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Abstract

This paper proposes a new higher-order shear deformation theory for buckling and free vibration
analysis of isotropic and functionally graded (FG) sandwich beams. The present theory accounts a new
hyperbolic distribution of transverse shear stress and satisfies the traction free boundary conditions.
Equations of motion are derived from Lagrange’s equations. Analytical solutions are presented for the
isotropic and FG sandwich beams with various boundary conditions. Numerical results for natural
frequencies and critical buckling loads obtained using the present theory are compared with those
obtained using the higher and first-order shear deformation beam theories. Effects of the boundary
conditions, power-law index, span-to-depth ratio and skin-core-skin thickness ratios on the critical
buckling loads and natural frequencies of the FG beams are discussed.

Keywords: A. Hybrid; C. Numerical analysis

1. Introduction

Functionally graded materials (FGMs) are composite materials formed of two or more constituent
phases with a continuously variable composition. Sandwich structures are widely employed in aerospace
and many other industries. These structures become even more attractive due to the introduction
of FGMs for the faces and the core. Typically, there are three typical FG beams: isotropic FG
beams, sandwich beams with homogeneous core and FG faces, and sandwich beams with FG core and
homogeneous faces.

It is known that the behaviours of isotropic and FG sandwich beams can be predicted by classical

beam theory (CBT) ([1-5]), first-order shear deformation beam theory (FSBT) ([6-12]) and higher-
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order shear deformation beam theory (HSBT) ([1, 13-31]) or three-dimensional (3D) elasticity theory
([32-34]). It should be noted that Carrera et al. ([23],[24]) developed Carrera Unified Formulation

(CUF) which can generate any refined theories for beams, plates and shells. This formulation was used

extensively for various structural problems and only a few of them are cited here, for instance, static

and vibration analysis of FG beams ([25]-[27]) and FG plates and shells ([28]-[31]). It is well-known

that the CBT is applicable to slender beams only. For moderate beams, it underestimates deflection
and overestimates buckling load and natural frequencies due to ignoring the shear deformation effect.
In order to include this effect, a shear correction factor is required for FSBT but not for HSBT.
However, the efficiency of the HSBT depends on the appropriate choice of displacement field which is
an interesting subject attracted many researchers ([1, 14, 19, 22, 35-41]).

The objective of this paper is to present a new higher-order shear deformation theory for buckling
and vibration analysis of isotropic and FG sandwich beams. Equations of motion are derived from La-
grange’s equations. The FG beam is assumed to have isotropic, two-constituent material distribution
through the depth, and Young’s modulus is assumed to vary according to power-law form. Analytical
solutions are derived for various boundary conditions to investigate the effects of the boundary condi-
tions, power-law index, span-to-depth ratio and skin-core-skin thickness ratios on the critical buckling

loads and natural frequencies of the FG beams.

2. Theoretical formulation

2.1. FG sandwich beams

Consider a beam as shown in Fig. 1 with length L and uniform section b x h. The beam is made
of a mixture of ceramic and metal isotropic materials whose properties vary smoothly through the
depth according to the volume fractions of the constituents. Three different types of the FG beams
are considered: isotropic FG beams (type A), sandwich beams with FG faces and homogeneous core

(type B), and sandwich beams with FG core and homogeneous faces (type C).

2.1.1. Type A: isotropic FG beams
The beam of type A is graded from metal located at the bottom surface to ceramic material at

the top surface (Fig. 1b). The volume fraction of ceramic material V, is given as follows:

v = (5 g

where p is the scalar parameter, which is positive and z € [—%, %]
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2.1.2. Type B: sandwich beams with FG faces and homogeneous core

The faces of this type are graded from metal to ceramic and the core is made of isotropic ceramic

)

(Fig. 1c). The volume fraction function of ceramic phase Vc(j given by:

( p
Vc(l)(z) = (hzl_—hlfo) for z € [ho, h1]

VC(2) (z)=1 for z € [hy, ho] @)

p
V() = ()" for 2 € [ho,hy]

2.1.8. Type C: sandwich beams with FG core and homogeneous faces
The core layer of this type is graded from metal to ceramic. The lower face is made of isotropic
metal, whereas the upper face is isotropic ceramic (Fig. 1d). The volume fraction function of ceramic

material of the j-th layer Vc(j ) defined by:

( Vc(l)(z) =0 for 2z € [hg, hi]
P
‘/;(2)(2) = (lf;_hhll) for z € [hq, ho] (3)
Vc(g) (2)=1 for 2z € [ho, h3]

The variation of V. through the beam depth for three types is displayed in Fig. 2. The material
property distribution of FG beam through its depth is given by the power-law form:

P(z) = (P. — Pp)Ve(2) + P. (4)

where P. and P, are Young’s modulus (E), Poisson’s ratio (v), mass density (p) of ceramic and

metal materials, respectively.

2.2. Higher-order shear deformation beam theory

The displacement field of the present theory is given by:

Ulz,z) = u(z)—z2wy+ f(2)0(x) (5a)
W(z,z) = w(x) (5b)
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where

h) 1623 (©)

_ -1 (%) _ Y~
f(z) = cot <z 1553

and u, 0 are the mid-plane axial displacement and rotation, w denotes the mid-plane transverse
displacement of the beam, the comma indicates partial differentiation with respect to the coordinate
subscript that follows.

The nonzero strains associated with the displacement field in Eq. (5) are:

6$$($7 Z) = 69{::{: + Z'%Ia)cz + f”;z (7&)
Yoz (2,2) = g(2)0 (7b)
where g(2) = f.; €, and k%, x3, are the axial strain and curvatures of the beam, respectively.

These components are related with the displacements u,w and 6 of the beam as follows:

Ggm(l‘) = Uz, ’{Zm(x) = —W g, ’{;m(x) = e,w (8)

The strains and stresses are related by:

Oaa(,2) = E(2)[€2:(2) + 285, (2) + frg, ()] (9a)

Ozz(x,2) = G(2)Vaz(z,2) (9b)

where G(z) = E(z)/2(1 + v(z)) is shear modulus at location z.

2.3. Variational formulation

In order to derive the equations of motion, Lagrangian functional is used:
N=Uu+v-K (10)

where U, V and K denote the strain energy, work done, and kinetic energy, respectively.
The strain energy of the beam is calculated by:

1
u = _/(Uzzexx+azz7zz)dv
2 )y
1 L 2 2 s s
= 3 [A(uz) — 2Bu W g0 + D(W 22)" + 2B%u 20 5 — 2D%w 4,0
0

+OHY0,)% + A892] dz (11)

where (A, B, D, B®, D, H?) are the stiffnesses of FG beams given by:

h/2
(A,B,D,B*, D", H*) — / (12,22, f. 2f, f)E(2)bdz (12)
—h/2
h/2
A0 = / PG ()bdz (13)
—h/2
4
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The work done by the axial compressive load Ny can be expressed as:

1 L
Y= —/ N()(’U,),x)zdl' (14)
2 Jo
The kinetic energy is obtained as:
1 . .
K = —/ p(2)(U? + W?)dv
2 )v
1 [t . . .
= 3 / [IollQ — 2Ly + To(,2)? + 20100 — 2J26010 o, + K202 + Iow2] dx (15)
0

where the differentiation with respect to the time ¢ is denoted by dot-superscript convention; p is

the mass density of each layer and Iy, I1, I, J1, Jo, Ko are the inertia coefficients defined by:
h/2
(-[07I17[27J17J27K2) = / p(Z)(l,Z,Z2,f,Zf,f2)bdZ (16)
—h/2
By substituting Egs. (11), (14) and (15) into Eq. (10), Lagrangian functional is explicitly expressed
as:
1 L
m= / (A1,0)? = 2Bugw, 0 + D(w0) + 280,000 = 2D° w0 0 + H*(0,)% + A°0%|do
0
Lt SO Y o e iy o y y 2L o
+5 [ No(wa)de — 3 [fou — 2Ty g + Tp(,g)? + 20100 — 2J060  + K262 + I }da; (17)
0 0

In order to derive the equations of motion, the displacement field is approximated as the following

forms:

u(z,t) = Z Y (z)uje™! (18a)

j=1
w(z,t) = Z @;(@)w; et (18b)

j=1
Oz, 1) =Y (x)0;e™" (18c¢)

j=1
where w is the frequency of free vibration of the beam, vi = —1 the imaginary unit, (uj,wj,0;)

denotes the values to be determined, 1;(z) and ¢;(x) are the shape functions. By substituting Eq.
(18) into Eq. (17), and using Lagrange’s equations:

———2-=0 (19)

with ¢; representing the values of (u;,w;,6;), that leads to:

Kll K12 K13 Mll M12 M13 u 0
TK12 K22 K23 — w2 TM12 M22 M23 W = 0 (20)
TK13 TK23 K33 TM13 TM23 M33 0 0

9
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where the components of the stiffness matrix K and the mass matrix M are given as follows:
L L L
KY = A [ e de K =B [ iy de K =B [ iiade
0 0 0
K22—DL4-d—NOL--dK23——DSL--d
z‘j - @z,m%,m X SOZ,IQO],:C .’E, ij - Sol,xij,:c X
0 0 0
L L
KZ?’]3 = Hs/ ¢i,x¢j,x dl‘—l—As/ ’(/Jﬂ[)] dx
0 0
L L L
M=ty [ wyde ME =<1y [ ipsade M =0 [ vy do
0 0 0
L L L
M = fo/ Pip; dl”rfz/ Piw P dr, M7 = —J2/ Piz; dx
0 0 0
L
M = KQ/ Virh; da (21)
0

The solution of Eq. (20) will allow to calculate the critical buckling loads (N,,) and natural

frequencies of isotropic and FG sandwich beams.

2.4. Analytical solutions

To derive analytical solutions, the shape functions ¢ (z) and ¢(x) are chosen for various boundary

conditions (S-S: simply supported, C-C: clamped-clamped, and C-F: clamped-free beams) as follows:

U(x) =277 pla) =277 (22)

In order to impose the various boundary conditions, the method of Lagrange multipliers can be

used so that the Lagrangian functional of the problem is rewritten as follows:
I = T+ Bty (7) (23)

where (; are the Lagrange multipliers which are the support reactions of the problem, ;(Z) denote
the values of prescribed displacement at location = 0, L. By using Lagrange’s equations (Eq. (19)),

a new characteristic problem for buckling and free vibration analysis is obtained as follows:

[ k1l g2 KB R4 [ MU M2 M3 o | u (o
TK12 K22 K23 K24 TM12 M22 M23 0 W 0
—w? = (24)
TK13 TK23 K33 K34 TM13 TM23 M33 0 0 0
I TK14 TK24 TK34 0 | I 0 0 0 0 | { ’6 0 )

where the components of matrix K4, K24 and K3* depend on number of boundary conditions and

associated prescribed displacements (Table 1). For C-C beams, these stiffness components are given
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K = 4;0), K =v(L), K =0 with j=3,4,..,8 (25a)
K3 = ¢i(0), K3 =¢i(L), K& = 0i2(0), Kig = ¢i0(L), K =0 with j=1,2,7,8(25b)

KF = 0i(0), K¥ =i(L), K} =0 with j=1,2,..,6 (25¢)

3. Numerical results and discussion

In this section, a number of numerical examples are analyzed in order to verify the accuracy
of present study and investigate the critical buckling loads and natural frequencies of isotropic and
FG sandwich beams. Three types of FG beams (types A, B and C) are constituted by a mixture of
isotropic ceramic (AlsO3) and metal (Al). The material properties of Al,O3 are: E.=380 GPa, v.=0.3,
pe=3960 kg/m?3, and those of Al are: E,,=70 GPa, v,,=0.3, p,,=2702 kg/m3. Effects of the power-law
index, span-to-depth ratio, skin-core-skin thickness ratios and boundary conditions on the buckling
and vibration behaviours of the isotropic and FG sandwich beams are discussed in details. Three
boundary conditions (BC) are considered (C-C, S-S and C-F) and these kinetic boundary conditions
are given in Table 1. For simplicity, the non-dimensional natural frequencies and critical buckling
loads are defined as:

wL? [pm 1212

(D:T E—m’Ncr:Ncrm

(26)

In order to verify the convergence of the present polynomial series solution, Table 2 presents the
fundamental frequency and critical buckling loads for three boundary conditions of FG beams (type
A). The solutions are calculated for the power-law index (p=1) and span-to-depth ratio (L/h=5). It
can be seen that the solutions of S-S and C-F boundary conditions converge more quickly than C-C
one. The number of terms m=14 is sufficient to obtain an accurate solution and thus, this number is
used throughout the numerical examples.

As the first example, Tables 3-5 present the comparison of the natural frequencies and critical
buckling loads of FG beams (type A) with three boundary conditions. They are calculated for various
values of the power-law index and compared to the solutions obtained from the FSBT (]9, 10]) and
third-order shear deformation beam theory (TSBT) ([17, 21, 22]). It is seen that the solutions obtained
derived from the proposed theory are in excellent agreement with those obtained from previous results
for both deep and thin beams. Fig. 3 displays the variation of the fundamental frequency and critical

buckling load with respect to the power-law index and span-to-depth ratio of FG beams. Three curves

are observed for three boundary conditions, the highest curve corresponds to the C-C case and the
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lowest one is the C-F case. It can be seen that the results decrease with an increase of the power-law
index.

In the following case, the first five natural frequencies of a cantilever sandwich beam, which is

made up of two steel (Fe) faces and Aluminum /Zirconia (Al/ZrQs) core, are calculated. The material

properties are: Al (E,, = T0GPa, vy, = 0.3, pp, = 2700kg/m?) and ZrOs (E,. = 151GPa, v. = 0.3, p. = 5700kg/m?)

and Fe (E; = 210GPa, vy = 0.3, p; = 7860kg/m?). The face and core thicknesses are 3 and 14 mm,

whereas the length and cross-section are 200 mm and 20 mm x20 mm. The results are given in Table

6 along with those of Mashat et al. [26] using the CUF (TE1** and E4-45) and Bui et al. [42] using

meshfree method. The natural frequencies computed in present theory agree well with the reference

solutions.

In order to validate of the present theory further, the natural frequencies and critical buckling loads
of Al/Al;O3 sandwich beams of type B are compared with those obtained from TSBT [17] in Tables
7-10. They are carried out for six values of skin-core-skin thickness ratios with different values of the
power-law index. It can be seen again that the present theory provides excellent agreement solution for
type B beams. It implies that the proposed theory is appropriate and efficient for analyzing vibration
and buckling responses of sandwich beams. The lowest and highest values of natural frequency and
critical buckling load correspond to the (1-0-1) and (1-2-1) sandwich beams. It is due to the fact
that these beams correspond to the lowest and highest volume fractions of the ceramic phase. The
effect of the span-to-depth ratio on the buckling and vibration response of symmetric (2-1-2) and
non-symmetric (2-1-1) sandwich beams is plotted in Figs. 4 and 5, it can be seen that the effect of
the shear deformation is negligible except for the case of the C-C beam where this effect is significant
with L/h < 10.

Finally, the first three natural frequencies and critical buckling loads of (1-2-1) and (2-2-1) Al/Al;O3
sandwich beams of type C are given in Tables 11 and 12. Their variations with respect to the span-to-
depth ratio L/h are plotted in Figs. 6 and 7. The results clearly indicate that the shear deformation
effect is remarkably significant for the case of thick or moderately thick beams, but it is negligible for
the case of thin beams (L/h > 25). Due to higher ceramic portion, the results of (1-2-1) sandwich
beam are greater than those of (2-2-1) one. They are the maximum for p = 0 and the minimum for
p = 10. A simply supported sandwich beam is chosen to investigate the vibration mode shapes with
the power-law index p = 10 in Fig. 8. Due to unsymmetric beam, it can be seen that all three modes

display triply coupled vibration.
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4. Conclusions

A new higher-order shear deformation theory is presented for buckling and free vibration analysis
of isotropic and FG sandwich beams. The proposed theory accounts a new hyperbolic distribution of
transverse shear stress and satisfies the traction free boundary conditions. Analytical polynomial series
solutions are derived for three types of FG beams with various boundary conditions. Effects of the
boundary conditions, power-law index, span-to-depth ratio and skin-core-skin thickness ratios on the
critical buckling loads and natural frequencies are discussed. The obtained solutions are in excellent
agreement with those derived from earlier works. The proposed theory is accurate and efficient in

solving the free vibration and buckling behaviours of the isotropic and FG sandwich beams.
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Table 1: Kinematic boundary conditions.

BC =z=0 r=1L

S-S w=0 w=0

C-F u=0,w=0,0=0, w,=0

C-C u=0,w=0,0=0,w,=0 u=0,w=0,0=0, w,=0

16



O©CO~NOOOTA~AWNPE

Table 2: Convergence of the nondimensional fundamental frequency and critical buckling load of FG beams with p = 1

and L/h =5 (type A).

BC Number of terms (m)

6 8 10 12 14 16 18
Fundamental frequency
S-S 3.9907 3.9904 3.9904 3.9904 3.9904 3.9904  3.9904
C-F 1.4645 1.4638 1.4635 1.4633 1.4633  1.4633  1.4633
C-C 8.0309 8.0031 7.9704 7.9572 7.9518  7.9500  7.9493
Critical buckling load
S-S 24.5873 24.5840 24.5840 24.5840 24.5840 24.5840 24.5840
C-F 6.5352  6.5352  6.5352  6.5352  6.5352  6.5352  6.5352
C-C 81.3950 79.4992 79.4888 79.4888 79.4888 79.4888 79.4888
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Table 3: Comparison of the first three nondimensional natural frequencies of S-S FG beams (type A).

L/h  Mode Theory p
0 0.5 1 2 ) 10
5 1 Present 5.1528  4.4102  3.9904  3.6264  3.4009  3.2815
FSBT [10]  5.1525  4.4075  3.9902  3.6344  3.4312  3.3135
TSBT [21] 5.1527  4.4107  3.9904  3.6264 3.4012  3.2816
2 Present 17.8817 15.4571 14.0103 12.6404 11.5406 11.0231
FSBT [10] 17.8711 15.4250 14.0030 12.7120 11.8157 11.3073
TSBT [21] 17.8812 15.4588 14.0100 12.6405 11.5431 11.0240
3 Present 34.2143 29.8367 27.1014 24.3168 21.7112 20.5561
FSBT [10] 34.1449 29.7146 27.0525 24.4970 22.4642 21.3219
TSBT [21] 34.2097 29.8382 27.0979 24.3152 21.7158 20.5561
20 1 Present 5.4603  4.6506  4.2051  3.8361  3.6485  3.5390
FSBT [10] 5.4603  4.6504  4.2051  3.8368  3.6509  3.5416
TSBT [21] 5.4603  4.6511  4.2051  3.8361  3.6485  3.5390
2 Present 21.5732 18.3942 16.6344 15.1618 14.3742 13.9261
FSBT [10] 21.5732 18.3912 16.6344 15.1715 14.4110 13.9653
TSBT [21] 21.5732 18.3962 16.6344 15.1619 14.3746 13.9263
3 Present 47.5999 40.6543 36.7736 33.4735 31.5804 30.5400
FSBT [10] 47.5921 40.6335 36.7673 33.5135 31.7473 30.7176
TSBT [21] 47.5930 40.6526 36.7679 33.4689 31.5780 30.5369
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Table 4: Comparison of the nondimensional fundamental natural frequency of FG beams with various boundary condi-

tions (L/h=5 and 20, type A).

L/h BC  Theory p
0 0.5 1 2 5 10
5 S-S Present 5.1528  4.4102 3.9904 3.6264 3.4009 3.2815
FSBT [10]  5.1525 44075 3.9902 3.6344 3.4312 3.3135
TSBT [21] 5.1527  4.4107 3.9904 3.6264 3.4012 3.2816
C-C Present 10.0726  8.7463 7.9518 7.1776 6.4929 6.1658
FSBT [22] 10.0705  8.7467 7.9503 7.1767 6.4935 6.1652
TSBT [22] 10.0699  8.7463 7.9499 7.1766 6.4940 6.1652
C-F  Present 1.8957  1.6182 1.4636 1.3328 1.2594 1.2187
FSBT [22] 1.8948  1.6174 1.4630 1.3338 1.2645 1.2240
TSBT [22] 1.8952  1.6182 1.4633 1.3325 1.2592 1.2183
20 S-S Present 54603  4.6506 4.2051 3.8361 3.6485 3.5390
FSBT [22] 5.4603 4.6514 4.2051 3.8368 3.6509 3.5416
TSBT [22] 5.4603 4.6516 4.2050 3.8361 3.6485 3.5390
TSBT [21] 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390
C-C  Present 12.2243 104269 9.4319 8.5977 8.1446 7.8860
FSBT [22] 12.2235 10.4263 9.4314 8.6040 8.1699 7.9128
TSBT [22] 12.2238 10.4287 9.4316 8.5975 8.1448 7.8859
C-F  Present 1.9496 1.6602 1.5011 1.3696 1.3034 1.2646
FSBT [22] 19496 1.6604 1.5010 1.3697 1.3038 1.2650
TSBT [22] 19495 1.6605 1.5011 1.3696 1.3033 1.2645
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Table 5: Comparison of the nondimensional critical buckling load of FG beams with various boundary conditions (L/h=5

and 10, type A).

L/h BC  Theory p
0 0.5 1 2 5 10
5 S-S Present 48.8406  32.0013 24.6894 19.1577 15.7355 14.1448
FSBT [10]  48.8350  31.9980 24.6810 19.1230 15.6970 14.1300
FSBT [9] 48.8350  31.9670 24.6870 19.2450 16.0240 14.4270
TSBT [17]  48.8401  32.0094 24.6911 19.1605 15.7400 14.1468
C-C  Present 154.5610 103.7167 80.5940 61.7666 47.7174 41.7885
FSBT [9]  154.3500 103.2200 80.4980 62.6140 50.3840 44.2670
TSBT [17] 154.5500 103.7490 80.6087 61.7925 47.7562 41.8042
C-F Present 13.0771 8.5000  6.5427  5.0977  4.2772  3.8820
FSBT [9] 13.2130 8.5782  6.6002  5.1495 4.3445  3.9501
TSBT [17]  13.0771 8.5020  6.5428  5.0979  4.2776  3.8821
10 S-S Present 52.3083  34.0002 26.1707 20.3909 17.1091 15.5278
FSBT [10]  52.3080  34.0000 26.1690 20.3820 17.0980 15.5240
FSBT [9] 52.3090  33.9960 26.1710 20.4160 17.1920 15.6120
TSBT [17]  52.3082  34.0087 26.1727 20.3936 17.1118 15.5291
C-C  Present 195.3623 128.0053 98.7885 76.6538 62.9580 56.5926
FSBT [9] 195.3400 127.8700 98.7490 76.9800 64.0960 57.7080
TSBT [17] 195.3610 128.0500 98.7868 76.6677 62.9786 56.5971
C-F  Present 13.3741 8.6694  6.6678  5.2025  4.3974  4.0045
FSBT [9] 13.2130 8.5666  6.6570  5.1944  4.3903  3.9969
TSBT [17]  13.3742 8.6714  6.6680  5.2027  4.3976  4.0046
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Table 6: The first five natural frequencies of a cantilever sandwich beam with a FG core and isotropic faces (p=1).

Mode Bui et al. [42] Mashat et al. [26] Present
ANSYS Meshfree TE1%* E4-4,

1 459.50 459.40 459.10 461.90 459.20

2 2708.70 2708.70 2710.50  2724.30 2713.50

3 6440.80 6440.70 6433.60  6455.10 6433.70

4 6991.40  6995.80 7005.10  7035.90 7031.20

) 12446.00 12446.40 12484.20 12531.70 12534.70
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Table 7: Nondimensional fundamental frequency (@) of FG sandwich beams with various boundary conditions (L/h=5,

type B).

BC »p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1
S-S 0 Present 5.1528  5.1528  5.1528  5.1528  5.1528  5.1528
TSBT [17] 5.1528  5.1528  5.1528  5.1528  5.1528  5.1528
0.5 Present 4.1254  4.2340  4.2943  4.3294  4.4045 4.4791
TSBT [17] 4.1268  4.2351  4.2945  4.3303  4.4051  4.4798
1 Present 3.5736  3.7298  3.8206 3.8756  3.9911  4.1105
TSBT [17] 3.5735 3.7298  3.8187 3.8755  3.9896  4.1105
2 Present 3.0682  3.2366  3.3546  3.4190 3.5719  3.7334
TSBT [17] 3.0680 3.2365 3.3514  3.4190 3.5692  3.7334
5 Present 2.7450  2.8441 29790 3.0182  3.1966  3.3771
TSBT [17] 2.7446  2.8439  2.9746  3.0181  3.1928  3.3771
10 Present 2.6936  2.7357  2.8716  2.8810  3.0630  3.2357
TSBT [17] 2.6932  2.7355  2.8669  2.8808  3.0588  3.2356
C-C 0 Present 10.0726  10.0726 10.0726 10.0726 10.0726 10.0726
TSBT [17] 10.0678 10.0678 10.0678 10.0678 10.0678 10.0678
0.5 Present 8.3606  8.5736  8.6688  8.7442  8.8654  8.9969
TSBT [17] 8.3600 8.5720 8.6673  8.7423  8.8648  8.9942
1 Present 73707 7.6910  7.8428  7.9623  8.1593  8.3747
TSBT [17] 7.3661  7.6865  7.8390  7.9580  8.1554  8.3705
2 Present 6.4139  6.7867  6.9939  7.1412  7.4138  7.7149
TSBT [17] 6.4095 6.7826  6.9908  7.1373  7.4105 7.7114
5 Present 5.7315  6.0335  6.2765  6.3925  6.7216  7.0723
TSBT [17] 5.7264  6.0293  6.2737  6.3889  6.7188  7.0691
10 Present 5.5429 58104  6.0555  6.1278  6.4668  6.8119
TSBT [17] 5.5375 5.8059  6.0527 6.1240 6.4641  6.8087
C-F 0 Present 1.8953  1.8953  1.8953  1.8953  1.8953  1.8953
TSBT [17] 1.8952  1.8952  1.8952  1.8952  1.8952  1.8952
0.5 Present 1.5064 1.5463  1.5693  1.5819 1.6104 1.6383
TSBT [17] 1.5069  1.5466  1.5696  1.5821  1.6108  1.6384
1 Present 1.3008  1.3576  1.3919 14115 1.4550  1.4993
TSBT [17] 1.3007  1.3575  1.3918  1.4115 1.4549  1.4992
2 Present 1.1143  1.1747  1.2189  1.2416  1.2987  1.3582
TSBT [17] 1.1143  1.1746  1.2188  1.2416  1.2986  1.3582
5 Present 0.9974 1.0304 1.0807 1.0936  1.1598  1.2258
TSBT [17] 0.9973 1.0303  1.0806  1.0935  1.1597  1.2257
10 Present 0.9813 0.9910 1.0417 1.0432 1.1106 1.1734
TSBT [17] 0.9812 0.9909 1.0416 1.0431 1.1106  1.1734
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Table 8: Nondimensional fundamental frequency (&) of FG sandwich beams with various boundary conditions (L/h=20,

type B).

BC »p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1
S-S 0 Present 5.4603 54603  5.4603  5.4603  5.4603  5.4603
TSBT [17] 5.4603  5.4603  5.4603  5.4603  5.4603  5.4603
0.5 Present 4.3132  4.4278  4.4960 4.5315  4.6158  4.6972
TSBT [17] 4.3148  4.4290 4.4970  4.5324  4.6170  4.6979
1 Present 3.7147  3.8768  3.9775  4.0328  4.1603  4.2889
TSBT [17] 3.7147  3.8768 3.9774  4.0328  4.1602  4.2889
2 Present 3.1764  3.3465  3.4756  3.5389  3.7051  3.8769
TSBT [17] 3.1764  3.3465 3.4754  3.5380  3.7049  3.8769
5 Present 2.8440 29311  3.0776  3.1111  3.3030  3.4921
TSBT [17] 2.8439  2.9310 3.0773  3.1111  3.3028  3.4921
10 Present 2.8042  2.8188  2.9665  2.9662  3.1616  3.3406
TSBT [17] 2.8041 2.8188  2.9662 2.9662 3.1613  3.3406
C-C 0 Present 12.2243  12.2243 12.2243 12.2243 12.2243 12.2243
TSBT [17] 12.2228 12.2228 12.2228 12.2228 12.2228 12.2228
0.5 Present 9.6916  9.9484  10.0985 10.1788 10.3647 10.5455
TSBT [17] 9.6942  9.9501  10.1001 10.1800 10.3668 10.5460
1 Present 8.3601  8.7248  8.9479  9.0729  9.3555  9.6419
TSBT [17] 8.3594  8.7241  8.9474  9.0722  9.3550  9.6411
2 Present 7.1568  7.5422  7.8293  7.9732  8.3431  8.7268
TSBT [17] 7.1563  7.5417  7.8293  7.9727 8.3430  8.7262
5 Present 6.4071  6.6121  6.9387  7.0174  7.4459  7.8696
TSBT [17] 6.4064 6.6116  6.9389  7.0170  7.4461  7.8692
10 Present 6.3094  6.3595  6.6887  6.6928  7.1293  7.5315
TSBT [17] 6.3086  6.3590 6.6889  6.6924  7.1296  7.5311
C-F 0 Present 1.9496  1.9496 1.9496 1.9496 1.9496  1.9496
TSBT [17] 1.9496  1.9496  1.9496 1.9496 1.9496  1.9496
0.5 Present 1.5392 1.5801 1.6045 1.6171 1.6473 1.6764
TSBT [17] 1.5397  1.5805 1.6048  1.6175  1.6477  1.6766
1 Present 1.3253  1.3831  1.4191 14388 1.4844 1.5304
TSBT [17] 1.3253  1.3831  1.4191 1.4388  1.4844  1.5304
2 Present 1.1330  1.1937  1.2398  1.2623  1.3217 1.3831
TSBT [17] 1.1330  1.1937  1.2398  1.2623  1.3217  1.3831
5 Present 1.0145 1.0454  1.0977 1.1096 1.1781  1.2456
TSBT [17] 1.0145 1.0453  1.0977  1.1096  1.1781  1.2456
10 Present 1.0005 1.0053  1.0581  1.0578  1.1276  1.1915
TSBT [17] 1.0005 1.00563  1.0581 1.0578 1.1276  1.1915
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Table 9: Nondimensional critical buckling load (N.,) of FG sandwich beams with various boundary conditions (L/h=5,

type B).

BC »p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1
S-S 0 Present 48.5964  48.5964  48.5964  48.5964  48.5964  48.5964
TSBT [17] 48.5959  48.5959  48.5959  48.5959  48.5959  48.5959
0.5 Present 27.8380  30.0146  31.0577  31.8650  33.2336  34.7546
TSBT [17] 27.8574  30.0301  31.0728  31.8784  33.2536  34.7653
1 Present 19.65641  22.2121  23.5250  24.5602  26.3611  28.4440
TSBT [17] 19.6525  22.2108  23.5246  24.5596  26.3611  28.4447
2 Present 13.5820  15.9167  17.3254 183596  20.3751 = 22.7859
TSBT [17] 13.5801 159152  17.3249  18.3587  20.3750  22.7863
5 Present 10.1488  11.6697  13.0279  13.7226  15.7313  18.0915
TSBT [17] 10.1460 11.6676  13.0270  13.7212  15.7307  18.0914
10 Present 9.4543 10.5370  11.8380  12.2621  14.2002  16.3789
TSBT [17] 9.4515 10.5348  11.8370  12.2605  14.1995  16.3783
C-C o0 Present 152.1588 152.1588 152.1588 152.1588 152.1588 152.1588
TSBT [17] 152.1470 152.1470 152.1470 152.1470 152.1470 152.1470
0.5 Present 92.8202  99.9361  102.8605 105.6331 109.5284 114.1312
TSBT [17] 92.8833  99.9860  102.9120 105.6790 109.6030 114.1710
1 Present 67.5184  76.2801  80.1730  83.8267  89.2223  95.7230
TSBT [17] 67.4983  76.2634  80.1670  83.8177  89.2208  95.7287
2 Present 47.7247  56.2259  60.6127  64.4352  70.7590  78.5570
TSBT [17] 47.7010  56.2057  60.6056  64.4229  70.7563  78.5608
5 Present 35.5811  42.0298  46.3852  49.2949  55.8338  63.7847
TSBT [17] 35.5493  42.0033  46.3743  49.2763  55.8271  63.7824
10 Present 32.3345  38.0239  42.2062  44.3593  50.7406  58.2532
TSBT [17] 32.3019  37.9944  42.1935  44.3374  50.7315  58.2461
C-F 0 Present 13.0595  13.0595  13.0595  13.0595  13.0595  13.0595
TSBT [17] 13.0594  13.0594 13.0594 13.0594 13.0594  13.0594
0.5 Present 7.3263 7.9026 8.1912 8.4016 8.7789 9.1913
TSBT [17] 7.3314 7.9068 8.1951 8.4051 8.7839 9.1940
1 Present 5.1246 5.7922 6.1490 6.4166 6.9050 7.4638
TSBT [17] 5.1245 5.7921 6.1490 6.4166 6.9050 7.4639
2 Present 3.5175 4.1157 4.4927 4.7564 5.2952 5.9347
TSBT [17] 3.5173 4.1156 4.4927 4.7564 5.2952 5.9348
5 Present 2.6301 3.0006 3.3609 3.5311 4.0621 4.6806
TSBT [17] 2.6298 3.0004 3.3609 3.5310 4.0620 4.6806
10 Present 2.4685 2.7078 3.0528 3.1489 3.6596 4.2268
TSBT [17] 2.4683 2.7077 3.0527 3.1488 3.6595 4.2267
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Table 10: Nondimensional critical buckling load (N..) of FG sandwich beams with various boundary conditions (L /h=20,

type B).

BC »p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1
S-S 0 Present 53.2364  53.2364  53.2364  53.2364  53.2364  53.2364
TSBT [17] 53.2364 53.2364  53.2364  53.2364  53.2364  53.2364
0.5 Present 29.6965  32.0368  33.2217  34.0722  35.6202  37.3054
TSBT [17] 29.7175  32.2629  33.2376  34.0862  35.6405  37.3159
1 Present 20.7213  23.4212  24.8793  25.9588  27.9537  30.2306
TSBT [17] 20.7212  23.4211 24.8796  25.9588  27.9540  30.2307
2 Present 14.1974  16.6051  18.1400  19.2000  21.3923  23.9899
TSBT [17] 14.1973  16.6050  18.1404  19.3116  21.3927  23.9900
5 Present 10.6176 ~ 12.0886  13.5520  14.2285  16.3829  18.8874
TSBT [17] 10.6171  12.0883  13.5523  14.2284  16.3834  18.8874
10 Present 9.9850 10.9075  12.3081  12.6820  14.7520  17.0445
TSBT [17] 9.9847 10.9075  12.3084  12.6819  14.7525  17.0443
C-C o0 Present 208.9515 208.9515 208.9515 208.9515 208.9515 208.9515
TSBT [17] 208.9510 208.9510 208.9510 208.9510 208.9510 208.9510
0.5 Present 117.2200 126.4422 131.0594 134.4255 140.4622 147.0614
TSBT [17] 117.3030 126.5080 131.1240 134.4810 140.5450 147.1040
1 Present 81.9944  92.6754  98.3839  102.6655 110.4792 119.4215
TSBT [17] 81.9927  92.6741  98.3880  102.6650 110.4830 119.4220
2 Present 56.2793  65.8505  71.8837  76.1030  84.7230  94.9558
TSBT [17] 56.2773  65.8489  71.8900  76.1020  84.7291  94.9563
5 Present 42.0814  48.0095  53.7751  56.4973  64.9930  74.8903
TSBT [17] 42.0775  48.0070  53.7820  56.4958  65.0007  74.8903
10 Present 39.4962  43.3252  48.8443  50.3827  58.5529  67.6281
TSBT [17] 39.4930 43.3233  48.8510 50.3811  58.5607  67.6270
C-F 0 Present 13.3730  13.3730  13.3730  13.3730  13.3730  13.3730
TSBT [17] 13.3730 13.3730 13.3730 13.3730  13.3730  13.3730
0.5 Present 7.4490 8.0363 8.3345 8.5477 8.9372 9.3607
TSBT [17] 7.4543 8.0405 8.3385 8.5512 8.9422 9.3634
1 Present 5.1944 5.8713 6.2378 6.5083 7.0096 7.5815
TSBT [17] 5.1944 5.8713 6.2378 6.5083 7.0096 7.5815
2 Present 3.5574 4.1603 4.5457 4.8110 5.3615 6.0134
TSBT [17] 3.5574 4.1603 4.5457 4.8110 5.3615 6.0134
5 Present 2.6606 3.0276 3.3948 3.5637 4.1042 4.7323
TSBT [17] 2.6605 3.0275 3.3948 3.5637 4.1043 4.7323
10 Present 2.5033 2.7317 3.0831 3.1759 3.6952 4.2698
TSBT [17] 2.5032 2.7317 3.0832 3.1759 3.6952 4.2698
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Table 11: The first three nondimensional natural frequencies of FG sandwich beams with various boundary conditions

(type C).

Mode

Scheme

L/h BC

p

0

0.5

1

2

5

10

1-2-1

2-2-1

1-2-1

2-2-1

1-2-1

2-2-1

20

20

20

20

20

20

S-S
C-C
C-F
S-S
C-C
C-F
S-S
C-C
C-F
S-S
C-C
C-F
S-S
C-C
C-F
S-S
C-C
C-F
S-S
C-C
C-F
S-S
C-C
C-F
S-S
C-C
C-F
S-S
C-C
C-F
S-S
C-C
C-F
S-S
C-C
C-F

4.0691
8.3282
1.4840
4.2445
9.5451
1.5145
3.6624
7.5709
1.3344
3.8136
8.5832
1.3607
14.5921
19.8886
8.3149
16.8284
25.9323
9.4133
13.1913
18.1865
7.5021
15.1255
23.3403
8.4598
28.7653
34.0624
14.0712
37.3334
49.8846
26.0193
26.4473
31.2772
13.3087
33.5757
44.9445
23.3958

3.7976
7.7553
1.3865
3.9695
8.9243
1.4165
3.5692
7.2636
1.3050
3.7406
8.4064
1.3350
13.5629
18.4463
7.7255
15.7307
24.2300
8.8002
12.6833
17.1905
7.2215
14.8149
22.8045
8.2890
26.6542
31.5260
13.2130
34.8731
46.5716
24.3084
24.8325
29.2997
12.5064
32.8132
43.7848
22.8769

3.6636
7.4487
1.3393
3.8387
8.6264
1.3700
3.5292
7.0901
1.2939
3.7177
8.3442
1.3271
13.0215
17.6290
7.4173
15.2043
23.4015
8.5069
12.4117
16.5950
7.0739
14.7073
22.5913
8.2312
25.4901
30.0458
12.7196
33.6782
44.9326
23.4799
24.0825
28.1131
12.0503
32.5173
43.2741
22.6806

3.5530
7.1485
1.3022
3.7402
8.3959
1.3350
3.5002
6.9040
1.2884
3.7144
8.3205
1.3263
12.5117
16.7552
7.1308
14.7986
22.7371
8.2819
12.1315
15.9164
6.9254
14.6700
22.4619
8.2137
24.3022
28.4068
12.1683
32.7268
43.5667
22.8254
23.2485
26.7610
11.5480
32.3519
42.8808
22.5797

3.4914
6.8702
1.2857
3.7081
8.3047
1.3241
3.4858
6.8998
1.2903
3.7380
8.3488
1.3353
12.0822
15.8266
6.8984
14.6424
22.4123
8.1986
11.8448
15.1574
6.7792
14.7283
22.4443
8.2512
23.1254
26.5927
11.5477
32.2818
42.7705
22.5324
22.3275
25.2645
10.9899
32.3630
42.6431
22.6081

3.4830
6.7543
1.2867
3.7214
8.3205
1.3292
3.4830
6.5941
1.2930
3.7552
8.3738
1.3418
11.9168
15.3878
6.8139
14.6748
22.4014
8.2195
11.7177
14.8131
6.7161
14.7777
22.4623
8.2814
22.5934
25.7241
11.2377
32.2861
42.6332
22.5472
21.9082
24.5968
10.7150
32.4104
42.5723
22.6521
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Table 12: Nondimensional critical buckling load of FG sandwich beams with various boundary conditions (type C).

Scheme L/h BC p
0 0.5 1 2 5 10
1-2-1 5 S-S 27.9314 229869 20.7762 18.9588 17.7320 17.3775
C-C  94.6117 77.5129 69.4877 62.2249 55.9446 53.3734
C-F 7.3149  6.0286  5.4629  5.0154  4.7534  4.7024
20 S-S 29.6120 24.4140 22.1386 20.3581 19.3639 19.2058
C-C 117.0384 96.4573 87.4069 80.2465 76.0539 75.2379
C-F 7.4254  6.1225 55529 51084  4.8634  4.8269
2-2-1 5 S-S 21.5207 19.4909 18.5897 17.8178 17.1942 16.9422
C-C  74.0960 65.2766 60.8501 56.4008 51.9303 49.9605
C-F 5.6078  5.1228  4.9221  4.7709  4.6809  4.6533
20 S-S 22,6714 20.7578 19.9839 19.4292 19.1504 19.0848
C-C  89.7255 81.9647 78.7529 76.3344 74.8949 74.4533
C-F 5.6831 5.2064 50148 4.8794 4.8150  4.8016
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Figure 1: Geometry of isotropic and FG sandwich beams.
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Figure 2: Distribution of ceramic material through the beam depth according to the power-law form.
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Figure 3: Effects of the power-law index p and span-to-depth ratio L/h on the nondimensional fundamental frequency

() and critical buckling load (Ner) of FG beams (type A).
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Figure 4: Variation of the nondimensional fundamental frequency of FG sandwich beams (p = 10) with respect to the

span-to-depth ratio L/h (type B).
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Figure 5: Variation of the nondimensional critical buckling load of FG sandwich beams (p = 10) with respect to the

span-to-depth ratio L/h (type B).
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Figure 6: Variation of the nondimensional fundamental frequency of (C-C) FG sandwich beams with respect to the

span-to-depth ratio L/h (type C).
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Figure 7: Variation of the nondimensional critical buckling load of (C-C) FG sandwich beams with respect to the

span-to-depth ratio L/h (type C).

34



O©CO~NOOOTA~AWNPE

—w W

0.8f TTu 0.8f --u
g ---9

0.6 b 0.61

0.4f 1 0.4f

-0.2 - - - -0.2

0.8F w
0.6F ---8
0.4+ AN

02f/- i / ]

(d) Mode 2, @;=11.7177 (2-2-1)

(e) Mode 3, @3=22.5934 (1-2-1) (f) Mode 3, @3=21.9082 (2-2-1)

Figure 8: The first three mode shapes of (1-2-1) and (2-2-1) (S-S) FG sandwich beams (L/h = 5, p = 10, type C).
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