a ANL JET/CP--8 4554
CoNF-@50749--§5

VIBRATION AND STABILITY OF TWO TUBES IN CROSSFLOW*
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ABSTRACT

Two tubes in tandem and normal to flow are studied on the basis of the
unsteady flow theory. Motion-dependent fluid forces are measured in a water
channel for the pitch-to-diameter ratio of 1.35. From the measured fluid forces,
fluid damping and stiffness are calculated as a function of reduced flow velocity and
several Reynolds numbers, Once fluid-damping and fluid-stiffness coefficients are

known, coupled vibration and stability of two tubes in crossflow can be predicted.



1. INTRODUCTION

Flow-induced vibration of two tubes in crossflow has been studied extensively.
It includes vibration in stationary fluid, turbulent buffeting, vortex-induced
vibration, and wake induced flutter. Several reviews were published by Chen

(1986) and Zdravkovich (1977).

The flow field around two tubes is very complex. It depends on Reynolds
number and tube arrangement, as well as on incoming flow conditions. The
interaction of fluid flow with tube oscillation is even more complicated. Various
approximate theories have been developed to describe the tube response in
crossflow. At this time, it remains difficult to predict the response of the two tubes
because the fluid forces acting on the tubes and the motion-dependent fluid forces

cannot be calculated with confidence.

On the basis of the available information, the general characteristics of tube
response in crossflow are not well understood in the various parameter ranges,
since most of the experimental data were obtained for specific applications. A
systematic study is needed to quantify the response of two tubes under different
flow conditions. The objective of this paper is to present an unsteady flow theory for
two tubes normal to the flow, or two tubes in tandem, with a pitch-to-diameter ratio

of 1.35 (see Fig. 1, where D is tube diameter).

For two tubes oscillating in crossflow, the fluid forces acting on the tubes ave fj
and ;i = 1,2) in the x and y directions. The corresponding tube displacement
components of the tubes are u; and v;. The fluid forces acting on the tube due to the

tube motion are given by (Chen 1987)
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where p is fluid density; R is tube radius; t is time; o is circular frequency of tube
oscillations; U is flow velocity, o, Bk, Ojk, and T are added mass coefficients; ocJ:k,
Bik> Ojk, and T3 are fluid damping coefficients; and oy, Bjk, Ok, and T3 are
fluid-stiffness coefficients. The main purpose of this study is to measure the
motion-dependent fluid-force coefficients for two tubes in crossflow. Once these

fluid-force coefficients are obtained, tube response in various conditions can be

analyzed on the basis of the unsteady flow theory.
2. EXPERIMENTAL SET-UP

The two tubes tested are shown in Fig. 1, where the tubes are normal to flow
(Fig. 1a) or in tandem (Fig. 1b). A water channel, 18 in. wide and 15 in. deep, is

used. Water is pumped into an input tank and then passes through a series of




screens and honeycombs and finally into the rectangular channel. The water level
ig controlled by standpipes in the output tank and the flow is controlled by the

running speed of the pump motor.

Flow velocity is measured with a current flow meter. The rate of propeller
rotation is directly proportional to stream velocity and therefore the sensor output
signal is not effected by other factors, such as water conductivity, temperature, and

suspended particulates.

Tubes are supported by flexible tubes attached to the stainless steel tubes with
a 2.54-cm OD, a 0.071-cm wall thickness, and a 38.1-cm length. Two sets of strain

gauges are placed on the outer surface of the smaller tube where the outer surface

of the tube has been machined to give an octagonal cross section (Chen, Zhu, and

Jendrzejezyk 1994). The natural frequencies of the tubes are as follows:

Tube No. Total Mass (g) Natural Frequencies (Hz)
X Direction Y Direction

1 194 9.9 11.6
2 198 10.3 10.3

The force transducers are calibrated by the dynamic method. The tube is
connected to an exciter and is excited at a given frequency and amplitude in air or
water. Then, the inertia forces due to the sinusoidal oscillations are used to

determine the calibration constant.



3. COUPLED VIBRATION IN STATIONARY FLUID

When two tubes are placed at a pitch-to-diameter of 1.85 in water, fluid
coupling can be significant. The fluid coupling effect can be accounted for using the
added mass matrices (Chen 1975). The added mass was calculated from potential
flow theory and experiments were performed to confirm the theoretical results from
the indirect measurement method of the effect of natural frequencies for tubes

submerged in fluid (Chen and Jendrzejezyk 1978).

In this study, a direct method is used to quantify the effect of fluid coupling. In
stationary fluid, U = 0; Egs. 1 and 2 can be written as
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The theoretical values of the added mass coefficients for two tubes normal to flow

with pitch-to-diameter ratio of 1.35 are given as follows:

G131 G2 1.0526 -0.2845
Oy oo | |-0.2845 1.0526
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Tk =Ok=0, jk=1,.2.

In stationary fluid, added mass can be measured by measuring the forces
acting on the tubes due to a sinusoidal excitation. Figures 2a-2d show force
components, fj and g; due fo the excitation of 13 (Fig. 2e). It is noted that f1 and g9
are approximately in-phase with u; while f3 and g; are approximately out-of-phase
with ui. From the time histories, and Eqgs. 3 and 4, the added mass coefficients, ojk,
Bik. Ojk, and ik, and damping coefficients, Tk, Bjk, Tk, and Tjx, can be calculated.
Figure 3 shows the experimental data of the added mass and fluid-damping
coefficients as a function of excitation amplitude at three frequencies. The
measured added mass coefficients, o111 and agj, agree well with the analytical
solution. Fluid-damping coefficients in stationary fluid are small. In this case, ojk
and g are zero theoretically and approximately zero experimentally. This direct
measurement method can be used fo measure added mass and fluid damping

efficiently.
4. MOTION-DEPENDENT FLUID FORCES

The unsteady flow theory is used in this study. If tube 1 is excited in the x

direction, its displacement is given by

uj = u cos wt. (6)




The fluid force acing on the two tubes can be written
1 -9
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where c¢11, ¢21, d11, and d21 are coefficients and $11, ¢21, ¥11, and g1 are phase

angles. From Egs. 1, 2, and 7, we can also write the fluid-force components as
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Comparing Eqs. 7 and 8 yields
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Other fluid-force coefficients can be measured by exciting tube 1 in the y direction

and tube 2 in the x and y directions.

The following tests have been performed:

Two tubes normal to flow (Fig. la):

directions.

Tube 1 was excited in the x and ¥y



o Two tubes in tandem (Fig. 1b): The upstream tube, tube 1, and the

downstream tube, tube 2, are excited in the x and y directions.

In each test, the excitation frequency varies from 0.1 to 2.3 Hz. For two tubes
normal to flow, five flow velocities are tested: 0.05, 0.07, 0.113, 0,146, and 0.166 m/s.
For all other tests, three flow velocities are tested: 0.07, 0.11, and 0.15 m/s.
Reynolds number varies from about 1200 to 4200. In all tests, when the flow speed
was set at 0.15 m/s, different excitation levels were given to determine the fluid-

force coefficients as a function of excitation level.

Fluid-damping and fluid-stiffness coefficients are obtained for both two tubes

normal to flow and two tubes in tandem. The following data are available:

Two Tubes Normal to Flow: Fluid-force coefficients due to the motion of tube 1

in the x and y directions.

Two Tubes in Tandem: Fluid-force coefficients due to the motion of tube 1 in

the x and y directions and due to fhe motion of tube 2 in the x and y

directions.

To limit the length of this paper, only the data for two tubes normal to flow are
presented, Figs, 4-9. Readers who are interested in additional data can contact the

authors for additional force coefficients.

Note that Figs. 4-7 show the fluid-force coefficients as a function of reduced
flow velocity at several flow velocities while Figs. 8 and 9 show the fluid-force

coefficients as a function of excitation level.
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From the data, some general characteristics of motion-dependent fluid-force

coefficients are noticed:

1. High Reduced Flow Velocity

When the reduced flow velocity is high, say larger than 20 and some larger
than 10, all fluid-force coefficients are approximately independent of reduced flow
velocity. This shows that when the flow velocity is high in comparison with cylinder
velocity, the fluid forces resulting from tube motion can be quantified at a specific
velocity and its results can be applied to other flow velocities. In this range,
measurements of fluid forces can be significantly reduced. This characteristic is not

only valid for circular cylinders, but also valid for other geometries (Chen and

Chandra 1991).

2.  Reynolds Number

At low reduced flow velocity, fluid-force coefficients depend on the reduced flow
velocity, Reynolds number, and excitation amplitude. Similar characteristics have
been noticed for a single cylinder (Chen, Zhu, and Cai 1995). This can be seen from
the results given in Figs. 4-9. For example, the coefficient for Uy less than 8 are
shown in Fig. 10. The peak values decrease with flow velocity and are shifted
toward larger U;,. This trend is similar to those of a single tube. At lower reduced

flow velocity, fluid-force coefficients are much more complicated.
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5. DYNAMIC RESPONSE IN CROSSFLOW

Consider two identical tubes with radius R subjected to crossflow as shown in
Fig. 11. The axes of the tube are parallel to the z-axis and flow is parallel to the x-
axis. The subscript j is used to denote variables associated with tube j. The
variables associate with the motion in the x and y directions are flexural rigidity EI,
cylinder mass per unit length m, structural damping coefficient Cs, and

displacement u; and vj. The equations of motion for tube j in the x and y directions

are (Chen 1987)
- E):;J +C, a;ij m 82‘;3 . élanz(aJk % + 04k aaztvzk}
3 e o Bt - B e cien) =5 a0
EI%‘*‘ C, a_a‘;i + m%-l- élanz{Tjk aaz% +PBik a;%]

2 2 2 2
U 1 au U L} av "® "
- = o Sk B Bik == |- ZPU2(Tjkuk +I3jk)=gj, (12)
1 ® ot ) 21
where fj and gj are the excitation forces. Note that fluid-damping coefficients and
fluid-stiffness coefficients are functions of reduced flow velocity Uy (= UAD; £ is the

oscillation frequency of the cylinders in flow).

The in-vacuum variables are mass per unit length m, modal damping ratio Ly

and natural frequency fy (= 0y/25). The values for fy and {y can be calculated from



12

the equation of motion and appropriate boundary conditions or from tests in
vacuum (practically in air). The modal function of the cylinder vibrating in vacuum

and in fluid is y(z);

v =1 as)

where £ is the length of the cylinders. Let
1;(z,t) = a;(t)hy(z),

(14)
vj(z,t) = bi(thy(z),

where aj(t) and b;(t) are functions of time only. Calculation of Egs. (11) and (12)

yields
2 . Y . 2 AR .
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2
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k=1

where the dot denotes differentiation with respect to time and
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Congstrained Modes

When one the tubes is allowed to oscillate in a specific direction while the other
tubes are rigid, the equations of motion can be simplified significantly. For

example, tube 1 is oscillating in the x direction, its equation of motion based on Eq.

15 becomes
d%a; da P;
ij ji 2 i
+2 o= 18
dt? co at O A 1+yots” (18)
where

0=y (1+ YCm )—0.5,

20
C — C_,v [(l+wM)05 _ 'YUI'(X“]J , (19)

1+ 05 2§vn3
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U205,
— 3
Cu=0+ 753 :

Note that © and { are the circular frequency and modal damping ratio, respectively,
for the tube in crossflow. Cy is called an added mass coefficient for the tube in flow;
when Uy = 0, it is equal to aj. When Uy is not equal to zero, Cyr depends on Uy as

well as on aj;, which in turn, depends on U, and oscillation amplitude.
From Egs. 18 it is noted that when gj is positive, it will contribute to negative
damping to the system. In some cases, the resultant damping may become zero and

the system will become unstable. From Eq. 19 the critical reduced flow velocity at

which the modal damping ratio is zero can be calculated from

05 . 5 - 0.5
U, =4«/ﬂ[—§,—] {%(a—”]i\/[%J + m”} , ' (20)
O35 7| o T 4

where § is a mass-damping parameter (8 = 2x{ m/pD2). This is the critical flow

velocity for fluidelastic instability.

Equations 18-20 can also be applied to oscillations in the y direction. Replacing
all ¢ by B in Egs. 18-20 yields the equations of motion and stability criterion for
constrained mode in the y direction. From Eqgs. 19 and 20, it is noted that when the
value of the fluid damping coefficient, of; or Bj;, is positive, the tube may become
unstable. The region depends on tube arrangement, location, and flow velocity.
From the fluid-force coefficients, d; is found to be positive in the regions given in

Table 1.
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Table 1. Regions of reduced flow velocity in which fluid-damping coefficients, oy

and o499, are positive

Flow Velocity Reduced Flow
(m/s) Velocity
Two Tubes Normal to Flow
011 or 092 0.05 1.7t04.3
0.07 1.8 to 4.7
>0.13 2.3105.6
Two Tubes in Tandem
011 0.07 >6.0
0.11 »7.1
0.15 >7.4
099 0.07 >3.2
0.11 >3.6
0.15 >3.6

Fluid-damping coefficients in the y direction B{; and B3 are always negative; this

means that oscillation in the y direction will not become unstable.

The natural frequencies of constrained modes are affected by o}; and Bj;. When

the fluid-stiffness coefficient is positive, the frequency is reduced. The regions in

which o], and 059 are positive are given in Table 2.
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Table 2. Regions of reduced flow velocity in which fluid-stiffness coefficients, ot}

and o9s, are positive

Flow Velocity Reduced Flow
(m/s) Velocity
Two Tubes Normal to Flow
011 or 059 0.05 <17
0.07 <2.1
0.113 <2.5
0.146 <3.2
0.166 <34
Two Tubes in Tandem
o1 0.07 >12.5
0.11 >14.0
0.15 >15.8
039 0.07 >1.8
0.11 >2.2
0.15 >5.2

Fluid-stiffness for oscillations in the y direction, Bj; is negative for two tubes normal

to flow and the upstream tube. The downstream tube B55 becomes positive when U,

ig larger than 8.2.
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Coupled Vibration

In flowing fluid, from Eqs. 15 and 16 the natural frequencies and modal
damping ratios of the system can be calculated as follows:

=1y, Uy),

(21)
£ =Lty Uy

1t should be noted that fluid-damping and fluid-stiffness coefficients are functions of
U, (= UAD); therefore, a numerical method is needed to calculate fand .

The stability of a cylinder array is determined from equations (15) and (16).
The nondimensional parameters in equations (15) and (16) are v, {y, U+, 04, Gk, Tk,
Bk, %k Sk Tk Biks ks Ok Tik @nd By Therefore, the critical flow velocity can be

written in a functional form as

UV = F('ngvamv /o, ajlnij:Tjk:Bjk’aj'ksc_]:ktrjrkyﬁjrk’a;k:G;i.k:'rj:‘k:rﬁ‘}:'k)' (22)

For two tubes, if fluid-force coefficients are independent of U, then

Uv = F('Ysgv):
or,

U, = LRy, 29
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i.e., the critical flow velocity is a function of mass ratio and damping ratio only.

Fluidelastic Ingtability in Light Flui

In a light fluid, fluid inertia and damping associated with the quiescent fluid
can be neglected. Equations (15) and (16) can be written

2 2
- - m ] - L] n "
a; +2§vaaj +m%aj "-TZ—3U% Z}[—g—(ajkajk -l-Cijbk)-}- m%(oajkak + G'jkbk):l = Pjs
k=
29
+r . 2 Y 2 2 (Dz P v 2 " n
bj + 2C,v0)vbj + (l)vbj “?UV 2 -E-oy—('l:jkajk +Bjkbk)+mv(rjkak + Bjkbk) =4;.

In a light fluid, all fluid-force coefficients are approximately independent of U, and
the oscillation frequency is approximately equal to w, (.e., ®, = @f). Then 'yU‘z, plays
the same role as {,; both of them contribute to system damping. The modal

damping for a particular mode can be written
(=4,-CvU; (25)

where C depends on fluid-damping and fluid-stiffness coefficients. Instability

occurs if { = 0; ie.,

0.5
U, = %[%f_] (26)

or
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0.5
U _[2nm @)
va pDz ’

Thus, the critical flow velocity i¢ a function of the mass-damping parameter and

proportional to its half-power.

CLOSING REMARKS

In the past, the motion-dependent fluid forces for two tubes were not quantified
in general. In this study, fluid-damping and fluid-stiffness coefficients for two tubes
normal to flow and two tubes in tandem with the pitch-to-diameter ratio of 1.85 are
presented as a function of reduced flow velocity for a series of Reynolds number. At
high reduced flow velocity, the fluid-force coefficients are practically independent of
reduced flow velocity. However, at low reduced flow velocity, fluid-damping and
fluid-stiffness coefficients depend on reduced flow velocity, Reynolds number, and

oscillation amplitude.

Once fluid damping and fluid stiffness are known, the response of two tubes in
crassflow can be predicted on the basis of the unsteady flow theory. Fluid damping
and fluid stiffness play an important role in determining tube response. The system
may become unstable due to motion-dependent fluid forces. For example, fluid-

damping-controlled instability can occur even in constrained mode.

Various approximate theories for two tubes in crossflow are useful in specific
conditions. The unsteady flow theory accounts for the interaction of tube motions
and flow field adequately; it can be applied to various conditions. The key elements

of the unsteady flow theory are the motion-dependent fluid forces. It requires an
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extensive effort to obtain these forces experimentally. Some studies have been

published to calculate these forces numerically (Sadaocka and Umegaki 1993,

Ichioka et al. 1994). It is expected that once it is developed, computation fluid

dynamics method will be more economic.
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3a

3b

Higure Captions

Two tubes in crossflow

Motion-dependent fluid forces (Fig. 2a, 2b, 2¢, and 2d) acting on the two
tubes with the pitch-to-diameter ratio of 1.35 (Fig. 1a) due to motion uj
(Fig. 2e)

Added mass coefficidnts, ¢i11 and agj3, and fluid-damping coefficients, &y

and '&él

Added mass coefficients, 111 and 721, and fluid-damping coefficients, ¥, and
To1
Fluid-damping and fluid-stiffness coefficients, oy, ©11, 011, and 74 for two

tubes normal to flow

Fluid-damping and fluid-stiffness coefficients, agy, 91, 091, and Ty for two

tubes normal to flow

Fluid-damping and fluid-stiffness coefficients, B11, 611, B1y, and G4 for two

tubes normal to flow

Fluid-damping and fluid-stiffness coefficients, P31, S21, B2y, and 6g; for two

tubes normal to flow
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11

Fluid-damping and fluid-stiffness coefficients, oy, 711, @13, and 777 as a

function of excitation amplitude for two tubes normal to flow

Fluid-damping and fluid-stiffness coefficients, 031, 21, 021, and Tgp as a

function of excitation amplitude for two tubes normal to flow

Fluid-damping and fluid-stiffness coefficients, a1, 711, 011, and 11 for two

tubes normal to flow

Two tubes in crossflow
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