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ABSTRACT 

Two tubes in tandem and normal t o  flow are studied on the basis of the 

unsteady flow theory. Motion-dependent fluid forces are measured in a water 

channel for the pitch-to-diameter ratio of 1.35. From the measured fluid forces, 

fluid damping and stiflhess are calculated as a function of reduced flow velocity and 

several Reynolds numbers. Once fluid-damping and fluid-stiffhess coefficients are 

known, coupled vibration and stability of two tubes in crossflow can be predicted. 
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1. INTRODUCTION 

Flow-induced vibration of two tubes in crossflow has been studied extensively. 

It includes vibration in stationary fluid, turbulent buffeting, vortex-induced 

vibration, and wake induced flutter. Several reviews were published by Chen 

(1986) and Zdravkovich (1977). 

The flow field around two tubes is very complex. It depends on Reynolds 

number and tube arrangement, as well as on incoming flow conditions. The 

interaction of fluid flow with tube oscillation is even more complicated. Various 

approximate theories have been developed t o  describe the tube response in 

crossflow. At this time, it remains difficult to predict the response of the two tubes 

because the fluid forces acting on the tubes and the motion-dependent fluid forces 

cannot be calculated with confidence. 

On the basis of the available information, the general characteristics of tube 

response in crossflow are not well understood in the various parameter ranges, 

since most of the experimental data were obtained for specific applications. A 

systematic study is needed t o  quantify the response of two tubes under different 

flow conditions. The objective of this paper is to present an unsteady flow theory for 

two tubes normal t o  the flow, or two tubes in tandem, with a pitch-to-diameter ratio 

of 1.35 (see Fig. 1, where D is tube diameter). 

For two tubes oscillating in crossflow, the fluid forces acting on the tubes are fi 

and gi (i = 1,2) in the x and y directions. The corresponding tube displacement 

components of the tubes are ui and vi. The fluid forces acting on the tube due to the 

tube motion are given by (Chen 1987) 
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and 

where p is fluid density; R is tube radius; t is time; o is circular frequency of tube 

oscillations; U is flow velocity, a$, p 3 ,  ojk, and 23 are added mass coefficients; a&, 

P;k, b;k, and Z;k are fluid damping Coefficients; and Ctik, P&, C$, and Tik are 

fluid-stiffness coefficients. The main purpose of this study is t o  measure the 

motion-dependent fluid-force coefficients for two tubes in crossflow. Once these 

fluid-force coefficients are obtained, tube response in various conditions can be 

analyzed on the basis of the unsteady flow theory. 

2. EXPERIMENTAL SET-UP 

The two tubes tested are shown in Fig. 1, where the tubes are normal to  flow 

(Fig. la)  o r  in tandem (Fig. lb). A water channel, 18 in. wide and 15 in. deep, is 

used. Water is pumped into an input tank and then passes through a series of 
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screens and honeycombs and finally into the rectangular channel. The water level 

is controlled by standpipes in the output tank and the flow is controlled by the 

running speed of the pump motor. 

Flow velocity is measured with a current flow meter. The rate of propeller 

rotation is directly proportional to  stream velocity and therefore the sensor output 

signal is not effected by other factors, such as water conductivity, temperature, and 

suspended particulates. 

Tubes are supported by flexible tubes attached t o  the stainless steel tubes with 

a 2.54-cm OD, a 0.071-cm wall thickness, and a 38.1-cm length. Two sets of strain 

gauges are placed on the outer surface of the smaller tube where the outer surface 

of the tube has been machined to  give an octagonal cross section (Chen, Zhu, and 

Jendrzejczyk 1994). The natural frequencies of the tubes are as follows: 

Tube No. Total Mass (g) Natural Frequencies (Hz) 

x Direction Y Direction 

1 194 9.9 11.6 

2 198 10.3 10.3 

The force transducers are calibrated by the dynamic method. The tube is 

connected to  an exciter and is excited at a given fkequency and amplitude in air or 

water. Then, the inertia forces due t o  the sinusoidal oscillations are used to  

determine the calibration constant. 
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3. COUPLED VIBRATION IN STATIONARY FLUID 

When two tubes are placed at a pitch-to-diameter of 1.35 in water, fluid 

coupling can be significant. The fluid coupling effect can be accounted for using the 

added mass matrices (Chen 1975)'. The added mass was calculated from potential 

flow theory and experiments were performed t o  confirm the theoretical results fiom 

the indirect measurement method of the effect of natural frequencies for tubes 

submerged in fluid (Chen and Jendrzejczyk 1978). 

In this study, a direct method is used t o  quantzy the effect of fluid coupling. In 

stationary fluid, U = 0; Eqs. 1 and 2 can be written as 

at2 

The theoretical values of the added mass coefficients for two tubes normal to  flow 

with pitch-to-diameter ratio of 1.35 are given as follows: 

1 1.0526 -0.2845 

-0.2845 1.0526 
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1 
1.0526 0.2845 

0.2845 1.0526 

Tjk = ojk= 0, j,k = 1,2. 

In stationary fluid, added mass can be measured by measuring the forces 

acting on the tubes due t o  a sinusoidal excitation. Figures 2a-2d show force 

components, fi and gi due t o  the excitation of u l  (Fig. 2e). It is noted that f i  and g2 

are approximately in-phase with u l  while f2 and gl are approximately out-of-phase 

with u1. From the time histories, and Eqs. 3 and 4, the added mass coefficients, ajh 

pjk, Cjk, and Tjk and damping coefficients, E&, &, Eik, and Tik, c a n  be calculated. 

Figure 3 shows the experimental data of the added mass and fluid-damping 

coefficients as a function of excitation amplitude at three frequencies. The 

measured added mass coefficients, all and a21, agree well with the analytical 

solution. Fluid-damping coefficients in stationary fluid are small. In this case, Ojk 

and 2k are zero theoretically and approximately zero experimentally. This direct 

measurement method can be used t o  measure added mass and fluid damping 

efficiently. 

4. MOTION-DEPENDENT FLUID FORCES 

The unsteady flow theory is used in this study. If tube 1 is excited in the x 

direction, its displacement is given by 

u1= u cos at. 
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The fluid force acing on the two tubes can be written 

f1= -pu 1 2  c~~ucos(ot t 411), 

2 

f2 = -pU2c21ucos(wt 1 + on), 
2 

where ell, c21, dll ,  and d21 are coefficients and (q1, $21, ~ 1 1 ,  and yr21 are phase 

angles. From Eqs. 1,2, and 7, we can also write the fluid-force components as 

" 1 f1= ( p n ~  2 2  o all+pU'a11 ucosot-pu'ailusinot, 

" 1 f2 = (pnR 2 2  o a21  +pU2a21 u COS at - pU2aap sin at, 

" 1 g l =  ( p n ~  2 2  o q1+pu 211 ucoswt-pu2Tilusinot, 

1 g2 = ( p n ~  2 2  o 221 + pu2Ti1 u cos ot - pu2Ti1u sin ot. 

Comparing Eqs. 7 and 8 yields 



and 

Other fluid-force coefficients can be measured by exciting tube 1 in the y direction 

and tube 2 in the x and y directions. 

The following tests have been performed: 

Two tubes normal t o  flow (Fig. la): Tube 1 was excited in the x and y 

directions. 
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Two tubes in tandem (Fig. lb): The upstream tube, tube 1, and the 

downstream tube, tube 2, are excited in the x and y directions. 

In each test, the excitation frequency vanes from 0.1 t o  2.3 Hz. For two tubes 

normal to flow, five flow velocities are tested: 0.05,0.07,0.113,0.146, and 0.166 d s .  

For all other tests, three flow velocities are tested: 0.07, 0.11, and 0.15 d s .  

Reynolds number varies from about 1200 t o  4200. In all tests, when the flow speed 

was set at 0.15 d s ,  different excitation levels were given t o  determine the fluid- 

force coefficients as a function of excitation level. 

Fluid-damping and fluid-stiffness coefficients are obtained for both two tubes 

normal to flow and two tubes in tandem. The following data are available: 

Two Tubes Normal to  Flow: Fluid-force coefficients due to  the motion of tube 1 

in the x and y directions. 

Two Tubes in Tandem: Fluid-force coefficients due t o  the motion of tube 1 in 

the x and y directions and due t o  the motion of tube 2 in the x and y 

directions. 

To limit the length of this paper, only the data for two tubes normal to  flow are 

presented, Figs. 4-9. Readers who are interested in additional data can contact the 

authors for additional force coefficients. 

Note that Figs. 4-7 show the fluid-force coefficients as a function of reduced 

flow velocity at several flow velocities while Figs. 8 and 9 show the fluid-force 

coefficients as a function of excitation level. 
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From the data, some general characteristics of motion-dependent fluid-force 

coefficients are noticed: 

1. High Reduced Flow Velocity 

When the reduced flow velocity is high, say larger than 20 and some larger 

than 10, all fluid-force coefficients are approximately independent of reduced flow 

velocity. This shows that when the flow velocity is high in comparison with cylinder 

velocity, the fluid forces resulting from tube motion can be quantified at a specific 

velocity and its results can be applied t o  other flow velocities. In this range, 

measurements of fluid forces can be significantly reduced. This characteristic is not 

only valid for circular cylinders, but also valid for other geometries (Chen and 

Chandra 1991). 

2. Reynolds Number 

At low reduced flow velocity, fluid-force coefficients depend on the reduced flow 

velocity, Reynolds number, and excitation amplitude. Similar characteristics have 

been noticed for a single cylinder (Chen, Zhu, and Cai 1995). This can be seen from 

the results given in Figs. 4-9. For example, the coefficient for Ur less than 8 are 

shown in Fig. 10. The peak values decrease with flow velocity and are shifted 

toward larger Ur. This trend is similar to  those of a single tube. At lower reduced 

flow velocity, fluid-force coefficients are much more complicated. 
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5.  DYNAMIC RESPONSE IN CROSSFLOW 

Consider two identical tubes with radius R subjected t o  crossflow as shown in 

Fig. 11. The axes of the tube are parallel t o  the z-axis and flow is parallel to the x- 

axis, The subscript j is used t o  denote variables associated with tube j. The 

variables associate with the motion in the x and y directions are flexural rigidity EI, 

cylinder mass per unit length m, structural damping coefficient Cs, and 

displacement uj and vj . The equations of motion for tube j in the x and y directions 

are (Chen 1987) 

where fj and gj are the excitation forces. Note that fluid-damping coefficients and 

fluid-stiffness coefficients are functions of reduced flow velocity U, (= U/fD; f is the 

oscillation frequency of the cylinders in flow). 

The in-vacuum variables are mass per unit length m, modal damping ratio cv 
and natural frequency fv (= ~ / 2 7 r ) .  The values for fv and cv can be calculated from 
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the equation of motion and appropriate boundary conditions o r  from tests in 

vacuum (practically in air). The modal function of the cylinder vibrating in vacuum 

and in fluid is ~ ( z ) ;  

J;y2(z)dz = 1 

where t is the length of the cylinders. Let 

where aj(t) and bj(t) are functions of time only. Calculation of Eqs. (11) and (12) 

yields 

where the dot denotes differentiation with respect to  time and 
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U 
fvD ’ 

uv=- 

Constrained Modes 

When one the tubes is allowed to oscillate in a specific direction while the other 

tubes are rigid, the equations of motion can be simplified significantly. For 

example, tube 1 is oscillating in the x direction, its equation of motion based on Eq. 

15 becomes 

dajj P.i 
2 d ajj 

+2ca-+a a3 = 
dt2 dt l+ya j j  , 

where 



14 

Note that o and are the circular frequency and modal damping ratio, respectively, 

for the tube in crossflow. CM is called an added mass coefficient for the tube in flow; 

when Ur = 0, it is equal to ai. When Ur is not equal to  zero, CM depends on Ur as 

well as on aj'j, which in turn, depends on Ur and oscillation amplitude. 

From Eqs. 18 it is noted that when 4 is positive, it will contribute t o  negative 

damping to  the system. In some cases, the resultant damping may become zero and 

the system will become unstable. From Eq. 19 the critical reduced flow velocity at 

which the modal damping ratio is zero can be calculated from 

where 6 is a mass-damping parameter (6 = 2n<,m/pD2). This is the critical flow 

velocity for fluidelastic instability. 

Equations 18-20 can also be applied t o  oscillations in the y direction. Replacing 

all a by p in Eqs. 18-20 yields the equations of motion and stability criterion for 

constrained mode in the y direction. From Eqs. 19 and 20, it is noted that when the 

value of the fluid damping coefficient, OSJ or  p i ,  is positive, the tube may become 

unstable. The region depends on tube arrangement, location, and flow velocity. 

From the fluid-force coefficients, oJj is found t o  be positive in the regions given in 

Table 1. 
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Table 1. Regions of reduced flow velocity in which fluid-damping coefficients, ail 

and ais, are positive 

Flow Velocity Reduced Flow 

' W S )  Velocify 

Two Tubes Normal to Flow 

ail or 4 2  0.05 

0.07 

>OS3 

1.7 to 4.3 

1.8 t o  4.7 

2.3 to 5.6 

Two Tubes in Tandem 

4.1 

ai2 

0.07 >6.0 

0.11 >7.1 

0.15 >7.4 

0.07 >3.2 

0.11 >3.6 

0.15 >3.6 

Fluid-damping coefficients in the y direction pi1 and E2 are always negative; this 

means that oscillation in the y direction will not become unstable. 

The natural frequencies of constrained modes are affected by aij and pij-  When 

the fluid-stiffness coefficient is positive, the frequency is reduced. The regions in 

which ail and 0r;iz are positive are given in Table 2. 
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Table 2. Regions of reduced flow velocity in which fluid-stiflhess coefficients, ail  

and ai2, are positive 

Flow Vel0 city Reduced Flow 

W S >  Velocity 

Two Tubes Normal to  Flow 

4 1  or G2 0.05 c1.7 

0.07 c2.1 

0.113 4 . 5  

0.146 ~3.2 

0.166 c3.4 

Two Tubes in Tandem 

0.07 

0.11 

0.15 

0.07 

0.11 

0.15 

>12.5 

>14.0 

>15.8 

>1.8 

>2.2 

5.2 

Fluid-stiffness for oscillations in the y direction, & is negative for two tubes normal 

to  flow and the upstream tube. The downstream tube p22 becomes positive when U, 

is larger than 8.2. 
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Coupled Vibration 

In flowing fluid, from Eqs. 15 and 16 the natural frequencies and modal 

damping ratios of the system can be calculated as follows: 

It should be noted that fluid-damping and fluid-stiflhess coefficients are functions of 

Ur (= U/fD); therefore, a numerical method is needed to  calculate f and 5.  

The stability of a cylinder array is determined from equations (15) and (16). 

The nondimensional parameters in equations (15) and (16) are y, cv, Uv, %,cjjk, Q, 

pjk, 4 k ,  o$o @k, osj'k, oyk, $k , and &k. Therefore, the critical flow velocity can be 

written in a functional form as 

For two tubes, if fluid-force coefficients are independent of Ur, then 

uv = F(Y,CV), 
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i.e., the critical flow velocity is a function of mass ratio and damping ratio only. 

Fluidelastic Instabilitv in Lipht Fluid 

In a light fluid, fluid inertia and damping associated with the quiescent fluid 

can be neglected. Equations (15) and (16) can be written 

In a light fluid, all fluid-force coefficients are approximately independent of Ur and 

the oscillation frequency is approximately equal to  o, (i.e., o, = of>. Then yU, plays 

the same role as c,; both of them contribute to  system damping. The modal 

2 

damping for a particular mode can be written 

where C depends on fluid-damping and fluid-stiffness coefficients. Instability 

occurs if C, = 0; i.e., 

0.5 

uv =;($) 

or 



0.5 

f,D-( pD2 ) ' 

U 2nr,m 
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Thus, the critical flow velocity is a function of the mass-damping parameter and 

proportional to its half-power. 

CLOSING REMARKS 

In the past, the motion-dependent fluid forces for two tubes were not quantified 

in general. In this study, fluid-damping and fluid-stiffness coefficients for two tubes 

normal t o  flow and two tubes in tandem with the pitch-to-diameter ratio of 1.35 are 

presented as a function of reduced flow velocity for a series of Reynolds number. At 

high reduced flow velocity, the fluid-force coefficients are practically independent of 

reduced flow velocity. However, at low reduced flow velocity, fluid-damping and 

fluid-stiffness coefficients depend on reduced flow velocity, Reynolds number, and 

oscillation amplitude. 

Once fluid damping and fluid stiffness are known, the response of two tubes in 

crossflow can be predicted on the basis of the unsteady flow theory. Fluid damping 

and fluid stiffness play an important role in determining tube response. The system 

may become unstable due t o  motion-dependent fluid forces. For example, fluid- 

damping-controlled instability can occur even in constrained mode. 

Various approximate theories for two tubes in crossflow are useful in specific 

conditions. The unsteady flow theory accounts for the interaction of tube motions 

and flow field adequately; it can be applied t o  various conditions. The key elements 

of the unsteady flow theory are the motion-dependent fluid forces. It  requires an 
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extensive effort to  obtain these forces experimentally. Some studies have been 

published t o  calculate these forces numerically (Sadaoka and Umegaki 1993, 

Ichioka et al. 1994). It is expected that once it is developed, computation fluid 

dynamics method will be more economic. 
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Figure Captions 

Two tubes in crossflow 

3a 

3b 

4 

5 

Motion-dependent fluid forces (Fig. 2a, 2b, 2c, and 2d) acting on the two 

tubes with the pitch-to-diameter ratio of 1.35 (Fig. la) due t o  motion ul  

(Fig. 2e) 

Added mass coefficidnts, all and a21, and fluid-damping coefficients, Eil 

and Ei1 

Added mass coefficients, 211 and 221, and fluid-damping coefficients, T i 1  and 

221 
- 1  

Fluid-damping and fluid-stiffness coefficients, ail, T i l ,  ail, and T ~ I  for two 

tubes normal to  flow 

Fluid-damping and fluid-stiffness coefficients, ail, 281, ail, and 721 for two 

tubes normal to  flow 

Fluid-damping and fluid-stiffness coefficients, P i l Y  oil, Pily and oil for two 

tubes normal to  flow 

Fluid-damping and fluid-stiffness coefficients, &1, 041, &I, and 

tubes normal to  flow 

for two 
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10 

11 

Fluid-damping and fluid-stiaess coefficients, ail, T i l ,  ai', and ril as a 

function of excitation amplitude for two tubes normal to flow 

Fluid-damping and fluid-stiffness coefficients, ail, ril, til, and T& as a 

function of excitation amplitude for. two tubes normal to flow 

Fluid-damping and fluid-stiffness coefficients, ail, T i l ,  a;', and z i l  for two 

tubes normal to flow 

Two tubes in crossflow 
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