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Abstract
In this study, for the first time, the transverse vibrational model of a viscous-fluid-conveying
single-walled carbon nanotube (SWCNT) embedded in biological soft tissue is developed.
Nonlocal Euler–Bernoulli beam theory has been used to investigate fluid-induced vibration of
the SWCNT while visco-elastic behaviour of the surrounding tissue is simulated by the
Kelvin–Voigt model. The results indicate that the resonant frequencies and the critical flow
velocity at which structural instability of nanotubes emerges are significantly dependent on the
properties of the medium around the nanotube, the boundary conditions, the viscosity of the
fluid and the nonlocal parameter. Detailed results are demonstrated for the dependence of
damping and elastic properties of the medium on the resonant frequencies and the critical flow
velocity. Three standard boundary conditions, namely clamped–clamped, clamped–pinned and
pinned–pinned, are applied to study the effect of the supported end conditions. Furthermore, it
is found that the visco-elastic foundation causes an obvious reduction in the critical velocity in
comparison with the elastic foundation, in particular for a compliant medium, pinned–pinned
boundary condition, high viscosity of the fluid and small values of the nonlocal coefficient.

Nomenclature

c dimensionless damping coefficient of visco-elastic
medium

d0 outer diameter of SWCNT
e0a nonlocal parameter
en dimensionless nonlocal parameter
k dimensionless elastic stiffness of the visco-elastic

medium
m mass ratio
mc mass per unit length of SWCNT
mf mass per unit length of flow fluid in the SWCNT
t time
v uniform mean velocity of flow fluid in the SWCNT
vn dimensionless uniform mean velocity of flow fluid

in the SWCNT
vcrt dimensionless critical flow velocity for the first

mode

%�vcrt variation ratio of the critical flow velocity for
the first mode

x dimensionless axial coordinate
y(x) dimensionless mode shape
ȳ(x) mode shape
Af cross-sectional area of flow fluid in the

SWCNT
C damping coefficient of the visco-elastic

medium
E Young’s modulus of SWCNT
EI bending rigidity of SWCNT
I Moment of inertia of the cross-sectional area

of the SWCNT
K elastic stiffness of the visco-elastic medium
L length of the SWCNT
X axial coordinate
Y (X, t) transverse deflection of the SWCNT
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β dimensionless complex circular frequency
η dimensionless viscosity of flow fluid in the

SWCNT
µ viscosity of flow fluid in the SWCNT
ρc mass density of SWCNT
ρf mass density of flow fluid in the SWCNT
ω complex circular frequency

1. Introduction

In recent years, extensive research has shown that carbon
nanotubes (CNTs) with hollow cylindrical geometry exhibit
exceptional mechanical properties and chemical and thermal
stability [1–4]. These properties cause CNTs to be of great
scientific interest for many applications in nanomechanical
systems and nanobiological devices; such as fluid storage,
fluid transport and drug delivery [5–8]. In nanomedicine,
nanotubes can be used as biocompatible and supportive
substrates, and as pharmaceutical excipients for creating
versatile drug delivery systems (DDS) [9]. In this way, single-
walled carbon nanotubes (SWCNTs) act as tiny straws or
nanochannels to deliver drugs directly into the target cells and
consequently, the therapeutic properties of the drug will be
improved with a reduction of undesirable side effects [9, 10].
For instance, these kinds of SWCNT-based DDS have been
successfully trialled for use in treating Alzheimer disease [11]
and cancer [12]. Since CNT is intended to be used as a
drug carrier in DDS, nanotubes should be embedded in soft
biological tissues of the body. Therefore, the mechanical
behaviour of the medium and their consequent interactions
with the fluid-induced vibration of the nanotube become very
important. Soft organic tissues are in general characterized
by visco-elastic models, and usually a Kelvin–Voigt model
(a simple and efficient mechanical model consisting of springs
and dashpots in parallel) can be employed to simulate the
interactions [13–16].

Recently, many studies have been devoted to the modelling
of CNTs using some types of continuum-based elasticity
theories. The Euler–Bernoulli beam theory has been used to
predict the mechanical and vibrational characteristics of CNTs
[17–20]. Moreover, in several investigations, instability and
flow-induced vibration of CNTs have been discussed using
continuum approaches. For instance, Yoon et al [21] studied
the influence of an internal moving fluid on the free vibration
and flow-induced structural instability of CNTs. The paper
indicates that the internal moving fluid could substantially
affect resonant frequencies, in particular for longer CNTs of
larger innermost radius at higher flow velocities. They also
considered the influence of fluid velocity on the free vibration
and flutter instability of cantilever CNTs based on a continuum
elastic model [22]. The results have shown that a moderately
stiff surrounding elastic medium (such as polymers) could
significantly mitigate the effect of an internal moving fluid
and eliminate flutter instability within the practical range of
flow velocities. The effects of a nonviscous fluid flow on
the vibration and instability of a multi-walled CNT have been
studied using both Timoshenko and Euler–Bernoulli classical
beam theories [10]. The main finding of this work has been that

the Timoshenko theory predicts the loss of stability at lower
fluid flow velocities compared with the Euler–Bernoulli beam
model, in particular for stubby nanotubes. Wang et al [23]
developed a model for investigating the coupling vibrational
behaviour of a fluid-filled CNT in a Winkler-like foundation.
The effects of the different boundary conditions, aspect ratio,
surrounding elastic medium, mass density of the fluid and
layer number on the fluid-induced vibrations of CNTs have
been discussed widely. Nonlocal elastic beam theory has
been applied to the analysis of free transverse vibration of
the fluid-conveying SWCNTs and the significant influences of
the nonlocal parameter on the natural frequencies and mode
shapes have been evaluated [24]. Divergence, flutter and
coupled-mode flutter instability have been considered for a
SWCNT conveying fluid with simply supported and clamped
ends [25]. Furthermore, the nonlocal Euler–Bernoulli beam
theory has been employed to study the fundamental frequency
of a viscous-fluid-conveying SWCNT embedded in an elastic
medium and the effects of the nonlocal parameter, viscosity,
aspect ratio and elastic medium constant have been shown [26].

However, to the best of our knowledge, no investigation
has been performed on fluid-induced vibration and instability
of CNTs on visco-elastic foundations. In this study, for the
first time, a nonlocal Euler–Bernoulli model has been applied
to analyse the free transverse vibration of a viscous-fluid-
conveying SWCNT embedded in a Kelvin–Voigt medium. The
effects of damping and stiffness of the foundation, viscosity of
the moving fluid, nonlocal parameter and boundary conditions
on the resonant frequencies and the structural instability of the
SWCNT are considered in detail. Moreover, the variation of
the critical velocity, as a divergence instability threshold, has
been discussed based on the various parameters.

2. The model for CNTs conveying fluid

Figure 1 shows a SWCNT, as a hollow cylindrical tube in a
Kelvin–Voigt visco-elastic medium. By neglecting gravity
effect and axial loads, the governing equation of motion of
a SWCNT conveying fluid using nonlocal Euler–Bernoulli
theory can be expressed as

EI
∂4Y

∂X4
+ 2mfv

∂2Y

∂X∂t
+ mfv

2 ∂2Y

∂X2
− µAf

(
v

∂3Y

∂X3
+

∂3Y

∂t∂X2

)

+
∂2

∂t2

[
(mc + mf)Y − mc(e0a)2 ∂2Y

∂X2

]
+ KY + C

∂Y

∂t
= 0,

(1)

where X is the axial coordinate, t is the time and Y (X, t) is the
transverse deflection of the CNT. EI, L and mc are the bending
rigidity, length and the mass per unit length of the SWCNT,
respectively. In addition, v, µ, Af and mf are the uniform
mean velocity, viscosity, the cross-sectional area and the mass
per unit length of fluid flow in the SWCNT, in that order. e0a

represents a nonlocal parameter revealing the nanoscale effect
on the response of the structures [24]. K and C represent the
elastic stiffness and damping coefficient of the visco-elastic
medium around the SWCNT based on the Kelvin–Voigt model.
The two last terms in equation (1) are the forces exerted by the
surrounding medium.
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Figure 1. A fluid-conveying SWCNT embedded in a Kelvin–Voigt
visco-elastic foundation.

For a self-excited vibration, the solution of equation (1)
can be written as

Y (X, t) = ȳ(X)eiωt (2)

and ω is the complex circular frequency.
Defining the following dimensionless parameters:

x = X

L
, y = ȳ

L
, m = mf

mc + mf
, vn =

√
mf

EI
vL,

en = e0a

L
, η = µAf√

EImf
, β = ω√

EI/(mc + mf)L4
, (3)

k = KL4

EI
, c = CL2

√
EI (mc + mf)

.

Equation (1) may be written in the dimensionless form

d4y

dx4
+ 2iβ

√
mvn

dy

dx
+ [v2

n + (1 − m)β2e2
n]

d2y

dx2

−η

(
vn

d3y

dx3
+ iβ

√
m

d2y

dx2

)
− β2y + ky + iβcy = 0. (4)

The solution of the complex ordinary differential equation
given in equation (4) is

y(x) = Aeiαx. (5)

where A is a constant.
By substituting equation (5) into equation (4), the

following equation is obtained:

α4 − 2αβ
√

mvn − [v2
n + (1 − m)β2e2

n]α2

−η(−ivnα
3 − iβ

√
mα2) − β2 + k + iβc = 0. (6)

Boundary conditions. Three typical boundary conditions
have been considered, a simply supported beam at both ends
or pinned–pinned condition (P–P):

∂2Y (0, t)

∂X2
= Y (0, t) = ∂2Y (L, t)

∂X2
= Y (L, t) = 0; (7)

a beam clamped at one end and simply supported at the other
end, i.e. clamped–pinned condition (C–P):

∂Y (0, t)

∂X
= Y (0, t) = ∂2Y (L, t)

∂X2
= Y (L, t) = 0 (8)

and a beam clamped at both ends or the clamped–clamped
boundary condition (C–C):

∂Y (0, t)

∂X
= Y (0, t) = ∂Y (L, t)

∂X
= Y (L, t) = 0. (9)

In addition, the dimensionless form of the boundary conditions
will be as follows:
For P–P condition

d2y(0)

dx2
= y(0) = d2y(1)

dx2
= y(1) = 0. (10)

For C–P condition

dy(0)

dx
= y(0) = d2y(1)

dx2
= y(1) = 0. (11)

For C–C condition

dy(0)

dx
= y(0) = dy(1)

dx
= y(1) = 0. (12)

Using a similar method to the one described in [24], the
characteristic equation in dimensionless frequencies β can be
obtained for each type of the boundary conditions.

3. Results and discussion

In most of the previous papers related to the self-excited
vibration of fluid-conveying SWCNTs, it was assumed
that Young’s modulus and the thickness of the SWCNT
were around 1 TPa and 0.3 nm, respectively [21, 22, 24–26].
However, in this paper, we use 3.4 TPa for Young’s modulus
and 0.1 nm for the effective thickness of SWCNT as the
most recent investigations indicate [27, 28]. As a case study,
mechanical and dimensional properties of the SWCNT and the
fluid are shown in table 1. The elastic and damping coefficients
of the Kelvin–Voigt foundation are defined in table 2.

β is the dimensionless complex frequency of the SWCNT
conveying fluid. The real component of frequency Re[β]
represents the dimensionless resonant frequency while the
imaginary component Im[β] is related to the damping of the
model and called the decaying rate of amplitude [22]. In
addition, when vn = k = c = µ = 0, in our study, β reaches a
real number, equal to the natural frequency of a SWCNT and
exactly the same as in previous studies [24–26].

3.1. Resonant frequencies

Various parameters influence the flow-induced resonant
frequencies of a fluid-conveying SWCNT. In this section,
we have focused on the mean velocity of the internal flow,
the mechanical behaviour of the surrounding medium, the
boundary conditions and the nonlocal parameter.

3.1.1. The effects of the visco-elastic foundation. Figure 2
shows the real part of the dimensionless frequency β against
the dimensionless flow velocity vn for the first three vibration
modes. The SWCNT is assumed to have a C–C boundary
condition, and different dimensionless damping and stiffness
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Table 1. The parameters used for the model (SWCNT and fluid) used as a case study.

Fluid SWCNT

Parameter mf ρf µ mc ρc E EI e0a/L L/d0

Dimension kg m−1 kg m−3 Pa s kg m−1 kg m−3 TPa N m — —

Value 2.64 × 10−14 1 × 103 1.12 × 10−3 4.26 × 10−15 2.3 × 103 3.5 2.74 × 10−23 0.05 50

Table 2. The elastic and damping constants used for the foundation
of the SWCNT as a Kelvin–Voigt model.

Medium

Parameter K k C c
Dimension MPa — Pa s —

Value 0.1 29.5 1.02 × 10−4 10

parameters (c and k) are used to represent the effects of
the visco-elastic behaviour of the foundation. The figures
indicate that the resonant frequencies decrease parabolically
with the dimensionless flow velocity of the internal moving
fluid so that, as the flow velocity increases, the resonance
frequency reduces to zero. The vanishing frequency and the
existence of adjacent neutral equilibrium states cause structural
or divergence instability [21]. In this study, this dimensionless
flow velocity for the first mode is called the dimensionless
critical flow velocity vcrt. As seen in figure 2, divergence
instability for the first mode occurs when vcrt ∼= 6 but by
increasing the dimensionless damping parameter c of the
visco-elastic foundation and/or decreasing the dimensionless
stiffness parameter k, the divergence instability takes place
at lower flow velocities. A previous study [24] predicts
divergence instability for the second and third modes at flow
velocities of about 9 and 12, respectively. However, in this
study, with the new bending stiffness EI of SWCNT, the
divergence instability in the second mode takes place when
the flow velocity reaches about 12 and in the third mode, the
resonant frequency does not vanish within the range of flow
velocities. Furthermore, it is apparent from the figures that
the resonant frequencies are significantly influenced by the
parameters k and c. In fact, the compliant visco-elastic media
with high damping properties cause a decrease in the induced
frequencies, in particular for the first and second modes.

Moreover, damping of the visco-elastic foundation and
fluid viscosity make the fluid-induced vibration of the SWCNT
nonconservative in nature. This means that, unlike previous
studies [10, 24, 25], when resonant frequencies are not zero
(Re(β) �= 0), the decaying rate of amplitude Im[β] does not
remain zero anymore and consequently, the fluid flow in the
nanotube contributes to the vibration of the SWCNT. On the
other hand, when the decaying rate of amplitude is positive
(Im[β]〉0), vibration of the SWCNT is damped with decaying
amplitude for a low flow velocity while for a sufficiently
high flow velocity, the imaginary part of frequency changes
sign to negative (Im[β]〈0) and the amplitude starts to grow
with time [22]. To analyse the effects of damping, figure 3
shows the decaying rate of amplitude Im[β] as a function of
dimensionless flow velocity vn for the first three modes of
the case study. From this figure, it is clear that, in the first

mode, when the dimensionless flow velocity vn is lower than
the dimensionless critical flow velocity (vn < vA = vcrt), the
decaying rate is positive, the amplitude decreases with time
and the CNT is damped. However, as the dimensionless flow
velocity increases beyond vB, the decaying rate of amplitude
will be negative. Hence, the SWCNT can gain energy from
the flow and the induced vibration would be amplified for a
sufficiently high flow velocity (i.e. vn > vB). Furthermore,
when the dimensionless flow velocity is within the range
vA < vn < vB, the imaginary part of frequency is nonzero
(both negative and positive) while the real part is exactly zero
(see figure 2(a)). Thus, the nanotube does not vibrate in
this range of flow velocities in the first mode. Similarly, for
the second and third mode, the decaying rate of amplitude is
positive when dimensionless flow velocity is lower than vC and
vD, respectively and the vibrations are damped in these ranges.
Furthermore, the second mode of vibration becomes unstable
for the flow velocities higher than vC.

3.1.2. The effects of the boundary conditions. Vibration
behaviour of a fluid-conveying nanotube is completely related
to the boundary conditions. However, getting the theoretical
boundary conditions to simulate the actual stiffness of the
supports is still a challenge, in particular for nanostructures
[30]. Consequently, to show the effects of the boundary
stiffness on the vibration characteristics of CNTs, typical and
standard boundary conditions are usually applied [21–26]. As
mentioned above, this model has been solved for P–P, C–P
and C–C conditions. The natural frequencies have been shown
as a function of flow velocity vn and boundary conditions in
figure 4. The results indicate that while the bending stiffness
of the SWCNT rises from P–P to C–C, the associated resonant
frequencies and the dimensionless critical flow velocity vcrt

increase.

3.1.3. The effects of the nonlocal parameter. As the small-
sized scale becomes significant for nanostructures like CNTs,
the local or classical continuum theories may be no longer
accurate enough and cannot predict the behaviour of nanoscale
materials anymore. Unlike the local continuum elasticity, the
nonlocal elasticity theory regards that the stress at a given point
in a body depends not only on the strain at that point but also on
those at all points of the body [31]. This definition of nonlocal
elasticity is based on the lattice dynamics and observations
on photon dispersion. Nonlocal continuum models admit size
dependence and small-scale effects in the elastic solutions of
nanostructures, and consider forces between atoms and internal
length scale in the construction of constitutive equations.
Therefore, the nonlocal elasticity theories represent a more
accurate mechanical model on the nanoscale [29]. In order to
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Figure 2. The dimensionless resonant frequency against the dimensionless flow velocity vn for a clamped–clamped SWCNT (a) with
different values of the dimensionless damping parameter c, (b) with different values of the dimensionless elastic parameter k.

Figure 3. The decaying rate of amplitude against the dimensionless
flow velocity vn for the case study.

study the small-scale effect, the induced resonant frequencies
are plotted against the dimensionless flow velocity vn with
certain nonlocal parameters en (figure 5). According to this
figure, the nonlocal Euler–Bernoulli theory predicts smaller
resonant frequencies compared with the local continuum
results (en = 0). Actually, the nonlocal theory introduces
a more flexible model as the CNT can be viewed as atoms
linked by elastic springs while the local model assumes spring
constants to take on an infinite value [32]. Consequently,
the frequency reduction in the nonlocal model is physically
justifiable. Furthermore, the difference between the nonlocal
and local results will be significant for higher vibration modes
and thus, the small-scale effects cannot be ignored.

4. Structural instability and critical velocity

As stated above, for the first mode, the critical velocity vcrt

is the flow velocity at which the resonant frequency reduces
to zero (i.e. the vibrations cease). At this flow velocity, the
nanotube undergoes structural or divergence instability. As

with the resonant frequency, the critical flow velocity is a
function of the visco-elastic behaviour of the foundation, the
boundary conditions, the viscosity of the fluid and the nonlocal
parameter. To see the effects of damping due to the visco-
elastic foundation clearly, ‘the variation ratio’ of the critical
flow velocity %�vcrt has been defined to be the percentage of
critical flow velocity increment for the nanotube embedded in
the elastic foundation (with C = 0) compared with the visco-
elastic foundation (with C �= 0).

%�vcrt ≡ 100 × (vcrt at C=0 − vcrt at C=C)

vcrt at C=0
. (13)

Certainly, variation ratio %�vcrt provides a better illustration
for the pure effects of the damping nature of the foundation.
In addition, increasing this parameter implies that the critical
flow velocity shifts to lower values as the nanotube vibrates in
a visco-elastic medium.

Figures 6–9 represent the variation ratio %�vcrt as a
function of the dimensionless damping parameter c of the
Kelvin–Voigt medium, while the effects of a certain parameter
have been evaluated in each figure. All the figures reveal
that with increasing damping property of the medium, the
variation ratio %�vcrt increases. In other words, in all the
following conditions, divergence instability occurs at lower
flow velocities when a SWCNT vibrates in a visco-elastic
foundation with higher damping characteristics. This means
that the visco-elastic medium with a high damping property
(such as a soft biological tissue) dissipates the vibrational
energy quickly and the resonant frequency vanishes at a lower
flow velocity.

The variation ratio %�vcrt is very sensitive to the stiffness,
due to the boundary conditions and the foundation. As the
stiffness of the model decreases from C–C to P–P, the jump
of the variation ratio %�vcrt is considerable (figure 6). This
shows the significant influence of the boundary condition on
the critical flow velocity of a SWCNT on a visco-elastic
foundation. Figure 7 represents the effects of medium stiffness
on the divergence instability. The figure indicates that with
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Figure 4. The dimensionless resonant frequency against the dimensionless flow velocity vn for clamped–clamped, clamped–pinned and
pinned–pinned boundary conditions: (a) in the first mode, (b) in the second mode, (c) in the third mode.

Figure 5. The dimensionless resonant frequency against the
dimensionless flow velocity vn for a clamped–clamped SWCNT
with different values of the dimensionless nonlocal parameter en.

an increase in the dimensionless stiffness parameter k, the
variation ratio %�vcrt decreases and the effect of the damping
properties of the foundation on the critical velocity is reduced.
In addition, for the Kelvin–Voigt foundation (for C > 20), the

present model predicts a reduction in the critical velocity by
more than about 10%, compared with previous studies [25, 26].

The importance of nonlocal elasticity theory in the
divergence instability and the associated critical flow velocity
is demonstrated in figure 8. According to this figure, the
nonlocal Euler–Bernoulli theory estimates smaller values of
%�vcrt than the local theory does. Moreover, the effect of the
dimensionless damping parameter c on the critical velocity
diminishes with the increase in the dimensionless nonlocal
parameter.

Finally, to investigate the effect of fluid viscosity,
the variation ratio %�vcrt is plotted as a function of the
dimensionless damping parameter c and the dimensionless
viscosity parameter η (figure 9). The results reveal that for
media with high damping properties, reduction in the critical
flow velocity will be significant, in particular for high viscosity
fluids.

5. Conclusion

Transverse vibration and divergence instability of a viscous-
fluid-conveying SWCNT are represented using the nonlocal
Euler–Bernoulli beam theory. Pursuant to the visco-elastic
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Figure 6. The variation ratio %�vcrt against the dimensionless
damping constant of the Kelvin–Voigt foundation c with different
types of boundary conditions.

Figure 7. The variation ratio %�vcrt against the dimensionless
damping constant of the Kelvin–Voigt foundation c with different
values of the dimensionless elastic parameter k.

behaviour of soft tissues, the nanotube is assumed to be
embedded in a Kelvin–Voigt foundation. It is shown that
the damping nature of the medium substantially affects the
natural frequencies, in particular for the first and second
modes. Moreover, our investigation determines that structural
instability and the associated critical flow velocity can be
affected by the elastic and damping characteristics of the
medium, the end conditions, the viscosity of the fluid and
the nonlocal parameter. Increasing the stiffness of the model,
due to the boundary condition or to the foundation, causes the
critical flow velocity to increase, whereas for a medium with
a higher damping property, the divergence instability occurs
at a lower flow velocity. Furthermore, with a decrease in
the nonlocal constant, as the viscosity of the fluid increases,
the divergence instability happens at a lower flow velocity

Figure 8. The variation ratio %�vcrt against the dimensionless
damping constant of the Kelvin–Voigt foundation c with different
values of the dimensionless nonlocal parameter en.

Figure 9. The variation ratio %�vcrt against the dimensionless
damping constant of the Kelvin–Voigt foundation c with different
values of the dimensionless viscosity parameter of the fluid η.

for a visco-elastic medium in comparison with an elastic
medium.
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