed AE experiment has been presented in Chapter 3. During the experiment 

from April 2013 to January 2014 (285 days), AE hit parameters: counts, energy, 

duration, amplitude, ASL and RMS were extracted from AE signals acquired from 

clockwise and anti-clockwise measurement. The user selection of these parameters is 

available in the AEwin software set-up prior to the experiment. The results produce 

minimum, maximum and average values. The average values were collected and are 

presented in this chapter. The illustration and the definition of the AE hit parameters 

used here have been presented in Figure 6.1 and Table 6.2, respectively. The 

additional parameter used in this study is defined as follows: 

 Duration – the time from the first threshold crossing to the end of the last threshold 

crossing, such as the parameter duration which was used by [214] and [199]. 

Six AE hit parameters are presented in Figure 6.2. It can be seen that all parameters 

detected significant changes on the 254th day. After the first significant changes, the 

parameters show fluctuation and some remain at a level far above the normal average 

level. This indicates that the condition of the slew bearing had deteriorated. Although 

the selected AE hit parameters can detect the incipient fault of the slew bearing, the 

change is too sudden for a maintenance engineer to prepare for the maintenance 

work. This demonstrates the necessity for the present study. Furthermore, the levels 

of all AE hit parameters between channel 1 and 2 are different. The parameters levels 

produced from channel 2 are higher than that of channel 1. This could be due to the 

eccentric load applied on the slew bearing. It should be noted that eccentric load is the 

typical loading condition in practice. The maximum differences between channel 1 and 

2 were shown in energy and RMS parameters. Moreover, the amplitude parameter 

was the noisiest parameter. 

According to the review of AE hit parameters presented in Table 6.2, counts and 

amplitude are the most commonly used parameters for rolling element bearings 

rotating at less than 10 rpm. To observe the damage, the daily AE measurement of the 
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slew bearing was shut off on 1 February 2014 and the slew bearing was dismantled 

after that. The wear condition of the inner raceway, outer raceway and roller are 

presented in Chapter 5. 
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Figure 6.2 AE hit parameters extracted from AE data at clockwise rotational direction. 

 

6.3.2 Complexity analysis of AE signals 

In most applications, AE hit parameters are the most commonly used to detect the 

incipient damage and to evaluate the damage progression [251]. However, AE hit 
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parameters are related to the absolute energy level of the measured waveform which 

relies on a pre-set amplitude threshold [257]. The threshold set for the AE signal relies 

on the operator's experience. AE hit parameters also produce a rough evaluation and 

approximate description of the AE signal, and thus cannot be used to analyse more 

detailed AE characteristics. The AE signals generated by the elastic impulse and strain 

due to the contact mechanism between rolling elements are paroxysmal and non-

linear [251]. Therefore, nonlinear parameter estimation methods can be used to 

extract defect-related features hidden in such an AE signal [251]. Due to the limitation 

of the AE hit parameters, it is required to have an alternative feature independent of 

absolute energy levels and sensitive to chaotic data emanating from a nonlinear 

system. A number of related studies have been conducted. These studies have applied 

several methods such as correlation dimension [105, 258-261], approximate entropy 

(ApEn) [251], Kolmogorov entropy [105], Kolmogorov-Smirnov (KS) test [113, 257, 262] 

and largest Lyapunov exponent (LLE) [105, 260, 261]. 

Complexity analysis of AE signals in civil engineering, tool machining and steel rubbing 

The use of the correlation dimension for AE signals in the field of civil engineering, 

especially in construction materials, has been presented by Kacimi and Laurens [258]. 

In another study, the combination of wavelet multi-resolution and correlation 

dimension for AE signals from machine tools is proposed by Song et al. [259]. The 

study shows the correlation dimension of worn tools is greater than that of sharp 

tools. The larger values of the correlation dimension indicate that the AE signal from 

worn tools is more chaotic or complex than that from sharp tools. A similar study 

which used the correlation dimension for the AE signal from tool wear is presented by 

Xi et al. [260]. The AE signal has been acquired from different periods during the 

cutting process. The authors also use the LLE. The trend of correlation dimension and 

the LLE qualitatively describe the chaotic characteristic of the AE signal. Li and Chu 

[263] proposed the use of ApEn to analyze the AE signal from the cracks in the steel 

tube and to identify the cracked state. The first known attempt to apply  the KS test for 

an AE signal was presented by Hall et al. [257]. The KS statistic for the examination of 

the AE signal has been generated by partial rubbing between a rotating central shaft 

and the surrounding stationary components in a gas turbine. This demonstrated that 
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the KS feature is able to identify different classes of shaft-seal rubbing. The KS feature 

results are compared to statistical moment features such as RMS, median and kurtosis, 

and AR coefficients. 

Complexity analysis of AE signals in rolling element bearing application 

Recent research discusses the use of the correlation dimension, the  LLE and 

Kolmogorov entropy in the vibration signals of rolling bearing [105]. In other studies, 

Ghafari et al. [261] investigated the effect of localized faults on chaotic vibration of 

rolling element bearings based on the correlation dimension and the LLE. The use of a 

KS test based on the AR model to estimate the performance degradation of rolling 

bearings is proposed by Cong et al. [113]. The method is applied to vibration data over 

a whole bearing service life (normal-fault-failure) collected from a bearing accelerated 

life test. Yan and Gao [264] have investigated the use of ApEn in vibration rolling 

element bearings with different defect severities, under different rotational speeds 

and loading conditions. The effect of ApEn parameters such as data length and 

dimension on the ApEn values has also been investigated. 

As indicated in the above literature review, chaos and/or complexity analysis has 

been effectively conducted for the vibration signal of rolling element bearings. 

However, the chaos analysis in rolling element bearing AE signals has not been widely 

studied. Only one study has been found on the use of ApEn in the AE signal of rolling 

element bearings [251]. The authors introduce the ApEn to analyze the AE signal 

generated by the rolling element bearing defects. The sensitivity of ApEn to the 

different running conditions of the bearings such as different rotational speeds and 

different loads was investigated. The selection of ApEn parameters i.e. embedded 

dimension m and tolerance r, is also investigated. The bearings under test are 

artificially seeded with defect sizes of 3 mm and 5 mm diameters. This work shows that 

ApEn is also effective for the AE signal of rolling element bearings. Wavelet transform 

(WT), a pre-processing method, was employed for de-noising. The combined ApEn and 

WT is applied to identify the differences between the normal bearing and the 

artificially damaged bearing. Further study on bearing with a natural defect, especially 

the study on the transition period from normal to damage condition, is required. 
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Complexity analysis of AE signals based on LLE feature extraction 

In a previous study by the writer [186], LLE has been applied to the vibration signal 

of low-speed slew bearings. It has been shown that the LLE can extract the key feature 

related to the degradation. LLE also demonstrates better tracking of the progressive 

deterioration of the bearing during the 139-day measurement than comparable 

methods such as statistical moment feature extraction from the raw vibration signal 

and empirical mode decomposition (EMD). The theoretical background and the 

procedure of LLE feature extraction can be found in [186]. In this paper, the LLE 

feature is used in the AE signal of reversible slew bearings. The AE signal measurement 

consists of clockwise and anti-clockwise rotation. Each measurement consists of three 

stages: (1) the deceleration to acceleration stage; (2) the stationary stage; and (3) the 

second deceleration to acceleration stage. Each whole measurement, from stage (1) to 

(3), is acquired over approximately 30 seconds. This process is presented in Figure 6.3 

which shows one example of the AE signal when the bearing was still in the normal 

state on 11 April 2013. Electronic noise as seen in the last figure of Figure 6.3 is difficult 

to be avoided in practice. In case of low speed slew bearing, the noise signal amplitude 

is higher than the bearing signal amplitude when the bearing is in normal condition 

(e.g. 30 May 2013). However, when the bearing starts to deteriorate or already in 

defect condition (e.g. 24 December 2013), the bearing signal amplitude is higher than 

the noise signal amplitude. This is illustrated in Figures 6.4 – 6.5. 

The present study conducted a complexity analysis in the acceleration stage. Prior 

to the LLE feature extraction, a simple method is developed and used to identify the 

transition position of a certain point between deceleration and acceleration (stage 1). 

The method consists of finding the samples above the zero mean, setting up minimum 

and maximum levels based on the RMS level, differentiating the samples and the 

matrix rotation. This calculation is necessary for identifying the starting point of the 

accelerate stage from the AE waveform as can be seen in Figure 6.3. When the bearing 

starts to deteriorate, the identification of the starting point of the accelerate stage will 

be more difficult because the impact due to the contact between the rolling element 

and the defect generates high amplitude and high frequency signal as shown in Figure 

6.5. The other reason is that the robust condition monitoring method requires less 
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operator involvement in the data processing step. For this reason, 10,000 AE 

waveform samples were separated and fed into the LLE feature extraction. The 

number of samples chosen, i.e. 10 000, was determined based on the selection of one 

LLE parameter and this will be discussed later. The plot of 10 000 samples for LLE input 

can be seen in Figure 6.3 prior to LLE feature extraction. 
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Figure 6.3 Illustration of one AE measurement in a clockwise rotation. 
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Figure 6.4 (a) AE signal on 30 May 2013; (b) FFT. 
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Figure 6.5 (a) AE signal on 24 December 2013; (b) FFT. 

Because LLE feature extraction is based on the phase-space matrix, the most 

important phase-space parameter is the reconstruction delay, J . According to the 

previous study of the writer [186], J  is determined based on the dominant frequency 

of the FFT of the vibration signal. It can be seen from Figure 6.4 that the dominant 

frequency is 8011 Hz, thus J  is estimated according to the following formula [186]: 

(a) 

(b) 

(a) 

(b) 
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sf
f

J
1

1
            (6.19) 

where 1f  is the dominant frequency of the FFT result ( 80111 f ) and sf is the 

sampling frequency ( MHz1sf ). Then, J  is computed to be 125. Other parameters 

such as N  are calculated using 0.01 times sf equal to 10000, 50m and 25 . The 

0.01 second is selected according to the computational time. Because of the large AE 

signal sampled at 1MHz, minimum samples for LLE input are necessary to reduce the 

computation time. To overcome this problem, this paper employs the LLE algorithm 

proposed by Rosenstein et al. [265] which is suitable for small samples of data sets. LLE 

feature extraction is used for 285-day measurement. The LLE feature is presented in 

Figure 6.6. Because most damage occurs on the side where eccentric loading is 

applied, this paper only presents the LLE feature of AE channel 2. From the LLE feature 

result, it can be seen that the incipient fault can be identified on the 247th day, which is 

on 16 December 2013. The LLE feature can identify the incipient fault 7 days earlier 

that the AE hit parameters which detect the incipient fault on day 254. The progression 

trend of the LLE feature is also shown to increase gradually rather than jump 

significantly as illustrated in the AE hit parameters. 
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Figure 6.6 LLE feature of AE channel 2. 
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In case of AE signal, the frequency of 8011 Hz is identified in the FFT spectra of all 

signals. Two representative data from 285-day measurement are presented in Figure 6.4 

and Figure 6.5 which clearly display the frequency 8011 Hz. It noted that the rest data 

are similar which also display the frequency 8011 Hz. When the bearing condition is 

changed, the frequency of 8011 Hz in no longer dominant as shown in December 24, 

2013 (Figure 6.5). The spectra in December 24, 2013 shown that the frequency of 8011 

Hz is changed to 42300 Hz. It should be noted that both frequencies are below the 

nominal lower limiting frequency (200 kHz) of the transducer. These frequencies 

presumed to be the resonance frequency excited by the contact between rolling elements. 

When surface material of the bearing deform due to high applied load and high friction, 

it actually excite the high frequency content. However, this high frequency content has 

short period, and thus it is not appear dominantly in FFT. This can be seen in the FFT in 

December 24, 2013 that frequency of approximately 160000 Hz and 180000 Hz can be 

seen even in low energy. This also prove by the result of AE hit parameter presented in 

Figure 6.2 where all AE-hit parameters jumped significantly after December 24, 2013. 

The AE hit parameters are usually used to captured the high frequency content due to the 

deformation and crack. In addition, although the frequency of 8011 Hz and 42300 Hz are 

below the frequency range of the transducer, the transducer still can pick this frequency 

as indicated in the Appendix E. 

 

6.4 Conclusion 

The application of AE for low speed reversible slew bearings has been proposed in 

this chapter. The study focuses on investigation of AE features as condition monitoring 

parameters for slew bearing with a natural defect. Review of previous research 

indicated that there has not been much work done on the application of AE for very 

low-speed bearings with naturally occurring damage. 

From the experimental study of low speed slew bearing with accelerated defect, two 

primary conclusions can be drawn: 

1. The investigation of AE hit parameter results shows that the counts, energy, 

duration, amplitude, ASL and RMS effectively identify significant change in the 

slew bearing condition. These changes, however, are too sudden and this means 
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that they cannot provide the maintenance engineers with adequate information 

in practice. 

2. Due to the limitation of the AE hit parameters in certain cases, some researchers 

have considered alternative feature extraction methods e.g. approximate entropy 

and energy index. For AE signal origination from low speed bearing, approximate 

entropy as a complexity measure has been considered as a reliable feature in the 

literature review. However, this method needs further study on its application at 

very low speed with naturally defective bearings. 

3. The analysis of rolling element bearing AE signals revealed that the LLE feature 

can be considered as an alternative feature extraction method. However, the 

time computation of the LLE feature extraction has an undesirable side-effect. 

The more samples used for the LLE input, the more accurate the result, but the 

more computation time will be required. 

Manuscript based on this chapter has been submitted to the Mechanical Systems 

and Signal Processing Journal with the following title: 

 W. Caesarendra, B. Kosasih, A.K. Tieu, H. Zhu, C.A.S. Moodie, Acoustic emission-

based condition monitoring methods: Review and Application for low speed slew 

bearing, (under review in Mechanical Systems and Signal Processing Journal, Paper 

ID MSSP14-741). 
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Chapter 7 - Prognostic method for slew 

bearing 

 

“If you can’t explain it simply, you don’t understand it well enough” 
(Albert Einstein) 

 

7.1 Review on prognostic methods 

Literature reviews presented in Chapter 2, 4 and 6 indicate that current research 

still focuses on the slew bearing condition monitoring and fault diagnostics. There has 

not been much work done on the low speed slew bearings prognostics, especially on 

the study of the entire life cycle of slew bearings. Prognosis is a composite word 

consisting of Greek words pro and gnosis, literally translated into the ability to acquire 

knowledge (gnosis) about events before (pro) they actually occur. Prognosis (also 

called prognostics) can be defined as the ability to assess current conditions of part or 

system, observe future conditions of the part or system and predict the time left 

before catastrophic failure occurs. As in diagnostics, most prognostic methods focus on 

the degradation models and performance assessment based on feature extraction 

[266]. The feature extraction of slew bearing review and study has been presented in 

Chapter 2 and Chapter 4. The degradation models as a prediction object of prognostic 

method are based on these appropriate and reliable features. 

In addition, prognostic methods are usually applied to predict the lifetime of 

rotating components, which generally can be divided into two stages. The first stage 

referred to normal zone where no significant deviation from the normal operating 

state observed. The second stage is abnormal zone; this stage is initiated by potential 

failure and progressively develops into actual failure [7]. It is on the second stage that 

prognostic methods are usually applied to predict unexpected failure in time basis 

from the incipient or impending damage using either event data or condition 

monitoring (CM) data. 
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In order to select an appropriate prognostic method for slew bearing, a review of 

existing prognostic methods is first presented in this chapter. The review consists of 

two parts: (1) a brief review on classification of prognostic approaches and (2) a review 

on prognostic methods for rolling element bearings. 

7.1.1 Classification of prognostic approaches 

There have been many papers that reviewed the prognostic approaches for rotating 

machineries [266-273]. For example, Lee et al. [266] reviewed prognostic methods for 

critical components such as bearing, gear, shaft, pump and alternator. The authors 

classified the prognostic approaches into three, namely model-based, data-driven and 

hybrid prognostic approaches. However, the classification does not include complete 

methods on each prognostic approach. In their work, two methods were classified into 

model-based approaches i.e. alpha-beta-gamma tracking filter and Kalman filter, while 

neural network (NN), fuzzy logic and decision tree are included in data-driven 

approach. 

Another review paper by Jardine et al. [267] presented clearer classification in 

prognostic approaches, but the discussion on rotating machinery diagnostics was more 

dominant than the discussion on machinery prognostics. The authors classified the 

prognostic approaches into three groups: statistical approaches, artificial intelligent 

(AI) approaches and model-based approaches. The statistical approaches include 

statistical process control (SPC), logistic regression, autoregressive and moving average 

(ARMA), proportional hazard model (PHM), proportional intensity model (PIM) and 

hidden Markov model (HMM). In AI techniques, e.g. artificial neural network (ANN) 

and its sub-classes such as self-organising neural networks, dynamic wavelet neural 

networks and recurrent neural networks, back propagation neural network and neural-

fuzzy inference systems are still commonly used in AI prognostics. Among model-based 

approaches, defect propagation models via mechanistic modelling and crack growth 

rate model are the commonly used methods. 

A popular review paper on prognostic methods was presented by Heng et al. [271] . 

The authors broke down the methods for predicting rotating machinery failure into 

two categories: physics-based and data-driven prognostic models. A number of papers 
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focusing on physics-based prognostics which used Paris’ formula are still found to be 

dominant [271]. Other methods such as finite element analysis (FEA) to calculate stress 

and strain field, and Forman law of linear elastic fracture mechanics are also classified 

in physics-based approaches. Similar to the result from two review papers mentioned 

previously, ANN and its variants is currently the most commonly used method 

classified in the data-driven prognostic. Other methods such as fuzzy logic, regression 

analysis, particle filtering, recursive Bayesian technique and HMM are also included in 

data-driven prognostic methods. However, a number of methods classified in data-

driven methods as presented in [271] need more sub-classification e.g. artificial 

intelligence or statistical approaches. 

A list of literatures which reviewed the prognostic approaches is presented in Table 

7.1. The table provides the year of publication and the classification groups of 

prognostic approaches. 

Although the merits and the demerits of prognostic approaches have also been 

presented in Lee et al. [266] and Heng et al. [271], to date there have been scientific 

gaps of prognostics reviews. They are (1) the classification of prognostics approaches 

that remain unclear: many review papers presented different classifications as seen in 

Table 7.1 and sometimes the classified methods in each approach are overlapping 

depending on the authors; and (2) in what applications can certain prognostic 

approach be used: the prognosis literature provides few information to help typical 

industry users in selecting an appropriate approach or method for their specific needs. 

This chapter aims to bridge the gap by providing another classification of prognostic 

approaches. Such approaches include the basic prognostic method selection for 

specific needs (shown in Figure 7.1) and the classified methods of each prognostic 

approach as presented in Section 7.2.2. 
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Table 7.1 Classification of prognostic approaches extracted from literatures. 

 

No   Author Refs. Year Classification groups 

 1  Lee et al. [266] 2014 - Model-based 

    - Data-driven 

    - Hybrid prognostics approaches 
     

 2  Jardine et al. [267] 2006 - Statistical approaches 

    - Artificial intelligence approaches 

    - Model-based approaches 
     

 3  Kothamasu et al. [268] 2006 - Reliability-based 

    - Model-based 

    - Signal-based 

    - Statistical 
     

 4  Goh et al. [269] 2005 - Data-driven 

    - Model-based 
     

 5  Vachtsevanos et al. [270] 2006 - Data-driven 

    - Experience-based 

    - Model-based (Physics of failure) 
     

 6  Heng et al. [271] 2009 - Physics-based prognostics models 

    - Data-driven prognostics models 
     

 7  Peng et al. [272] 2010 - Physical model-based methodology 

    - Knowledge-based methodology 

    - Data-driven methodology 

    - Combination model 
     

 8  Dragomir et al. [273] 2009 - Model-based approaches 

    - Data-driven approaches 
     

 9  Hines et al. [274] 2008 - Time-to-failure data-based prognostics 

    - Stress-based prognostics 

    - Effect-based prognostics 
     

 10  Kim [275] 2010 - Data-driven approaches 

    - Model-based approaches 

    - Reliability-based approaches 
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Is  physical or mechanistic model available ?

Model-based prognostic approaches

Is  specific crack growth rate model available ?

Physics-based prognostic methods

State space-based prognostic methods

Yes

No

Are the components being analysed have event data ?
e.g. replacement/failure times of historical units

Reliability and probability prognostic approaches
Yes

No

Data-driven prognostic approaches

Does it have adequate CM data for training process ?
or concern about the failure types?

Yes
Artificial intelligent prognostic methods

Regression prognostic methods

No

Yes

No

 

Figure 7.1 A general prognostic approach or method selection for specific needs. 

7.1.2 Prognostic methods for rolling element bearings 

According to the literature review presented in Table 7.1, four prognostic 

approaches have been adopted in this thesis. The prognostic methods of each 

approach are reviewed and presented in Table 7.2. Table 7.2 also presented the 

degradation parameters or feature extractions which were applied in a particular 

method or algorithm. It can be seen that RMS and kurtosis are the most commonly 

used features in prognostic methods. It is worth noting that the reviewed methods in 

this thesis only focused on rolling element bearings prognostics. The approaches are: 

(1) model-based approaches; (2) reliability-based methods and probability models; (3) 

data-driven approaches; and (4) combined data-driven approaches and reliability-

based methods. 
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Table 7.2 Prognostic methods for rolling element bearing. 

 

Review on model-based approaches 

Methods included in model-based approaches require an accurate mathematical 

model to be developed. They also use residuals as features, where residuals are the 

outcomes of consistency checks between the measurements of a real system and the 

No Classification Method or algorithm Features used 

1 Model-based approaches   

 - Physics-based - Paris’ formula [276, 277]  

 prognostic models - Stiffness-based prognostic  

  model [278]  

 - State space-based - Kalman filter [279]  

 Methods - Particle filter [280] RMS and envelope 

   acceleration 

 2 Reliability-based - Gaussian process models [281] Rényi entropy 

 methods and - PIM [282] Kurtosis 

 probability models - PCM [283] Principal features 

  - Stochastic model [284]  

  - PHM [285, 286]  

  - Weibull distribution [[287]]  

  - HMM [288] RMS 

  - WPD and HMM [289] Peak-to-peak, energy 

   and kurtosis 

 3 Data-driven approaches   

 - Artificial intelligence (AI) - ANN [290, 291]  

    methods - Fuzzy logic [292]  

  - Genetic algorithm (GA) [293] Monitoring index 

 - Regression methods - ALE and ARIMA [294] RMS, skewness, kurtosis 

  - Recursive least square (RLS) [277] RMS 

  - Dempster-Shafer regression [295] RMS and envelope 

   acceleration 

  - ARMA/GARCH model [296]  RMS and envelope 

   acceleration 

 - Combined AI and  - RVM and logistic regression [47] Kurtosis 

 regression methods - RVM and exponential regression [297] RMS 

 4 Combined data-driven and - Cox-proportional hazard (CPH) Kurtosis 

 reliability-based methods model and SVM [285]  

  - ARMA, PHM and SVM [286] Peak acceleration 

   and RMS 

  - SVM and survival probability [126] Kurtosis 

  - RVM and survival probability [298] Kurtosis 

  - ANN and Weibull distribution [299]  RMS, kurtosis and 

   entropy estimation 
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outputs of a mathematical model [275]. Model-based prognostic approaches in this 

thesis are divided into two classifications: physic-based prognostic models and state 

space-based methods. 

Physics-based prognostic models 

The physic-based approaches assume that accurate mathematical or physical 

models of the monitored system or machine are available and provide a technically 

comprehensive approach that has been used traditionally to understand failure mode 

progression. A common model used in physic-based prognostic model is Paris’s law 

equation. The physic-based methods can predict the failure progression accurately if 

the appropriate model is used. However, a limitation of physic-based approaches is 

inflexibility which means that the particular model can only be applied to specific types 

of components [300]. 

Some literatures applied model-based prognostic methods are presented as follows: 

Li et al. [276] present a defect propagation model by mechanistic modelling 

approach for bearing prognostic to estimate RUL of rolling element bearing. 

In slew bearing prognostic study, several works has been conducted. Potočnik et al. 

[301] calculate the maximal contact force by means of analytical expression of the 

Hertzian contact theory, and then used a strain-life model to calculate the fatigue life 

on the basis of the subsurface stresses. Glodez et al. [9] compare the two methods for 

calculating the fatigue life of a slewing bearing: strain-life approach and stress-life 

approach based on ISO 281 [302]. Results show that the stress-life approach is the 

most precise method for calculating bearing fatigue lifetime. 

State space-based methods 

Besides physic-based methods, the state space-based methods such as Kalman filter 

and particle filter are also considered as a part of model-based prognostic methods 

because it builds a dynamic model of system being analysed to predict a future point in 

time. 

Kalman filtering (KF) incorporates the signal embedded with noise and forms that 

can be considered as a sequential minimum mean square error estimator (MMSE) of 

the signal [275]. 
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Particle filter or Monte Carlo methods for nonlinear filtering are based on 

sequential versions of the importance sampling paradigm. This is a technique that 

amounts to simulating samples under an instrumental distribution and then 

approximates the target distributions by weighting these samples using appropriately 

defined importance weight. Particle filter offers the great advantage of not being 

subject to the assumption of linearity, Gaussianity and stationarity [280]. Particle filter 

for rolling element bearing prognostics is presented in [280]. 

Review on reliability-based methods and probability models for prognostic 

As aforementioned, prognostics is used to predict how much time left before a 

failure occurs given the current machine condition and past operation profile which is 

commonly called as remaining useful life (RUL). In some situation, especially when a 

fault is catastrophic (e.g., nuclear power plant), it would be desirable to predict the 

chance that a machine operates without a fault or a failure up to some future time 

given the current machine condition and past operation profile [267]. This issue can be 

addressed using failure-based reliability or probability prognostic models. Failure-

based reliability is used to estimate the lifetime distribution and its parameters when 

sufficient, complete and/or censored failure time data exist. If prior knowledge of the 

lifetime distribution exists for similar components, then often the lifetime distribution 

is assumed to follow the same distribution of a similar component [275]. For example, 

Goode et al. [303] separate two intervals of whole machine life: the I-P (Installation-

Potential failure) interval in which the machine is running normally and the P-F 

(Potential failure-Functional failure) in which the machine condition has a problem. 

Based on two Weibull distributions assumed for the I-P and P-F intervals, failure 

prediction has been derived in the two intervals and the RUL is estimated. 

Proportional hazards models (PHMs) are commonly used in failure prediction and 

reliability analysis. The method was proposed by Cox in 1972 [304] and was first 

introduced in the clinical studies to characterise the disease progression in existing 

cases by revealing the importance of covariates [285]. It is the most popular model for 

survival analysis due to its simplicity. The reason is that it is not based on any 

assumptions concerning the nature or shape of the survival distribution [285]. PHMs 

assume that hazard changes proportionately with covariates and that the 
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proportionality constant remains the same at all time [271]. The method has been 

used in bearing prognostics [285, 286]. A review of the existing literature on the PHM 

is presented in [305]. Usually PHM cannot be used as a stand-alone prognostic 

method. PHM is usually used together with AI method. PHM is used to build the 

degradation model, based on this model, AI method e.g. SVM is used to predict the 

degradation model [285, 286]. 

A proportional covariates model (PCM) is proposed by Sun et al. [283]. PCM can be 

used to estimate the hazard functions of mechanical components in cases of sparse or 

no historical failure data provided that the covariates are proportional to the hazard. 

Heng et al. [306] introduce an intelligent reliability model called the intelligent 

product limit estimator, which was able to include suspended CM data in machinery 

fault prognostic. The accurate data modelling of suspended data has been found to be 

of great importance, since in practice machines are rarely allowed to run to failure and 

data are commonly suspended. The model consists of a feed-forward neural network 

(FFNN) whose training targets are asset survival probabilities estimated using a 

variation of the Kaplan-Meier estimator and the true survival status of historical units. 

Vlok et al. [282] utilise statistical residual life estimate (RLE) on roller bearings to 

study changes in diagnostics measurements of vibration and lubrication levels which 

can influence bearing life. RLEs are based on PIMs and mainly used for non-repairable 

systems utilising historic failure data and the corresponding diagnostic measurements. 

A prediction method for residual life of rolling element bearing based on stochastic 

process called gamma process is presented in [284]. 

In slew bearing cases, several reliability methods for prediction have also been 

studied. Yang et al. [287] present the reliability prediction approach for slew bearing 

based on the Weibull distribution. Hai et al. [307] develop a method for evaluating 

rolling contact fatigue (RCF) reliability of slew bearings, which replaced the reliability 

factor a1 from ISO 281 with the Lundberg-Palmgren theory. 

The use of hidden Markov models (HMMs) in bearing fault prognostic is 

investigated by Zhang et al. [288]. In a HMM, a system is modelled to be a stochastic 

process in which the subsequent states have no causal connection with previous states 
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[271]. It is assumed that the state transition time of estimated vectors follows some 

multivariate distribution. Once the distribution is addressed, the conditional 

probability distribution of a distinct state transition can be estimated [272]. 

Ocak et al. [289] develop a new robust scheme based on wavelet decomposition 

and hidden Markov model for tracking the severity of bearing faults, and reached the 

conclusion that the probabilities of the normal bearing’s hidden Markov model keep 

decreasing as the bearing damage progresses toward bearing failure. 

Tallian [308] presents a rolling bearing life prediction model using statistical lifetime 

determination. 

Review on data-driven prognostic approaches 

Data-driven approaches are derived directly from routine condition monitoring 

(CM) data of the monitored system (e.g. temperature, vibration, oil debris, current, 

etc). Data-driven approaches can be regarded as degradation-based methods because 

they focus on using measures of component degradation, not on failure data, to assess 

the remaining of a component. In other words data-driven approaches rely on the 

availability of run-to-failure data and require performing suitable extrapolation to the 

damage progression to estimate RUL. One major advantage of these techniques is the 

simplicity of their calculations [271] because these methods do not require 

mechanistic or physical knowledge of the system or component being analysed. Data-

driven approaches may often produce more available solution in many practical cases. 

The reason is probably that the data-driven models calculated from data-driven 

methods are easier to obtain compared to an accurate model from a system or 

component. A main drawback of data-driven approaches is their dependency on the 

equality of the monitored data. In data-driven approaches, the proper selection of a 

trending parameter or feature is the key issue in implementing the prognosis. The 

selection criteria for such parameter should include the diagnosis ability, sensitivity, 

consistency and the amount of calculation required [290]. In this thesis, data-driven 

approaches are divided into three sub-categories: (i) artificial intelligence (AI) 

methods; (ii) regression methods; and (iii) combined AI and regression methods. 
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AI methods 

The first data-driven approaches sub-class (AI methods) are based on machine-

learning techniques for prognostics. AI methods predict the selected features that 

correlate with the failure progression based on the learning or training process. The 

methods rely on past patterns of degradation to project future degradation. The 

features used in AI methods are extracted from CM data e.g. vibration signals. More 

CM data are used in the training process, and more accurate model is obtained, but 

computational time increases. As AI methods use experimental data to train the 

methods in order to build a prediction model, thus, AI methods are highly-dependent 

on the quantity and quality of the measured data. In general, AI methods adopt a one-

step or multi-step ahead prediction technique in order to predict the future state. A 

review of AI methods for prognostics can be found in [309]. Several AI methods have 

been developed for decades. Artificial neural network (ANN) and its variants such as 

self-organizing map (SOM) and back propagation neural network (BPNN) methods are 

most commonly used [63, 77, 290, 291, 310]. Although ANN is the most commonly 

used method and it has worked successfully in bearing prognosis application, it has 

fundamental drawbacks in model development. Such drawbacks include how many 

hidden layers should be included and what is the number of processing nodes that 

should be used for each layer. These are the major questions for users. 

Another popular AI technique that is used for prognostics is the fuzzy logic 

technique. Fuzzy logic provides a language (with syntax and local semantics) into which 

one can translate qualitative knowledge about the problem to be solved. In particular, 

fuzzy logic allows the use of linguistic variables to model dynamic systems. These 

variables take fuzzy values that are characterized by a sentence and a membership 

function. The meaning of a linguistic variable may be interpreted as an elastic 

constraint on its value. These constraints are propagated by fuzzy inference 

operations. The resulting reasoning mechanism has powerful interpolation properties 

that in turn give fuzzy logic a remarkable robustness with respect to variations in the 

system’s parameters and disturbances. 
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Other AI prognostics methods for bearing have been applied e.g. LVQ is used by 

Zhang et al. [311] to generate a sequence of codes for representing fault signatures in 

the model. 

Regression methods 

The second data-driven sub-class (regression methods) are based on time series 

analysis techniques for prognostics. The regression methods are useful if a reliable or 

accurate system model is not available. The data-driven prognostic approaches 

through regression methods are used to determine the RUL. This is achieved by 

trending the trajectory of a developing fault and predicting the amount of time before 

it reaches a predetermined threshold level [266]. 

Niu and Yang [312] introduce the Dempster-Shafer regression for multi-step-ahead 

prediction of a methane compressor in a petrochemical plant. Using the similar 

vibration data, Pham et al. [296] develop a forecasting method based on 

ARMA/GARCH model.  

Kosasih et al. [294] present the adaptive line enhancer (ALE) and auto-regressive 

integrated moving average (ARIMA). Jantunen [292] uses high-order regression 

functions to mimic bearing fault development and also to save trending data in a 

compact form. 

Combined AI and regression methods 

In combination of AI and regression methods, Caesarendra et al. [47] develop a 

combined prognostics method based on regression and AI method. Logistic regression 

(LR) is used to estimate failure degradation of bearing based on run-to-failure datasets 

and the results are then regarded as target vectors of failure probability. Relevance 

vector machine (RVM) is then used to train the run-to-failure bearing data and target 

vectors of failure probability. After the training process, RVM is employed to predict 

failure probability of individual bearing. The performance of the proposed method is 

validated using experimental and simulated data. The result shows the plausibility and 

effectiveness of the method which can be considered as the machine degradation 

assessment model. In another work, Caesarendra et al. [124] present a combined Cox-

proportional hazard model and SVM. The failure rate is calculated using the Cox-PHM. 
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The Kurtosis is extracted as a bearing condition parameter under specified operating 

conditions. SVM is trained using the kurtosis and the failure rate as a target vector to 

build the prediction model. The trained SVM is then used to predict the final failure 

time of individual bearing. 

Tran et al. [313] employ a multi-step-ahead regression technique and ANFIS to 

predict the trending data. 

Review on combined data-driven method and reliability-based methods 

In this method, the statistical methods are used when the AI prognostics methods 

require quantitative data measurements. 

Widodo and Yang [126] develop an intelligent machine prognostics method using 

survival probability method namely survival analysis (SA) and SVM. The method has 

the benefit that it employed censored data which is commonsensical in practice. SA 

utilizes censored and uncensored data collected from CM routine and then estimates 

the survival probability of failure time of machine components. SVM is trained by data 

input from CM history data that correspond to target vectors of estimated survival 

probability. After validation process, SVM is employed to predict failure time of 

individual unit of machine component. Still dealing with censored data and survival 

probability analysis, Widodo and Yang [298] develop a combined survival probability 

analysis and RVM. In this study, Kaplan-Meier (KM) estimator is used to build a survival 

probability model. The RVM is then used to train the model and predict the final failure 

of individual unit of machine component. 

7.2 Integrated condition monitoring and prognostic 

method 

To date, prognostic methods have been applied mainly in typical rolling element 

bearings with rotational speed greater than 1000 rpm [22, 66, 314]. The prognosis of 

very low speed bearings with naturally generated damage has not been explored. 

Moreover, most of bearing condition monitoring [3, 209, 315] and bearing prognostic 

methods [22, 66, 314] usually have been applied and studied separately. In typical 

rolling element bearing, an integrated fault diagnosis and prognostic method for 
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bearing health monitoring and CBM has been presented in [311]. The proposed 

method consists of PCA, HMM and an adaptive stochastic fault prediction model. 

Another integrated diagnostics and prognostics method which employs SVM and HMM 

is proposed in [316]. Other studies which proposes integrated frameworks for 

diagnostics and prognostics are presented in literature [315, 317]. None of them have 

been applied for very low speed bearing. The integrated condition monitoring and 

prognostic method reported in this chapter is the first method to be applied for slow 

speed slew bearings. 

The proposed integrated condition-monitoring and prognostic method is 

implemented as follows. Step (1) is the detection of the incipient slew bearing defect 

where combined MSET and SPRT is used to process circular-domain kurtosis [96], time-

domain kurtosis [96], WD kurtosis [96], EMD kurtosis [96] and LLE feature [186]. Step 

(2) predicts the trends of the selected features and estimates the RUL of the slew 

bearing. In this step, kernel regression is used to predict the trend of the time-domain 

kurtosis, WD kurtosis and the LLE features. Step (2) is initiated when the incipient 

bearing defect from Step (1) is registered. Figure 7.2 illustrates the computational 

implementation of the method. 

Slew bearing 
vibration data

MSET

SPRT

Detection of the 
incipient damage

Step 1
Early damage 

detection

Feature extractions

Monitored features

Kernel regression

Prediction of the trend of 
the monitored features

RUL estimation

Yes

Step 2
Prognosis

 

Figure 7.2 Integrated condition monitoring and prognostic method for low speed slew 

bearing. 
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7.2.1 Kernel regression 

Traditionally, kernel regression is applied in image processing studies such as image 

de-noising and enhancement [318] and image reconstruction [319]. It is an appropriate 

prediction method [320]. Kernel regression [321-323] is a non-parametric and non-

linear regression technique used to estimate regression function ),( yxf  that best fit 

data set ),( jj YX . jX  refers to the measurement day and jY  is the value of the 

extracted feature. Unlike linear regression or polynomial regression, kernel regression 

does not assume any underlying distribution to estimate the regression function [324]. 

The kernel regression uses a set of identically weighted function called local kernels to 

each observation data point. The kernel basis function only depends on the kernel 

width from local data point X  to a set of neighboring locations, x . The procedures of 

the proposed kernel regression-based prognostic are implemented in three systematic 

steps. 

Firstly, three of the five features presented in Figure 7.2 are selected based on the 

evaluation criteria (described in Section 4.2). Once Step (1) has triggered the incipient 

defect, initial threshold is established. The initial threshold is set at four times the 

kurtosis value of the normal bearing condition. In Step (2), the data point that exceeds 

the predetermined initial threshold of each selected feature is saved and used for 

prediction. From the laboratory slew bearing data, it was found that the minimum 

number of data points used for prediction is 3. Time-domain kurtosis is used as an 

illustration in Figure 7.3. The measurement day and the kurtosis level of the first three 

data points which exceed the threshold are presented in Table 7.3. We refer these 

points as ‘data with non-uniform interval’ because the interval between one point and 

the next is unequal and the level of kurtosis does not always increase linearly. 
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Figure 7.3 Kurtosis extracted from the original vibration signal. The well-known 

kurtosis value for normal bearing is 3 [47]. The alarm threshold is set at 4 x 3 = 12. 

 

Table 7.3 Data points with non-uniform interval 

Data point Measurement day, jX  Feature level 

A 92 19 

B 103 24.12 

C 114 36.83 

where j  represents points A, B or C 

 

Secondly, the non-linear regression model is built in the following four steps. (1) 

Calculate data point jx  with small step dx . dx  equal to 0.2 (days) is used throughout 

this paper. The result is the vector x . (2) Set the kernel width  .   for time-domain 

kurtosis prediction is 6. dx  and   are selected by trial and error to get the optimum 

regression model. (3) Apply the Gaussian kernel to each data point jX  using the 

following equation 
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where subscript j  denotes data point with non-uniform interval. According to the 

example given in Table 7.3, jX  are AX , BX  and CX . (4) Compute the weight vector 

Defect threshold Typically non-

uniform interval 

Three data points with 

non-uniform interval  
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)...,,,( 21 pwwww  using the least square method by minimizing the sum square error 

between predicted jŶ  and monitored jY  as follows: 

∑
1

)-ˆ(
p

j

jj YY



            (7.2) 

where p  is the number of data points to be regressed and predicted. In this example, 

3p . lsqcurvefit MATLAB function is used to obtain the weight vector w . The result 

of the non-linear regression model is presented in Table 7.4 and shown in Figure 7.4. 
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Figure 7.4 Regression model of three data points and one-step-ahead prediction. 

Thirdly, the future value of the feature is predicted. The predicted value of jY  at 

future jX  is given by the kernel regression formula (also called Nadaraya-Watson 

kernel weighted average) [324] as follows: 
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           (7.3) 

The one-step-ahead prediction of time-domain kurtosis is presented in Figure 7.5. The 

result is based on modified kernel regression, not from the original kernel regression. 
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Figure 7.5 One-step-ahead prediction based in modified kernel regression. 
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Table 7.4 Kernel regression model for 1 step-ahead prediction of time-domain kurtosis. 

Data 

point 

(x-axis) 

x  ),(1 AXxK  ),(2 BXxK  ),(3 CXxK   11 Kw  22 Kw  33 Kw  ∑
1

p

j

jjw



K  ∑
1

p

j

j



K  

Data 

point 

(y-axis) 

XA = 

92 
92 1 0.186 0.0012  18.354 4.158 0.047 22.560 1.187 

YA = 

18.998 

 

92.2 0.999 0.197 0.0014  18.344 4.417 0.053 22.815 1.198 19.033 

92.4 0.997 0.210 0.0015 18.313 4.688 0.060 23.062 1.209 19.070 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

 102.6 0.210 0.997 0.164 3.854 22.273 6.505 32.633 1.372 23.780 

 102.8 0.197 0.999 0.175 3.632 22.310 6.927 32.869 1.372 23.949 

XB = 

103 
103 0.186 1 0.186 3.418 22.322 7.367 33.109 1.372 

YB = 

24.122 

 

 103.2 0.175 0.999 0.197 3.214 22.310 7.827 33.352 1.372 24.301 

 103.4 0.164 0.997 0.210 3.018 22.273 8.307 33.599 1.372 24.484 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

 113.6 0.0015 0.210 0.997  0.0282 4.688 39.466 44.183 1.209 36.535 

 113.8 0.0014 0.197 0.999  0.0250 4.417 39.532 43.975 1.198 36.685 

XC = 

114 
114 0.0012 0.186 1  0.0221 4.158 39.554 43.734 1.187 

YC = 

36.830 

  114.2 0.0011 0.175 0.999  0.0195 3.909 39.532 43.461 1.175 36.968 

  114.4 0.0009 0.164 0.997  0.0173 3.671 39.466 43.155 1.163 37.100 

 . . . . . . . . . . 

 . . . . . . . . . . 

 . . . . . . . . . . 

  119.6  0.000025 0.021 0.646  0.00046 0.486 25.588 26.074 0.668 38.992 

  119.8  0.000021 0.019 0.626  0.0004 0.442 24.790 25.233 0.646 39.025 

DX̂  = 

120 
120  0.000018 0.018 0.606  0.00034 0.403 23.991 24.394 0.624 DŶ  = 

39.055 

Note: ]55.39;32.22;35.18[];;[ 321  wwww  
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7.2.2 Results and discussion 

Features extracted from slew bearing vibration signals have different characteristics 

from those extracted from accelerometers signals of typical rolling element bearings. 

In typical rolling element bearings, when the bearing condition deteriorates, the 

features values gradually increase. In slew bearings, the changes of the slew bearing 

condition can be detected from a sharp increase of feature value. However, this value 

does not increase steadily as it does in typical high speed roller bearings. The extracted 

features of the slew bearing signal usually revert to the normal level and rise again as 

the condition has significantly deteriorated. This condition is referred as ‘self-healing’ 

characteristic [1]. This is one of the difficulties in defect prediction especially for data-

driven prognostic methods [124, 285, 295]. In this chapter, the problem has been 

solved using kernel regression. Prior to the use of kernel regression, all features have 

to be evaluated. 

Caesarendra et al. [96] presented four evaluation criteria to track the progressive 

bearing defect. In the present study, another evaluation criterion based on exponential 

function is proposed. It is well known that as bearing deteriorates, certain features will 

increase exponentially. Hence, an evaluation criterion, E  obtained from the 

coefficient of the exponential curve fitting of the feature being evaluated is used as 

illustrated below. Suppose )(tf  is the monitored evaluation function. 

)()( Et
eatf               (7.4) 

where a  and E  are the curve fitting exponential coefficients, and t  is the 

measurement days. The calculation of E  for the time-domain kurtosis feature and the 

LLE feature is presented in Figure 7.6. The two figures clearly show that the LLE feature 

demonstrates a greater exponential increasing trend than the time-domain kurtosis 

feature. The dotted line in Figures 7.6(a) and (b) is the exponential curve fitted from 

the 80th day to the 139th day. 
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a = 4.097

E = 0.001769
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Figure 7.6 Calculation of evaluation criterion, E : (a) time domain kurtosis feature; (b) 

LLE feature. 

In Step (2), kernel regression is employed to predict the future bearing condition 

and to estimate the RUL of the slew bearing. This prediction starts when there is 

warning of impending deterioration of the bearing condition. The basic kernel 

regression algorithm is improved by adding a k-step-ahead subroutine. At each k-step, 

non-linear regression model and posterior (predicted) point are estimated and 

updated. The purpose of this process is to estimate a one-step-ahead prediction of the 

kernel regression model based on the past data points. 

Kernel regression is an effective method to build a model from data with non-

uniform interval. The process is done by taking the highest data point of the current 

kernel regression model and then using it as the next data point (e.g. predict the 4th 

data point if the initial model is built from three data points). The new data point is 

then used to build a new kernel regression model and estimate the next data point. 

The process is repeated until the specified k-step-ahead prediction is reached. To 

illustrate the process, a time domain kurtosis feature is used as the monitored 

a 

b 



Chapter 7 - Prognostic method for slew bearing  

180 

parameter is predicted. The prediction result is presented in Figure 7.7. Differ to other 

regression techniques, where the prediction data is based on a polynomial or 

exponential curve fit equation, the kernel regression is based on previous data 

samples. In this thesis, three previous chaotic data were utilised to predict one next 

data. The second predicted data also based on three previous data. The predicted data 

is presented in Figure 7.7. 

Kurtosis is selected as an input of kernel regression because it has a certain value 

for normal bearing condition and it also has the kurtosis value for defect condition. 

This is necessary for the detection of incipient defect in Step (1), which is set as the 

predetermined warning threshold, and for the prediction in Step (2), which is set as the 

damage bearing threshold. The kurtosis value for normal bearing signals is 

approximately 3 [47] for the definition based on moment. The increase of this value 

indicates that the bearing condition has changed. For example, one literature 

mentioned that the kurtosis value will reach about 50 when high impact occurs [325]. 

In addition, some severity can give very different kurtosis values, depending primarily 

on the speed of a machine. For a given severity, represented by the strength of a single 

impulse response (IR) to a fault, the kurtosis is very much affected by the ratio of the 

spacing of these IRs compared with the length of an individual one. It tends therefore 

to be much higher for low speed machines where they are far apart, and may not be 

different from the normal condition for very high speed machines. Some research 

mentioned that the kurtosis value of a fault on a low speed radar tower bearing 

rotating at 5 RPM is 541 [13]. Another literature, Aye [326] studied the kurtosis of 

normal and faulty tapered bearings running at speed 409 RPM. It has been found that 

the kurtosis value for normal bearings is 2.89. The kurtosis value for faulty bearings 

with 409 RPM significantly increases to about 30.26. The same author [326] 

demonstrated that the kurtosis value of bearing damage with low rotational speed 

(low RPM) can be much higher than the normal value. In case of kurtosis based on the 

definition of cumulant, Guo et al. [327] presented a method for recovering the bearing 

signal from large noisy signal. This was achieved by using a hybrid method based on 

spectral kurtosis and ensemble EMD (EEMD). It was found that the kurtosis value of 

each bearing fault condition was recovered and identified more easily. For instance, 
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the kurtosis value of a bearing with an inner race defect and a ball defect is 18.35 and 

41.20, respectively. 
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Figure 7.7 Kernel regression model and three-step-ahead prediction. 

The final failure threshold has been studied in the past studies [325-327]. However, 

different case has different final failure threshold. Therefore it is difficult to justify and 

determine an appropriate threshold level. In this thesis, the third predicted data was 

selected to be the final failure. From the third predicted data, it is set that the 

threshold kurtosis value of 45 for the time-domain kurtosis and the WD feature, while 

the threshold for the LLE feature is set at 35. Noted that, different feature may have 

different threshold value. 

The proposed kernel regression method was applied up to 120 days. This is because 

by the 120th day the kurtosis value has exceeded four times the normal value, and 

three data points that are greater than the alarm threshold level have been detected. 

It should be noted that three data points are the minimum requirement in the initial 

kernel regression model. Note that the levels of the three selected features up to the 

120th day are still below the bearing damage threshold of 45. The predictions of the 

kernel regression of the three features mentioned above are presented in Figures 

7.8(a) to (c). The four step-ahead of kernel regression is used (k = 4). Thus, the 4 step-

ahead predicted data points are shown with ‘Δ’ symbol, while ‘o’ represents the actual 

value. It can be seen that the predicted future values have increased. When the data 

Defect threshold 
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point exceeds the damage threshold level, the last predicted day is noted and used to 

estimate the histogram of final failure. Once the histogram of final failure is obtained, 

the RUL can be easily estimated by taking the difference between the predicted final 

failure time and the last measurement day (the 120th day). 

Based on this analysis, the predicted failure day of the bearing is shown to be 

dependent on the features and is summarized in Table 7.5. Detailed information of the 

three data used to build the initial model and the predicted data point of the modified 

kernel regression method for each feature is shown in Tables 7.6-7.8 (point A - D). 

Points D – G are the predicted features values. These points are estimated based on 

the 4-step-ahead prediction of the kernel regression. According to the results in Tables 

7.6-7.8, the y-axis values of the fourth predicted points exceed the bearing damage 

threshold. The day of each fourth predicted point (point G) is noted as the final failure 

of the slew bearing. Three predicted days (point G) are then inputted to the histogram. 

The result of this is presented in Figure 7.8(d). It should be noted that with more 

features used, the more accurate the distribution fit of the histogram will be. It can be 

seen from Figure 7.8(d) that the predicted final failure is the 135th day. Furthermore, 

the RUL of the bearing can be estimated by taking the difference between the 

predicted failure day and the last measurement day i.e. 135-120 = 15 day. 

During the slew bearing lab experiment, complete failure is unpredictable. When a 

burst vibration signal on the 141th day was detected, the test-rig had to be shut down. 

To inspect the damage and verify the result of the proposed prognostic method, the 

slew bearing was dismantled and inspected. Some of the defective rollers and outer 

race can be clearly seen in Figure 2.16. The actual final failure day of lab slew bearing is 

considered one day before the severe burst vibration signal i.e. the 140th day. The 

accuracy of prediction is estimated as follows: 

%1001 











 


a

pa

p
t

tt
A  = %100

140

135140
1 







 
  =  96.43 %      (7.5) 

where the predicted day of 135 is calculated from the PDF of the predicted failure day 

of the slew bearing as presented in Figure 7.8 (d). 
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Table 7.5 The prediction of failure day. 

Feature nth Day failure (x-axis) Feature level (y-axis) Threshold 

Time-domain 

kurtosis 

137.6 55 45 

WD kurtosis 130.8 46 45 

LLE feature 137 39 35 
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Figure 7.8 Prediction of modified Kernel regression: (a) Time-domain kurtosis; (b) 

Wavelet kurtosis; (c) LLE feature; (d) PDF of the predicted failure day of the slew 

bearing. 135.2 is the peak value of the normal distribution. (Note: the defect threshold 

is set differently to capture the abnormal peak of a particular feature; different feature 

may have different defect threshold value). 
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Table 7.6 Original and predicted data points of time-domain kurtosis. 

Data point Measurement day Feature value  

A 92 19  

B 103 24.12  

C 114 36.83  

D 120 39  

E 128.6 43  

F 129.2 47  

G 137.6 55  

 

Table 7.7 Original and predicted data points of WD kurtosis. 

Data point Measurement day Feature value  

A 91 7.24  

B 104 8.84  

C 107 14  

D 116.4 13  

E 122.2 32  

F 125 46  

G 130.8 50  

 

Table 7.8 Original and predicted data points of LLE feature. 

Data point Measurement day Feature value  

A 92 12.36  

B 104 12.22  

C 114 25.69  

D 117.8 26  

E 118.8 28  

F 128 35  

G 137 39  

 

Table 7.6 to 7.8 present the prediction of the three selected features from three 

previous data (A - C). Kernel regression is applied to predict up to four next data. It is 

shown that the prediction of time-domain kurtosis feature and LLE feature show close 

to the actual final failure. In practice, more features are needed. From those features, 

the average of final failure prediction is calculated. 

Prediction 

Prediction 

Prediction 
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7.3 Conclusion 

A prognostic review and an integrated condition monitoring and prognostic method 

for low speed slew bearing have been presented. The method employs combined MSET 

and SPRT to detect the incipient bearing defect and kernel regression to predict the 

future state and to estimate the RUL. The method has been implemented in the 

monitoring and prediction of laboratory slew bearing condition. The test was run with 

new bearing condition until failure. Combined MSET and SPRT method has been used 

to analyse the vibration features calculated from the accelerometer data of 139 

measurement days. Based on the set of hypotheses in SPRT method, it is found that the 

incipient defect of slew bearing occurred on the 90th day. After the incipient defect was 

detected, the kernel regression calculation started to predict the future state. To 

validate the method, 120 measurement days were analysed. The predicted failure days 

were constructed and the final failure day (the 135th day) was predicted based on the 

peak of the normal distribution fit of the histogram from the three prognosis, time-

domain, WD kurtosis and LLE. The RUL was estimated to be 15 days (from the 135th to 

the 120th). 

Manuscript based on this chapter has been submitted to the Mechanical Systems 

and Signal Processing Journal with the following title: 

 W. Caesarendra, B. Kosasih, A.K. Tieu, H. Zhu, C.A.S. Moodie, Integrated condition 

monitoring and prognosis method for incipient defect detection and remaining life 

prediction of low speed slew bearings, (under review in Mechanical Systems and 

Signal Processing Journal, Paper ID MSSP14-393). 
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Chapter 8 – Conclusions and 

recommendations for future work 

 

“If you can resist and focus on a particular hard thing, it will end up 
with something amazing” 

(Wahyu Caesarendra) 

 

8.1 Conclusions 

Detailed conclusions for each chapter have been described in the corresponding 

chapters. The general conclusions are outlined below. 

8.1.1 Vibration-based condition monitoring 

 The research in vibration analysis of rolling element bearing has mainly focused 

on high speed bearings with artificially damaged bearings so far. In the past five 

years, a number of studies on bearing speed greater than 600 rpm are still 

more dominant than those below 600 rpm. 

 Recent slew bearing studies mainly focus on finite element analysis. The 

vibration analysis based on slew bearing condition monitoring is still being 

studied. 

 In practice, FFT and envelope spectral analysis are the commonly used methods 

for bearing vibration analysis and fault diagnosis. However, these methods 

cannot extract the pertinent bearing signal when they are applied in very low 

speed slew bearing. It is because the slew bearing signal has low energy and is 

non-stationary and chaotic. This thesis presents an alternative condition 

monitoring method for very low speed slew bearing. 
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8.1.2 Vibration feature extraction 

 Slew bearing condition monitoring method required reliable features. In this 

thesis, feature extraction methods have been investigated. The methods are 

classified into six categories, namely, (1) time-domain feature extraction; (2) 

frequency-domain feature extraction; (3) time-frequency representation; (4) 

phase-space dissimilarity measurement, (5) complexity measurement; and (6) 

other features. Most of methods for each category have been tested using slew 

bearing vibration data. The results show that most of methods are less suited 

to detect changes in the bearing condition. 

 When the commonly accepted features are less appropriate, alternative 

methods such as circular domain analysis and LLE algorithm can be used. In 

circular domain analysis, PAA is an important pre-processing step to detect the 

frequency alteration. First, the slew bearing vibration signal was processed to 

determine an ellipsoid orientation. From the ellipsoid orientation, the 

frequency alteration was detected. The frequency alteration is related to 

changes of bearing condition. In addition, the ellipsoid orientation called 

shifting factor was empirically derived. From the processed signal, circular 

features are applied to detect the changes of bearing condition and incipient 

bearing damage. However, this proposed method has a limitation that is unable 

to identify the bearing damage progression obviously. 

 Since slew bearing operating at very low speed with highly applied load, the 

vibration signals exhibit non-linear, non-stationary and chaotic behaviour. The 

phase-space dissimilarity measurement such as approximate entropy and LLE 

algorithm can be used to extract pertinent bearing signal corresponding to the 

bearing damage progression. This thesis conducted study on LLE algorithm for 

slew bearing vibration signals. The parameter selection to construct phase-

space matrix, X such as number of samples delay, J and embedding dimension, 

m are important to obtain an optimum result.  This thesis proposes the 

selection of J based on the dominant frequency of slew bearing vibration signal. 

The LLE algorithm has a limitation whereby the computational time is longer 
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than the commonly accepted features such as RMS and kurtosis. This is due to 

the LLE algorithm consist of looping algorithm to analyse the phase-space. The 

computational time of LLE algorithm can takes couple minutes for calculating 

one LLE feature value in one measurement day, where the common time 

domain feature e.g. kurtosis only takes less than one minute. 

8.1.3 AE-based condition monitoring 

 AE is a preferable condition monitoring method for low speed bearing rather 

than vibration measurement. This thesis presented a review of AE in rolling 

element bearings. The review show that AE have been used for high speed (> 

600 rpm) and low speed (10 – 600 rpm) rolling element bearings. The 

application of AE for very low speed slew bearing (1 rpm) is presented in this 

thesis. 

 In this thesis, vibration and AE-based condition monitoring have been 

presented. The vibration and AE measurements can monitor changes in the 

slew bearing condition. However, there are two main issues in the vibration 

measurement: (1) appropriate vibration features have to be selected and 

investigated carefully; and (2) the appropriate vibration features are noisier 

compared to AE hit parameters. 

8.1.4 AE feature extraction 

 AE hit parameters such as counts, energy, duration, amplitude, ASL and RMS 

are the commonly used AE features to detect changes in the bearing condition. 

In this thesis, these features were used to monitor the slew bearing condition 

from new to failure. In the experiment, significant changes in the slew bearing 

condition were detected by these features after the new bearing had run 

continuously for approximately 15 months. However, these changes are drastic 

and therefore it is difficult to estimate the degradation model for prognostic 

purpose. 

 Due to the limitations of AE hit parameters in certain cases, alternative feature 

extraction methods such as AR coefficients, approximate entropy, energy 
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index, short-time energy function and peak ratio have been presented in 

literatures. Similar to vibration analysis studies, most of the proposed methods 

are applied to artificially defective bearings rather than naturally defective 

bearings. 

 This thesis presents the LLE algorithm for feature extraction method of slew 

bearing AE signals. The LLE algorithm was applied to the slew bearing with 

reversible rotation where the short transition period between acceleration and 

deceleration is the main part being analysed. Compared to AE hit parameters 

where the changes are too drastic, LLE feature can detect signs of failure earlier 

and demonstrate a better damage progression trend of the defect. 

8.1.5 Integrated condition monitoring and prognostic method 

 A number of studies to correlate the bearing damage sizes and the vibration or 

AE signals in typical rolling element bearings have been presented in 

literatures. Different to the previous studies presented in literatures, the 

installation and the assembly work of the slew bearing is more difficult than 

typical rolling element bearings. Thus in this thesis, the identification of bearing 

damage is conducted at the last measurement days after the bearing have 

already been in the failure condition. The failure condition is alarmed by the 

feature extraction. 

 Combined data-driven and statistic prognostic methods based on MSET, SPRT 

and kernel regression have been presented in this thesis. This prognostic 

method is suitable for the condition where the trend of bearing damage 

progression was not monitored clearly as shown in feature extraction of the 

first Laboratory test. 

8.2 Recommendations for future work 

 The vibration condition monitoring and feature extraction methods have been 

presented in this thesis. First, speed classification review was presented to 

show that a study of very low speed bearing is still being studied. Second, a 

number of feature extraction methods have been reviewed. Most of feature 
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extraction methods are tested using laboratory slew bearing data. However, 

some features were not tested due to time limitation. Those features are zero-

crossing, Shannon entropy, spectral skewness, spectral kurtosis, PMM, WVD, S 

transform and SVD. It is necessary to conduct a further study in order to 

investigate the benefit of these features for slew bearing data. 

 The circular domain and LLE features have been employed in the first 

laboratory test. The application of these features to the second laboratory test 

will be conducted in a further study. 

 Vibration and AE measurements for low speed slew bearing have been 

conducted. Four accelerometers and two AE sensors were used. In the future, 

due to the large dimension of slew bearing, more sensors are necessary. At 

least, eight accelerometers and four AE sensors are needed. Four 

accelerometers will be attached on axial row and the other four accelerometers 

will be attached on radial row at 90 degree to each other. In addition, four AE 

sensors are enough to be attached on axial row. Based on these sensors’ 

configuration, the damage location of slew bearing can be identified. 

 This thesis presented online monitoring system based on FTP. Time-domain 

features such as RMS, skewness, kurtosis, crest factor, shape factor and 

entropy were embedded in the online monitoring system. In the future, 

potential features such as circular domain features, LLE feature, impulse factor 

and margin factor can be embedded in the online monitoring system to provide 

accurate information related to the changes in the bearing condition. 

 This thesis developed combined data-driven statistical prognostic method. In 

the future, model-based prognostic approach could be useful for slew bearing 

failure prediction. As slew bearing operated in different conditions such as high 

load, contamination, dynamic load and reversible rotation, a failure prediction 

model can be derived based on the above mentioned conditions. Once the 

model is obtained, the failure can be predicted. However, this model-based 

prognostic approach requires more than one slew bearing being tested for the 

experimental work in order to derive the model empirically. 
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Appendices 

Appendix A: The formula for calculating bearing fault frequencies 

[328] 
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where IRrpm and ORrpm
 
are the rotational speeds of the inner ring and outer ring. For 1 

rpm the value of IRrpm is 1 and the value of ORrpm
 
is 0. dm  denotes the mean bearing 

diameter, dr  is diameter of the rolling element and z is number of rolling elements. 
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Appendix B: Circular domain feature analysis 

B.1 The effect of window size to neighborhood correlation plot 

The physical explanation why the right ellipsoid of neighborhood correlation plot will 

change and switch over is that the number of new data-reduced for a half sinusoidal 

signal is equal or less than 2. Through this appendix the answer is empirically 

conducted which also explain the phenomenon in Figure 4.2, Figure 4.3 and Figure 4.4. 

Then the selection of window size of 8 in Laboratory slew bearing data will be 

explained. 
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Figure 4.2 ( 2w ): 

(a) In 1Hz signal with sampling frequency of 64 for 1 second, the number of samples 

for one cycle sinusoidal signal is 64/1 = 64 samples. The number of samples for a 

half sinusoidal signal is 64 samples/2 = 32 samples. If the window size is 2, thus in 

a half sinusoidal signal there are: 32 samples/2 window size = 16 samples. (Note: 

right ellipsoid orientation) 

(b) In 5Hz signal with sampling frequency of 64 for 1 second, the number of samples 

for one cycle sinusoidal is 64/5 = 12.8 samples. The number of samples for a half 

sinusoidal signal is 12.8 samples/2 = 6.4 samples. If the window size is 2, thus in a 

half sinusoidal signal there are: 6.4 samples/2 window size = 3.2 samples. (Note: 

still right ellipsoid orientation) 
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Figure 4.3 ( 4w ): 

(c) In 1Hz signal with sampling frequency of 64 for 1 second, the number of samples 

for one cycle sinusoidal signal is 64/1 = 64 samples. The number of samples for a 

half sinusoidal signal is 64 samples/2 = 32 samples. If the window size is 4, thus in 

a half sinusoidal signal there are: 32 samples/4 window size = 8 samples. (Note: 

still right ellipsoid orientation) 

(d) In 5Hz signal with sampling frequency of 64 for 1 second, the number of samples 

for one cycle sinusoidal is 64/5 = 12.8 samples. The number of samples for a half 

sinusoidal signal is 12.8 samples/2 = 6.4 samples. If the window size is 4, thus in a 

half sinusoidal signal there are: 6.4 samples/4 window size = 1.6 samples. (Note: 

switch over to left ellipsoid orientation) 
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Figure 4.4 ( 8w ): 
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(e) In 1Hz signal with sampling frequency of 64 for 1 second, the number of samples 

for one cycle sinusoidal signal is 64/1 = 64 samples. The number of samples for a 

half sinusoidal signal is 64 samples/2 = 32 samples. If the window size is 8, thus in 

a half sinusoidal signal there are: 32 samples/8 window size = 4 samples. (Note: 

still right ellipsoid orientation) 

(f) In 5Hz signal with sampling frequency of 64 for 1 second, the number of samples 

for one cycle sinusoidal is 64/5 = 12.8 samples. The number of samples for a half 

sinusoidal signal is 12.8 samples/2 = 6.4 samples. If the window size is 8, thus in a 

half sinusoidal signal there are: 6.4 samples/8 window size = 0.8 samples. (Note: 

change to left ellipsoid orientation) 

 

B.2 The formula to calculate shifting factor 

According to the empirical calculation above, the number of samples for a half 

sinusoidal signal, S  can be calculated by: 




fs
S 5.0                                                                  (B1) 

where, fs is sampling frequency and   is  frequency that trigger the change of ellipsoid 

orientation. Introducing an important dimensionless parameter called shifting factor,
 

 : 

w

S
                                     (B2) 

where w  is the window size. The different pattern of ellipsoid can be identified based 

on the value of,  : 

if   > 2, the neighborhood correlation plot will be the right ellipsoid. 

If   ≤ 2, the neighborhood correlation plot will be the left ellipsoid 

Substitute Eq. (B1) to Eq. (B2) to calculate the shifting factor,  : 

w

fs


*5.0

                                            (B3) 
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Appendix C: Physical meaning of the reconstruction delay, J 

The illustration of the samples delay J is presented as follows. Suppose Y is the 

vibration data with number of samples N = 15 is given as follows. 
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With the reconstruction delay J = 2 and the embedding dimension m = 6, using the 

equation M = N - (m - 1)J, the number of reconstructed vector is M = 5. Consequently, 

the dimension of the phase-space matrix X is an M-by-m matrix or 5-by-6 matrix. The 

detailed process to obtain the reconstructed vectors for vibration data with 15 samples is 

shown as follows: 
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The reconstruction vectors process of example vibration data, shown above, can be 

represented in the phase-space matrix X: 
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Appendix D: MATLAB codes 

D.1 Time-domain feature extraction: RMS, variance, skewness, kurtosis, 

shape factor, crest factor, entropy, histogram upper bound and histogram 

lower bound. 

% Time-domain feature extraction for vibration slew bearing signal 
% 30/03/2013 
% by Wahyu Caesarendra 
  
function n = parameter() 
disp('1. February') 
disp('2. March') 
disp('3. April') 
disp('4. May') 
disp('5. July') 
disp('6. August') 
bulan = input('which month you want to select: \n') 
  
if bulan == 1 
    start_day = 21; 
    end_day = 28; 
elseif bulan == 2 
    start_day = 1; 
    end_day = 31; 
elseif bulan == 3 
    start_day = 1; 
    end_day = 26; 
elseif bulan == 4 
    start_day = 1; 
    end_day = 28; 
elseif bulan == 5 
    start_day = 17; 
    end_day = 31; 
else bulan == 6 
    start_day = 1; 
    end_day = 31; 
end 
     
baris = 1;  
% ====================== Loading data =================== 
for day = start_day:end_day             % Number of data 

 
    if bulan == 1 
        bln = ['february' num2str(day) '.txt'] 
    elseif bulan == 2 
        bln = ['march' num2str(day) '.txt'] 
    elseif bulan == 3 
        bln = ['april' num2str(day) '.txt'] 
    elseif bulan == 4 
        bln = ['may' num2str(day) '.txt'] 
    elseif bulan == 5 
        bln = ['july' num2str(day) '.txt'] 
    else bulan = 6 
        bln = ['august' num2str(day) '.txt'] 
    end 
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    data_load = load(bln); 
     
        feat_counter = 1;   
        % =============== Time domain feature extraction ========== 
        for i = 2:5 % channel 1 to 4 

 
            data = data_load(:,i); 
  
            m = mean(data); 
            rms = sqrt(sum(data.^2)/size(data,1));% RMS(F1) 
            variance = var(data);   % variance(F2) 
            skew = skewness(data,0);  % skewness(F3) 
            kur = kurtosis(data);   % kurtosis(F4) 
            sf = rms/m;     % shape factor(F5) 
            peak = sum(data); 
            cf = peak/rms;    % crest factor(F6) 
            data_inverse = data';    
            [ESTIMATE,NBIAS,SIGMA,DESCRIPTOR]=ENTROPY(data_inverse); 
            entropy = ESTIMATE;   % entropy(F7) 
            histupper = DESCRIPTOR(1); % Histogram upper bound(F8) 
            histlower = DESCRIPTOR(2); % Histogram lower bound(F9) 
  
            feature.rms = rms; 
            feature.variance = variance; 
            feature.skew = skew; 
            feature.kur = kur;   
            feature.sf = sf; 
            feature.cf = cf; 
            feature.entropy = entropy;   
            feature.histupper = histupper; 
            feature.histlower = histlower; 
            
                % ************** features data saving ************** 
                nfile = 1;              
                features(nfile,1) = feature.rms;   
                features(nfile,2) = feature.variance;           
                features(nfile,3) = feature.skew; 
                features(nfile,4) = feature.kur;   
                features(nfile,5) = feature.sf; 
                features(nfile,6) = feature.cf;                 
                features(nfile,7) = feature.entropy;  
                features(nfile,8) = feature.histupper;  
                features(nfile,9) = feature.histlower;  
                 
                [ndata, nfeat] = size(features); 

                
total_features(baris,nfeat*(feat_counter-
1)+1:feat_counter*nfeat) = features; 

                feat_counter = feat_counter+1;                 
        end 
        baris = baris + 1; 
end 
 
cd TimeDomainFeatures_Thesis 
  
% Saving features 
if bulan == 1 
    save TotFeat_Feb.dat total_features -ascii 
elseif bulan == 2 
    save TotFeat_Mar.dat total_features -ascii 
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elseif bulan == 3 
    save TotFeat_Apr.dat total_features -ascii    
elseif bulan == 4 
    save TotFeat_May.dat total_features -ascii   
elseif bulan == 5 
    save TotFeat_Jul.dat total_features -ascii  
else bulan == 6 
    save TotFeat_Aug.dat total_features -ascii   
end 
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D.2 Other time-domain feature extraction: AR coefficients, impulse 

factor, margin factor, activity, mobility and complexity. 

% Other time-domain feature extraction for vibration slew bearing 
signal 
% 20/10/2014 
% by Wahyu Caesarendra 
  
function n = parameter() 

 
disp('1. February') 
disp('2. March') 
disp('3. April') 
disp('4. May') 
disp('5. July') 
disp('6. August') 
bulan = input('which month you want to select: \n') 
  
if bulan == 1 
    start_day = 21; 
    end_day = 28; 
elseif bulan == 2 
    start_day = 1; 
    end_day = 31; 
elseif bulan == 3 
    start_day = 1; 
    end_day = 26; 
elseif bulan == 4 
    start_day = 1; 
    end_day = 28; 
elseif bulan == 5 
    start_day = 17; 
    end_day = 31; 
else bulan == 6 
    start_day = 1; 
    end_day = 31; 
end 
     
baris = 1;  
% ====================== Loading data =================== 
for day = start_day:end_day             % Number of data 

 
    if bulan == 1 
        bln = ['february' num2str(day) '.txt'] 
    elseif bulan == 2 
        bln = ['march' num2str(day) '.txt'] 
    elseif bulan == 3 
        bln = ['april' num2str(day) '.txt'] 
    elseif bulan == 4 
        bln = ['may' num2str(day) '.txt'] 
    elseif bulan == 5 
        bln = ['july' num2str(day) '.txt'] 
    else bulan = 6 
        bln = ['august' num2str(day) '.txt'] 
    end 
     
    data_load = load(bln); 
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        feat_counter = 1;   
        % =============== time domain feature extraction ========== 
        for i = 2:5 % channel 1 to 4 

 
            data = data_load(:,i); 
             
            feature.ar = armcov(data,8);   % AR features (F1-F8) 
            IF = max(abs(data))/mean(abs(data)); % Impulse factor (F9) 
            MF = max(abs(data))/mean(sqrt(abs(data)))^2; % MF(F10) 
             
            h1 = var(data); % Hjorth parameter1 (activity) (F11) 
            diff1 = diff(data); 
            h2 = std(diff1)/std(data); % Hjorth param2 (mobility)(F12) 
            diff2 = diff(diff1); 
            h3 = (std(diff2)/std(diff1))/(std(diff1)/std(data)); % 

Hjorth parameter3 (complexity) (F13) 
              
            feature.ar1 = ar(2); % (F1) 
            feature.ar2 = ar(3);    % (F2) 
            feature.ar3 = ar(4);    % (F3) 
            feature.ar4 = ar(5);    % (F4) 
            feature.ar5 = ar(6);    % (F5) 
            feature.ar6 = ar(7);    % (F6) 
            feature.ar7 = ar(8);    % (F7) 
            feature.ar8 = ar(9);    % (F8) 
            feature.IF = IF;        % (F9) 
            feature.MF = MF;        % (F10) 
            feature.h1 = h1;        % (F11) 
            feature.h2 = h2;        % (F12) 
            feature.h3 = h3;        % (F13) 
            
            % *************** features data saving *************** 
            nfile = 1;              
            features(nfile,1) = feature.ar(2); 
            features(nfile,2) = feature.ar(3); 
            features(nfile,3) = feature.ar(4); 
            features(nfile,4) = feature.ar(5); 
            features(nfile,5) = feature.ar(6); 
            features(nfile,6) = feature.ar(7); 
            features(nfile,7) = feature.ar(8); 
            features(nfile,8) = feature.ar(9); 
            features(nfile,9) = feature.IF; 
            features(nfile,10) = feature.MF; 
            features(nfile,11) = feature.h1;   
            features(nfile,12) = feature.h2; 
            features(nfile,13) = feature.h3;                   
                 
            [ndata, nfeat] = size(features); 

total_features(baris,nfeat*(feat_counter-
1)+1:feat_counter*nfeat) = features; 

            feat_counter = feat_counter+1; 
        end 
        baris = baris + 1; 
end 
 
cd TimeDomainFeatures_Thesis_lainnya 

 
% saving features 
if bulan == 1 
    save TotFeat_Feb.dat total_features -ascii 
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elseif bulan == 2 
    save TotFeat_Mar.dat total_features -ascii 
elseif bulan == 3 
    save TotFeat_Apr.dat total_features -ascii    
elseif bulan == 4 
    save TotFeat_May.dat total_features -ascii   
elseif bulan == 5 
    save TotFeat_Jul.dat total_features -ascii  
else bulan == 6 
    save TotFeat_Aug.dat total_features -ascii   
end 
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D.3 Frequency-domain feature extraction: frequency centre, root mean 

square frequency, root variance frequency. 

% Frequency-domain feature extraction for vibration slew bearing 
signal 
% 30/03/2013 
% by Wahyu Caesarendra 
  
function n = parameter() 
disp('1. February') 
disp('2. March') 
disp('3. April') 
disp('4. May') 
disp('5. July') 
disp('6. August') 
bulan = input('which month you want to select: \n') 
  
if bulan == 1 
    start_day = 21; 
    end_day = 28; 
elseif bulan == 2 
    start_day = 1; 
    end_day = 31; 
elseif bulan == 3 
    start_day = 1; 
    end_day = 26; 
elseif bulan == 4 
    start_day = 1; 
    end_day = 28; 
elseif bulan == 5 
    start_day = 17; 
    end_day = 31; 
else bulan == 6 
    start_day = 1; 
    end_day = 31; 
end 
baris = 1;  
% ====================== Loading data =================== 
for day = start_day:end_day             % Number of data 
    if bulan == 1 
        bln = ['february' num2str(day) '.txt'] 
    elseif bulan == 2 
        bln = ['march' num2str(day) '.txt'] 
    elseif bulan == 3 
        bln = ['april' num2str(day) '.txt'] 
    elseif bulan == 4 
        bln = ['may' num2str(day) '.txt'] 
    elseif bulan == 5 
        bln = ['july' num2str(day) '.txt'] 
    else bulan = 6 
        bln = ['august' num2str(day) '.txt'] 
    end 
     
    data_load = load(bln); 
     
        feat_counter = 1;   
        % ============ frequency domain feature extraction ========== 
        for i = 2:5 % channel 1 to 4 
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            data = data_load(:,i); 
             
            data_dif = diff(data); 
            max_freq = 2000; 
            fre_max = max_freq * 2.56; 
            l = length(data); 

            
FC=fre_max*sum(data_dif.*data(2:l))/(2*pi*sum(data.^2));% 
FC(F1) 

            MSF = fre_max^2*sum(data_dif.^2)/(4*(pi^2)*sum(data.^2)); 
            RMSF = sqrt(MSF);  % RMSF (F2) 
            RVF = sqrt(MSF-FC^2): % RVF (F3) 
  
            feature.FC = FC; 
            feature.RMSF = RMSF; 
            feature.RVF = RVF; 
            
            % **************features data saving ***************** 
            nfile = 1;              
            features(nfile,1) = feature.FC;   
            features(nfile,2) = feature.RMSF;           
            features(nfile,3) = feature.RVF; 
                 
            [ndata, nfeat] = size(features); 

total_features(baris,nfeat*(feat_counter-
1)+1:feat_counter*nfeat) = features; 

            feat_counter = feat_counter+1;                 
        end 
        baris = baris + 1; 
end 
 
cd FreqDomainFeatures_Thesis 

 
% features saving 
if bulan == 1 
    save TotFeat_Feb.dat total_features -ascii 
elseif bulan == 2 
    save TotFeat_Mar.dat total_features -ascii 
elseif bulan == 3 
    save TotFeat_Apr.dat total_features -ascii    
elseif bulan == 4 
    save TotFeat_May.dat total_features -ascii   
elseif bulan == 5 
    save TotFeat_Jul.dat total_features -ascii  
else bulan == 6 
    save TotFeat_Aug.dat total_features -ascii   

end 
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D.4 Combined time-domain feature extraction and wavelet 

decomposition. 

% Combined time-domain feature extraction and wavelet decomposition 
for vibration slew bearing signal 
% 04/08/2013 
% created by Wahyu Caesarendra 
  
function n = parameter() 
disp('1. February') 
disp('2. March') 
disp('3. April') 
disp('4. May') 
disp('5. July') 
disp('6. August') 
bulan = input('which month you want to select: \n') 

 
if bulan == 1 
    start_day = 21; 
    end_day = 28; 
elseif bulan == 2 
    start_day = 1; 
    end_day = 31; 
elseif bulan == 3 
    start_day = 1; 
    end_day = 26; 
elseif bulan == 4 
    start_day = 1; 
    end_day = 28; 
elseif bulan == 5 
    start_day = 17; 
    end_day = 31; 
else bulan == 6 
    start_day = 1; 
    end_day = 31; 
end 
  
baris = 1;  
% ====================== Loading data =================== 
for day = start_day:end_day             % Number of data 

 
    if bulan == 1 
        bln = ['february' num2str(day) '.txt'] 
    elseif bulan == 2 
        bln = ['march' num2str(day) '.txt'] 
    elseif bulan == 3 
        bln = ['april' num2str(day) '.txt'] 
    elseif bulan == 4 
        bln = ['may' num2str(day) '.txt'] 
    elseif bulan == 5 
        bln = ['july' num2str(day) '.txt'] 
    else bulan = 6 
        bln = ['august' num2str(day) '.txt'] 
    end 
     
    raw_data = load(bln); 
     
    feat_counter = 1;   
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    % ============== Data loading based selected channel ========== 
        for i = 2 % channel 1 
            data = raw_data(:,i);            
            rpm = 1; 
            dt = 60/(rpm*60); 
            deg = 180;       % reversible rotation angle 
            maxTime = dt*(deg/360)*60;  % total time for 180 deg 
            time = 1:dt:maxTime; 
             
            sf = 4880; 
            x = data(1:sf*maxTime)';          
            [C,L] = wavedec(x,3,'db9'); % wavelet decomposition db9 

 
            % Reconstruct approximation / detail at level 1-3 
            A1 = wrcoef('a', C, L, 'db9',1); % A: approximation 
            D1 = wrcoef('d', C, L, 'db9',1); % D1: decomposition 1 
            D2 = wrcoef('d', C, L, 'db9',2); % D2: decomposition 2 
            D3 = wrcoef('d', C, L, 'db9',3); % D3: decomposition 3 
             
            rata2_A1 = mean(A1); 
            sigma2_A1 = var(A1); 
            skew_A1 = skewness(A1); 
            kur_A1 = kurtosis(A1); 
             
            rata2_D1 = mean(D1); 
            sigma2_D1 = var(D1); 
            skew_D1 = skewness(D1); 
            kur_D1 = kurtosis(D1);         
             
            rata2_D2 = mean(D2); 
            sigma2_D2 = var(D2); 
            skew_D2 = skewness(D2); 
            kur_D2 = kurtosis(D2);   
             
            rata2_D3 = mean(D3); 
            sigma2_D3 = var(D3); 
            skew_D3 = skewness(D3); 
            kur_D3 = kurtosis(D3);    
                         
                % ************ features saving *************** 
                feature.rata2_A1 = rata2_A1;               
                feature.sigma2_A1 = sigma2_A1;   
                feature.skew_A1 = skew_A1;                   
                feature.kur_A1 = kur_A1; 
                                
                features_A1(1,1) = feature.rata2_A1;                 
                features_A1(1,2) = feature.sigma2_A1;                
                features_A1(1,3) = feature.skew_A1;                                               
                features_A1(1,4) = feature.kur_A1;             
                 
                [ndata, nfeat] = size(features_A1);     
                total_features_A1(baris,nfeat*(feat_counter-

1)+1:feat_counter*nfeat) = features_A1;                            

                 
                % ---------------------------------------- 
                feature.rata2_D1 = rata2_D1;               
                feature.sigma2_D1 = sigma2_D1;   
                feature.skew_D1 = skew_D1;                   
                feature.kur_D1 = kur_D1;  
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                features_D1(1,1) = feature.rata2_D1;                 
                features_D1(1,2) = feature.sigma2_D1;                
                features_D1(1,3) = feature.skew_D1;                                               
                features_D1(1,4) = feature.kur_D1;             
                 
                [ndata, nfeat] = size(features_D1);     

                
total_features_D1(baris,nfeat*(feat_counter-
1)+1:feat_counter*nfeat) = features_D1;                               

                 
                % -------------------------------------------- 
                feature.rata2_D2 = rata2_D2;               
                feature.sigma2_D2 = sigma2_D2;   
                feature.skew_D2 = skew_D2;                   
                feature.kur_D2 = kur_D2;  
                 
                features_D2(1,1) = feature.rata2_D2;                 
                features_D2(1,2) = feature.sigma2_D2;                
                features_D2(1,3) = feature.skew_D2;                                               
                features_D2(1,4) = feature.kur_D2;             
                 
                [ndata, nfeat] = size(features_D2);     

                
total_features_D2(baris,nfeat*(feat_counter-
1)+1:feat_counter*nfeat) = features_D2;                               

                 
                % ---------------------------------------- 
                feature.rata2_D3 = rata2_D3;               
                feature.sigma2_D3 = sigma2_D3;   
                feature.skew_D3 = skew_D3;                   
                feature.kur_D3 = kur_D3;   
                 
                features_D3(1,1) = feature.rata2_D3;                 
                features_D3(1,2) = feature.sigma2_D3;                
                features_D3(1,3) = feature.skew_D3;                                               
                features_D3(1,4) = feature.kur_D3;             
                 
                [ndata, nfeat] = size(features_D3);     
                total_features_D3(baris,nfeat*(feat_counter-

1)+1:feat_counter*nfeat) = features_D3;                              
                feat_counter = feat_counter+1;                         
        end 
        baris = baris + 1 

 
    end 
 
cd total_wavedec_features 

 
if bulan == 1 
    save TotFeat_Feb_A1.dat total_features_A1 -ascii 
    save TotFeat_Feb_D1.dat total_features_D1 -ascii 
    save TotFeat_Feb_D2.dat total_features_D2 -ascii 
    save TotFeat_Feb_D3.dat total_features_D3 -ascii 
elseif bulan == 2 
    save TotFeat_Mar_A1.dat total_features_A1 -ascii 
    save TotFeat_Mar_D1.dat total_features_D1 -ascii 
    save TotFeat_Mar_D2.dat total_features_D2 -ascii 
    save TotFeat_Mar_D3.dat total_features_D3 -ascii 
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elseif bulan == 3 
    save TotFeat_Apr_A1.dat total_features_A1 -ascii    
    save TotFeat_Apr_D1.dat total_features_D1 -ascii    
    save TotFeat_Apr_D2.dat total_features_D2 -ascii    
    save TotFeat_Apr_D3.dat total_features_D3 -ascii    
elseif bulan == 4 
    save TotFeat_May_A1.dat total_features_A1 -ascii   
    save TotFeat_May_D1.dat total_features_D1 -ascii   
    save TotFeat_May_D2.dat total_features_D2 -ascii   
    save TotFeat_May_D3.dat total_features_D3 -ascii   
elseif bulan == 5 
    save TotFeat_Jul_A1.dat total_features_A1 -ascii  
    save TotFeat_Jul_D1.dat total_features_D1 -ascii  
    save TotFeat_Jul_D2.dat total_features_D2 -ascii  
    save TotFeat_Jul_D3.dat total_features_D3 -ascii  
else bulan == 6 
    save TotFeat_Aug_A1.dat total_features_A1 -ascii   
    save TotFeat_Aug_D1.dat total_features_D1 -ascii   
    save TotFeat_Aug_D2.dat total_features_D2 -ascii   
    save TotFeat_Aug_D3.dat total_features_D3 -ascii   

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendices  

226 

D.5 STFT feature extraction. 

% STFT feature extraction for vibration slew bearing signal 
% 23/09/2014 
% created by Wahyu Caesarendra 
  
x = load('may3.txt'); 
x = x(1:48800,2); 
fs = 4880; 
xmax = max(abs(x));         % find the maximum absolute value 
x = x/xmax;                             % scalling the signal 
  
% define analysis parameters 
xlen = length(x); % length of the signal 
wlen = 2048;  % window length (recommended to be power of 2) 
h = wlen/8;  % hop size (recommended to be power of 2) 
nfft = 16384; % number of FFT points 
  
% define the coherent amplification of the window 
K = sum(hamming(wlen, 'periodic'))/wlen; 
  
% perform STFT 
[stft, f, t] = stft(x, wlen, h, nfft, fs); 
  
% take the amplitude of fft(x) and scale it, so not to be a function 
of the length of the window and its coherent amplification 
s = abs(stft)/wlen/K; 
  
% correction of the DC & Nyquist component 
if rem(nfft, 2)         % odd nfft excludes Nyquist point 
    s(2:end, :) = s(2:end, :).*2; 
else                    % even nfft includes Nyquist point 
    s(2:end-1, :) = s(2:end-1, :).*2; 
end 
  
% plot the STFT result 
figure(1) 
t = fliplr(t); 
mesh(t,f,s) 
xlabel('Time (s)') 
ylabel('Frequency (Hz)') 
zlabel('Amplitude (mV)') 
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D.6 Fractal dimension, correlation dimension and approximate entropy 

feature extraction. 

% Phase-space dissimilarity measurements feature extraction for 
vibration slew bearing signal 
% 22/10/2012 
% created by Wahyu Caesarendra 
  
  
function n = parameter() 
disp('1. February') 
disp('2. March') 
disp('3. April') 
disp('4. May') 
disp('5. July') 
disp('6. August') 
bulan = input('which month you want to select:') 
  
if bulan == 1 
    start_day = 21; 
    end_day = 28; 
elseif bulan == 2 
    start_day = 1; 
    end_day = 31; 
elseif bulan == 3 
    start_day = 1; 
    end_day = 26; 
elseif bulan == 4 
    start_day = 1; 
    end_day = 28; 
elseif bulan == 5 
    start_day = 18; 
    end_day = 31; 
else bulan == 6 
    start_day = 1; 
    end_day = 31; 
end 
  
baris = 1;  
% ====================== Loading data =================== 
for day = start_day:end_day             % Number of data 

 
    if bulan == 1 
        bln = ['february' num2str(day) '.txt'] 
    elseif bulan == 2 
        bln = ['march' num2str(day) '.txt'] 
    elseif bulan == 3 
        bln = ['april' num2str(day) '.txt'] 
    elseif bulan == 4 
        bln = ['may' num2str(day) '.txt'] 
    elseif bulan == 5 
        bln = ['july' num2str(day) '.txt'] 
    else bulan == 6 
        bln = ['august' num2str(day) '.txt'] 
    end 
     
    raw_data = load(bln); 
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        feat_counter = 1;   
        % =========== Data Loading based selected channel ========== 
        for i = 2 % channel 1 
            raw_data = raw_data(:,i);            
            data = raw_data(48801:97600); 
            x = (data-mean(data))/std(data); 
             
            % Fractal Dimension 
            N = length(x); 
            c = 48; % 50 
            FD = FractalDimension(x,N,c); 
            feat(baris,1) = FD; 
             
            % Correlation dimension 
            T = 48; % 50 
            D2 = CorrelationDimension(x,N,T); 
            feat(baris,1) = D2;             
             
            % ApproximatEntropy             
            dim = 8; 
            r = 0.2 * std(x); 
            tau = 1; 
            apen = ApEn(dim,r,x,tau); 
            feat(baris,3) = apen; 
         end 
        baris = baris + 1 
end 
  
cd PhaseSpaceFeatures_Thesis 
if bulan == 1 
    save feat_feb2.dat feat -ascii 
elseif bulan == 2 
    save feat_mar2.dat feat -ascii 
elseif bulan == 3 
    save feat_apr2.dat feat -ascii 
elseif bulan == 4 
    save feat_may2.dat feat -ascii 
elseif bulan == 5 
    save feat_jul2.dat feat -ascii 
else bulan == 6 
    save feat_aug2.dat feat -ascii 

end 
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function D = FractalDimension(s,N,k) 
% fractal dimension function 
% ========================== 
% created by Wahyu Caesarendra 
% 6-Sept-2012 
  
% References: 
% Niina Paivinen et.al. 
% Epileptic seizure detection: A nonlinear viewpoint 
% Computer Methods and Programs in Biomedicine (2005) 79, 151-159 
  
  
% input: 
% ====== 
% s is original time series 
% N is dimension of original time series 
% k is lag time or interval time 
  
% output: 
% ======= 
% D is fractal dimension 
  
m = N/k;    % dimension of phase space (m could not be > N/k) 
    for i = 1:k; 
        for j = 1:m; 
            X(i,j) = s(i+k*(j-1));   % Eq. 7 
        end 
    end 
  
    L2 = 0; 
    for i = 1:k 
        for j = 2:m; 
            L1(i,j-1) = abs(X(i,j)-X(i,j-1)); % Eq. 8 
            L2 = L2 + L1(i,j-1); 
            Lm(i,j-1) = (1/k)*L2; 
        end 
    end 
    L(1:k,1) = mean(Lm');  
  
    for i = 1:k 
        S(i,1) = log(i); 
        S(i,2) = log(L(i)); 
    end 
  
    P = polyfit(S(:,1),S(:,2),1); 
    f = polyval(P,S(:,1)); 
    % plot(S(:,1),S(:,2),'o',S(:,1),f,'-') 
    D = P(1); 
end 
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function D2 = CorrelationDimension(data,N,T) 
  
% correlation sum and correlation dimension 
% ========================================= 
% created by Wahyu Caesarendra 
% 7-Sept-2012 
  
% References: 
% Xiaoyun Zang and John Howell 
% Correlation dimension and Lyapunov exponent based isolation of 
plant-wide 
% oscillations 
  
  
% input: 
% ====== 
% data is original time series or vibration data 
% N is dimension of original time series 
% T is lag time or interval time 
  
% output: 
% ======= 
% D is fractal dimension 
  
x = data; 
m = N/T;        % dimension of phase space (m could not be > N/T) 
epsilon = 5; 
  
    % creating phase space data from original time series 
    for i = 1:T; 
        for j = 1:m; 
            X(i,j) = x(i+T*(j-1));   % Eq. 7 
        end 
    end 
  
    % calculate the correlation sum in some phase space 
    for k = 2:T 
        Xi = X(k-1,:); 
        Xj = X(k,:); 
        step1 = epsilon - abs(Xi-Xj); 
        H = find(step1>0); % Heaviside step function (Theta).if x<=0 

Theta=0, else x>0 Theta=1  
        step2(k-1,1) = sum(step1(H)); 
    end 
    C = (2/((N-m)*(N-m-1)))*sum(step2); % Eq. 2 
     
    % correlation dimension 
    D2 = log(C)/log(epsilon);           % Eq. 3 
end 
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function apen = ApEn( dim, r, data, tau ) %ApEn 
%   dim : embedded dimension 
%   r : tolerance (typically 0.2 * std) 
%   data : time-series data 
%   tau : delay time for downsampling 
  
%   Changes in version 1 
%       Ver 0 had a minor error in the final step of calculating ApEn 
%       because it took logarithm after summation of phi's. 
%       In Ver 1, I restored the definition according to original 
paper's 
%       definition, to be consistent with most of the work in the 
%       literature. Note that this definition won't work for Sample 
%       Entropy which doesn't count self-matching case, because the 
count  
%       can be zero and logarithm can fail. 
% 
%       A new parameter tau is added in the input argument list, so 
the users 
%       can apply ApEn on downsampled data by skipping by tau.  
%--------------------------------------------------------------------- 
% coded by Kijoon Lee,  kjlee@ntu.edu.sg 
% Ver 0 : Aug 4th, 2011 
% Ver 1 : Mar 21st, 2012 
%--------------------------------------------------------------------- 
if nargin < 4, tau = 1; end 
if tau > 1, data = downsample(data, tau); end 
     
N = length(data); 
result = zeros(1,2); 
  
for j = 1:2 
    m = dim+j-1; 
    phi = zeros(1,N-m+1); 
    dataMat = zeros(m,N-m+1); 
     
    % setting up data matrix 
    for i = 1:m 
        dataMat(i,:) = data(i:N-m+i); 
    end 
     
    % counting similar patterns using distance calculation 
    for i = 1:N-m+1 
        tempMat = abs(dataMat - repmat(dataMat(:,i),1,N-m+1)); 
        boolMat = any( (tempMat > r),1); 
        phi(i) = sum(~boolMat)/(N-m+1); 
    end 
     
    % summing over the counts 
    result(j) = sum(log(phi))/(N-m+1); 
end 
  
apen = result(1)-result(2); 
  

end 
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D.7 KS test feature extraction. 

% KS test feature extraction for vibration   slew bearing signal 
% 22/10/2012 
% created by Wahyu Caesarendra 
 
function n = parameter() 
 
for bulan = 1:6 
  
if bulan == 1 
    start_day = 21; 
    end_day = 28; 
elseif bulan == 2 
    start_day = 1; 
    end_day = 31; 
elseif bulan == 3 
    start_day = 1; 
    end_day = 26; 
elseif bulan == 4 
    start_day = 1; 
    end_day = 28; 
elseif bulan == 5 
    start_day = 17; 
    end_day = 31; 
else bulan == 6 
    start_day = 1; 
    end_day = 31; 
end 
  
baris = 1;  
% ====================== Loading data =================== 
for day = start_day:end_day             % Number of data 
     
    if bulan == 1 
        bln = ['february' num2str(day) '.txt'] 
    elseif bulan == 2 
        bln = ['march' num2str(day) '.txt'] 
    elseif bulan == 3 
        bln = ['april' num2str(day) '.txt'] 
    elseif bulan == 4 
        bln = ['may' num2str(day) '.txt'] 
    elseif bulan == 5 
        bln = ['july' num2str(day) '.txt'] 
    else bulan = 6 
        bln = ['august' num2str(day) '.txt'] 
    end 
     
    data_load = load(bln); 
     
        feat_counter = 1;   
        % ============= KS test feature extraction ========== 
        for i = 2 % channel 1 

 
            data = data_load(:,i); 

 
            normal_data = load('february22.txt'); % february23 
            ND_ch1 = normal_data(:,i); 
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            data = abs(data); 
            ND_ch1 = abs(ND_ch1); 
            [KS,p]=kstest2(ND_ch1,data,'Alpha',0.01,'tail','larger');             
            feature.KS = KS;    % (F1) 
            feature.p = p;      % (F2) 
            
            % *************** Saving data features **************** 
            nfile = 1;              
            features(nfile,1) = feature.KS; 
            features(nfile,2) = feature.p;                
                 
            [ndata, nfeat] = size(features); 
            total_features(baris,nfeat*(feat_counter-

1)+1:feat_counter*nfeat) = features; 
            feat_counter = feat_counter+1;                  
        end 
        baris = baris + 1; 

 
end 
 
cd KolmogorovSmirnovFeatures_Thesis 
  
total_features_double = double(total_features); 
  
if bulan == 1 
    save TotFeat_Feb.dat total_features_double -ascii 
elseif bulan == 2 
    save TotFeat_Mar.dat total_features_double -ascii 
elseif bulan == 3 
    save TotFeat_Apr.dat total_features_double -ascii    
elseif bulan == 4 
    save TotFeat_May.dat total_features_double -ascii   
elseif bulan == 5 
    save TotFeat_Jul.dat total_features_double -ascii  
else bulan == 6 
    save TotFeat_Aug.dat total_features_double -ascii   
end 
  
clear KS 
clear p 
clear total_features 
clear total_features_double 
  
cd .. 
end 

cd KolmogorovSmirnovFeatures_Thesis 
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D.8 Circular domain feature extraction. 

% Circular domain feature extraction for vibration slew bearing signal 
% 25/10/2012 
% created by Wahyu Caesarendra 
 
function n = parameter() 
  
disp('1. February') 
disp('2. March') 
disp('3. April') 
disp('4. May') 
disp('5. July') 
disp('6. August') 
bulan = input('which month you want to select: \n') 
  
if bulan == 1 
    start_day = 21; 
    end_day = 28; 
elseif bulan == 2 
    start_day = 1; 
    end_day = 31; 
elseif bulan == 3 
    start_day = 1; 
    end_day = 26; 
elseif bulan == 4 
    start_day = 1; 
    end_day = 28; 
elseif bulan == 5 
    start_day = 17; 
    end_day = 31; 
else bulan == 6 
    start_day = 1; 
    end_day = 31; 
end 
  
baris = 1;  
% ====================== Loading data =================== 
for day = start_day:end_day             % Number of data 
    
    if bulan == 1 
        bln = ['february' num2str(day) '.txt'] 
    elseif bulan == 2 
        bln = ['march' num2str(day) '.txt'] 
    elseif bulan == 3 
        bln = ['april' num2str(day) '.txt'] 
    elseif bulan == 4 
        bln = ['may' num2str(day) '.txt'] 
    elseif bulan == 5 
        bln = ['july' num2str(day) '.txt'] 
    else bulan = 6 
        bln = ['august' num2str(day) '.txt'] 
    end 
     
    raw_data = load(bln); 
     
        feat_counter = 1;   

 
        % ============ Data Loading based selected channel ========== 



Appendices  

235 

        for i = 2 % channel 1 
            data = raw_data(:,i);            
            rpm = 1;                             
            dt = 60/(rpm*60);                    
            deg = 180;                           
            maxTime = dt*(deg/360)*60;           
            time = 1:dt:maxTime; 
             
            sf = 4880; 
            x = data(1:sf*maxTime)'; 
            % normalize to zero mean 
            xx = (x-mean(x))/std(x); 
            new_data = reshape(xx,sf,maxTime); % 1 second data 
             
            % PAA method 
            [r c]=size(new_data); 
            for j = 1:c 
                data = new_data(:,j); 
                win_size = 8; 
                L = length(data); 
                nseg = L/win_size; % win_size*nseg = length of data 
                PAA = mean(reshape(data,win_size,nseg)); % PAA 
                N = length(PAA); 
                a = PAA(1:N-1); % x(n) 
                b = PAA(2:N);   % x(n+1) 
                 
                % Ellipse fit 
                XY(:,1) = a; 
                XY(:,2) = b; 
                [A, posisi] = EllipseDirectFit(XY); 
                syms x y 
                % ax^2 + bxy + cy^2 +dx + ey + f = 0 (ellipse formula) 
                Z = A(1)*x^2 + A(2)*x*y + A(3)*y^2 + A(4)*x + A(5)*y + 

A(6); 
                bentuk(1,j) = posisi; 
            end 
  
            nol = find(bentuk==0);  % center (0) 
            satu = find(bentuk==1); % right shifted (1) 
            dua = find(bentuk==2);  % left shifted (2) 
 
            ang_deg0 = time2ang(nol,maxTime,deg)';% time to angle 

conversion 
            rad0 = ang2rad(ang_deg0);  % angle to radian conversion    
            ang_deg1 = time2ang(satu,maxTime,deg)'; 
            rad1 = ang2rad(ang_deg1); 
            ang_deg2 = time2ang(dua,maxTime,deg)'; 
            rad2 = ang2rad(ang_deg2); 
            
            % Plot raw data in circular shape 
            f = figure(day); 
            set(f,'color',[1 1 1]); 
            subplot(2,2,1) 
            time2 = 1/4880:1/4880:maxTime; 

tRad = time2rad(time2,maxTime,deg); % time to radian 
conversion 

            circ_plot4(tRad,xx,'Color','r') 
             
             
            subplot(2,2,2) 
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            circ_plot1(rad1,'LineWidth',2,'Color','r'), 
            subplot(2,2,3) 
            circ_plot2(rad1,'-',20,'LineWidth',2,'Color','r'),             
             
            [alpha_bar0 R0] = Resultant(rad0); 
            [alpha_bar1 R1] = Resultant(rad1); 
            [alpha_bar2 R2] = Resultant(rad2); 
                 
            var0 = circ_var(rad0); 
            var1 = circ_var(rad1); 
            var2 = circ_var(rad2); 
                 
            [skewPewsey0 skewFisher0] = circ_skewness(rad0); 
            [skewPewsey1 skewFisher1] = circ_skewness(rad1); 
            [skewPewsey2 skewFisher2] = circ_skewness(rad2); 
                 
            [kurPewsey0 kurFisher0] = circ_kurtosis(rad0); 
            [kurPewsey1 kurFisher1] = circ_kurtosis(rad1); 
            [kurPewsey2 kurFisher2] = circ_kurtosis(rad2); 
         
            subplotHandle = subplot(2,2,4); 
            text(0,1,['Circular Mean :', num2str(alpha_bar1)]); 
            text(0,0.7,['Circular Variance :', num2str(var1)]); 
            text(0,0.4,['Circular Skewness :', num2str(skewPewsey1)]); 
            text(0,0.1,['Circular Kurtosis :', num2str(kurPewsey1)]); 
                 
                % setting the axes invisible 
                set(subplotHandle,'Xcolor',[1 1 1]); 
                set(subplotHandle,'Ycolor',[1 1 1]); 
                 
                 
                % ************** Saving the features ***************** 
                feature0.mean = alpha_bar0; 
                feature1.mean = alpha_bar1; 
                feature2.mean = alpha_bar2; 
                 
                feature0.var = var0; 
                feature1.var = var1; 
                feature2.var = var2; 
                 
                feature0.skewA = skewPewsey0;   
                feature0.skewB = skewFisher0; 
                feature1.skewA = skewPewsey1;   
                feature1.skewB = skewFisher1; 
                feature2.skewA = skewPewsey2;   
                feature2.skewB = skewFisher2; 
                 
                feature0.kurA = kurPewsey0; 
                feature0.kurB = kurFisher0; 
                feature1.kurA = kurPewsey1; 
                feature1.kurB = kurFisher1; 
                feature2.kurA = kurPewsey2; 
                feature2.kurB = kurFisher2; 
                 
                nfile = 1;                
                features0(nfile,1) = feature0.mean; 
                features1(nfile,1) = feature1.mean; 
                features2(nfile,1) = feature2.mean; 
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                features0(nfile,2) = feature0.var; 
                features1(nfile,2) = feature1.var; 
                features2(nfile,2) = feature2.var; 
                 
                features0(nfile,3) = feature0.skewA;                   
                features1(nfile,3) = feature1.skewA; 
                features2(nfile,3) = feature2.skewA; 
                 
                features0(nfile,4) = feature0.skewB;                   
                features1(nfile,4) = feature1.skewB; 
                features2(nfile,4) = feature2.skewB;                 
                 
                features0(nfile,5) = feature0.kurA; 
                features1(nfile,5) = feature1.kurA; 
                features2(nfile,5) = feature2.kurA; 
                 
                features0(nfile,6) = feature0.kurB; 
                features1(nfile,6) = feature1.kurB; 
                features2(nfile,6) = feature2.kurB;                 
                 
                [ndata, nfeat] = size(features1); 
                 
                total_features0(baris,nfeat*(feat_counter-

1)+1:feat_counter*nfeat) = features0; 
                total_features1(baris,nfeat*(feat_counter-

1)+1:feat_counter*nfeat) = features1; 
                total_features2(baris,nfeat*(feat_counter-

1)+1:feat_counter*nfeat) = features2; 
                 
                feat_counter = feat_counter+1; 
        end 
        baris = baris + 1 
    end 
 
cd TotalCircularFeatures 

 
if bulan == 1 
    save CircFeat1_Feb.dat total_features1 -ascii 
elseif bulan == 2 
    save CircFeat1_Mar.dat total_features1 -ascii 
elseif bulan == 3 
    save CircFeat1_Apr.dat total_features1 -ascii      
elseif bulan == 4 
    save CircFeat1_May.dat total_features1 -ascii      
elseif bulan == 5 
    save CircFeat1_Jul.dat total_features1 -ascii   
else bulan == 6 
    save CircFeat1_Aug.dat total_features1 -ascii    
end 
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function [A, posisi] = EllipseDirectFit(XY) 
 
%  Direct ellipse fit, proposed in article 
%    A. W. Fitzgibbon, M. Pilu, R. B. Fisher 
%     "Direct Least Squares Fitting of Ellipses" 
%     IEEE Trans. PAMI, Vol. 21, pages 476-480 (1999) 
% 
%  Our code is based on a numerically stable version 
%  of this fit published by R. Halir and J. Flusser 
% 
%     Input:  XY(n,2) is the array of coordinates of n points 
x(i)=XY(i,1), y(i)=XY(i,2) 
% 
%     Output: A = [a b c d e f]' is the vector of algebraic  
%             parameters of the fitting ellipse: 
%             ax^2 + bxy + cy^2 +dx + ey + f = 0 
%             the vector A is normed, so that ||A||=1 
% 
%  This is a fast non-iterative ellipse fit. 
% 
%  It returns ellipses only, even if points are 
%  better approximated by a hyperbola. 
%  It is somewhat biased toward smaller ellipses. 
 
centroid = mean(XY);   % the centroid of the data set 
  
D1 = [(XY(:,1)-centroid(1)).^2, (XY(:,1)-centroid(1)).*(XY(:,2)-
centroid(2)),... 
      (XY(:,2)-centroid(2)).^2]; 
D2 = [XY(:,1)-centroid(1), XY(:,2)-centroid(2), ones(size(XY,1),1)]; 
S1 = D1'*D1; 
S2 = D1'*D2; 
S3 = D2'*D2; 
T = -inv(S3)*S2'; 
M = S1 + S2*T; 
M = [M(3,:)./2; -M(2,:); M(1,:)./2]; 
[evec,eval] = eig(M); 
cond = 4*evec(1,:).*evec(3,:)-evec(2,:).^2; 
A1 = evec(:,find(cond>0)); 
A = [A1; T*A1]; 
A4 = A(4)-2*A(1)*centroid(1)-A(2)*centroid(2); 
A5 = A(5)-2*A(3)*centroid(2)-A(2)*centroid(1); 
A6 = A(6)+A(1)*centroid(1)^2+A(3)*centroid(2)^2+... 
     A(2)*centroid(1)*centroid(2)-A(4)*centroid(1)-A(5)*centroid(2); 
A(4) = A4;  A(5) = A5;  A(6) = A6; 
A = A/norm(A); 
  

 
% additional program by Wahyu Caesarendra 
% 4/11/2012 
% --------------------- left shifted --------------------------- 
if A(1)<0 && A(2)<0 && A(3)<0 && A(4)>0 && A(5)>0 && A(6)>0     % 1 
        posisi = 2; 
elseif A(1)<0 && A(2)<0 && A(3)<0 && A(4)<0 && A(5)<0 && A(6)>0 % 2 
        posisi = 2; 
elseif A(1)>0 && A(2)>0 && A(3)>0 && A(4)>0 && A(5)>0 && A(6)<0 % 3 
        posisi = 2;    
elseif A(1)<0 && A(2)<0 && A(3)<0 && A(4)<0 && A(5)>0 && A(6)>0 % 4 
        posisi = 2; 
elseif A(1)>0 && A(2)>0 && A(3)>0 && A(4)<0 && A(5)<0 && A(6)<0 % 5 
        posisi = 2;          
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% --------------------- right shifted -------------------------- 
elseif A(1)>0 && A(2)<0 && A(3)>0 && A(4)<0 && A(5)>0 && A(6)<0 % 1 
        posisi = 1;  
elseif A(1)>0 && A(2)<0 && A(3)>0 && A(4)>0 && A(5)>0 && A(6)<0 % 2 
        posisi = 1; 
elseif A(1)<0 && A(2)>0 && A(3)<0 && A(4)>0 && A(5)>0 && A(6)>0 % 3 
        posisi = 1; 
elseif A(1)<0 && A(2)>0 && A(3)<0 && A(4)<0 && A(5)<0 && A(6)>0 % 4 
        posisi = 1; 
elseif A(1)<0 && A(2)>0 && A(3)<0 && A(4)<0 && A(5)>0 && A(6)>0 % 5 
        posisi = 1; 
elseif A(1)<0 && A(2)>0 && A(3)<0 && A(4)>0 && A(5)<0 && A(6)>0 % 6 
        posisi = 1; 
elseif A(1)>0 && A(2)<0 && A(3)>0 && A(4)>0 && A(5)<0 && A(6)<0 % 7 
        posisi = 1; 
elseif A(1)>0 && A(2)<0 && A(3)>0 && A(4)<0 && A(5)>0 && A(6)<0 % 8 
        posisi = 1;          
elseif A(1)>0 && A(2)<0 && A(3)>0 && A(4)<0 && A(5)<0 && A(6)<0 % 9 
        posisi = 1;          
% -------------------------- center ----------------------------- 
else 
        posisi = 0; 
end 
end  %  EllipseDirectFit 
 
 

 

function [alpha_bar R] = Resultant(alpha,p) 
    % Compute circular mean and resultant length 
    % created by Caesar 
    % 5/11/2012 
     
    % weight (this should be the diameter of bearing) 
    w = ones(size(alpha)); 
          
    if nargin <2 || isempty(p) 
        % compute weighted sum of cos and sin of angles 
        ri = w.*(cos(alpha)+i*sin(alpha)); 
        r_bar = mean(ri); 
        % obtain meanR 
        alpha_bar = angle(r_bar); % convert complex value to radian 
        % obtain lengthR  
        R = abs(r_bar); 
    else 
        % compute weighted sum of cos and sin of angles 
        ri = w.*(cos(p*alpha)+i*sin(p*alpha)); 
        r_bar = mean(ri); 
        % obtain meanR 
        alpha_bar = angle(r_bar); % convert complex value to radian 
        % obtain lengthR  
        R = abs(r_bar); 
    end 
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function [S s] = circ_var(alpha, w, d, dim) 
% s = circ_var(alpha, w, d, dim) 
%   Computes circular variance for circular data  
%   (equ. 26.17/18, Zar).    
% 
%   Input: 
%     alpha sample of angles in radians 
%     [w    number of incidences in case of binned angle data] 
%     [d    spacing of bin centers for binned data, if supplied  
%           correction factor is used to correct for bias in  
%           estimation of r] 
%     [dim  compute along this dimension, default is 1] 
% 
%     If dim argument is specified, all other optional arguments can 
be 
%     left empty: circ_var(alpha, [], [], dim) 
% 
%   Output: 
%     S     circular variance 1-r 
%     s     angular variance 2*(1-r) 
% 
% PHB 6/7/2008 
% 
% References: 
%   Statistical analysis of circular data, N.I. Fisher 
%   Topics in circular statistics, S.R. Jammalamadaka et al.  
%   Biostatistical Analysis, J. H. Zar 
% Circular Statistics Toolbox for Matlab 
  
% By Philipp Berens, 2009 
% berens@tuebingen.mpg.de - www.kyb.mpg.de/~berens/circStat.html 
  
if nargin < 4 
  dim = 1; 
end 
  
if nargin < 3 || isempty(d) 
  % per default do not apply correct for binned data 
  d = 0; 
end 
  
if nargin < 2 || isempty(w) 
  % if no specific weighting has been specified 
  % assume no binning has taken place 
    w = ones(size(alpha)); 
else 
  if size(w,2) ~= size(alpha,2) || size(w,1) ~= size(alpha,1)  
    error('Input dimensions do not match'); 
  end  
end 
  
% compute mean resultant vector length 
r = circ_r(alpha); 
  
% apply transformation to var 
S = 1 - r; 
s = 2 * S; 
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function [m1 m2] = circ_skewness(alpha, w, dim) 
  
% [m1 m2] = circ_skewness(alpha,w,dim) 
%   Calculates a measure of angular skewness. 
% 
%   Input: 
%     alpha     sample of angles 
%     [w        weightings in case of binned angle data] 
%     [dim      statistic computed along this dimension, 1] 
% 
%     If dim argument is specified, all other optional arguments can 
be 
%     left empty: circ_skewness(alpha, [], dim) 
% 
%   Output: 
%     m1         skewness (from Pewsey) 
%     m2         alternative skewness measure (from Fisher) 
% 
%   References: 
%     Pewsey, Metrika, 2004 
%     Statistical analysis of circular data, Fisher, p. 34 
% 
% Circular Statistics Toolbox for Matlab 
  
% By Philipp Berens, 2009 
% berens@tuebingen.mpg.de 
  
if nargin < 3 
  dim = 1; 
end 
  
if nargin < 2 || isempty(w) 
  % if no specific weighting has been specified 
  % assume no binning has taken place 
    w = ones(size(alpha)); 
else 
  if size(w,2) ~= size(alpha,2) || size(w,1) ~= size(alpha,1)  
    error('Input dimensions do not match'); 
  end  
end 
  
  
% compute neccessary values 
R = circ_r(alpha); 
theta = circ_mean(alpha); 
[mp, rho2, mu2] = circ_moment(alpha,w,2,true,dim); 
theta2 = repmat(theta, size(alpha)./size(theta)); 
  
% compute skewness  
m1 = sum(w.*(sin(2*(circ_dist(alpha,theta2)))),dim)./sum(w,dim); 
m2 = rho2.*sin(circ_dist(mu2,2*theta))./(1-R).^(3/2);    % (formula 
2.29) 
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function [kurPewsey kurFisher] = circ_kurtosis(alpha) 
% [kPewsey kurFisher] = circ_kurtosis(alpha) 
%   Calculates a measure of angular kurtosis. 
% Created by Caesar 
% 5/11/2012 
     
    % weighting 
    w = ones(size(alpha)); 
    % compute mean and resultant length 
    [alpha_bar R] = Resultant(alpha); % mean alpha 
  
    % compute kurtosis from Pewsey 
    kurPewsey = mean(cos(2*(alpha - alpha_bar))); 
     
    p = 2; % number of p-moments trigonometric 
    [alpha_bar2 R2] = Resultant(alpha,2); 
  
    % compute kurtosis from Fisher 
    kurFisher = (R2.*cos(circ_dist(alpha_bar2,2*alpha_bar))-R.^4)./(1-
R).^2;    % (formula 2.30) 

end 
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D.9 LLE feature extraction. 

% LLE feature extraction for vibration slew bearing signal 
% 1/1/2013 
% created by Wahyu Caesarendra 
 
function n = parameter() 
  
for bulan = 1:6 
  
if bulan == 1 
    start_day = 21; 
    end_day = 28; 
elseif bulan == 2 
    start_day = 1; 
    end_day = 31; 
elseif bulan == 3 
    start_day = 1; 
    end_day = 26; 
elseif bulan == 4 
    start_day = 1; 
    end_day = 28; 
elseif bulan == 5 
    start_day = 17; 
    end_day = 31; 
else bulan == 6 
    start_day = 1; 
    end_day = 31; 
end 
  
baris = 1;  
% =================== Loading data ==================== 
for day = start_day:end_day             % Number of data 
    
    if bulan == 1 
        bln = ['february' num2str(day) '.txt'] 
    elseif bulan == 2 
        bln = ['march' num2str(day) '.txt'] 
    elseif bulan == 3 
        bln = ['april' num2str(day) '.txt'] 
    elseif bulan == 4 
        bln = ['may' num2str(day) '.txt'] 
    elseif bulan == 5 
        bln = ['july' num2str(day) '.txt'] 
    else bulan = 6 
        bln = ['august' num2str(day) '.txt'] 
    end 
     
    raw_data = load(bln); 
     
        feat_counter = 1;   
        % =========== Data Loading based selected channel ========== 
        for i = 2 % channel 1 
            data = raw_data(:,i);            
            rpm = 1;  % rotational speed 
            dt = 60/(rpm*60); % time interval for 1 rpm 
            deg = 60;  % 30deg=5sec, 60deg=10 sec, 90deg=15sec 
            maxTime = dt*(deg/360)*60;     % total time for 60 deg 
            sf = 4880; 
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            y = data((48800+1):(48800+sf*maxTime))'; 
            % normalize to zero mean 
            yy = (y-mean(y))/std(y); 
             
            new_data = reshape(yy,sf,maxTime); % for 1 sec data 
             
            % Lyapunov exponent every 4880 data points 
            [row col]=size(new_data); 
            for j = 1:col 
                x = new_data(:,j); 
                J = 48; % J is reconstruction delay (1/100)*4880=48.8 
                m = 100; % m is the embedding dimension 
                miu = 50; % 50 
                [lle, d] = lyarosenstein2(x,m,J,miu); 
                lambda1(j)=lle; 
                lambda(day,j) = lle; 
            end 

 
              lambda_max(day) = max(lambda1); 
              lambda_min(day) = min(lambda1); 
              lambda_mean(day) = mean(lambda1); 
              positive = find(tanda > 0);  % tanda positif (kode 1) 
              negative = find(tanda < 0); % tanda negatif (kode 2) 
  
              angDeg_pos = time2ang(negative,maxTime,deg)';    % time 

to angle (degree) conversion 
              rad_pos = ang2rad(angDeg_pos);                   % angle 

(degree) to radian conversion    
              angDeg_neg = time2ang(negative,maxTime,deg)'; 
              rad_neg = ang2rad(angDeg_neg); 
            
  
            % Plot raw data in circular shape 
              f = figure(day); 
              set(f,'color',[1 1 1]); 
            % subplot(5,4,[1 2 5 6 9 10]) 
            % subplot(2,2,1) 
            % time2 = 1/4880:1/4880:maxTime; 
            % tRad = time2rad(time2,maxTime,deg);     % time to radian 

conversion 
            % circ_plot4(tRad,yy,'Color','r') 
             
            % subplot(5,4,[7 8 11 12]) 
              subplot(1,2,1) 
              circ_plot1(rad_neg,'LineWidth',2,'Color','r'), 
            % subplot(5,4,[15 16 19 20]) 
            % subplot(2,2,3) 
            % circ_plot2(rad_neg,'-',20,'LineWidth',2,'Color','r'),             
             
             [alpha_bar1 R1] = Resultant(rad_neg); 
             var1 = circ_var(rad_neg); 
             [skewPewsey1 skewFisher1] = circ_skewness(rad_neg); 
             [kurPewsey1 kurFisher1] = circ_kurtosis(rad_neg); 
  

 % gbr baru 
             % subplotHandle = subplot(5,4,[13 14 17 18]); 
              subplotHandle = subplot(1,2,2); 
              text(0,0.7 ,['Circular Mean        :    ', 

num2str(alpha_bar1)]); 
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             % text(0,0.7,['Circular Variance   :    ', 
num2str(var1)]); 

              text(0,0.5,['Circular Skewness :   ', 
num2str(skewFisher1)]); 

             % text(0,0.4,['Circular skewness2 :  ', 
num2str(skewFisher1)]); 
text(0,0.3,['Circular Kurtosis    :    ', 
num2str(kurFisher1)]); 

             % text(0,0,['Circular kurtosis2 :     ', 
num2str(kurFisher1)]);                 

             % setting the axes invisibale 
              set(subplotHandle,'Xcolor',[1 1 1]); 
              set(subplotHandle,'Ycolor',[1 1 1]); 
                 
                 
                % ************ Saving the features % ************ 
                  feature1.mean = alpha_bar1;              
                  feature1.var = var1;          
                  feature1.skewA = skewPewsey1;   
                  feature1.skewB = skewFisher1; 
  
                  feature1.kurA = kurPewsey1; 
                  feature1.kurB = kurFisher1; 
                 
                  nfile = 1;                
                  features1(nfile,1) = feature1.mean;                 
                  features1(nfile,2) = feature1.var;                           
                  features1(nfile,3) = feature1.skewA;                                
                  features1(nfile,4) = feature1.skewB;               
                  features1(nfile,5) = feature1.kurA;                               
                  features1(nfile,6) = feature1.kurB;             
                 
                  [ndata, nfeat] = size(features1); 
                 
                  total_features1(baris,nfeat*(feat_counter-

1)+1:feat_counter*nfeat) = features1; 
                 
                  feat_counter = feat_counter+1; 
        end 
          baris = baris + 1; 

 
    end 
 
cd total_LLE_features 
 
if bulan == 1 
    save lambda_Feb.dat lambda -ascii 
    save lambda_min_Feb.dat lambda_min -ascii 
    save lambda_max_Feb.dat lambda_max -ascii 
    save lambda_mean_Feb.dat lambda_mean -ascii 
elseif bulan == 2 
    save lambda_Mar.dat lambda -ascii 
    save lambda_min_Mar.dat lambda_min -ascii 
    save lambda_max_Mar.dat lambda_max -ascii 
    save lambda_mean_Mar.dat lambda_mean -ascii 
elseif bulan == 3 
    save lambda_Apr.dat lambda -ascii 
    save lambda_min_Apr.dat lambda_min -ascii 
    save lambda_max_Apr.dat lambda_max -ascii 
    save lambda_mean_Apr.dat lambda_mean -ascii 
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elseif bulan == 4 
    save lambda_May.dat lambda -ascii 
    save lambda_min_May.dat lambda_min -ascii 
    save lambda_max_May.dat lambda_max -ascii 
    save lambda_mean_May.dat lambda_mean -ascii 
elseif bulan == 5 
%     save CircFeat1_Jul.dat total_features1 -ascii 
    save lambda_Jul.dat lambda -ascii 
    save lambda_min_Jul.dat lambda_min -ascii 
    save lambda_max_Jul.dat lambda_max -ascii 
    save lambda_mean_Jul.dat lambda_mean -ascii 
else bulan == 6 
%     save CircFeat1_Aug.dat total_features1 -ascii 
    save lambda_Aug.dat lambda -ascii 
    save lambda_min_Aug.dat lambda_min -ascii 
    save lambda_max_Aug.dat lambda_max -ascii 
    save lambda_mean_Aug.dat lambda_mean -ascii 
end 
  
clear lambda_min 
clear lambda_max 
clear lambda_mean 
  
cd .. 

end 
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function [lle, d] = lyarosenstein2(x,m,J,miu)  
% d:divergence of nearest trajectories 
% x:signal 
% J:time delay 
% m:embedding dimension 
  
N = length(x); 
M = N-(m-1)*J; % M is number of reconstructed signal or number of 
phase-space vector 
maxiter = 100; 
for i = 1:M 
    a = i; 
    b = i+(m-1)*J; 
    c = a:J:b; 
    X(i,:) = x(c);  % phase-space matrix 
end 
 
for i = 1:M; 
    Xrep = repmat(X(i,:),M,1);      % X replicate 
    d0 = sqrt(sum((X-Xrep).^2,2));  % Initial Euclidean distance 
     
    %% Rosenstein 
    for j = 1:M 
        if abs(j-i) <= miu % miu = mean period 
            d0(j) = max(d0); % d0_new 
        end 
    end 
    [neardis(i) nearpos(i)] = min(d0); 
end 
  
for k = 1:maxiter 
    maxind = M-k; 
    evolve = 0; 
    pnt = 0; 
    for j = 1:M 
        if j <= maxind && nearpos(j) <= maxind 
            % d = sqrt(sum((X(j+k,:)-X(nearpos(j+k),:)).^2,2)); 
            d = sqrt(sum((X(j+(k-1),:)-X(nearpos(j)+(k-1),:)).^2,2)); 
             if d ~= 0 
                evolve = evolve+log(d); 
                pnt = pnt+1; 
             end 
        end 
    end 
    if pnt > 0 
        d_new(k) = evolve/pnt; 
    else 
        d_new(k) = 0; 
    end 
end 
  
% LLE Calculation 
fs = 4880;      %sampling frequency 
tlinear = 1:maxiter; 
F = polyfit(tlinear,d_new(tlinear),1); 

lle = fs*F(1); 
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Appendix E: Wideband differential AE sensor calibration chart 

 

Figure E.1 Wideband differential AE sensor calibration chart [329]. 
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Appendix F: Implementation in online monitoring system based 

on FTP 

F.1 Description 

The objective of this project is to facilitate online monitoring to the currently used slew 

bearing experiment. The resulted software is expected to be able to send the data 

automatically from one location, to the data centre and then accessed from any other 

site using the web browser. 

The locations involved in this project are divided into 3 main locations. The first one is 

the ‘workshop’, where the slew bearing being tested is located. There is also the 

computer which handles the data retrieval from sensors attached on slew bearing test-

rig to installed data acquisition hardware and software (PICO). For example, the 

vibration data collected from accelerometer is composed by 4 different attributes. 

Whereby each attribute represents each channels attached to the tested bearing. 

Hence, the daily collected data will be transmitted to the second location. 

The second location is the ‘data centre/server’. This site will act as the main data 

storage to be accessed through the whole world. The paid hosting will be further used, 

since the data transmission and the data size used for data interchange would be 

enormous. Thus, the bandwidth used and the storage size should be relatively huge as 

well. Temporarily the free hosting is currently used to test the initial online monitoring 

system. 

The last location is the ‘client’. Client refers to any computer which given the authority 

to access the data. In this machine, the user will be able to see the graph for the 

collected data from data centre, and to download these data as necessary (if use the 

paid hosting). Several configurations should be delivered in case of the occurrence of 

different situations as the project going on. 
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F.2 Specification 

Workshop 

Since the vibration data is generated in the machine located in the workshop, the 

control of data format should be done there. Disregarding the process of how the 

result is yielded, the end resulted data should be in the form of simple human readable 

file, precisely, TXT or DAT format. Each file will be produced every particular period of 

time, and each file will contain the readings of the bearing conditions by the machine 

at that time. Two automatic data acquisition will be conducted at day and night. This 

will be done by doing two things. First, the executable data acquisition program is 

written in C language and saved in the EXE format. This is the advantage of PICO DAQ 

that it can be used not only for human interface but also for automatic way. Second, 

the automatic data acquisition will be used by running the executable file using 

Solway’s task scheduler shown in Figure F.1. The vibration data are saved in desktop 

computer where the filename contains the information about date, month and year 

when the readings are taken. 

Initial online monitoring process used free hosting. There is limited data transferred for 

free hosting. Therefore, the huge file of vibration data should be transformed into less 

capacity by calculating the useful information. This information is usually called 

features. In this work, six time domain features are used: root mean square (RMS), 

shape factor (SF), skewness, kurtosis, crest factor (CF), entropy, histogram lower and 

histogram upper. The executable MATLAB program is created to do the six feature 

calculations. This program also runs automatically using Solway’s task scheduler 

approximately every 30 minutes after the automatic data acquisition as shown in 

Figure F.1. The illustration of automatic data acquisition, automatic feature calculation 

and online monitoring process are shown in Figure F.4. 

The readings as mentioned before are divided into four different channels (channel 1 

to channel 4). In other words, each file will contain four values that represent the 

condition of bearing from four different accelerometer locations, separated by space. 

As automatic data acquisition will be conducted at two different times (day and night), 

the feature calculation filename will consist of two data names as well. For example, 
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the kurtosis feature will be saved as ‘kur_1.txt’ for day and ‘kur_2.txt’ for night. Each 

file will consist of five columns where the first columns will be the date, month and 

year when the features are calculated. The Second to the fifth columns are the 

accelerometer channel 1 to accelerometer channel 4. The six different feature 

calculation data will be temporarily stored in the connected desktop computer. The 

illustration of data format is shown in Figure F.2 below. 

 

Figure F.1 Solway’s task scheduler. 

 

Figure F.2 Example of feature file format. 

The above figure is an example of data format for kurtosis feature. The file 

contains six feature calculations from 21 November 2011 to 26 November 2011. 

The next feature calculation data will be saved on the last row. This process will run 

continuously until the measurement stops due to bearing collapse. The first 



Appendices  

252 

function of GoodSyns is to identify any changes of the file. In other words, the 

newly produced data is checked against the existing data in Data Centre. Since the 

new data is not detected in the server, then it will begin the process of 

synchronizing between the 2 data sites. This way, it is expected to avoid the 

probability of data redundancy while maintaining the data being tuned.  

The way the data transmitted is using simple File Transfer Protocol (FTP). It is 

already well known and the software for it is already across the globe. The software 

should at least be able to do the three major processes which are: 

a. Transmit file over FTP 

b. Bypass the campus’s network using proxy 

c. Synchronizing between the 2 data site accordingly. 

The three major processes above are solved by using GoodSync software. This 

software is purchased and installed in desktop computer. The window of GoodSync is 

shown in Figure F.3. 

 

Figure F.3 GoodSync. 
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Server 

The server that is expected to handle a lot of storage and bandwidth sizes to access 

this site must be reasonable enough (if use paid hosting). Since the transaction 

including downloading the data from any client is done regularly, it is very important to 

choose a competent hosting site. Most likely, the best choice for this project is the 

unlimited storage and unlimited bandwidth. The costs are ranged at 4 AUD per month, 

or greater than that. Moreover, the hosting site should satisfy the following needs: 

a. Allow FTP connection to their site 

b. Support PHP and MySQL just in Case 

c. Again, unlimited storage and bandwidth is favourable 

Since the needed data for the client site is as the following: 

a. Root mean square (RMS) 

b. Shape factor (SF) 

c. Skewness 

d. Kurtosis 

e. Crest factor (CF) 

f. Entropy 

g. Histogram lower and  

h. Histogram upper 

Then the data must be prepared before fetched by the client site. The calculation for 

each variable will be done in 2 different triggers, automatically and an update button 

pressed. The first option should check the webpage that is accessed last time. As long 

as current timestamp and the previous timestamp fall under the same timeframe 

(frames are like sessions, depend on the FTP frequency), no pre-processor is executed 

due to definitely no additional raw data. In case the timeframes are different, then the 

calculations are needed, since we already have new data to be displayed. This way, 

optimization can be achieved as no unnecessary processes are wasted.  
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In case of manual update, this button will be provided if and only if the user wishes to 

do so and not necessarily to do it. Just to reassure the user that the data can be 

updated at user’s wills. 

Client 

Any computer with internet browser is considered as client. After simple verification 

the calculated data are then displayed accordingly. The users are given several 

configurations options to choose what data are preferred to be displayed by default. 

Users are also allowed to download the data. May it be individually or in several at 

once. Furthermore, the displayed data is powered by JavaScript to make it more 

interactive and easier to deal with.  

The expected configurations are: 

a. Display all data on start-up 

b. Download latest data on start-up 

c. Only display last 3 days data 

d. Etc. 
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Figure F.4 Online monitoring framework. 
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F.3 Online monitoring result 
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