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Auxetic mechanical metamaterials that exhibit a negative Poisson’s ratio (NPR) can be artificially designed to exhibit a unique
range of physical and mechanical properties. Novel sandwich structures composed of uniform and gradient auxetic double
arrowhead honeycomb (DAH) cores were investigated in terms of their vibration and sound transmission performance stimulated
by nonhomogeneous metamaterials with nonperiodic cell geometries. )e spectral element method (SEM) was employed to
accurately evaluate the natural frequencies and dynamic responses with a limited number of elements at high frequencies. )e
results indicated that the vibrating mode shapes and deformations of the DAH sandwich models were strongly affected by the
patterned gradient metamaterials. In addition, the sound insulation performance of the considered DAH sandwich models was
investigated regarding the sound transmission loss (STL) from 1Hz to 1500Hz under a normal incident planar wave, and this
performance was compared with that for hexagonal honeycomb sandwich panels. A programmable structural-acoustic opti-
mization was implemented to maximize the STL while maintaining a constant weight and high strength. )e results showed that
the uniform DAH sandwich models with larger NPRs generally exhibited better vibration and acoustic attenuation behaviors and
that the optimized gradient increasing NPRmodels yielded higher STL values than the optimized gradient decreasing NPRmodels
for two specified frequency cases, with improvements of 6.52 dB and 2.52 dB and a higher bending stiffness but a lower overall
STL. )us, sandwich panels consisting of auxetic DAHs can achieve desirable vibroacoustic performance with a higher bending
stiffness than conventional hexagonal honeycomb sandwich structures, and the design of gradient DAHs can be extended to
obtain optimized vibration and noise-control capabilities.

1. Introduction

Metamaterials are artificial structures engineered to achieve
unusual properties, and metamaterials that behave
mechanically and have a negative Poisson’s ratio (NPR) are
called “auxetic” mechanical metamaterials [1–4]. )ese
metamaterials expand rather than contract when stretched
under uniaxial loading, differing from most natural mate-
rials. )ere have been important developments in many
fields of auxetic metamaterials, including auxetic cellular

solids of foams and honeycombs [5–7], microporous
polymers [8], 3D re-entrants [9], chiral structures [10], and
rotating rigid structures [11]. Compared to traditional
materials, these auxetic structures have superior mechanical
properties such as enhanced shear resistance, indentation
resistance, and fracture toughness in various automotive,
aerospace, biomedicine, and intelligent system applications
[1–4].

In recent decades, cellular solids have been progressively
employed [6, 7], and auxetic foams and honeycombs have
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been used in numerous studies to explore the multiple
functionalities of the cellular solid structures. Among the
practical engineering applications involving cellular mate-
rials, sandwich structures (usually a simplified 2D sandwich
beam) with in-plane (truss-like or prismatic) honeycomb
cores have been explored for vibration and acoustic atten-
uation purposes, with the sound transmission loss (STL)
frequently used as an evaluation metric [12–23]. )ese
materials can be artificially tailored to create high-stiffness
structures with low volumes and weights in contrast to cel-
lular foams [13]. As a basis for the design of sandwiched core
arrangements, previous scholars have reported that sandwich
structures with embedded in-plane cellular cores transmit less
sound than those with out-of-plane cellular cores [14], and
core anisotropy can lead to a higher STL [15]. El-Raheb and
Wagner [16] previously investigated the structural-acoustic
performance of sandwich panels with periodic square truss-
like cores. Ruzzene [17] analyzed the vibration and sound
radiation performance of sandwich panels with in-plane
hexagonal and re-entrant honeycomb cores, and Griese
et al. [18] studied the effects of prismatic conventional and
auxetic hexagonal honeycomb cell geometries on the sound
transmission properties of sandwich panels. )ese studies
indicated that sandwich panels with auxetic re-entrant cellular
cores exhibit better sound insulation behavior than the
conventional honeycomb sandwich structures with positive
Poisson’s ratios. Spadoni and Ruzzene [19] designed an
auxetic chiral truss-core sandwich beam and explored its
potential benefit in terms of vibration isolation and sound
transmission reduction. To obtain an optimized STL, Denli
and Sun [20] performed structural-acoustic optimizations of
prismatic random cellular cores for minimum noise radiation
in different frequency regions but without considering their
manufacturability. Franco et al. [21] optimized sandwich
panels with innovative cellular core configurations to mini-
mize the sound radiation responses to various sources of
excitation. As an extension of the study mentioned in [18],
Galgalikar and )ompson [22] optimized hexagonal hon-
eycomb sandwich panels for maximum STL and discovered
that the STL response strongly depends on the numbers of
unit cells in the horizontal and vertical directions in addition
to the cell internal angles. Li and Yang [23] optimized the STL
responses of sandwich panels with hybrid hexagonal hon-
eycomb cores and suggested that hybrid core configurations
constitute a broader platform for optimal acoustic designs.
Apart from these direct structural-acoustic optimizations to
obtain an optimized STL, topology optimization based on the
band gaps of periodic metamaterials has been applied for
sound and vibration control [13] because the stop bands
through which plane waves cannot propagate can be obtained
via the corresponding dispersion curves [24, 25].

)e aforementioned sandwiched cellular structures are
usually characterized by repeating unit cells with a fixed
geometry. However, most current metamaterials are gen-
erally classified into two types based on their structural
arrangements: homogenous (with uniform periodic struc-
tures) and inhomogeneous (with nonuniform nonperiodic
structures) [26]. Lim [27] theoretically pioneered a nonpe-
riodic functionally gradient beam to attain Poisson curving

in 2002. )en, sandwich structures with combined con-
ventional and re-entrant hexagonal metamaterials were
investigated based on various characteristics, such as the
specified objective deformations [28]; the strength and
failure properties under bending, compressive and impact
loads [29–31]; the dynamic behavior [32, 33]; and the sound
transmission performance [23, 34]. Moreover, functionally
gradient auxetic metamaterials based on other topologies,
such as double arrowhead honeycombs (DAHs), have been
developed [35–38] in recent years. )ese nonuniform
metamaterials have attracted considerable interest due to
their high-order functionality and broad designability.

Accordingly, a novel sandwich panel with cellular cores
of auxetic DAHs is proposed and investigated with respect to
its vibration and acoustic characteristics. To the best of our
knowledge, such structures have not been previously in-
vestigated. In addition, gradient double arrowhead cellular
cores are designed and implemented in the direction of the
panel thickness based on the features of the nonuniform
metamaterials. Programmable structural-acoustic optimi-
zation processes are then implemented to design a modified-
gradient DAH for an optimized sandwich panel that radiates
less sound at different frequency regions. To precisely predict
the structural vibroacoustic performance, the spectral ele-
ment method (SEM) [17, 19] was employed to accurately
compute the natural frequencies and dynamic responses of
cellular structures at arbitrary frequencies with a largely
reduced number of elements and few degrees of freedom
(DOFs) [39, 40].

In the remainder of the paper, Section 2 describes the
unit cell geometry and the configurations of the sandwich
structures based on DAHs. Section 3 presents SEM for-
mulations to compute the dynamic eigenfrequencies and
responses and gives the computational procedures for sound
radiation and transmission loss. Next, the vibroacoustic
performance of the considered structures is discussed in
Section 4. Moreover, a programmable structural-acoustic
optimization process for maximum STLs is presented in
Section 5. Finally, Section 6 concludes this study.

2. Geometries of the Sandwich Panels with
Uniform and Gradient DAH Cores

2.1. Cell Geometry of Auxetic DAH Arrays. As shown in
Figure 1, four parameters define the cell geometry of a
standard DAH, where θ1 and θ2 denote the respective in-
ternal angles between the two inclined cell ribs and the
vertical axis, l is the height of the base triangle in the x
direction, and t is the cell wall thickness. Lx and Ly are the cell
dimensions, and each unit cell is associated with a rectangle
that measures Lx× Ly, where Lx� 2l. Within a continuous
honeycomb array, the cell dimensions can be related to the
parameters by

tan θ(i+1)1 �
Lx/2( )

Lx/2( )/tan θ(i)2 −Ly
�

tan θ(i)2

1− 2α tan θ(i)2

, (1)

where the superscript (i) denotes the ith layer and α� Ly/Lx
is the cell aspect ratio. )e cell aspect ratio α determines the
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entire honeycomb core dimension, and the internal angle
sequencesΘ1 andΘ2 define the cell shape. For loading in the
y direction, the mechanical indices of Poisson’s ratio and
effective elastic modulus are given by Qiao and Chen [35]:

]
∗
yx � −

εx
εy
� − 1

tan θ1tan θ2
, (2)

E∗y
Es

�
1

4

t

l
( )3− 4 cos θ1 − cos θ2( )

sin θ1sin θ2

− cos θ1cos θ2 − 1( )2 cos θ1cos θ2 − 3( )
sin θ1sin θ2 cos θ1 − cos θ2( )

+
cos θ1cos θ2 + 3( ) cos θ1cos θ2 − 1( )

cos θ1 − cos θ2
,

(3)

where Es is Young’s modulus of the solid. To design a DAH
cellular core, the angle sequenceΘ2 is given, andΘ1 can then be
derived through equation (1). )e geometry of the honeycomb
array is then determined and is scale-independent with a
constant Ly/Lx. In addition, the feasible constraint of θ(i)2 <
arctan(l/Ly) must be imposed to attain the auxetic charac-
teristics, yielding θ(i)2 < arctan(1/2α). )e cell aspect ratio α
utilized in this investigation is 0.2, so that θ(i)2 < 68.2°. Here, the
thicknesses of the cell wall and face sheets must be further
considered to avoid excessive element distortion and overlap.

2.2. Geometric Description of Sandwich Panels with Uniform
and Gradient DAH Cores. )e considered sandwich panels
with DAH cores are depicted in Figure 2. A DAH core is
sandwiched between two constraining face sheets. Each
model has an identical total length of 2m, and each cellular
core comprises 40 cells in the length direction and 5 cells
across the thickness of the core. Lx is calculated to be 50mm
and Ly is 10mm with α� 0.2. However, the total thickness of
each model differs because the unit cell in the top layer has a
varying cell angle θ(i)2 . )e constraint of θ(i)2 > arctan(1/5α) is
then set to limit the influence resulting from the distinction
of the panel thicknesses. )erefore, θ(i)2 varies from 45 to

65° without element overlap, and the total thickness ranges
from 51.7 to 65mm.

To maintain a constant weight, the thickness of the two
face sheets is constrained by a constant value of ts� 2mm. In
addition, the thickness of the cellular cores is varied to
maintain the weight equal to that of a baseline cellular
sandwich panel with dimensions of 2m× 50mm and a rel-
ative density of 0.1. To this point in the study, both the overall
length and weight have been held constant to compare the
various properties of the sandwich models. )e base material
for the sandwich panel is aluminum with a Young’s modulus
Es� 71.9GPa, Poisson’s ratio ]� 0.33, and mass density
ρs� 2700 kg/m

3. )e total weights of the two face sheets and
core are 21.6 kg/m and 27.0 kg/m, respectively.

)e first three models shown in Figure 2(a) are defined as
uniform DAH sandwich panels with identical unit cells. )e
mechanical indices (|]∗yx| andE

∗
y ) are plotted in Figure 3(a)

based on equations (2) and (3) as θ2 increases from 45 to 65°.
Both of these values monotonously decrease as θ2 increases.
Here, we stipulate that a large NPR signifies a Poisson’s ratio
with a large absolute value. )us, the DAHs with larger
NPRs yield large effective elastic modulus values. In contrast,
as illustrated in Figures 2(b) and 2(c), the last two structures
exhibit a varying pattern of DAHs across the panel thickness
and are the so-called gradient DAH sandwich panels. As
plotted in Figures 3(b) and 3(c), functionally increasing and
decreasing sequences of Θ2 can generate sandwich models
with DAHs of a decreasing NPR (DNPR) and an increasing
NPR (INPR), respectively, particularly in this scenario.
Regarding the gradient sandwich panels, the DAHs with
large NPRs mainly yield large E∗y values, as do the uniform
sandwich panels.

3. Theories of Vibration and Acoustic
Analysis for DAH Cores

3.1. SEM for the Vibration of Cellular Structures. )e con-
sidered sandwich panel is assumed to be infinite along the
z-axis as a simplified 2D planar strain problem, following the
method of modeling prismatic cellular cores in references
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(i+1)th

ith
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l
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L
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t

(b)

Figure 1: (a) Schematic diagrams of an array of auxetic DAHs and (b) a unit cell.
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[17–20, 22, 23, 40].)erefore, the in-plane cellular structures
are composed of rigidly connected beam elements treated as
simplified 2D frames, and the long and thin frames are
modeled as Bernoulli–Euler beams with an off-plane unit
depth [17, 23, 40]. As shown in Figure 4, these elements are
oriented in the xOy plane, and the element displacement is
described in the local coordinate system (ξ, ψ) that rotates
with respect to the global coordinate system (x, y) at an angle
φ′. )e DOFs of each element are u and w, which represent
the longitudinal and transverse displacements, respectively.

)e partial differential equations of motion that describe
the longitudinal and transverse vibrations of a uniform
Bernoulli–Euler beam are represented in [17, 18, 23, 39, 40]:

EAuξξ − ρAutt � 0,

EIwξξξξ + ρAwtt � 0,
(4)

where E and ρ are Young’s modulus and mass density of the
solid materials and A and I are the sectional area and
moment of inertia of the beam, respectively. Note that
E� Es/(1 ‒ ]

2) here under the planar strain assumption.
Equation (4) can be simplified to an ordinary differential
equation of harmonic motion at a circular frequency ω as

EAUξξ + ω
2ρAU � 0,

EIWξξξξ −ω2ρAW � 0.
(5)

)e homogeneous solution to equation (5) can be ob-
tained in the following form:

U(ξ;ω) � a1e
−ikLξ + a2e

+ikLξ ,

W(ξ;ω) � a3e
−ikFξ + a4e

−kFξ + a5e
+ikFξ + a6e

+kFξ .
(6)

In this case, ai (i� 1, . . ., 6) are integration constants and

kL �

�����
ρAω2

EA

√
,

kF �

�����
ρAω2

EI

4

√
,

(7)

where kL and kF are the wavenumbers of the longitudinal
and transverse elastic waves, respectively. )e spectral nodal
displacement vector d comprises the longitudinal dis-
placements, transverse displacements, and slopes of the
frame elements and can be represented by

d � Ui Wi Uξi Uj Wj Uξj{ }T � Ui Wi Θi Uj Wj Θj{ }T,
(8)

where i and j denote the initial and final nodes of the beam
element, as shown in Figure 4. Based on the displacements at
the element boundaries (ξ � 0 and ξ � L(e)), equation (6)
expresses the integration constant aiwith respect to d, which
finally yields

U(ξ; ω) � U(ξ; ω) W(ξ; ω){ }
T
� N(ξ; ω)d, (9)

where U(ξ; ω) is the continuous displacement field and N(ξ;
ω) is the matrix of the transcendental dynamic shape
functions. Following the sign convention shown in Figure 5,
the spectral components of the longitudinal tensile forces N,
bending moments M, and transverse shear forces Q can be
connected with U(x) and W(x) by

N(ξ) � EAU′(ξ),
M(ξ) � EIW″(ξ),
Q(ξ) � −EIW‴(ξ).

(10)

Model 1 θ2 = 45 deg (ν∗yx=–0.60, E∗

y = 0.244 MPa)

Model 6 θ2
(i) = 45 + 5(i – 1) deg i = 1, 2, …, 5

θ2
(i) = 65 – 5(i – 1) deg i = 1, 2, …, 5Model 7

θ2 = 50 deg (ν∗yx = –0.37, E∗

y = 0.232 MPa)Model 2

θ2 = 65 deg (ν∗yx = –0.03, E∗

y = 0.155 MPa)Model 5

(a)

(b)

(c)

θ2 = 55 deg (ν∗yx = –0.21, E∗

y = 0.210 MPa)Model 3

θ2 = 60 deg (ν∗yx = –0.10, E∗

y = 0.182 MPa)Model 4

x

y

Figure 2: Sandwich panels with DAH cores from models 1 to 7: (a) the uniform models; (b) the gradient DNPR models; (c) the gradient
INPR models.
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)e spectral nodal longitudinal tensile force, transverse
shear force, and bending moment can be related to the
corresponding force and moment matrix f by

f(ω) � fc(ω) + fd(ω) � Ni Qi Mi Nj Qj Mj{ }T
� −N(0) −Q(0) −M(0) +N L(e)( ) +Q L(e)( ) +M L(e)( ){ }T,

(11)
where the nodal force vector fc(ω) is associated with
the concentrated dynamic forces that are directly applied

at the spectral nodes, and fd(ω) is associated with
the distributed dynamic forces. A spectral distributed
load P(x; ω) must be transferred to each node of the
element by

fd � ∫L
0
N
T
(ξ;ω)P(ξ;ω)dξ. (12)

Substituting equation (9) into (10) and implementing
the results into the right-hand side of equation (11), we
obtain
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and 7; (c) E∗y within gradient DAH sandwich models 6 and 7.
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S(ω)d � f(ω), (13)

where S(ω) is the symmetric matrix of general spectral
framed elements. Equation (13) must be transformed from
the local coordinate system to the global coordinate system
using the coordinate transformation matrix T:

Sg(ω)dg � fg(ω), (14)

where

Sg(ω) � T
−1
S(ω)T. (15)

Finally, the spectral equation for each element is assem-
bled, and the spectral equation of the entire system is given by

Sg(ω)dg � fg(ω), (16)

where Sg is the overall spectral element matrix, dg is the
overall nodal displacement vector, and fg is the overall nodal
force vector.

)en, the eigenvalue problem for a spectral element
structural system can be reduced from equation (16) to

Sg(ω)dg � 0, (17)

and the infinite eigenfrequencies ωi can be determined using
the condition that

detSg ωi( ) � 0, (18)

at ω�ωi. Here, Sg(ω
∗) is a transcendental function of fre-

quencyω, and thus equation (18) is a transcendental eigenvalue
problem with exact eigensolutions. )e Wittrick–Williams
(W–W) algorithm [41–43] is employed here to search for the
eigenfrequencies without missing any eigenvalues. In this al-
gorithm, the total number of eigenfrequencies below an ar-
bitrarily chosen frequency ω∗ can be given by

J ω∗( ) � Jc ω∗( ) + s Sg ω∗( )[ ], (19)

where J(ω∗) is the total number of eigenfrequencies below
ω∗, s[Sg(ω

∗)] is the sign count of Sg(ω
∗) and is computed as

the number of negative elements on the diagonal of the
upper triangular matrix of Sg(ω

∗) that is obtained by
Doolittle decomposition. Jc(ω

∗) is the total number of
eigenfrequencies below ω∗ under the condition that all
displacements dg are constrained to zero. Jc(ω

∗) for sim-
plified planar frame elements can be obtained from

Jc ω
∗( ) �∑N

j�1

JLj ω
∗( ) + JFj ω∗( )[ ], (20)

after dividing the complete structure into N frame members
with fixed ends, where JLj(ω

∗) and JFj(ω
∗) are the numbers

of the longitudinal and flexural eigenfrequencies below ω∗ for
the jth frame member with fixed boundaries, respectively.
)e iteration procedure implemented to compute the rth
eigenfrequency below ω∗ resembles the dichotomies algo-
rithm, which was detailed in the study of Li and Yang [23].

For a significantly minimized system scale, the total
numbers of nodes and elements are 447 and 881 for each
sandwich model, respectively. Since the SEM can provide
exact frequency-domain solutions without refined mesh
discretization as the frequency increases [39], the mesh
connections remain unchanged regardless of the material
properties, structure size, or targeted frequencies. Although
the spectral matrices in equation (16) need repeated assembly
and computation at each frequency step, the SEM still pro-
vides an extremely accurate and time-saving alternative for
dynamic problems involving cellular sandwich structures.

3.2. Sound Radiation and Transmission Loss Analysis. )e
considered sandwich model with DAH cores is exposed to a
planar incident wave of acoustic pressure on the bottom face
sheet as shown in Figure 6.)emodel is located between two
rigid baffles of infinite length. )e vibration of the bottom
face sheet is transmitted through the cellular core to the
upper face sheet; then, the sandwich structure radiates sound
in the fluid domain. )e ends of the structure, both ends of
the face sheets, and the cellular core ribs adjacent to the ends,
are all constrained in the x and y directions with pinned
boundary conditions. )e contribution of the airborne
transmission to the total radiated sound power is neglected
because of the high structural stiffness [40, 44], and thus only
the structure-borne transmission is considered by following
most of the relevant studies referred in Section 1.

)e acoustic incident wave is harmonic with a unit
amplitude |pi| � 1 Pa and an incidence angle α with respect
to the y-axis. )e incident sound powerWi over the bottom
face sheet is given by

Wi �
pi

∣∣∣∣ ∣∣∣∣2LBcos α
2ρaca

, (21)

where ρa and ca represent the fluid density and sound speed,
respectively, and LB represents the bottom face sheet. )e
spectral nodal force can be obtained by equation (12). )e
transmitted sound pressure pt(r′)e−jωt at an observation
point r′ can be computed by Rayleigh’s first integral for one-
dimensional baffled radiators in two dimensions [45]:

pt r′( ) � ρacak
2

∑
LU

∫L(e)i
0
v(r)H(1)

0 k r− r′
∣∣∣∣ ∣∣∣∣( )dξ, (22)

where j is an imaginary unit, k�ω/ca is the acoustic wave-
number, r is the position of the fluid particles on the upper face
sheet LU with a normal velocity v(r), |r− r′| is the distance
between the fluid particle and observation point, and H(1)

0

i

j

ξ

ψ

φ′

u(ξ, t)

w(ξ, t)

x

y
L(e)

Figure 4: Global and local coordinate systems and DOFs, where
(L)(e) denotes the element length.

6 Shock and Vibration



denotes a Hankel function of the first kind. 
e transmitted
sound powerWt can be derived via integration over the upper
face sheet [17–19, 21–23] by substituting equation (22) into

Wt �
1

2
Re∫

LU

pt r′( )v∗ r′( )dξ � 1

2ρaca
∫
LU

p2t r′( )∣∣∣∣ ∣∣∣∣dξ,
(23)

where ∗ denotes the complex conjugate.
e spectral element
shape functions are transcendental in the integrands, and a
fifth-order Gaussian quadrature is used to compute the
numerical integral of the radiated power with a compromise
between computational accuracy and efficiency.
e angle of
wave incidence (α� 0°) is specified for simplicity in this
study. Accordingly, the transmission loss is defined as

STL � 10 log10
Wi

Wt

( ). (24)


e STL characteristics of a panel can be generally di-
vided into four distinct regions: stiffness, resonance, mass,
and coincidence regions from low to high frequencies
[18, 25]. Moreover, the theoretical STL of an infinitely long
and thin panel was estimated by Griese et al. [18]:

STL(ω) � 10 log10 1 +
mp ω cos α

2ρaca
( )2 

≈ 20 log10 mp f( )− 42,
(25)

wheremp is the mass per unit surface area of the panel and f
is the frequency. 
e final expression is known as the mass
law for sound transmission loss under a normal planar
incident wave when α� 0° and mp� 48.6 kg/m for the
considered models that are assumed as single panels in this
scenario.

4. Vibration and Sound Transmission

Performance of the Sandwich Panels with

DAH Cores

4.1.Natural Frequencies. 
e considered models are treated
as undamped linear elastic systems because the effects of
damping on natural frequency searching are generally
small [39]. 
e sandwich panels are simply-supported by
pin joints, as illustrated in Figure 6.
e natural frequencies
that were computed via the W–W algorithm (SEM) are
listed in Table 1 and plotted in Figure 7 for each considered
model.

For the uniform models 1 to 5, the fundamental fre-
quency that represents the structural bending stiffness de-
creases as the feature angle θ2 of the DAHs increases. 
is
result is associated with the low E∗y of the unit cells with a
large feature angle, as shown in Figure 3(a), and the de-
viations in the panel thicknesses also have an effect. How-
ever, the high-order natural frequencies of the uniform
models with large θ2 values are larger than those of the

Q(ξ) M(ξ)

N(ξ)
Q(ξ)

N(ξ)

M(ξ)
Qj

Mj
Nj

Qi

Mi
Ni

Wi

Ui

Θi

Wj

Uj

Θj

ξ

ψ

Nodal displacement

Nodal force Internal force

Figure 5: Sign convention for a Bernoulli–Euler beam element.

x

y

Sandwich panel

Distributed load induced by
incident pressure wave

α

Rigid baffle

Fluid domain

Pin joints

pi = |pi|e
j(ωt+kxsinα–kycosα)

Figure 6: Acoustic loading and boundary conditions for a baffled, simply supported sandwich panel with a DAH core.
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models with small θ2 values until the feature angle exceeds
60°. )is result implies that the static mechanical indices
cannot completely reflect the structural dynamic behavior at
high-order natural frequencies. Concerning the gradient
models, the natural frequencies of model 7 are always higher
than the frequencies of model 6, mainly due to the large
differences in the panel thickness.

)e vibrating modes of the corresponding natural fre-
quencies for the representative models are depicted in
Figure 8. )e modes of a global vibrating mode shape
correspond to global natural frequencies, and the others
correspond to local natural frequencies. )e figures in the
left column illustrate the third global bending modes when
the entire sandwich panel bends in the form of a curved
beam in two dimensions. )e figures in the right column
present the foremost local frequencies when the cellular
cores are partly distorted. It can be observed that the
foremost local frequencies occur when the initially straight
curves become bended as plotted in Figure 7. )e varying
core configurations of the considered models yield diverse
mode shapes, and the gradient DAHs within nonuniform
cellular cores further provide flexible vibrating deformation
mechanisms.

4.2. Dynamic Responses and Sound Radiation. For dynamic
responses, damping can be introduced by a complex
modulus E∗� Es(1 + jη) with a structural damping factor
η� 0.01; in this case, aluminum damping is considered in
addition to the damping effects of the hinged connections of
the cell ribs [17]. )e acoustic loading and boundary con-
ditions are the same as illustrated in Figure 6, and the dy-
namic deformation of the considered models is depicted in
Figure 9 at 500, 1000, and 1400Hz.

To visualize the sound radiation distributions after vi-
brating deformations as shown in Figure 9, the radiated
sound pressure levels (SPLs) are also presented in Figure 10
for models 3 and 6 at 500, 1000, and 1400Hz.)e amplitude
of the incident pressure is 1 Pa (94 dB), and the reference
pressure p0 is 20 μPa. As plotted in Figure 10, the fluid
observation area ranges from nondimensionalized values of
x� –0.5 to x� 0.5 and from nondimensionalized values of
y� 0 to y� 1. Additionally, the sandwich panels are located
in the middle between x� –0.1 and x� 0.1 at y� 0.

4.3. SoundTransmissionLoss. In this study, the STL responses
of the considered models with varying tailored DAH cores

Table 1: Series of the natural frequencies of the representative uniform and gradient DAH sandwich models via SEM (Hz).

Model 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Model 1 88.8 210.5 357.8 516.1 677.5 784.2 836.4 910.0 923.1 928.0
Model 2 86.6 210.6 364.3 532.4 706.7 856.6 881.2 1049.6 1129.2 1153.1
Model 3 83.7 207.3 363.5 536.9 718.7 885.3 904.1 1081.8 1255.4 1333.3
Model 4 80.6 201.9 357.0 530.6 713.6 882.0 902.6 1080.9 1257.4 1326.9
Model 5 77.8 194.6 342.3 503.4 581.2 615.7 666.1 667.3 719.9 816.7
Model 6 74.4 182.5 317.9 467.5 623.9 781.5 870.3 937.1 1087.5 1179.9
Model 7 94.5 230.2 395.0 565.8 729.2 823.6 878.1 969.4 1003.0 1023.0
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Figure 7: )e first ten natural frequencies of the considered (a) uniform and (b) gradient DAH sandwich models.
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were primarily investigated in the region from 1 to 1500Hz,
which covers the stiffness and resonance regions based on the
natural frequencies discussed in Section 4.1.)us, the acoustic
performance at higher frequencies falls beyond the scope of
this research. Two uniform hexagonal honeycomb sandwich
models based on the configurations in [18, 22] are depicted in
Figure 11, for comparison with the DAH sandwich panels.)e
compared hexagonal honeycomb sandwich models have the

same unit cell arrangement of 40× 5, overall dimensions of
2m× 50mm, and total weight of mp� 48.6 kg/m for the
baseline panel introduced in Section 2.2.

To verify the effectiveness and accuracy of the vibroa-
coustic calculation method in this paper, the numeric
results compared with those of [18] are shown in Figure 12,
which indicates that the sound transmission results via the
proposed method agree quantitatively with those of the
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Model 6

Model 7

363.5 Hz (3rd) 885.3 Hz (6th)
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823.6 Hz (6th)
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(b)(a)

Model 1357.8 Hz (3rd) 784.2 Hz (6th)

Model 5342.3 Hz (3rd) 581.2 Hz (5th)

Figure 8: Vibrating mode shapes of the corresponding natural frequencies for the representative models: (a) the third bending global modes
and (b) the foremost local modes.
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Figure 9: Vibrating deformations of the considered DAH sandwich models: (a) model 3 and (b) model 6 at 500, 1000, and 1400Hz, where
δm denotes the displacement magnitude of the middle bottom face sheet.
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Figure 10: SPL distributions of the considered models: (a) model 3 and (b) model 5 at 500, 1000, and 1400Hz.
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published materials. Moreover, the STLs of the considered
models from 1 to 1500Hz are shown in Figures 13(a)–13(c)
where the mass law trends are also plotted. )e STL dips as
the low frequencies align with the odd-order bending modes
listed in Table 1 because the considered symmetric models
strongly vibrate under symmetric excitation when odd
bending resonance is encountered. )e effective Young’s
modulus E∗y is selected as a function of the panel stiffness
following [18, 22]. Although the DAHs in the considered
models yield a smaller E∗y than the hexagonal honeycombs as
shown in Figures 3 and 11, the modal density of the DAH
sandwich models is much larger than the modal density of
the sandwich panels with hexagonal cellular cores. )is
finding implies that sandwich panels with a DAH core yield
a larger in-plane bending stiffness.

)e overall average STL (STLo) of the considered models
is shown in Figure 13(d) to assess the STL performance as an
acoustic evaluation metric. A model that radiates less sound
yields a larger STLo. It can be concluded that a uniform
sandwich model with a small θ2 or large NPR yields the best
sound insulation performance, as shown in Figures 13(a) and
13(d). )e STLo of model 6 is larger than the STL of model 7,
as shown in Figure 13(b), and the STL curve shapes of models
6 and 7 resemble the STL shapes of the uniform models
(models 1 and 5) that feature the same θ2 for the bottom layer,
respectively. As plotted in Figure 13(c), the STLo of model 9
with auxetic hexagonal honeycombs is larger than that of
model 8, which is in agreement with the findings in
[17, 18, 22]. Moreover, although both models 8 and 9 with

conventional hexagonal honeycomb cores transmit less sound
than the considered DAH sandwich models, their funda-
mental and high-order natural frequencies are far lower than
those of the sandwich models with DAHs, as illustrated in
Figure 13(c). )is result indicates that the DAH sandwich
panels have a stronger bending stiffness with desirable noise
attenuation performance.

5. Programmable Structural-Acoustic
Optimization of the Gradient DAHs for
Maximum STLs

5.1.Mathematical Formulations for Structural-Acoustic Shape
Optimizations. )e structural-acoustic optimization prob-
lem is defined as

find Θ2,

minimize −STLa Θ2;f1, f2( ),
subject to Θ

L
2 ≤Θ2 ≤ΘU

2 ,

± Θ
(i+1)
2 −Θ(i)

2( )≤ 0,
± Θ

(i)
2 −Θ(i+1)

2( )≤ β, i � 1, 2, . . . , Nr − 1,
f0 Θ2( )−f0 ≤ 0,


(26)

whereΘL
2 andΘ

U
2 are the lower and upper bounding vectors

of Θ2, respectively; STLa(Θ2) is the average STL between the
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Figure 11: )e compared sandwich models with uniform hexagonal honeycomb cores: cell feature angles of (a) 10° and (b) −10°.
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specified frequencies of f1 and f2; f0(Θ2) is the fundamental
frequency of the optimized model; f0 is the minimum al-
lowable natural frequency; and β is the interval of θ(i)2 set to
avoid element overlap. In this scenario, ΘL

2 � 45
°, ΘU

2 � 65
°,

and β� 10°.)e second and third constraints limit the DAHs
with gradient Θ2 sequences, where the positive sign rep-
resents a decreasing gradient Θ2 (a gradient INPR) and the
negative sign represents an increasing gradient Θ2 (a gra-
dient DNPR). )e baseline model was employed with model
3 due to its moderate mechanical and acoustic performance,
with values of f0� 83.7Hz and STLo� 39.67 dB.

)e programmable design was achieved via a global
optimization method based on the MultiStart algorithm. As
a workflow [23], the MultiStart algorithm can automati-
cally distribute the tasks in a problem and simultaneously
generate a series of stochastic starting points for multiple
processes or processors with parallel computing. Sub-
sequently, the problems run independently from the cor-
responding start points, and the MultiStart algorithm
finally combines the distinct local minima into a global
vector to obtain a relatively optimized solution, where the

chosen local solver involves sequential quadratic pro-
gramming (SQP). In this scenario, the procedure was ex-
ecuted with 1 × 102 random start points, and the iteration
tolerance for the local solver was 1 × 10−3 to maintain
computational efficiency and reasonability. )e optimi-
zation procedures were executed for specified tonal and
frequency band cases.

5.2. Optimal Design for Specified Tonal and Frequency Band
Cases. Here, a tonal excitation at 1400Hz, which was close
to an STL dip in the baseline model, was chosen for the tonal
case. )e STLs of the baseline and optimized gradient DAH
sandwich models are compared in Figure 14(a), and the
iterative curves converging to the optimum solutions are
plotted in Figure 14(b). )e configurations of the optimized
models are shown in Figure 14(c), and the mechanical
properties of the gradient DAH cores are given in
Figure 14(d). In addition, the key parameters of the optimal
design are listed and compared in Table 2, and both of the
optimized models satisfy the high strength constraint and
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yield feasible core geometries. )e STLa increments are
approximately 9.72 dB for the optimized gradient DNPR
model and 16.24 dB for the optimized gradient INPR model.
)e SPL distributions and dynamic deformations at 1400Hz

are illustrated in Figure 15 for the optimized models. As
illustrated in Figures 15(b) and 14(a) for the optimized
gradient INPR model, localized resonance occurs and the
STL exceeds the mass law curve value at the target frequency.
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Figure 14: Optimal design at 1400Hz: (a) STLs of the baseline and optimized models; (b) iteration steps; (c) configurations of the optimized
gradient NPR models; (d) mechanical properties of the DAHs in the optimized gradient NPR models.

Table 2: Characteristic parameters of the baseline and optimized models for optimal design at 1400Hz.

Model Θ2 (deg) STLa (dB) f0 (Hz) STLo (dB)

Baseline [55.00, 55.00, 55.00, 55.00, 55.00] 39.37 83.72 39.67
Optimized gradient DNPR [45.98, 46.53, 46.53, 49.00, 51.03] 49.09 83.99 40.24
Optimized gradient INPR [64.91, 64.91, 56.90, 54.96, 45.09] 55.61 95.27 37.68
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)e double arrowhead unit cells adjacent to the bottom face
sheet absorb the majority of the vibrating energy; hence, the
optimized gradient INPR model effectively transmits the
least sound as a result.

Here, the chosen computational frequency interval was
20Hz for the frequency band from 1000 to 1500Hz. )e
optimized information is depicted in Figure 16, and the
characteristic parameters are listed in Table 3. )e results
demonstrate that the optimized solutions strictly satisfy the
constraints of the bending stiffness and avoid element
overlap. Furthermore, the reduction in average sound ra-
diation power is approximately 2.51 dB for the optimized
gradient DNPR model and 5.03 dB for the optimized gra-
dient INPR model compared to the STLa of the baseline
model. More optimized solutions could be obtained by
increasing the number of start points, decreasing the iter-
ation tolerance, or using larger integral orders.

5.3. Comparison and Discussion of the Sound Transmission
Performance of the Optimized and Considered Models.
)e optimized gradient INPR models can achieve better
insulation of radiated sound power than can the optimized
gradient DNPR models, with improvements of 6.52 dB and
2.52 dB for the tonal and frequency band cases in this
scenario, respectively. As plotted in Figures 14(d) and 16(d),
the double arrowhead unit cells adjacent to the fluid domain
feature a large |]∗yx| and yield a low E∗y in the gradient INPR
models, and vice versa. )e gradient INPR models enable a
programmable DAH core for a high STLa that even exceeds
the mass law curve values and yield a high bending stiffness;
however, the use of gradient INPRs generally sacrifices
overall sound insulation, with a lower STLo. It can be
concluded that the DAHs with large NPRs in upper layers
improve the potential for obtaining an optimized STL within
a specified frequency region, following the phenomenon that

a uniform DAH sandwich model with a large NPR yields
high sound insulation performance. Referring to the STL
curves in Figures 14(a) and 16(a), the DAHs in the bottom
layers mainly affect the STL curve shapes, as discussed in
Section 4.3, and therefore, the overall noise insulation
properties are limited.

6. Conclusions

Sandwich structures composed of uniform and gradient
DAH cores across the panel thickness were presented, and
the vibration and sound transmission properties of the
proposed structures were evaluated by comparing uniform
and gradient DNPR and INPR models, as well as uniform
hexagonal honeycomb sandwich panels. )e following
conclusions were drawn from the study:

(1) Regarding the vibration properties, the various core
configurations of the gradient sandwich DAH panels
yield more diverse mode shapes and provide more
flexible vibrating deformation mechanisms than do
the uniform models.

(2) With respect to the sound transmission performance
with normal incidence, the uniform DAH sandwich
models with large NPRs generally yield better sound
insulation behaviors. Moreover, the considered
DAH sandwichmodels insulate less sound but are far
stiffer than the conventional hexagonal honeycomb
sandwich models.

(3) )e programmable optimized gradient INPRmodels
yield higher STL values than the optimized DNPR
models, with improvements of 6.52 dB and 2.52 dB
for the specified frequency cases and a large bending
stiffness; however, a lower overall sound insulation
was observed. For the gradient sandwich models, the
DAHs with large NPRs in the upper layers improve
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Figure 15: SPL distributions and dynamic deformations of the optimized models at 1400Hz: (a) the optimized gradient DNPR model and
(b) the optimized gradient INPR model.
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the potential for obtaining an optimized target
STL, and the DAHs in the bottom layers affect
mainly the STL curve shapes and govern the overall
noise insulation properties.

(4) Further consideration could be given to the
vibroacoustic performance and design of the pro-
posed structures at high frequencies and under
other excitation conditions. Furthermore, the design
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Figure 16: Optimal design from 1000 to 1500Hz: (a) STLs of the baseline and optimizedmodels; (b) iteration steps; (c) configurations of the
optimized gradient NPR models; (d) mechanical properties of the DAHs within the optimized gradient NPR models.

Table 3: Characteristic parameters of the baseline and optimized models for optimal design from 1000 to 1500Hz.

Model Θ2 (deg) STLa (dB) f0 (Hz) STLo (dB)

Baseline [55.00, 55.00, 55.00, 55.00, 55.00] 45.36 83.72 39.67
Optimized gradient DNPR [46.71, 47.14, 47.14, 48.31, 51.53] 47.87 83.73 40.16
Optimized gradient INPR [65.00, 65.00, 55.51, 46.78, 46.25] 50.39 92.91 38.31
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variables can also be extended to consider more than
a single feature angle. Moreover, further studies
could be conducted to investigate gradient auxetic
metamaterials with varying topologies.
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