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ABSTRACT In this paper, we deal with the vibration control problem of a flexible spacecraft system

with unknown external disturbance and uncertain input backlash nonlinearity. The considered system is

described by two partial differential equations and an ordinary differential equation as governing equations,

and by ordinary differential equations as boundary conditions. The backlash nonlinearity is reformulated

into the desired control input associated with an extra input nonlinear error. This input error and the external

disturbance are combined into an unknown ‘‘disturbance-like’’ item. Two boundary control inputs are

designed at the center body of the spacecraft, compensating for the unknown upper-bound of such items by

applying proper online updating laws. As a result, the vibration of both solar panels of the flexible spacecraft

is suppressed and their angle positions are regulated in the desired region. The numerical simulations are

provided to verify the control performance of the proposed controls by the choice of proper parameters.

INDEX TERMS Vibration control, adaptive control, flexible satellite, input backlash.

I. INTRODUCTION

Nonsmooth input nonlinearities often occur in real control

for industrial implementation, including saturation, back-

lash, hysteresis and dead-zone [1], [2]. Actually, the igno-

rance of these nonlinear characteristics in control system

design will deteriorate the system performance [3], [4].

Many studies and methodologies have sought to handle these

constraints [5], [6]. The backlash nonlinearity, which is a

clearance or lost motion in a mechanism caused by gaps

between the parts, is usually poorly known and often lim-

its system performance [7]. Neglecting input backlash may

result in serious instability [8], [9]. Unfortunately, most tra-

ditional control schemes are not effective enough to handle

systems with backlash, since backlash is non-differentiable,

non-linearities and usually unknown characteristic. Several

new modeling methods on backlash pattern and control

techniques have recently been proposed, e.g., phase plane

model [10], dead-zone model [11], and neural network-based
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control [12]. In [13], the PrandtlCIshinskii hysteresis opera-

tor is adopted to eliminate the effect of the input backlash.

In [14], a novel integral control method is proposed for the

systems with the input and the output hysteresis. In [15],

an output feedback method is applied to design a controller

to deal with the feedback signals which cannot be measured

directly, thus the backlash nonlinearity is handled.

Spacecrafts with flexible solar panels have received

increasing attention in communication, remote sensing and

space industry, because the flexible structures are able to

adapt many complex application environments. However,

undesirable vibration caused by the flexible property is

a thorny problem. Thus, a number of approaches have

been proposed for designing controllers to suppress the

vibration, such as positive position control [16], neural

network control [17], optimal control [18], sliding mode

control [8], [19], linear quadratic regulator control [20],

etc. Most of these studies are based on finite dimensional

ordinary differential equations (ODEs) models [21], [22].

However, flexible structures are close to infinite dimen-

sional systems from a mathematical point of view [23], [24].
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Hence dimensionality reductions may lead to spill over

instability [25], [26].

In order to solve the aforementioned issue, original infi-

nite dimensional partial differential equations (PDEs) are

adopted to describe the flexible structures [27], [28]. Bound-

ary control technology has been proposed based on the PDEs

model [29], [30]. An advantage of this technology is that

the implementation only necessary to set up actuators and

sensors at the boundaries [31], [32]. In [33], a robust adaptive

boundary control for an axially moving string is investigated,

by applying a hydraulic actuator at the right boundary of the

string. In [34], the stabilization of a Timoshenko beam with

a tip payload subjected to boundary external disturbances is

considered. The effects of the external disturbances have been

eliminated according to design some nonlinear feedback con-

trol laws. In [35], an uncertainty and disturbance estimator

based robust boundary control strategy is presented, to handle

the stabilization of an unstable parabolic partial differential

equation with unknown input disturbance.

Literature [36] first proposes a boundary control scheme

based on hybrid PDEs-ODEs model for a flexible satellite.

A single-point control input is placed at the hub to restrain the

vibrations of the two panels. In [37], the flexible spacecraft

system subjected to external disturbances is investigated.

An efficient control scheme consisting of two boundary con-

trol laws and a distributed control law is developed to sup-

press the vibration and track the desired attitude. In [38],

by setting up a control torque in the central hub of the

flexible spacecraft system, the exponential stabilization of the

closed-loop system is achieved.With regard to the research of

input constraints of the flexible spacecraft system, although

input saturation phenomenon has been taken into account

in [39], [40], to the best of our knowledge, there is not any

published literature attempting to design boundary control

scheme for flexible spacecraft with input backlash. Hence it

motivates us to carry out this research.

In this paper, we consider the vibration control prob-

lem of a flexible spacecraft system with unknown external

disturbance and uncertain input backlash non-linearity. The

studied system is described by a set of PDEs and ODEs.

We define an appropriate Lyapunov function candidate and

design a novel boundary control scheme with considering the

unknown external disturbance and the uncertain input back-

lash non-linearity in the system. Different from the previous

existing research studies, main contributions of this paper can

be summed up as follows:

i The input backlash is presented as a desired control

input associated with an input non-linear error. The

input non-linear error and external disturbance form

an unknown ‘disturbance-like’ item.

ii A novel boundary control scheme is presented,

including two control inputs. Based on apply-

ing proper online updating laws, the unknown

upper-bound of the ‘disturbance-like’ items can be

estimated.

FIGURE 1. A typical flexible spacecraft system [39].

iii With the proposed controls, the vibration of the

flexible spacecraft is suppressed and the angle posi-

tion is regulated in the desired region. Moreover,

the closed-loop system is proved to be uniformly

bounded via the Lyapunovs direct method.

The arrangement of this paper is listed as below.

A PDEs-ODEs model of the flexible spacecraft system

and preliminaries are presented in Section II. Considering

the input backlash non-linearity and the boundary external

disturbances, a novel boundary control algorithm is pro-

posed in Section III. Numerical simulations are completed in

Section IV and we reach a conclusion in Section V.

II. PROBLEM STATEMENT AND PRELIMINARIES

In this paper, we directly use the system model described

in [39], which is proposed for investigating the input satu-

ration issue of the flexible spacecraft system. We will handle

the input backlash problem for this model.

As is shown in Fig. 1, the frame consists of a inertial

coordinate XOY and a fixed coordinate xoy. ωL(x, t) and

ωR(x, t) are the deflections in xoy of the left and right panels,

respectively. The displacements of the two panels in XOY are

denoted as
{

YL(x, t) = ωL(x, t) + lη(t)

YR(x, t) = ωR(x, t) + lη(t).
(1)

η(t) represents the attitude angle displacement, and ηd is

the desired angle displacement. M denotes the point mass

of the center body. The length of the symmetrical flexible

panel is l. Ih is the center body inertia. d̄1(t) and d̄2(t) denote

the external input disturbances, while u(t) and F(t) are the

corresponding control inputs. ρ is the density of the panels.

γ1 is the coefficient of viscous damping. EI is the bending

stiffness.

Remark 1: For convenience and clarity, notions (⋆)′ =

∂(⋆)/∂x, (⋆)′′ = ∂2(⋆)/∂x2, (⋆)′′′ = ∂3(⋆)/∂x3, (⋆)(n) =
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FIGURE 2. Diagram of backlash.

∂n(⋆)/∂xn (n ≥ 4), ˙(⋆) = ∂(⋆)/∂t , and ¨(⋆) = ∂2(⋆)/∂t2 are

defined throughout this paper.

The flexible spacecraft system proposed in [39] are

described with three governing equations:






























ρŸL(x, t) + EIY
(4)
L (x, t) + γ1ẎL(x, t) = 0,

x ∈ (0, l), t > 0

ρŸR(x, t) + EIY
(4)
R (x, t) + γ1ẎR(x, t) = 0,

x ∈ (l, 2l), t > 0

(2)

and

Ihη̈(t)=EI [Y ′′
R (l, t) − Y ′′

L (l, t)]+u(t)+d̄1(t), t > 0 (3)

where u(t) is the axial control force and d̄1(t) is the external

input disturbance.

The corresponding boundary conditions are:











YL(l, t) = YR(l, t) = Y (l, t), t ≥ 0

Y ′′
L (0, t) = Y ′′′

L (0, t) = 0, t ≥ 0

Y ′′
R (2l, t) = Y ′′′

R (2l, t) = 0, t ≥ 0

(4)

and

MŸ (l, t)=EI [Y ′′′
L (l, t) − Y ′′′

R (l, t)] + F(t)+d̄2(t), t ≥ 0

(5)

where F(t) is the control torque and d̄2(t) is the external input

disturbance.

From the boundary conditions (4) and the equations (1),

we have Y ′
L(l, t) = Y ′

R(l, t) = η(t). And we also have

Y
(n)
L (x, t) = ω

(n)
L (x, t), Y

(n)
R (x, t) = ω

(n)
R (x, t), n ≥ 2.

As is shown in Fig 2, The input backlash proposed in [1]

is reformulated as follows

u(t) = B(ν) = sν(t) + d(ν) (6)

where u(t) denotes the control input, ν(t) denotes the desired

control command, s > 0 is the slope, d(ν) is the non-linearity

error and has the below expression

d(ν) =











−sbr , if ν̇ > 0 and u(t) = s(ν(t) − br )

−sbl, if ν̇ < 0 and u(t) = s(ν(t) − bl)

u(t_) − sν(t) otherwise,

(7)

in which bl < br are constant parameters and u(t_) means

there is no change of u(t).

Several necessary assumptions are proposed for the subse-

quent development.

Assumption 1: The backlash output B(ν) is hard to

measure.

Assumption 2: The parameters s, br and bl are unknown

bounded constants. However, their signs are specific such that

s > 0, br > 0 and bl < 0. Moreover, they are within known

bounded

0 < smin ≤ s ≤ smax, (8)

0 < (br )min ≤ br ≤ (br )max, (9)

(bl)min ≤ bl ≤ (bl)max < 0. (10)

Assumption 3: The unknown external input disturbances

d̄1(t) and d̄2(t) are also bounded.

Under these assumptions, we have

|d(ν)| ≤ max{sbr , −sbl}.

And we define the ‘disturbance-like’ term as

d(t) = d(ν) + d̄(t). (11)

Remark 2: The following inequality presented in [41] will

be applied for analyzing the system stability.

|y(l, t)D(t)| ≤ y(l, t) tanh(y(l, t))Dm, (12)

where tanh(∗) denotes the hyperbolic tangent function and

Dm > max{|D(t)|} > 0.

III. ADAPTIVE CONTROL DESIGN

Different from the dynamics of robotic manipulator or marine

riser represented by a single governing PDE equation,

the flexible spacecraft system is represented by two PDE

equations and more complex boundary conditions. Further-

more, the control goals of this study are to suppress the

vibration and to restrict the angle position, while the previous

controls in [15], [42] are only for the stability. Hence the

previousmethods proposed in [15], [42] cannot directly apply

to this study without difficulty.

In this section, an extension of backlash handling

approaches to the flexible spacecraft system is presented.

In order to stabilize the system and compensate for the

‘‘disturbance-like’’ terms, the boundary controlsF(t) and u(t)

are designed based on the Lyapunov’s direct method. Our

control designs will make sure that all the states of the closed-

loop system are uniformly ultimately bounded.
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The input backlash models of the flexible spacecraft sys-

tem can be described as follows

u(t) = Bu(ν) = sν(t) + d1(ν) (13)

and

F(t) = BF (σ ) = gσ (t) + d2(σ ) (14)

where ν(t) and σ (t) are the two designed boundary control

inputs. s and g are the positive constant slope of the lines

associated with ν(t) and σ (t), respectively.

According to (7), the non-linearity errors d1(t) and d2(t)

can be formulated as

d1(ν) =











−sbur , if ν̇ > 0 and u(t) = s(ν(t) − bur )

−sbul, if ν̇ < 0 and u(t) = s(ν(t) − bul)

u(t_) − sν(t) otherwise

(15)

and

d2(σ )=











−gbFr , if σ̇ > 0 and F(t) = g(σ (t)−bFr )

−gbFl, if σ̇ < 0 and F(t) = g(σ (t)−bFl)

F(t_)−gσ (t) otherwise.

(16)

Then the governing equation (3) and the boundary condi-

tion (5) can be rewritten as

Ihη̈(t) − EI [Y ′′
R (l, t) − Y ′′

L (l, t)] = sν(t) + d1(t), (17)

MŸ (l, t) − EI [Y ′′′
L (l, t) − Y ′′′

R (l, t)] = gσ (t) + d2(t) (18)

where

d1(t) = d1(ν) + d̄1, (19)

d2(t) = d2(σ ) + d̄2 (20)

are the ‘disturbance-like’ terms. Since d1(v), d̄1, d2(σ ) and

d̄2 are bounded, d1(t) and d2(t) are bounded within unknown

positive constant D and Q, respectively. We will estimate D

and Q later.

The desired control inputs are presented as follows

ν(t) =
1

s
[−k1ė− k2e− tanh(h(t))D̂(t)] (21)

σ (t) =
1

g
[−kua(t) −

mβ

α
ω̇(l, t) − kdω(l, t)

− tanh(ua(t))Q̂(t)] (22)

where k, k1, k2, kd , α, β are positive constants, D̂(t) and Q̂(t)

are the observers ofD andQ, respectively. Then the errors of

estimation ofD andQ can be defined as D̃(t) = D−D̂(t) and

Q̃(t) = Q−Q̂(t), respectively. Hence we have
˙̃
D(t) = −

˙̂
D(t)

and
˙̃
Q(t) = −

˙̂
Q(t). The adaptive laws are expressed as

˙̂
D(t) = h(t) tanh(h(t)) − ξ1D̂(t), (23)

˙̂
Q(t) = αua(t) tanh(ua(t)) − ξ2Q̂(t) (24)

where ξ1 and ξ2 are positive constants. Moreover, h(t) and

ua(t) are expressed as

h(t) = αė+ βe (25)

and

ua(t) = ω̇(l, t) +
β

α
ω(l, t), (26)

respectively, in which

e = η(t) − ηd (27)

and it implies that ė = η̇(t).

Remark 3: In the designed control laws (21) and (22), all

signals can be measured by sensors located at the center

body or computed by backward difference algorithm. We can

directly measureω(l, t) by applying a laser displacement sen-

sor, and use the backward difference algorithm to calculate

ω̇(l, t) according to the measured value. η(t) and η̇(t) can

be measured by employing a rotary encoder and tachometer,

respectively. Although measurement noises objectively exist

in sensors’ implementation, the effect is obvious for the high

order differentiating terms with respect to time and weak for

first-order differentiating terms. In the proposed controls (21)

and (22), only ω̇(l, t) and η̇(t) with differentiating once exist,

thus the effects of the noises can be ignored in practice.

The Lyapunov function candidate of our chosen is

V(t) = Va(t) + Vb(t) + Vc(t) +
1

2
D̃2(t) +

1

2
Q̃2(t) (28)

where Va(t), Vb(t) and Vc(t) are defined as

Va(t) | =
αEI

2

∫ l

0

[ω′′
L(x, t)]

2dx +
αEI

2

∫ 2l

l

[ω′′
R(x, t)]

2dx

+
βγ1

2

∫ l

0

Y 2
Le
(x, t)dx +

βγ1

2

∫ 2l

l

Y 2
Re
(x, t)dx

+
αρ

2

∫ l

0

Ẏ 2
L (x, t)dx +

αρ

2

∫ 2l

l

Ẏ 2
R (x, t)dx, (29)

Vb(t) =
αm

2
u2a(t)+

αkd

2
ω2(l, t)+(

αk2

2
+

βk1

2
)e2+

αIh

2
ė2,

(30)

Vc(t) = βIheė+ βρ

∫ l

0

ẎL(x, t)YLe (x, t)dx

+ βρ

∫ 2l

l

ẎR(x, t)YRe (x, t)dx (31)

where YLe (x, t) = ωL(x, t)+xe and YRe (x, t) = ωR(x, t)+xe.

Lemma 1: The Lyapunov function candidate (28) is a pos-

itive function and is upper and lower bounded as

0 ≤ λ1[Va(t) + Vb(t) + D̃2(t) + Q̃2(t)] ≤ V(t)

≤ λ2[Va(t) + Vb(t) + D̃2(t) + Q̃2(t)] (32)

where λ1 and λ2 are two positive constants.

Proof: Please see Appendix A. �

Lemma 2: The time derivative of the Lyapunov function

candidate (28) can be upper bounded with

V̇(t) ≤ −λV(t) + ε (33)

where λ > 0 and ε > 0.

Proof: Please see Appendix B. �
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Theorem 1: For the studied flexible spacecraft system

described by (2)-(5), under the proposed control laws (21)

and (22) with suitable parameters, assuming that the initial

conditions are bounded, the closed-loop system is uniformly

bounded.

Proof: Multiplying (33) by exp(λt), and integrating the

consequence yields

V(t) ≤ V(0)exp(−λt) +
ε

λ
∈ L∞. (34)

We further have
{

ω2
L(x, t) ≤ (2l + 1)ω2(l, t) + (l + 16l4)

∫ l
0 [ω

′′
L(x, t)]

2dx

ω2
R(x, t) ≤ (2l + 1)ω2(l, t) + (l + 16l4)

∫ l
0 [ω

′′
R(x, t)]

2dx

(35)

By Lemma 1, (29) and (30), we can further obtain











ω2
L(x, t) ≤ τ [Va(t) + Vb(t)] ≤

τ

λ2
V(t)

ω2
R(x, t) ≤ τ [Va(t) + Vb(t)] ≤

τ

λ2
V(t)

(36)

where τ = max{
4l + 2

αkd
,
2l + 32l4

αEI
} > 0.

Substituting (34) into (36), we get















|ωL(x, t)| ≤

√

τ

λ2
[V(0) +

ε

λ
], ∀(x, t) ∈ [0, l] × [0, ∞),

|ωR(x, t)| ≤

√

τ

λ2
[V(0) +

ε

λ
], ∀(x, t) ∈ [l, 2l] × [0, ∞)

(37)

In the same manner, we have

|e|=|η(t) − ηd | ≤

√

ϑ

λ2
[V(0) +

ε

λ
], ∀t ∈ [0, ∞) (38)

where ϑ = 2/(αk2 + βk1). Hence, we can obtain

lim
t→∞

|ωL(x, t)| ≤

√

τε

λλ2
, lim

t→∞
|ωR(x, t)| ≤

√

τε

λλ2
(39)

and

lim
t→∞

|e| ≤

√

ϑε

λλ2
. (40)

�

Remark 4: A reasonable selection process of the control

design parameters can make sure that constraint conditions

(60)-(64) are satisfied. Since J is neither a design parameter

nor a system parameter, J can be assigned an arbitrary

value. It implies that we can first choose a proper β, and

determine J according to (61). Then α can be selected by

(60). kd , k1 and k2 are chosen for making (62), (63) and

(64) hold, respectively. In simulations, we will repeat the

above parameters selection procedure, until better control

performances are achieved.

TABLE 1. Parameters of the flexible spacecraft system.

FIGURE 3. Deflection of the uncontrolled spacecraft.

IV. SIMULATIONS

In order to verify the effectiveness of our proposed control

scheme for the flexible spacecraft system with input backlash

non-linearity, simulations have been carried out by using

the finite difference method [24], [43] and the results are

presented in this section.

The finite difference method can provide a straightforward

and accurate process to resolve the dynamic model (2)-(5)

constituting a highly nonlinear and hybrid differential equa-

tions with two independent variables, i.e., space and time.

The space step and the time step are divided as 1x = 0.5m

and 1t = 3 × 10−4s, respectively. The spatial and temporal

terms in the equations are obtained using the finite difference

techniques through a finite rectangular grid on this mesh of

discrete points.

The parameters of the considered system are shown

in Table 1. The boundary disturbance and initial conditions

of the system are as follows d̄1(t) = d̄2(t) = 1.2 + sin(π t),

ωL(x, 0) = ωR(x, 0) = 0.2x, ω̇L(x, 0) = ω̇R(x, 0) = 0,

η(0) = 0(rad) and ηd = 0.5(rad).

Without any control input, i.e. u(t) = F(t) = 0, the

deflection is always large as shown in Fig. 3. From Fig. 5, we

can see that the angle displacement of the spacecraft is less

than 0.3 rad, which exceeds the desired position ηd = 0.5 rad.

Boundary control laws (13) and (14) are executed by set-

ting kd = 50, k = 100, k1 = 300, k2 = 800, α = 1.2,

β = 0.6, ξ1 = 0.001 and ξ2 = 0.08. s = g = 1,

bul = −50, bur = 50, bFl = −10 and bFr = 10 are

chosen as the parameters of the input backlash non-linearity.

VOLUME 7, 2019 87021



Z. Lin et al.: Vibration Control of a Flexible Spacecraft System With Input Backlash

FIGURE 4. Deflection of the spacecraft with the proposed boundary
control laws.

FIGURE 5. Angular position of the spacecraft with the proposed boundary
control laws.

FIGURE 6. Designed control torque.

Figs. 4 presents that the developed control can suppress the

vibrational deflection to zero by the proposed controls in

about 15s. As is shown in 5, thanks to the control schemes,

FIGURE 7. Designed control force.

FIGURE 8. Actual control torque.

FIGURE 9. Actual control force.

the angle displacement is regulated to 0.5rad in less than

15 seconds. The desired control commands ν(t) and σ (t) are

bounded and smooth as demonstrated in Fig. 6 and Fig. 7.

87022 VOLUME 7, 2019



Z. Lin et al.: Vibration Control of a Flexible Spacecraft System With Input Backlash

FIGURE 10. Online updating law D̂(t).

FIGURE 11. Online updating law Q̂(t).

FIGURE 12. Deflection of the spacecraft with PD controls.

Moreover, the performances of the actual controls and the

adaptive laws are illustrated in Figs. 8, 7, 10 and 11.

As a comparison, we replace the control laws (21) and (22)

with classical PD controls, namely, νPD = −kp1η(t)−kd1η̇(t)

and σPD = −kp1ω(l, t) − kd1ω̇(l, t), respectively, where

kp1 = 10, kd1 = 6, kp2 = 100 and kd2 = 80. As shown

in Fig. 12, the offset can be stabilized near to zero slowly.

FIGURE 13. Angular position of the spacecraft with PD controls.

From Fig. 13, the angle displacement cannot be regulated to

the desired position, but the bias is tapering off and close to

0.5 rad at the 30s. Hence, we can conclude that by employing

the PD control laws, the flexible spacecraft system is stabi-

lized to some extent. However, the control result is inferior to

ours.

Therefore, the above simulations suggest that the proposed

novel control scheme in this paper can handle the unknown

backlash and prove the ultimately uniform stability of the

closed-loop system.

V. CONCLUSION

In this study, the vibration suppression issue for a flexible

spacecraft system subject to unknown external disturbance

and uncertain input backlash non-linearity was addressed.

The backlash error and external disturbance were reformu-

lated as a combined ‘‘disturbance like’’ item. The upper-

bound of a such item was estimated by designing a proper

online updating law. Two adaptive vibration control inputs

were constructed for eliminated the effect of the ‘‘disturbance

like’’ items. With the boundary control schemes, the stabi-

lization of the spacecraft’s offset was achieved and the angle

positions were regulated in the desired region. Numerical

simulations were performed to illustrate the performance of

the control designed. A further research is conducted the

work of this paper into a 3-DOF attitude described flexible

spacecraft model.

APPENDIX A

PROOF OF LEMMA 1

According to (29) and (30), we have

δ1[e
2 + ė2 +

∫ l

0

[Y 2
Le
(x, t)dx + Ẏ 2

L (x, t)]dx

+

∫ 2l

l

[Y 2
Re
(x, t) + Ẏ 2

R (x, t)]dx] ≤ Va(t) + Vb(t) (41)

where 2δ1 = max{βγ1, αρ, αk2 + βk1, αIh}.
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Moreover, from (31) we obtain

|Vc(t)| ≤
βIh

2
(e+ ė) +

βρ

2
[

∫ l

0

[Y 2
Le
(x, t)dx + Ẏ 2

L (x, t)]dx

+

∫ 2l

l

[Y 2
Re
(x, t) + Ẏ 2

R (x, t)]dx]]

≤ δ2(Va(t) + Vb(t)) (42)

where δ2 = β max{Ih, ρ}/2δ1. It implies that

−δ2[Va(t) + Vb(t)] ≤ Vc(t) ≤ δ2[Va(t) + Vb(t)]. (43)

We choose a proper 0 < β < 2δ1/max{Ih, ρ} for getting

0 < µ1 = 1 − δ2 < 1, then we have

0 ≤ λ1[Va(t) + Vb(t) + D̃2(t) + Q̃2(t)] ≤ V(t)

≤ λ2[Va(t) + Vb(t) + D̃2(t) + Q̃2(t)] (44)

where λ1 = min{µ1,
1
2
} and λ2 = 1 + δ1 > 1. �

APPENDIX B

PROOF OF LEMMA 2

Differentiating (28) leads to

V̇(t) = V̇a(t) + V̇b(t) + V̇c(t) + D̃(t)
˙̃
D(t) + Q̃(t)

˙̃
Q(t).

(45)

V̇a(t) = αEI

∫ l

0

ω′′
L(x, t)ω̇

′′
L(x, t)dx

+ αEI

∫ 2l

l

ω′′
R(x, t)ω̇

′′
R(x, t)dx

+ βγ1

∫ l

0

YLe (x, t)ẎLe (x, t)dx

+ βγ1

∫ 2l

l

YRe (x, t)ẎRe (x, t)dx

+ αρ

∫ l

0

ẎL(x, t)ŸL(x, t)dx

+ αρ

∫ 2l

l

ẎR(x, t)ŸR(x, t)dx. (46)

Substituting governing equations (2) and using integration

by parts, we have

V̇a(t) ≤ −αγ1

∫ l

0

Ẏ 2
L (x, t)dx − αγ1

∫ 2l

l

Ẏ 2
R (x, t)dx

− αEI [ω′′
R(l, t) − ω′′

L(l, t)]ė

− αEI [ω′′′
L (l, t) − ω′′′

R (l, t)]ω̇(l, t)

+ βγ1

∫ l

0

YLe (x, t)ẎLe (x, t)dx

+ βγ1

∫ 2l

l

YRe (x, t)ẎRe (x, t)dx. (47)

Taking the time derivative for Vb(t), we have

V̇b(t) = αmua(t)u̇a(t) + αkdω(l, t)ω̇(l, t)

+ (βk1 + αk2)eė+ αIhėë. (48)

Applying (26), (18) and (22), we obtain

αmua(t)u̇a(t)= −αku2a(t) − kdω(l, t)ω̇(l, t) − βkdω
2(l, t)

+ αEIua(t)[ω
′′′
L (l, t) − ω′′′

R (l, t)]

+ αua(t)[− tanh(ua(t))Q̂(t)+d2(t)]. (49)

Moreover, using (17) and (21), we have

αIhėë = αėEI [ω′′
R(l, t) + ω′′

L(l, t)] − αk1ė
2 − αk2eė

+αė[− tanh(h(t))D̂(t) + d1(t)]. (50)

Substituting (49) and (50) into (48), we have

V̇b(t) ≤ −αku2a(t) − βkdω
2(l, t) − αk1ė

2 + βk1eė

+ αėEI [ω′′
R(l, t) + ω′′

L(l, t)]

+ αEIua(t)EI [ω
′′′
L (l, t) − ω′′′

R (l, t)]

− αė tanh(h(t))D̂(t) + αėd1(t)

−αua(t) tanh(ua(t))Q̂(t) + αua(t)d2(t). (51)

For the third term of (45), we have

V̇c(t)= βIhė
2+βIheë

+ βρ[

∫ l

0

ŸL(x, t)YLe (x, t)dx+

∫ l

0

Ẏ 2
L (x, t)dx

+

∫ 2l

l

ŸR(x, t)YRe (x, t)dx+

∫ 2l

l

Ẏ 2
R (x, t)dx]. (52)

Substituting (3) and (21), we have

βIhëe = βEI [ω′′
R(l, t) − ω′′

L(l, t)]e− βk1ėe

− βk2e
2 − βe[tanh(h(t))D̂(t) + d1(t)]. (53)

Applying (2) and using integration by parts yield

βρ

∫ l

0

ŸL(x, t)YLe (x, t)dx

= −βγ1

∫ l

0

ẎL(x, t)YLe (x, t)dx − βEI [ω′′′
L (l, t)ω(l, t)

− ω′′
L(l, t)e+

∫ l

0

[ω′′
L(x, t)]

2dx] (54)

and

βρ

∫ 2l

l

ŸR(x, t)YRe (x, t)dx

= −βγ1

∫ 2l

l

ẎR(x, t)YRe (x, t)dx − βEI [−ω′′′
R (l, t)ω(l, t)

+ ω′′
R(l, t)e+

∫ 2l

l

[ω′′
R(x, t)]

2dx]. (55)

Therefore, we obtain

V̇c(t)

≤ βIhė
2 − βk1eė− βk2e

2

+ βρ[

∫ l

0

Ẏ 2
L (x, t)dx +

∫ 2l

l

Ẏ 2
R (x, t)dx]

− βγ1[

∫ l

0

ẎL(x, t)YLe (x, t)dx

+

∫ 2l

l

ẎR(x, t)YRe (x, t)dx]

− βEI [ω′′′
L (l, t) − ω′′′

R (l, t)]ω(l, t)
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− βEI [

∫ l

0

[ω′′
L(x, t)]

2dx +

∫ 2l

l

[ω′′
R(x, t)]

2dx]

− βe[tanh(h(t))D̂(t) + d1(t)] (56)

according to (52), (53), (54) and (55).

Applying (12), (23), (24)and (25), we further have

−αė tanh(h(t))D̂(t) + αėd1(t) − αua(t) tanh(ua(t))Q̂(t)

+αua(t)d2(t) − βe tanh(h(t))D̂(t) − βe tanh(h(t))d1(t)

+D̃(t)
˙̃
D(t) + Q̃(t)

˙̃
Q(t)

≤
ξ1

2
D2 −

ξ1

2
D̃2(t) +

ξ2

2
Q2 −

ξ2

2
Q̃2(t). (57)

By the boundary conditions (4), the following inequality

holds

J [

∫ l

0

Y 2
Le
(x, t)dx +

∫ 2l

l

Y 2
Re
(x, t)dx]

≤ 4Jlω2(l, t) + 16Jl3e2 + 16Jl4[

∫ l

0

[ω′′
L(x, t)]

2dx

+

∫ 2l

l

[ω′′
R(x, t)]

2dx] (58)

where J is a positive constant.

Together all of (47), (51), (56), (57) and (58), we have

V̇(t)

≤ −(αγ1 − βρ)[

∫ l

0

Ẏ 2
L (x, t)dx +

∫ l

0

Ẏ 2
R (x, t)dx]

− J [

∫ l

0

Y 2
Le
(x, t) +

∫ 2l

l

Y 2
Re
(x, t)]

− (βEI − 16Jl4)[

∫ l

0

[ω′′
L(x, t)]

2dx +

∫ 2l

l

[ω′′
R(x, t)]

2dx]

− αku2a(t) − (βkd − 4Jl)ω2(l, t)

− (αk1 − βIh)ė
2 − (βk2 − 16Jl3)e2

ξ1

2
D2 −

ξ1

2
D̃2(t) +

ξ2

2
Q2 −

ξ2

2
Q̃2(t). (59)

Carefully choosing proper parameters α, β, J , k, kd k1 k2
and let them satisfy the following conditions

αγ1 − βρ > 0 (60)

βEI − 16Jl4 > 0 (61)

βkd − 4Jl > 0 (62)

αk1 − βIh > 0 (63)

βk2 − 16Jl3 > 0. (64)

Then we have

V̇(t) ≤ −λ3[Va(t) + Vb(t) + D̃2(t) + Q̃2(t)] + ε (65)

where

λ3 = min{
2(αγ1 − βρ)

αρ
,
2J

βγ1
,
2(βEI − 16Jl4)

αEI
,
2k

m
,

2(βkd − 4Jl)

αkd
,
2(αk1 − βIh)

αIh
,
2(βk2 − 16Jl3)

αk2 + βk1
,

ξ1, ξ2} > 0 (66)

and

ε =
ξ1

2
D2 +

ξ2

2
Q2. (67)

Therefore, combining (32) and (59), we get

V̇(t) ≤ −λV(t) + ε (68)

where λ = λ3/λ2 and ε > 0. �
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