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The primary and subharmonic resonance of order one-third of a cantilever beam under state feed-
back control with a time delay are investigated. Using the method of multiple scales, we obtain two
slow flow equations for the amplitude and phase. The first-order approximate solution is derived and
the effect of time delay on the resonance is investigated. The concept of an equivalent damping,
related to the delay feedback, is proposed and an appropriate choice of the feedback gains and the
time delay is discussed from the viewpoint of vibration control. The fixed points corresponding to
the periodic motion of the starting system are determined, and the frequency-response and external
excitation-response curves are shown. Bifurcation analysis is conducted in order to examine the sta-

bility of the system.
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1. Introduction

In the last years, many papers have been devoted
to the control of resonantly forced systems in vari-
ous engineering fields. In passive vibration absorbers
a physical device is connected with the primary struc-
ture, while in the case of active absorbers the device
is replaced by a control system of sensors, actuators
and filters. Active control of mechanical and structural
vibrations is superior to passive control, because the
former is more flexible in many aspects.

Periodically forced nonlinear systems under delay
control have been analyzed by Plaut and Hsieh [1] in
the case of nonlinear structural vibrations with a time
delay in damping. Palkovics and Venhovens [2] inves-
tigated the stability and possible chaotic motions in the
controlled wheel suspension system. Belair and Cam-
bell [3] analyzed the stability and bifurcation of equi-
libria in a multi-delayed differential equation. Diek-
mann et al. [4] performed a nonlinear analysis for de-
termining Hopf bifurcations in systems of autonomous
differential equations. Stepan and Haller [5] consid-
ered quasi-periodic oscillations in robot dynamics, and
Moiola et al. [6] dealt for a more general forced non-
linear system under delay control the response ampli-
tude in the parametric excitation-response curve, while
the velocity feedback stabilizes the trivial solution in
the frequency-response curve. Thomsen [7] investi-
gated the vibration suppression by using self-arranging

mass effects of adding restoring force. Yabuno [8] pro-
posed a control law based on linear velocity feedback
and linear and cubic velocity feedback. His studies
demonstrated that nonlinear position feedback reduces
the response amplitude in the parametric excitation-
response curve, while linear velocity feedback sta-
bilizes the trivial solution in the frequency-response
curve. Hu et al. [9] investigated the resonances of a
harmonically forced Duffing oscillator with time de-
lay feedback. Using the method of multiple scales,
they demonstrated that appropriate choices of feedback
gain and the time delay are possible for a better vi-
bration control. Hy and Zh [10] considered controlled
mechanical systems with time delays, and in particu-
lar primary resonance and subharmonic resonance of
a harmonically forced Duffing oscillator with time de-
lay. The stability of periodic motion and applications to
active chassis of ground vehicles are discussed. Mac-
cari [11] studied the parametric resonance of a van der
Pol oscillator under state feedback control with time
delay. Faria [12] investigated stability and bifurcation
of a delayed predator-prey model and effect of diffu-
sion. Liao and Chen [13] studied the local stability,
Hopf and resonant codimension-two bifurcation in a
harmonic oscillator with two time delays. Meng and
Wei [14] analyzed the stability and bifurcation of a
mutual system with time delay. Yuan and Han [15] an-
alyzed the bifurcation of a chemostat model with two
distributed delays. Fofance and Ryba [16] investigated
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the parametric stability of nonlinear time delay equa-
tions. Leung et al. [17] investigated the resonance con-
trol for a forced single-degree-of-freedom nonlinear
system. Sun et al. [18] analyzed the chaotic behavior
of a double-well Duffing oscillator with both delayed
displacement and velocity feedbacks under a harmonic
excitation. Li et al. [19] studied the nonlinear dynamics
of a Duffing-van der Pol oscillator under linear-plus-
nonlinear state feedback control with time delay. El-
Bassiouny [20] investigated fundamental and subhar-
monic resonances of harmonical oscillation with delay
state feedback. Kouda and Mori [21] analyzed a ring of
mutually coupled van der Pol oscillators with coupling
delay. Oueni et al. [22] have considered a nonlinear ac-
tive vibration absorber coupled with the plant through
user-defined cubic nonlinearities. If the plant is ex-
cited at primary resonance and the absorber frequency
is equal to the plant natural frequency, they demon-
strated that when the forcing amplitude increases be-
yond a certain threshold, high-amplitude vibrations
are suppressed because the response amplitude of the
plant remains constant, while the response amplitude
of the absorber increases. Queni et al. [23] studied
the saturation phenomenon in devising an active vi-
bration suppression technique. A plant was coupled
with a second-order absorber through a user-defined
quadratic feedback control law. They demonstrated
that, by tuning the natural frequency of the absorber
to one-half the excitation frequency, effective vibration
suppression is possible. EI-Bassiouny [24] studied an
approach for implementing an active nonlinear vibra-
tion absorber. The strategy exploits the saturation phe-
nomenon that is exhibited by multi-degree-of-freedom
systems with cubic nonlinearities possessing one-to-
one internal resonance. The proposed technique con-
sists of introducing a second-order controller and cou-
pling it to the plant through a sensor and an actuator,
where both the feedback and control signals are cubic.
El-Bassiouny [25] studied the vibration and chaos con-
trol of nonlinear torsional vibrating systems.

In this paper a cantilever beam, whose response is
governed by a nonlinear partial differential equation,
is considered. If we focus on a mode that is not in-
volved in an internal resonance with any of the other
modes, then application of a single-mode discretiza-
tion scheme (see [26]) yields the nonlinear differential
equation

2
d ;:2(0 - u% +X(t) + aX3(t)

+ BXO)XA(t) + yX(E)X3(t) = uX(t — 1)
dX(t—1)
+V7dt
where a dot denotes differentiation with respect to
time, u is a damping factor, o the curvature nonlin-
earity coefficient, B and y are the inertia nonlinearity
coefficients, H is the forcing amplitude and & the ex-
ternal excitation frequency. u and v are the feedback
gains and t is the time delay.

In the following two sections, the primary and
the one-third subharmonic resonances will be stud-
ied by using the multiple scale perturbation technique.
Presented in Section 4 are the numerical results of
the above two cases and their discussion. Section 5
presents the concluding remarks for the frequency-
response and external excitation-response curves of the
two cases.

+Hcos &t )

2. Primary Resonance

To investigate the primary resonance of the delay-
controlled system (1) by using the multiple scale per-
turbation technique [27—31], we confine the study to
small damping, weak nonlinearities, weak feedback
and soft excitation. That is

p=0(), a=0(), P=0(¢),
y=0(e), u=0(e), v=0(e), (2)
H=0(), ®—-1=¢0, o=0(¢),

where 0 < € < 1 and o is the detuning parameter. We
rewrite (1) as

2 .
TXO s xt = - e - e
— yX()X3(t) + uX(t— 1)
+vw +Hcos(1+eot).

)

For simplicity we assume a two scale expansion of the
form

X(t) =Xo(To, 1) + X1 (To, T) + O(€?),

4
T =€t r=0,1 )
and use the following differential operators:
d 0 d ) 2
i ﬁ.4—88—_|_1.—i—0(s ) =Dg+ €Dy + O(g?),
d? 2 2
— = D§+2eDyD; + O(g7). (5)

dt?
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Substituting (4) and (5) into (3) and equating the co-
efficients of the same power of &, we obtain a set of
linear partial differential equations:

D3Xo(To, T1) 4 Xo(To, T1) =0, (6)
DXy (To, T1) +X1(To, Th) =
—2DoD1Xo(To, T1) — 2uuDoXo(To, T1)
— X3 (To, T1) = BXo(To, T1)(DoXo(To, T1))*  (7)
—yX&(To, T1)D3Xo(To, Ta) + 2uXo(To — 7, T1)
+2vDoXo(To — 7, T1) + Hcos(1 + eot).
Solving (6) for Xo(To, T1), we have

Xo(To, T1) = R(T1) exp(iTo) + cc, (8)

where cc denotes the complex conjugate of the preced-
ing terms and

R(Ty) = 2p(To) exp{i6(T:)). ©
Substituting (8) into (7), we obtain

D5 (To, T) +Xa(To, Ta) =
—2i(D1R+ uR) exp(iTo) — (R exp(3iTo)
+ 3R%?Rexp(iTo)) — BRZRexp(iTo)
+ 3yR?Rexp(iTo) + 2uRexp(iTo) exp(—iTt)
+ 2ivRexp(iTp) exp(—it)

(10)

+ %H exp(iTy) exp(icTp) + cc,

where R is the complex conjugate of R. To eliminate
the secular term in (10), we let
—2i(D1R+ uR) — 3aR’R— BR?R+3yR°R
+ 2uRexp(—it) + 2ivRexp(—it) (11)
1 .
+§H exp(ioTp) = 0.
By substituting (9) into (11) and separating the real and
imaginary parts, we obtain a set of autonomous differ-

ential equations that govern the amplitude p(T;) and
the phase ¢(Ty):

Dip =—up—upsint4+vpcost— %H sing, (12)

3
pD1¢ = op — g(a+ﬁ—y)p3+upcow "

. 1
+vpsint+ EH cos 9,

where
¢(T1) =0T —0(Ty). (14)

From (12) and (13) we get a set of algebraic equations
for the amplitude p and phase ¢ of the steady-state fun-
damental resonance:

. 1.
—Up —UupsSiNT+VpCoST — EH sing =0, (15)

3 3 .
op— §(a+ﬁ—}/)p +upcost+vpsint

. (16)
+ EH cos¢ =0,

whereby we derive the frequency-response relation be-
tween p and o, and that between ¢ and o:

(14 usint — vcosT)2p?

+ <G+Ccosr+nsinr— g(a+ﬂ—y)p2> p? (17)

1
—-H?=0
4 )
tang + M+us.|nr—;/c051 2:0.
o+4ucost+vsint—z(o+ B —7)p
(18)

The first approximation for the fundamental resonance
reads

X(t) = pcos(Pt — ¢) + O(e). (19)

To determine the stability of the steady-state motions,
one lets

p=po+p1, ¢=do+ 1, (20)

where pg and ¢g are solutions of (15) and (16). Substi-
tuting (20) into (12) and (13), using (15) and (16), and
keeping only the linear terms in p1 and ¢;, one obtains

p1=—(u+usint—vcost)py + %(H cos o)1, (21)

, o 9po u v o
=(——-——(a+B—v)+—cost+ —sintT

o1 (po 18< B+ > )
cp1— 2_pO(H Sin(P())(P]_.

Equations (21) and (22) admit solutions of the form
(p1,¢1) = (d1,02) exp(ATy), (23)

(22)
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where d; and d; are arbitrary constants and
2 . H .
A%+ < (u+usint—veosT) + ﬁsmq)o A
0

H . .
+ — (1 +usint —vcosT)sin ¢o

2po (24)
H/o 9po u vV o
—=|————(a+B—y)+—cost+ —sint
2 <Po 8 (B =7 Po Po >
- Cc0S¢p = 0.

From the Routh-Hurwitz criterion the steady-state so-
lution is asymptotically stable if and only if the follow-
ing inequalities hold simultaneously:

. H .
{(u +usint —vcosT) + =—sin (1)0} >0, (25)
2po

{(u +usint —vcost)tangg —

) (26)
903 .

+ T(a +B—y) — ucosr—vsmr} > 0.
Thus, the stable and unstable solutions may be repre-
sented by solid and dotted lines on the response curves,

respectively.

3. Subharmonic Resonance of Order One-Third

To study the subharmonic resonance of order one-
third of the controlled system, we confine ourselves to
the case of

p=0(), a=0(), PB=0(e),
y=0(¢), u=0(g), v=0(e), (27)
H=0(1), ®-3=¢0, o=0(1),

but omit excitations of the small magnitude. Rewrite
(1) as

d2X (t)
dt2
— BX(1)X2(t) — yX (1)X?(t) + uX (t — 1)

dX(t—1)

+VT +Hcos(3+ eot).

Substituting (4) and (5) into (28) and equating the co-
efficients of the same power of &, we obtain a set of
linear partial differential equations:

dX (t)

_, AL 3
H— oX>(t)

+X(t) =
(28)

D§Xo(To, Ty) + Xo(To, Ty) = Hcos(3To + 0 Tw), (29)

D3X1(To, Ty) + X (To, To) =
—2DoD1Xo(To, T1) — 2uDoXo(To, T1)
—aX§(To, Ty) — BXo(To, To) (DoXo(To, T1))? (30)
— YX3(To, T1)D5Xo(To, Ta)
+ 2uXp(Tp — 7, 1) + 2vDpXo(To — 7, T ).
Solving (29) for Xo(To, T1), we have
Xo(To,Th) =
R(Ty) exp(iTy) + Gexp{i(3To+ o T1) } + cc,
H
2(1-92)
Substituting (31) into (30), we get

(31)
G=

D3X1(To, 1) + X1 (To, Th) =

—2i(D1R+ nR) exp(iTo)

—a (3R2Fe+ 6RGG + 3ﬁ2Gexp(iGTo)> exp(iTo)
B (R2ﬁ+ 18RGG — 5ﬁ2Gexp(iGTo)> exp(iTo)
+y (3R2ﬁ+ 38AGG + 1lﬁ2Gexp(icT0)> exp(iTo)
+ 2iuRexp(icTo) exp(—it)

+ 2ivRexp(iTp) exp(—it) + NST +cc, (32)

where NST stands for the terms that do not produce
secular terms. The secular term of (32) vanishes if and
only if

—2i(D1R+ uR) — (30c+ 58 — 37)R°R

— (6o + 188 — 38y)RGG

— (3458 — 11y)RGexp(icTo)

+ 2iuRexp(—it) 4+ 2ivRexp(—it) = 0.

(33)

Substituting (9) into (33) and separating the real and
imaginary parts, we obtain the autonomous differen-
tial equations that govern the amplitude p(T1) and the
phase ¢ (T1):

1 .
Dip = —pp— 7B —56 ~ 11y)pGsing (34)
— upsint+vpcost,
3
—g(Ba+p—3y)p°
— 3(30t+ 9B — 19y)pG?

p(D1p—o0)=

3 ) (35)
- Z(Sa + B —11y)p°Gceos ¢

+ 3up cost+3vpsint,
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where

¢(Ty) =0T —36(Ty). (36)

From (34) and (35), we get a set of algebraic equa-
tions for the amplitude p and phase ¢ of the steady-
state principal resonance of order one-half:

—up — %(305—5[3 —11y)p?Gsing
—upsint+vpcost =0,

@37)

1 1
30P —gBa+B— 3y)p — (30c+ 9B — 197)pG?

— %(304 —5B —11y)p2Gcos ¢ + up cos
+Vvpsint =0. (38)

Equations (37) and (38) show that there are two pos-
sibilities: p = O (trivial solution) or p # 0 (non-trivial
solution). When p = 0, we have

. 1 .
U~+usinT —veosT = —Z(3a—5B —11y)pGsing,
(39)

%c— %(3a+ﬂ — 3y)p? — (30:+ 95 — 19y)G?

) (40)
+ucost+vsint = Z(Sa —5B—11y)pGcos ¢,

whereby we derive the frequency-response relation be-
tween p and o, and that between ¢ and o:
. 5 1 1 2
(1 +usint —vcosT) + <§c — §(3a+[3 —37)p
2
— (30t+ 9B — 197)G? 4+ ucos T + vsin r) (41)

— 1%(304 —5B —11y)?p?G? =0,

tan¢ + {u +VvsinT — vcos r}

: Eo— %(3a+[3 —3y)p2— (3 + 9B — 19y)G?

-1
+ ucos T+ vsin r} =0. (42)

Then, the first-order approximation for the steady-
state principal harmonic resonance of order one-third
is given by

X(t) = p cos ((pt; ¢> + 1_H(D2 cos(®t) +O(e).
(43)
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The stability of the steady-state subharmonic reso-
nance is determined by substituting (20) into (34)
and (35) and linearizing the resulting equations to ob-
tain

p; = —(u+usint —vcosT)py

1 (44)
— ; ((80—58 —11y)Gpfcosgy) g1,
0] = <%+p—icosr+p—\;sinr— %(3064-[3—37’)
3 (30 +9pB — 197)G?

P (45)

- % (30— 5B — 117)pocosdo) ) p1

+ % ((3x—5B — 11y)posin ¢o) ¢1.-

Inserting (23) into (44) and (45), the solution is stable
if and only if the real part of each of the eigenvalues of
the coefficients of the obtained matrix is smaller than
zero.

4, Numerical Results and Discussion

The results are presented graphically by using a nu-
merical method. The frequency equations (21) and (41)
are nonlinear equations of the amplitude p. The numer-
ical results are plotted in Figs. 1—23, which in Figs.
1-6 show the dependence of the response amplitude p
on the detuning parameter ¢ for (21), and in Figs. 13—
18 for (41) and represent the dependence of the am-
plitude p on the coefficient of external excitation H in
Figs. 7—-12 for (21) and in Figs. 1923 for (41).

The stability of a fixed-point solution is studied by
examining of the eigenvalues of the Jacobian matrix
of (14) and (15) for primary resonance and of (44)
and (45) for subharmonic resonance, evaluated at the
fixed point of interest. If all eigenvalues have nega-
tive real parts, the fixed point is expected to settle on
it. These solutions are called stable modes and are
given by solid lines in the frequency-response curves
of Figs. 1-23. If a pure real eigenvalue becomes posi-
tive, the fixed point loses its stability and the motion is
expected to diverge from it. These unstable solutions
are called saddles and are shown by dotted lines in
Figs. 1-23.

Figures 1-6 show the dependence of the ampli-
tude p on the detuning parameter ¢ on variation of
the parameters t, u and v in the case of primary res-
onance for the parameters u = 0.5, a = 0.4, § = 1,
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Fig. 1. Frequency-response curve for primary resonances.

3 6 e e < e e e < e . < - = i £ e e e
p 18
0.0 . S
-30.0 -5.0 200
g

Fig. 2. Frequency-response curve for increasing time delay r,
when 7= 1.

Yy=6,u=02,v=01t=0and H =4. In Fig. 1
we note that the amplitude consists of two branches
which are bent to the left. The right branch is stable
and the left branch is partly stable and partly unsta-
ble. As o increases in the region —30 to —6, the left
branch loses stability via a saddle node bifurcation,
and there exist jump phenomena. When increasing the
time delay 7, the two branches connect and give one
branch. The maximum value decreases and there ex-
ists a jump phenomenon (Fig. 2). When the time de-
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R -

0.0

-300 -5.0 20.0

Fig. 3. Frequency-response curve for increasing time delay t,
when 7 = 2.

1 bt

0.0 T

-30.0 20.0

-50

g
Fig. 4. Frequency-response curves for increasing linear feed-
back gain u.

lay 7 increases to 2, the maximum of the response am-
plitude decreases and there exists a jump phenomenon
(Fig. 3). When the linear feedback u increases, we ob-
serve that the response amplitude shifts to the left and
the multi-valued stability zones decrease and increase,
respectively. The right branch is stable and there ex-
ists a saddle node bifurcation on the left branch. As u
takes the values 14 and 22, the two branches shift to the
left and the right branch has stable and unstable solu-
tions. As o increases or decreases, the left and right
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0.0

~30.0 -50 20.0
o
Fig. 5. Frequency-response curves for negative decreasing

linear feedback gain u.

s T e S—

0.0

~-30.0 0.0

-5.0
g
Fig. 6. Frequency-response curves for increasing linear feed-
back gain v.

branches lose stability via saddle node bifurcations.
Figure 4 shows that there exist jump phenomena. On
decreasing the linear negative feedback u, the response
amplitude shifts to the right. When in Fig. 5 u takes
the values —5 and —12, the left branch, corresponding
to each value, has a saddle node bifurcation, and when
u = —20, the saddle node bifurcation disappears and
all solutions become stable. When in Fig. 6 the linear
feedback v increases, the bent of the response ampli-
tude disappears with unstable decreased magnitudes.
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H
Fig. 7. External excitation H response curves for primary res-
onances.

050
p 0.25
000 e
~10.0 0o 10.0
H

Fig. 8. External excitation H response curves for increasing
time delay .

Note that this variation corresponds to a decreasing v
with negative values (—0.5, —2 and —6).

Figures 7—12 show the variation of the response
amplitude p with the coefficient of external excita-
tion H for the parameters: © = 0.5, =04, f =1,
y=6,u=02,v=0.17=0and o =10. In Fig. 7
we note that the response amplitude is single-valued
and symmetric about H = 0. It has stable and unstable
solutions. There exist three saddle node bifurcations.
Figure 8 shows that for a increasing time delay 7 the
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Fig. 9. External excitation H response curves for increasing
linear feedback gain u.

D TR e i e _— -

/‘) t38 -

0.00
-10.0 0.0

H

Fig. 10. External excitation H response curves for decreasing
linear feedback gain u (negative values).

symmetric single-valued curve decreases somewhat.
The left branch has unstable solutions, and there exist
two saddle node bifurcations. When the time delay
increases up to 7, the symmetric single-valued curve
increases somewhat. The zone of stability on the left
branch increases, but the right branch has stable so-
lutions and there exist two saddle node bifurcations.
In Fig. 9 we note that, when the linear feedback u in-
creases, the left branch has unstable solutions and the
right branch stable ones. Figure 10 shows the decreas-
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Fig. 11. External excitation H response curves for increasing
linear feedback gain v.

10.0

050 (=~ e ——ee [

0.00 - -
-10.0 00 10.0

H
Fig. 12. External excitation H response curves for decreasing
linear feedback gain v (negative values).

ing linear feedback u with negative values. When u
takes the values —4 and —8, the symmetric single-
valued curve has increased values such that the left
branch has unstable solutions and the right branch has
stable ones. As u decreases up to —14, the response
amplitude becomes a symmetric multi-valued curve.
The region of stability is increased and there exist three
saddle node bifurcations. For u = —20 we note that
the response amplitude has four branches, two single-
valued branches and two semi-ovals. The two single-
valued branches are symmetric about H = 0 and de-
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Fig. 13. Frequency-response curve for subharmonic reso-
nances.

500

DA - e e

p V2
; e
1
0.0 L,A, VS U S
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o

Fig. 14. Frequency-response curves for invcreasing time de-
lay 7.

crease such that the left branch has unstable solutions
while the right branch has stable solutions. The two
semi-ovals have increased magnitudes such that the left
branch has stable solutions and the right branch has un-
stable solutions. When in Fig. 11 the linear feedback v
increases, we get similar variations as in Fig. 9, and all
solutions are unstable. When v decreases with nega-
tive values, we get a similar variation as in Fig. 9, such
that the left branch has stable solutions, and as H in-
creases in the region 0—10, we observe in Fig. 12 that

637

36 f—

00
6.0 28.0

o
Fig. 15. Frequency-response curves for increasing linear
feedback gain u.

50.0

24 -
pr2r
6.0 -
10.0 30.0 500
a

Fig. 16. Frequency-response curves for decreasing linear
feedback gain u (negative values).

the response amplitude loses stability via a saddle node
bifurcation for each value.

Figures 13— 18 show the frequency-response curves
for variation of the parameters 7, u and v in case of
subharmonic resonance with the parameters = 0.5,
a=10,f=3,y=05u=2,v=1,7=0andH =10.
These figures represent the variation of the response
amplitude p with the detuning parameter o. In Fig. 13
we note that the amplitude is multi-valued. It bents to
the right and has harding spring vibrations. The re-
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Fig. 17. Frequency-response curves for increasing linear
feedback gain v.
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H
Fig. 19. External excitation-response curve for subharmonic
resonances.
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Fig. 18. Frequency-response curves for decreasing linear
feedback gain v (negative values).

gions of stability are discontinuous and there exist sad-
dle node bifurcations. If in Fig. 14 the time delay 7
is 1 to 1.5, the multi-valued curve contracts and the
solution becomes unstable. When in Fig. 15 the linear
feedback u is increased (i.e u takes the values 6, 11,
and 20), the curves shift to the left and become big-
ger. As in Fig. 16 u takes the values —3, —6 and —10,
we note that the curves shift to the right and move up.
As in Fig. 17 the linear feedback v increases, the multi-
valued curves become narrower. There exist two saddle

0.0
0.0

4.0

8.0

H
Fig. 20. External excitation-response curves for increasing
times delay .

node bifurcations. When in Fig. 18 v decreases, we get
the same variation as in Fig. 14, and all solutions are
unstable.

Figures 19-23 show the external excitation-
response curves for the parameters 7, u and v in
the case of subharmonic resonance with the parame-
tersu =01, 0=10, =3, y=05,u=2,v=1,
T =0 and o = 10. These figures represent the varia-
tion of the response amplitude p with the coefficient
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Fig. 21. External excitation-response curves for increasing
linear feedback gain u.
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Fig. 22. External excitation-response curves for decreasing
linear feedback gain u (negative values).

of external excitation H. In Fig. 19 we observe that
the response amplitude forms a closed curve which re-
duces to an oval, and there exist stable and unstable
solutions. As H increases, we note that the response
amplitude loses stability via saddle node bifurcations.
Figure 20 shows that increasing time delay 7 the oval
contracts and has unstable decreasing magnitudes. Fig-
ure 21 shows that as the linear feedback u increases,
the closed curves shift to the right with increased stable
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Fig. 23. External excitation-response curves for increasing
linear feedback gain v.

magnitudes. Each closed curve has two saddle node bi-
furcations. According to Fig. 22, for decreasing linear
feedback u the closed curves shift to the left. The zones
of stability are decreased and each has two saddle node
bifurcations. According to Fig. 23, as the linear feed-
back v increases, the closed curves contract such that
there exist two saddle node bifurcations for v= 1.5 and
all solutions are stable for v= 2.

5. Concluding Remarks

The time delay in feedback control results in an infi-
nite dimension for the controlled nonlinear system and
increases dramatically the complexity of the numeri-
cal analysis for the system dynamics. The method of
multiple scales proves to be a powerful tool to gain
insight into the fundamental and principal resonance
of systems having one-degree-of-freedom with weak
nonlinearities and weak delay feedback. We have de-
rived two slow-flow equations governing the amplitude
and phase of approximate long-time response of the os-
cillator. Determination of various types of steady-state
motion is then reduced to the solution of sets of al-
gebraic equations. The condition for the existence of
a stable solution is determined. The solution of the
frequency-response equation for the two cases allows
for the following conclusions:

e From the frequency-response curves of primary
resonance we note that the response amplitude bend-
ing to the left, which leads to softening vibration, ex-
cept for the variation of large values of v. The multi-
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valuedness disappears when v takes the values 3 and 6.
The solution is stable when u = —20. The response
amplitude loses stability for large values of v. The re-
sponse amplitude shifts to the left and to the right for
increasing and decreasing u, respectively.

o From the parametric excitation-response curves of
primary resonance we note that the excitation-response
curves are symmetric about H = 0. The response am-
plitude loses stability for increasing u. The response
amplitude shifts down with decreasing magnitudes by
increasing v, respectively, and also for decreasing v
with negative values. The response amplitude is multi-
valued when u = —14. The response amplitude is four
branches (two single-valued and two semi-oval ones),
when u= —20.

e From the frequency-response curves of sub-
harmonic resonances we note a response amplitude
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