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+is paper presents a study on vibration-based fault diagnosis techniques of a commutator motor (CM). Proposed techniques
used vibration signals and signal processing methods. +e authors analysed recognition efficiency for 3 states of the CM: healthy
CM, CM with broken tooth on sprocket, CM with broken rotor coil. Feature extraction methods called MSAF-RATIO-50-SFC
(method of selection of amplitudes of frequencies ratio 50 second frequency coefficient), MSAF-RATIO-50-SFC-EXPANDED
were implemented and used for an analysis. Feature vectors were obtained using MSAF-RATIO-50-SFC, MSAF-RATIO-50-SFC-
EXPANDED, and sum of RSoV. Classification methods such as nearest mean (NM) classifier, linear discriminant analysis (LDA),
and backpropagation neural network (BNN) were used for the analysis. A total efficiency of recognition was in the range of
79.16%–93.75% (TV). +e proposed methods have practical application in industries.

1. Introduction

Commutator motors are essential for various industries.
+ey are used for application of automobile motors such as
electric generators, wiper motor, window lifting motor,
vehicle starters, seat incliner, fuel pump, side view mirror,
and air-conditioning. Commutator motors are also used
for power tools applications, for example, drilling machine
motor, circular saw motor, and hammer tool motor. +ey
are used for home appliances such as washing machine
motor, motor of vacuum cleaner, motor of printer, and hair
dryer motor.

Unexpected failures of motors generate unexpected stops.
It causes losses of production time and money. To avoid
failures, engineers developed online condition monitoring of
motors. Condition monitoring helps engineers to take di-
agnostic decision on the basis of measured signals. Fault
diagnosis techniques can detect faults and provide diagnostic
information about the motor. It also allows us to use the
motor for a longer time. Vibrations signals depend on states
of the commutator motor. Each fault is associated with vi-
bration signals. +is correlation between states of the motor
and characteristic frequencies is essential for fault diagnosis.

+emain task for fault diagnosis based on vibration analysis is
to find the best method for proper condition monitoring.

Many scientific articles described fault diagnosis tech-
niques and different faults of machinery [1–13]. +e early
fault state can be detected by early fault diagnostic methods.
Sometimes, it takes 5 minutes to damage the motor, for
example, short-circuit of stator windings. Other faults such
as bearings, damaged sprocket, air-gap, bent shaft, and
broken rotor bar take much more time to damage the motor
permanently.

Condition monitoring of electric motors was developed
for measurement and analysis of diagnostic signals such as
acoustic [1, 2], thermal [3, 4], electric current [5–7], and
vibration [8–13]. Each type of signal has advantages and
disadvantages. Measurements of acoustic signal and thermal
signal are noninvasive. Acoustic and thermal signals can be
measured without touching the motor. +e disadvantage of
mentioned diagnostic signals is difficult processing. A
methodology based on the analysis of acoustic signals for
faults of the induction motor was presented [1]. +e pre-
sented technique used the complete ensemble empirical
mode decomposition. Delgado-Arredondo et al. analysed
the following faults: bearing defects, mechanical unbalance,
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and two broken rotor bars [1].+e proposed approach could
be used to identify mentioned faults in the industry. Another
approach based on acoustic analysis was developed by Islam
et al. [2]. In [2], the authors proposed a diagnostic method of
induction motors using Gabor filtering and MCSVMs.
Average classification accuracy of the diagnostic method was
equal to 99.80%.

+e thermal imaging camera is highly priced. More-
over, it takes time to diagnose temperature of the motor. It
is also limited for electrical faults. However, industrial use
of technique-based thermal imaging gained a noticeable
attention [3]. Inter-turn faults and cooling system faults
were analysed in [3]. +e analysis was conducted for in-
duction motors. Singh and Naikan proposed an algorithm
using infrared thermography for diagnosis of induction
motors. +e authors developed two thermal profiles in-
dicators. Developed profiles indicators were used for
analysis of thermal distributions [3].

Several industrial examples for thermal analysis of
electrical motors operating in a petrochemical plant were
presented. +e results showed that thermal imaging can be
useful for transmission system faults, cooling system faults,
defective connections, stator faults, and bearing failures [4].

Current monitoring is low-cost and reliable method of
fault diagnosis. Motor current signature analysis (MCSA) is
often used for current analysis. Usually MCSA provides
good results [1, 5, 6]. Singh and Naikan [5] proposed
a method using MUSIC analysis (MSC-MUSIC). +e pro-
posed method was analysed for broken rotor bar and half
broken rotor bar faults of the induction motor. Surprisingly,
MCSA was found to be ineffective to recognize half broken
rotor bar fault properly [5]. In [6], the authors studied
MCSA and ZSC (zero sequence current) methods for 4
induction motors. Antonino-Daviu et al. analysed the fol-
lowing states: healthy, broken bar, two nonadjacent broken
bars, and two adjacent broken bars. +e authors proved the
usefulness of the ZSC method for detection of broken rotor
bars. However, they noticed that MCSA had some problems
to detect analysed faults [6]. Bazan et al. [7] described
a current analysis for fault diagnosis of three-phase in-
duction using ANN. Classification accuracy 99% was ob-
tained for analysed cases [7].

Vibration analysis is an effective and immediate fault
diagnosis technique. Vibration signals are also acquired with
low noise level (from environment or other machines).
Vibration analysis is used for detection of mechanical and
electrical faults such as rotor, stator faults, bearings, mis-
alignment, and faults of gear transmission systems [1, 3, 8]. A
review about fault diagnosis methods for gear transmission
systems using vibration analysis was presented [8]. It de-
scribed following methodologies: methods based on ICA,
order tracking, sparse decomposition, EMD, and wavelet [8].
+e CMFE (composite multiscale fuzzy entropy) and ESVM
(ensemble support vector machines) were used for detection
of rolling bearing faults [9]. Zheng et al. analysed the in-
fluence of parameters of the CMFE. +e CMFE was
employed to extract features of the vibration signals. Next,
ESVM was used as a classifier. +e proposed approach was
applied to experimental data analysis. It indicated that the

approach was effective for detection of different faults of
rolling bearings [9]. Duan et al. [10] described the devel-
opment of condition monitoring of rolling bearings using
vibration analysis, acoustic analysis, oil analysis, tempera-
ture analysis, and ultrasonic analysis. +e authors indicated
that multisensors information fusion is the trend of de-
velopment [10]. Zurita-Millan et al. [11] proposed a vibra-
tion signal prognosis methodology of the electromechanical
system (kinematic chain). +e proposed methodology was
based on neurofuzzy modeling using the patterns of the
vibrations signal. +ey proved that the RMS method is
a proper feature for vibration analysis. +ey obtained the
results with an error lower than 2%, but they did not analyse
other sources of information, such as temperature and stator
current [11]. Lu et al. described vibration-based condition
monitoring ofmotor bearings [12]. Awireless sensor networks
were used for motor bearings. +e wireless sensor network
prototype was developed. +ey proved that the sampled data
length of the proposed approach result in a decrease of over
80%. +e proposed approach can be useful for machinery
installed in remote areas, for example, wind farms [12]. In [13],
the authors conducted vibration analysis for the detection of
motor damages. +ey analysed bearing currents. Analyses of
bearing faults are useful for industrial users of inverted-fed
motors.+ey proved that time-frequency analysis of vibration
signal is useful source of information.

In proposed research, the authors developed vibration-
based fault diagnosis of the commutator motor (CM).
Vibration signals of the CM (healthy CM, CM with broken
tooth on sprocket, and CMwith broken rotor coil) were not
analysed in the literature, so the authors decided to conduct
such analyses. +e authors analysed recognition efficiency
of the vibration signal for 3 states of the CM: healthy CM
(Figure 1), CM with broken tooth on sprocket (Figure 2),
and CM with broken rotor coil (Figure 3). +e feature
extraction methods called MSAF-RATIO-50-SFC (Method
of Selection of Amplitudes of Frequencies Ratio 50 Second
Frequency Coefficient), MSAF-RATIO-50-SFC-EXPANDED
were implemented and used for the analysis. Feature
vectors were obtained using MSAF-RATIO-50-SFC, MSAF-
RATIO-50-SFC-EXPANDED, and sum of RSoV. Classifi-
cation methods such as nearest mean (NM) classifier, Linear
discirminant analysis (LDA), and backpropagation neural
network (BNN) were used for the analysis.

+e proposed techniques have practical application in
industries.+e analysed total efficiency of recognition was in
the range of 79.16%–93.75% (TV - see Section 3). Low cost of
the measuring device and low cost of the computer are the
advantages of vibration-based fault diagnosis. It is also
noninvasive technique of fault diagnosis. +e acquired re-
sults are similar to other proposed techniques of fault di-
agnosis [1, 11]. In the paper, original methods of feature
extraction—MSAF-RATIO-50-SFC and MSAF-RATIO-50-
SFC-EXPANDED were used for vibration signals. It was
proved that the proposed technique can be used for di-
agnosis of the CM. It was also proved that states of the motor
such as healthy CM, CM with broken tooth on sprocket, and
CM with broken rotor coil can be diagnosed using proposed
techniques.
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2. Proposed Vibration Fault
Diagnosis Techniques

+e authors proposed 9 vibration diagnosis techniques
(Figure 4). Techniques were based on signal processing
methods and the step of acquisition of the vibration signal.
+e step of acquisition used a measuring device. +e USB
data logger Voltcraft DL-131G (sampling frequency 20Hz,
3-axis recording) was used for the step of acquisition. Next
computer software (Voltsoft Client) was used to download
recorded data from the USB data logger. +ere are many
types of acceleration USB data loggers and software. +ere
were many possibilities of the step of acquisition of vibration
signal. +e first step of signal processing was split of mea-
sured vibration data. Vibration data were split into 5-second
samples. Each 5-second sample had 100 values.+e next step
was feature extraction. Feature extraction was carried out
using three different methods: MSAF-RATIO-50-SFC,
MSAF-RATIO-50-SFC-EXPANDED, and sum of RSoV.
Classification of computed vectors was the last step of vi-
bration signal processing. Classification was carried out
using pattern creation and testing. It was carried out using
three different methods: NM classifier, LDA, and BNN.

2.1. Method of Selection of Amplitudes of Frequencies Ratio 50
Second Frequency Coefficient. +e MSAF-RATIO-50-SFC
was based on FFT (fast Fourier transform) coefficients. +e
method computes features from the frequency spectrum. It
can be noticed that the vibration signal was dependent on type
of fault, type of machine, rotation speed, and size of machine.
Steps of the MSAF-RATIO-50-SFC were as follows:

(1) Computation of FFT spectra of analysed vibration
signals.

(2) Computation of differences (difference of frequency
coefficient (DFC)) between computed FFTspectra of
analysed states.

(3) Computation of a ratio RS for analysed differences.
+e ratio RS was defined as

RS �(100%)
DFCn

SDFCmax

, (1)

where SDFCmax is the second maximal amplitude of
analysed difference of the FFTspectrum and DFCn is

the amplitude of analysed difference with index n. If
RS � 50% for MSAF-RATIO-50-SFC, then ampli-
tude greater than 50% of second maximal amplitude
is analysed.

(4) Selection of frequency coefficients for ratio RS � 50%.

(5) Selection of common frequency coefficients for all
computed differences.

(6) Form a feature vector.

A flow diagram of the MSAF-RATIO-50-SFC is shown
(Figure 5).

+e authors analysed vibration signals for 3 states of the
CM: healthy CM, denoted as hcm; CMwith broken tooth on
sprocket, denoted as btos; CM with broken rotor coil,
denoted as brc. Differences (DFC) between computed FFT
spectra of analysed states are depicted in Figures 6–8.

+e MSAF-RATIO-50-SFC computed following (five)
common frequencies: 0.2, 5.6, 7.2, 7.8, 8Hz. +e computed
frequency components were used for the feature vector. Next
computed feature vectors were used for the classification
step.

2.2. Method of Selection of Amplitudes of Frequencies Ratio
50 Second Frequency Coefficient EXPANDED. +e MSAF-
RATIO-50-SFC-EXPANDED is similar to the MSAF-
RATIO-50-SFC. It used several training sets to compute
common frequency components. Steps of the MSAF-
RATIO-50-SFC-EXPANDED were following:

(1) Computation of FFT spectra of analysed vibration
signals.

(2) Computation of differences (difference of frequency
Coefficient (DFC)) between computed FFTspectra of
analysed states.

(3) Computation of the ratio RS for analysed differences.
+e ratio RS was defined as follows:

RS �(100%)
DFCn

SDFCmax

, (2)

where SDFCmax is the second maximal amplitude of
analysed difference of the FFTspectrum and DFCn is
the amplitude of analysed difference with index n. If
RS � 50% for MSAF-RATIO-50-SFC, then ampli-
tude greater than 50% of second maximal amplitude
is analysed.

(4) Selection of frequency coefficients for ratio RS � 50%.

(5) Selection of parameter R-EXPANDED � (number of
required common frequencies)/(number of all se-
lected frequencies). +e parameter R-EXPANDED
was used to find the final number of common
frequencies. Let us consider following example
R-EXPANDED � 0.999, in that case 3 of 3 frequencies
are required ((3/3 > 0.999)). If R-EXPANDED � 0.6,
the method required 2 of 3 frequencies ((2/3) > 0.6) to
select specific frequency component.

(6) Selection of common frequency coefficients for all
computed differences using parameter R-EXPANDED.

Figure 1: Healthy CM (rotor speed 3000 rpm).
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(7) Form a feature vector.

A flowdiagramof theMSAF-RATIO-50-SFC-EXPANDED
is shown (Figure 9).

+e MSAF-RATIO-50-SFC-EXPANDED computed fol-
lowing (three) common frequencies: 0.2, 7.4, and 9Hz. +e
computed frequency components were used for the feature
vector.

2.3. Feature Extraction Based on Sum of RSoV. Feature
extraction based on sum of RSoV 1-element feature
vectors. First, acceleration USB data logger measured: X,
Y, and Z values and a resultant sum of vectors (RSoV). +e
resultant sum of vectors was expressed using the following
formula:

RSoV �

�������������
|X|3 +|Y|3 +|Z|3

3

√
, (3)

where |X|, |Y|, and |Z| are the lengths of X, Y, and Z vectors.
Measured five-second samples of vibration data had 100

values of RSoV. +e measured values of RSoV were used to
compute sum of RSoV. It was defined using the following
formula:

Sum_of_RSoV �∑
100

i�1

RSoVi
∣∣∣∣ ∣∣∣∣, (4)

where RSoVi is the resultant sum of vector with index i.
+e authors presented 36 (1-element) feature vectors of

vibration data consisting of sum of RSoV. It was presented in
Table 1.

+e computed values of feature vectors (sum of RSoV) are
in the range 288.53–315 (m/s2) for healthy CM, 298.08–349.67
(m/s2) for CM with broken rotor coil, and 891.13–947.04
(m/s2) for CM with broken tooth on sprocket. A problem of
computed feature vectors was noticed. Feature vectors of
healthy CMwere similar to feature vectors of CMwith broken
rotor coil. +e difficulty of classification is observed if the
training sets of features are close to each other.

+ere are a lot of classification methods, for example,
Neural networks, SVM [14, 15], LDA [16–18], nearest neighbor
[19–21], rough sets [22, 23], and fuzzy classifiers [24]. +e
authors used 3 of them: NM classifier, LDA, and BNN.

2.4. Linear Discriminant Analysis (LDA). +e authors used
the LDA as a second method of data classification. Ronald

Broken tooth

on sprocket

Broken tooth

on sprocket

Figure 2: CM with broken tooth on sprocket.
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Figure 3: CM with broken rotor coil.
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Aylmer Fisher developed the LDA in 1936. Implementation
of the LDA classifier was little time-consuming. �e LDA
also classified data for multiclass problems. It was used for
many classification problems such as fault diagnosis [16–18],
face recognition [25], and identification of cancer samples
[26]. �e LDA used the concept of searching for a linear
combination of variables. It computed the score function.
Next, it estimated the linear coefficients that maximize the
score. Next, unknown test feature vector was classified.
Vector was projected onto the maximally separating di-
rection (smaller subspace).

�e steps of the LDA are presented in Figure 10. �e
LDA classifier was described more precisely in following
articles [16–18, 25, 26].

1. Computation of FFT spectra of analysed
vibration signals

2. Computation of differences between computed
FFT spectra of analysed states

3. Computation of a ratio RS for analysed differences

4. Selection of frequency coefficients for
ratio RS greater than 50%

5. Selection of common frequency coefficients
for all computed differences

6. Form a feature vector

Figure 5: Flow diagram of the MSAF-RATIO-50-SFC.
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Figure 6: Difference (|hcm − brc|).
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Figure 4: Proposed techniques using vibration signals and signal
processing methods.
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Figure 7: Difference (|hcm − btos|).
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Figure 8: Difference (|brc − btos|).
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2.5. Nearest Mean (NM). �e nearest mean classifier used
training average feature vector and test feature vector for
data classification. Training average feature vector a was
denoted as follows:

a �
1

n
∑
n

k�1

fk, (5)

where a is training average feature vector, f is training
feature vector, n is the number of training feature vectors,
and fk is the value of training average feature vector with
k index (k � 5 for MSAF-RATIO-50-SFC, k � 3 for
MSAF-RATIO-50-SFC-EXPANDED, and k � 1 for sum
of RSoV).

�e NM classifier computed distance between the
training average feature vector and test vector. It used
distance function such as Manhattan distance or Euclidean
distance. �e authors used Manhattan distance:

d(t− a) �∑
k

i�1

ti − ai( )
∣∣∣∣

∣∣∣∣, (6)

where d(t− a) � distance, unknown test vector t �

[t1, . . . , ti], and training average feature vector a �

[a1, . . . , ai].
�e classifier made decision about the class using the

computed nearest distance. �e NM classifier was described
more precisely in following articles [27, 28].

2.6. Backpropagation Neural Network. �e neural network
based on the backpropagation method was the common
supervised classification method. It used training and test

sets of feature vectors. In the literatures [29–32], neural
networks were used for fault diagnosis [29, 30], controlling
a temperature field [31], prediction of speech quality [32],
and classification of emotion recognition [33]. �e authors
used three-layer backpropagation neural network for data
classification (input layer, hidden layer, and output layer). It
was typical structure of the backpropagation neural network.
�e authors used following backpropagation neural network
(Figure 11).

�e input layer had 1, 3, or 5 neurons depending on
feature extraction method.�e hidden layer had 20 neurons.
�e output layer of BNN had 3 neurons.�e values of output
neurons were 001, healthy CM, 010, CM with broken tooth
on sprocket, and 100, CM with broken rotor coil.

3. Results and Discussion

Vibration signals of the CM were measured in a flat. �e
authors conducted analysis for 3 states of the CM:
healthy CM (Figure 1), CM with broken tooth on sprocket
(Figure 2), and CM with broken rotor coil (Figure 3). Pa-
rameters of the CM were Q � 1.84 kg, P � 500W, S �
3000 rpm, V � 230V, and f � 50Hz, where Q is the weight of
the CMmotor, P is the power of the CMmotor, S is the rotor
speed of the CM motor, V is the supply voltage of the CM
motor, and f is the current frequency of the CM motor.

Vibration signals were measured from 1 CM (healthy
CM, CMwith broken rotor coil, or CMwith broken tooth on
sprocket).

�e authors used 9 training samples and 48 test samples of
vibration signals (each sample has 5 seconds of vibration
signal—100 measured values) for the analysis. Proposed fault
diagnosis techniques (Figure 4) were used for signal processing
of vibration signals. �e evaluation of analysis of vibration
signals was carried out using recognition efficiency of vibra-
tion signal EV. �e value of EV was expressed as follows:

EV �
Nrecognized

Nall

· 100%, (7)

where Nrecognized is the number of test samples recognized
for specific class, Nall is the number of all test samples for
specific class, and EV is the recognition efficiency of vi-
bration signal for specific class.

�e total efficiency of vibration signal recognition was
denoted as TV follows:

TV �
EV1 + EV2 + EV3

3
, (8)

where EV1 is the EV of the healthy CM, EV2 is the EV of the
CM with broken rotor coil, EV3 is the EV of the CM with
broken tooth on sprocket, and TV is the total EV of analysed
states of the CM.

�e results are shown in Tables 2–10. In Table 2, the
authors presented the results of recognition of vibration
signals. �e sum of RSoV (1 analysed feature) and the NM
classifier were used.

In Table 3, the authors presented the results of recog-
nition of vibration signals. �e MSAF-RATIO-50-SFC (5
analysed features) and the NM classifier were used.

1. Computation of FFT spectra of analysed
vibration signals

2. Computation of differences between computed
FFT spectra of analysed states

3. Computation of a ratio RS for analysed differences

5. Selection of parameter R-EXPANDED

6. Selection of common frequency coefficients for all
computed differences using parameter R-EXPANDED

4. Selection of frequency coefficients for
ratio RS greater than 50%

7. From a feature vector

Figure 9: Flow diagram of the MSAF-RATIO-50-SFC-
EXPANDED.
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In Table 4, the authors presented the results of recog-
nition of vibration signals. �e MSAF-RATIO-50-SFC-
EXPANDED (3 analysed features) and the NM classifier
were used.

In Table 5, the authors presented the results of recog-
nition of vibration signals. �e sum of RSoV (1 analysed
feature) and the LDA classifier were used.

In Table 6, the authors presented the results of recog-
nition of vibration signals. �e MSAF-RATIO-50-SFC (5
analysed features) and the LDA classifier were used.

In Table 7, the authors presented the results of recog-
nition of vibration signals. �e MSAF-RATIO-50-SFC-
EXPANDED (3 analysed features) and the LDA classifier
were used.

In Table 8, the authors presented the results of recog-
nition of vibration signals. �e sum of RSoV (1 analysed
feature) and the backpropagation neural network were used.

Table 1: Sum of RSoV for 36 (1-element) feature vectors of vibration data.

Type of feature Sum of RSoV (m/s2)

Number of feature vectors 1 2 3 4 5 6
Healthy CM 287.42 288.53 296.34 308.78 309.51 305.79
Number of feature vectors 7 8 9 10 11 12
Healthy CM 310.77 295 295.47 313.30 315 311.01
Number of feature vectors 13 14 15 16 17 18
CM with broken rotor coil 332.58 342.55 328.39 329.98 349.67 333.64
Number of feature vectors 19 20 21 22 23 24
CM with broken rotor coil 335.80 328.68 298.08 307.28 303.66 317.85
Number of feature vectors 25 26 27 28 29 30
CM with broken tooth on sprocket 947.04 915.37 917.93 940.20 902.59 923.26
Number of feature vectors 31 32 33 34 35 36
CM with broken tooth on sprocket 891.13 935.14 926.75 904.45 907.83 919.94

Table 2:�e results of recognition of vibration signals—the sum of
RSoV and the NM classifier were used.

Type of vibration signal EV (%)

Healthy CM 100
CM with broken rotor coil 81.25
CM with broken tooth on sprocket 100
TV 93.75

Table 3:�e results of recognition of vibration signals—theMSAF-
RATIO-50-SFC and the NM classifier were used.

Type of vibration signal EV (%)

Healthy CM 93.75
CM with broken rotor coil 81.25
CM with broken tooth on sprocket 100
TV 91.66

1. Computation of mean vectors

2. Computation of the scatter matrices

3. Computation of eigenvalues and eigenvectors

5. Formation of eigenvector matrix

6. Transformation of the vectors onto the new subspace

4. Selection of linear discriminants

Figure 10: Steps of the LDA.

Input layer – 1, 3, or 5 neurons

Hidden layer – 20 neurons

Output layer – 3 neurons

Figure 11: Structure of the proposed BNN.

Table 4:�e results of recognition of vibration signals—theMSAF-
RATIO-50-SFC-EXPANDED and the NM classifier were used.

Type of vibration signal EV (%)

Healthy CM 93.75
CM with broken rotor coil 81.25
CM with broken tooth on sprocket 100
TV 91.66

Table 5:�e results of recognition of vibration signals—the sum of
RSoV and the LDA classifier were used.

Type of vibration signal EV (%)

Healthy CM 93.75
CM with broken rotor coil 81.25
CM with broken tooth on sprocket 100
TV 91.66
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In Table 9, the authors presented the results of recog-
nition of vibration signals. +e MSAF-RATIO-50-SFC (5
analysed features) and the backpropagation neural network
were used.

In Table 10, the authors presented the results of rec-
ognition of vibration signals. +e MSAF-RATIO-50-SFC-
EXPANDED (3 analysed features) and the backpropagation
neural network were used.

+e obtained results of analysed classifiers were in the
range of 75%–100% (TV was in the range of 79.16%–
93.75%). Surprisingly, the sum of RSoV was the best feature
for recognition of analysed states of the CMmotor. It had TV

� 93.75% for the NM classifier. +e MSAF-RATIO-50-SFC
and theMSAF-RATIO-50-SFC-EXPANDED had a bit lower
total efficiency (TV). +e authors compared the obtained
results with other literature references. +e acquired results
were similar to other proposed techniques of vibration
analysis [11, 20, 34–37]. In [11], results with an error lower
than 2% were obtained. However, they [11] analysed bearing
failure, 1/2-broken rotor bar, and 1 broken rotor bar of the
induction motor. +e article [34] presented a vibration-
based method for detection of bearing faults of the in-
duction motor. Vibration signals were analysed using the
FFT. +e classification method was based on the SVM.
Detection probability was in the range of 0.96–1 [34]. An-
other technique based on vibration signals was also used for
diagnosis of the induction motor [35]. +e proposed
technique used the Shannon entropy. +e K-means clus-
tering method was used for classification. Recognition rate
was 100% for healthy motor, half broken rotor bar, one
broken rotor bar, and two broken rotor bars [35]. Learning
features of vibration signals of the induction motor were
analysed in the literature [36]. Deep Belief Network was used
for the classification. Classification rate was in the range of
85.6–95.8% [36]. Gangsar and Tiwari [37] presented
vibration-based analysis for fault prediction of the induction
motor. +e MSVM (multiclass support vector machine) was
used. It had average recognition rate in the range of 75–90%.
In [20], the authors also analysed vibration signals of the
induction motor. +e analysis was conducted using DWT
and 3 classifiers: SVM, k-NN, andMLP.+e best results were

obtained for the SVM (classification rate in the range of
98.8%–100%).

4. Conclusions

In this study, fault diagnostic techniques of the CM were
developed. +e developed techniques analysed vibration
signals.+e total efficiency of vibration signal recognition was
analysed for 3 states of the CM: healthy CM, CM with broken
tooth on sprocket, CM with broken rotor coil. Feature ex-
tractionmethodsMSAF-RATIO-50-SFC andMSAF-RATIO-
50-SFC-EXPANDED were implemented and used for fault
diagnosis. Feature vectors were obtained using MSAF-
RATIO-50-SFC, MSAF-RATIO-50-SFC-EXPANDED, and
sum of RSoV. Classification methods such as NM, LDA, and
BNN were used for the analysis. +e analysed total efficiency
was in the range of 79.16%–93.75% (TV). +e best feature for
recognition was the sum of RSoV of analysed states of the CM
motor. It had TV � 93.75% for the NM classifier.

Low cost of the measuring device (about 120$) and low
cost of the computer (about 270$) are advantages of vibration-
based fault diagnosis. It is also noninvasive technique of fault
diagnosis. Other faults such as bearing faults, rotor, and stator
faults can be also diagnosed by analysis of vibration signals.

Future research will focus on development of new fault
diagnosis techniques based on acoustic, vibration, and
thermal signals. +e authors will also analyse motors for
different rotor speeds. New types of motors and faults
will be analysed. +e proposed techniques will be used for
industries.

Table 6:+e results of recognition of vibration signals—theMSAF-
RATIO-50-SFC and the LDA classifier were used.

Type of vibration signal EV (%)

Healthy CM 75
CM with broken rotor coil 87.5
CM with broken tooth on sprocket 93.75
TV 85.41

Table 7:+e results of recognition of vibration signals—theMSAF-
RATIO-50-SFC-EXPANDED and the LDA classifier were used.

Type of vibration signal EV (%)

Healthy CM 81.25
CM with broken rotor coil 75
CM with broken tooth on sprocket 93.75
TV 85.41

Table 8:+e results of recognition of vibration signals—the sum of
RSoV and the backpropagation neural network were used.

Type of vibration signal EV (%)

Healthy CM 93.75
CM with broken rotor coil 81.25
CM with broken tooth on sprocket 100
TV 91.66

Table 9:+e results of recognition of vibration signals—theMSAF-
RATIO-50-SFC and the backpropagation neural network were
used.

Type of vibration signal EV (%)

Healthy CM 75
CM with broken rotor coil 87.5
CM with broken tooth on sprocket 75
TV 79.16

Table 10: +e results of recognition of vibration signals—the
MSAF-RATIO-50-SFC-EXPANDED and the backpropagation
neural network were used.

Type of vibration signal EV (%)

Healthy CM 75
CM with broken rotor coil 87.5
CM with broken tooth on sprocket 75
TV 79.16
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