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Abstract The effectiveness of tuned mass friction damper

(TMFD) in reducing undesirable resonant response of the

bridge subjected to multi-axle vehicular load is investi-

gated. A Taiwan high-speed railway (THSR) bridge sub-

jected to Japanese SKS (Salkesa) train load is considered.

The bridge is idealized as a simply supported Euler–Ber-

noulli beam with uniform properties throughout the length

of the bridge, and the train’s vehicular load is modeled as a

series of moving forces. Simplified model of vehicle,

bridge and TMFD system has been considered to derive

coupled differential equations of motion which is solved

numerically using the Newmark’s linear acceleration

method. The critical train velocities at which the bridge

undergoes resonant vibration are investigated. Response of

the bridge is studied for three different arrangements of

TMFD systems, namely, TMFD attached at mid-span of

the bridge, multiple tuned mass friction dampers

(MTMFD) system concentrated at mid-span of the bridge

and MTMFD system with distributed TMFD units along

the length of the bridge. The optimum parameters of each

TMFD system are found out. It has been demonstrated that

an optimized MTMFD system concentrated at mid-span of

the bridge is more effective than an optimized TMFD at the

same place with the same total mass and an optimized

MTMFD system having TMFD units distributed along the

length of the bridge. However, the distributed MTMFD

system is more effective than an optimized TMFD system,

provided that TMFD units of MTMFD system are dis-

tributed within certain limiting interval and the frequency

of TMFD units is appropriately distributed.

Keywords Bridge � Multi-axle vehicle � Critical velocity �
Resonant response � TMFD � Concentrated MTMFD �
Distributed MTMFD

Introduction

Transportation infrastructure is one of the significant factor

which reflects the development of a nation’s economy. Due

to the paucity of land and increased traffic in urban areas, the

bridges have become inevitable part of the transportation

facilities, such as highways and railways. In recent years,

with the rapid advances in the area of high-performance

materials, design technologies and construction techniques,

the architecture of bridges has reached unexpected limits. At

the same course of time, day by day, the bridges are

becoming more slender and lighter and hence more prone to

vibrations due to heavy vehicles and high-speed trains

passing over it. Thus, the vibration of a bridge due to the

passage of vehicles is an important aspect in bridge design. A

multi-axle vehicle moving over the bridge can be modeled as

planar moving forces, inducing periodic excitations to the

bridge. Vibrations induced by moving vehicles become

excessive when the vehicle velocities reach resonant or

critical values. This may seriously affect the long-term

safety, serviceability of the bridges and comfort of the pas-

sengers. In addition, it may endanger the safety of supporting

structure. Hence, it is very necessary to control these unde-

sirable excessive vibrations of bridge under train loads.

Literature review shows that the dynamic behavior of

the bridges has been significantly impacted due to periodic
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moving loads from trains; the same has been investigated

by many researchers in the past few years.

Kwon et al. (1998) investigated the control efficiency of

single-tuned mass damper (STMD) system attached with

the bridges. He idealized the bridge as a simply supported

Euler–Bernoulli beam traversed by vehicles which were

modeled as moving masses and shown that TMD can

effectively reduce response of the bridge. Yang et al. (1997)

investigated the vibration of simple beam excited under

high-speed moving trains and proposed a span to car length

ratio so that no resonance occurs in beam. Chen and Lin

(2000) investigated the dynamic response of elevated high-

speed railway. Cheng et al. (2001) proposed a bridge-track-

vehicle element for investigating interactions between

moving train, railway track and bridge. Ju and Lin (2003)

investigated the resonant characteristics of three-dimen-

sional (3D) multi-span bridges subjected to high-speed

trains. Wang et al. (2003) carried out the optimization of

STMD attached at the mid-span of Taiwan high-speed

railway (THSR) bridges subjected to French train à grande

vitesse (TGV), German intercity express (ICE) and Japa-

nese SKS trains. Nasiff and Liu (2004) presented a 3D

dynamic model for the bridge-road-vehicle interaction

system. Jianzhong et al. (2005) has performed a parametric

study on the optimization of multiple tuned mass dampers

(MTMD) and demonstrated its efficiency in reducing dis-

placement and acceleration responses of simply supported

bridge subjected to high-speed trains. Lin et al. (2005)

proved that MTMD is more effective and reliable than

STMD in reducing train-induced dynamic responses of

simply supported bridges during resonant speeds. Shi and

Cai (2008) performed numerical analysis to study the

vehicle-induced bridge vibration response using a TMD,

considering the road surface conditions. Li et al. (2010)

developed a numerical method to analyze coupled railway

vehicle-bridge systems of non-linear features. Moghaddas

et al. (2012) studied the dynamic behavior of bridge-vehicle

system attached with TMD, using the finite-element

method. It was shown that by attaching an optimized TMD

to a bridge, a significantly faster response reduction can be

achieved. Antolin et al. (2013) considered non-linear

wheel-rail contact forces model to analyze the dynamic

interaction between high-speed trains and the bridges.

Wang et al. (2013) investigated the effectiveness of visco-

elastic damper (VED) to mitigate the multiple resonant

responses of a moving train running on two-span continuous

bridges. It is found that with the installation of VED at mid-

point of each span, the maximum acceleration response of the

bridge can be suppressed noticeably at resonant speeds.

It is evident from above studies that dynamic forces in

the form of periodic moving loads from train may result in

undesirable resonant responses of the bridge. These unde-

sirable responses can be controlled using the TMD, MTMD

and VED. However, TMD and MTMD are having disad-

vantages of being sensitive to the fluctuation in frequency

spacing and tuning frequency with respect to the control-

ling (fundamental) frequency of the bridge. This may

deteriorate the performance of TMD and MTMD. Until the

date, the resonant response control of bridge is studied

using TMD, MTMD and VED, but the use of friction

dampers (FD) and tuned mass friction damper (TMFD) has

not been explored for controlling the response of the

bridges. Pisal and Jangid (2015) demonstrated that

MTMFD can effectively reduce the seismic response of

multi-storey structures.

In the present study, the performance of tuned mass

friction damper (TMFD) in controlling undesirable reso-

nant response of the bridge is investigated. To suppress the

undesirable excessive responses of the bridge, different

TMFD systems are employed. The specific objectives of

the study are summarized as:

1. To formulate the equation of motion for the response

of the bridge with different TMFD systems under

periodic train loads and develop its solution procedure.

2. To investigate the influence of important parameters,

such as mass ratio, tuning frequency ratio, frequency

spacing, damper slip force and number of TMFD units

in MTMFD on the performance of the MTMFD.

3. To obtain the optimum values of influencing param-

eters for TMFD and MTMFD systems, which may find

application in the effective design of MTMFD for the

bridges.

4. To investigate the performance of different TMFD

systems, i.e., TMFD attached at the mid-span of the

THSR bridge, MTMFD attached at the mid-span

(concentrated) of the THSR bridge, and MTMFD

distributed along the length of the THSR bridge

subjected to Japanese SKS trains.

Modeling of vehicle, bridge and MTMFD

A train or any other vehicle which has multi-axle system

excites a bridge when it passes over it. In contrast to wind or

earthquake load, the position of vehicular load over the

bridge changes at each and every second. Furthermore, due

to the interaction between the vehicle and the bridge, the

magnitude of vehicular load depends on the response of the

bridge. Thus, it is difficult to establish the correlation

between governing parameters and response of the bridge.

Furthermore, time variant properties of the configured

vehicle loading, bridge and TMFD system can make the

modeling complex. To get an efficient and effective control

performance of the TMFD system, it is necessary to select

governing parameters appropriately. In the current study,
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simplified modeling of the vehicle and the bridge is con-

sidered to determine governing parameters. Once governing

parameters are identified, model needs to be refined for doing

further research. Finally, based on the simplified model of

the vehicle, bridge and TMFD, coupled differential equa-

tions of motion is derived, the same has been solved

numerically using the Newmark’s linear acceleration

method.

The bridge is idealized as a simply supported Euler–

Bernoulli beam with uniform properties throughout the

length of the bridge. Track irregularity is neglected in the

conceptualization of the model. The vibration of bridge is

considered only in the vertical translational direction. The

bridge is a continuous system which has infinite degrees-

of-freedom (DOF), but only the first few modes of the

bridge contribute significantly to the total dynamic

response. Among all modes, the fundamental mode is

dominating mode, especially for the displacement response

of a simply supported bridge. Thus, for the present study,

fundamental mode has been considered while finding out

peak mid-span response of the bridge.

There are three basic modeling procedures of vehicles,

namely, moving force, moving mass and moving suspen-

sion mass, as shown in Fig. 1 (Wang et al. 2003). In this

study, the real-life multi-axle vehicle is modeled as a set of

moving forces having equal axle spacing, moving along the

centre line of the bridge. The axle spacing is an important

parameter in the determination of critical resonating

velocities of the vehicle which causes excessive vibrations

in the bridge.

Arrangement considered for the present study consists

of the bridge as primary system which is attached with

TMFD and MTMFD with different dynamic characteris-

tics. Here, the bridge is modeled as a simply supported

Euler–Bernoulli beam.

Since, the maximum response of a simply supported

bridge occurs at its mid-span, a TMFD system is installed

at the mid-span of the bridge. In the case of MTMFD

system, all the TMFD units can be concentrated at the mid-

span or can be distributed along the length of the bridge.

Figure 2 shows the simplified model of the bridge with

MTMFD attached at equal intervals under the bridge and

subjected to a train-induced excitation. The multi-axle train

load is modeled as moving force with equal axle spacing.

Assumptions/considerations are proposed for the present

study in the following sub points:

1. Stiffness of each TMFD unit is the same.

2. Normalized slip force value of each TMFD unit is the

same.

3. The mass of each TMFD unit is varying. Thus, the

natural frequency of each TMFD unit is adjusted to the

required value by varying the mass.

4. The natural frequencies of the TMFD units in an

MTMFD system are uniformly distributed around their

average natural frequency. It is to be noted that the

TMFD units of a MTMFD system with identical

dynamic characteristics are equivalent to a TMFD, in

which the natural frequency of the individual TMFD

units in a MTMFD is the same as that of the

equivalent TMFD.

5. For a simply supported bridge, dominating mode is the

fundamental mode; hence, both TMFD as well as

MTMFD systems are tuned to the fundamental natural

frequency of the bridge.

Let xT be the average frequency of all MTMFD and it

can be expressed as:

xT ¼
Xr

j¼1

xdj

r
; ð1Þ

where r is the total number of TMFD units in MTMFD, and

xdj is the natural frequency of the jth TMFD and it can be

expressed as:

xdj ¼ xT 1 þ j� r þ 1

2

� �� �
b

r � 1
; ð2Þ

v

(a) Moving force

mvg

d d

mvg mvg

v

(b) Moving mass

mv

d d

mv mv

mw

v

cv

mw

kv cv

mw

cvkv

(c) Moving suspension mass

mv

d d

mv mv

kv

Fig. 1 Schematic modeling of vehicles (Wang et al. 2003)
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where b is the dimensionless frequency spacing of the

MTMFD, given as:

b ¼ xr � x1

xT

: ð3Þ

If kdj is the constant stiffness of each TMFD unit, then

the mass of the jth TMFD unit is expressed as:

mdj ¼
kdj

x2
dj

: ð4Þ

The mass ratio, which is defined as the ratio of total

MTMFD mass to total mass of the bridge, is expressed as:

l ¼

Pr

j¼1

mdj

mL
; ð5Þ

where m is the mass per-unit length of the bridge, and L is

the total length of bridge.

The ratio of average frequency of the MTMFD to the

fundamental frequency of bridge is defined as tuning fre-

quency ratio and is expressed as

f ¼ xT

x1

; ð6Þ

where x1 is the fundamental frequency of the bridge. It is

to be noted that as the stiffness and the normalized damper

forces of all the TMFD are constant and only mass ratio is

varying, the friction force adds up. Thus, the non-dimen-

sional frequency spacing b controls the distribution of the

frequency of TMFD units.

Governing equations of motion and solution
procedure

Arrangement considered for the present study consists of

the bridge as primary system which is subjected to a train-

induced excitation. The train load is modeled as multi-axle

moving force having equal axle spacing, as shown in

Fig. 2. It is assumed that the train is compiled by total nw

numbers of axles with equal axle spacing of xv and the

numbering of axles is done in an ascending order from

right to left. The rightmost and the leftmost axles over the

bridge are numbered as rw and lw, respectively; each axle is

transmitting a concentrated axle load of intensity P. The

MTMFD is arranged under the bridge at equal interval of

xT, with the leftmost TMFD at a distance of xTLS from the

left support and the rightmost TMFD at a distance of xTRS
from the right support. Each TMFD is a single-degree-of-

freedom (SDOF) system pertaining to vibration along the

vertical translational direction. The governing differential

equation of the vertical motion of the bridge is:

o2

ox2
EmImðxÞ

o2zb x; tð Þ
ox2

� �
þ mðxÞ o

2zb x; tð Þ
ot2

þ cðxÞ ozb x; tð Þ
ot

¼ PV x; tð Þ þ PT x; tð Þ;
ð7Þ

where Em is the modulus of elasticity of the bridge mate-

rial; Im(x) is the moment of inertia of uniform cross section

of the bridge; c is the damping co-efficient of the bridge in

the vertical direction; PV(x, t) is interacting force between

the vehicle and the bridge; PT(x, t) is interacting force

v
xvnw lw

P
rw 1

1 j
r

mTdi

TdiK
sif

xTLS xTRS

L

Fig. 2 Simplified model of bridge with MTMFD under multi-axle vehicle
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between the TMFD and the bridge and Zb(x, t) is vertical

displacement of the bridge at a distance x and at time t.

PV x; tð Þ ¼
Xlw

i¼rw

Pd
�
x� vt � i� 1ð ÞxVð Þ

�
; ð8Þ

PTðx; tÞ ¼
Xr

j¼1

Kdj Zdj � Zb xTLS þ j� 1ð ÞxTð Þ; tð Þ
� �

þ fsj sgn _Zdj �
dZb Zdj � Zb xTLS þ j� 1ð ÞxTð Þ; tð Þ
� �

o t

� �

2
64

3
75

� d x� xTLS þ j� 1ð ÞxTð Þð Þ;

ð9Þ

where P is the vehicular load, d() is the Dirac delta func-

tion, v is the velocity of the vehicle, xv is the axle spacing

of vehicle, sgn denotes the signum function, Zdj is the

vertical displacement of the jth TMFD and _Zdj is the

velocity of the jth TMFD.

The equation of motion of the jth TMFD can be

expressed as:

mdjZdj þ Kdj Zdj � Zb xTLS þ j� 1ð ÞxTð Þ; tð Þ
� �

¼ �fsj sgn _Zdj � _Zb xTLS þ j� 1ð ÞxTð Þ; tð Þ
� �

; ð10Þ

where _Zb is the vertical velocity of the bridge, and Zdj is the

vertical acceleration of the jth TMFD.

Modal analysis has been carried out to separate gov-

erning parameters and solve Eqs. (7) and (10) analytically.

The vertical displacement of the bridge can be expressed as

the product of mode shape function, un(x) and modal

response function, qn(t) involving only the spatial and

temporal co-ordinates

Zbðx; tÞ ¼
Xn

i¼1

unðxÞqnðtÞ; ð11Þ

where n is the number of modes to be considered for

bridge. Substituting Eq. (11) in Eq. (7) results in Eq. (12)

m
Xn

i¼1

unðxÞqnðtÞ þ c
Xn

i¼1

unðxÞ _qnðtÞ

þ
Xn

i¼1

EmImu00
nðxÞ

� 	00
qnðtÞ ¼ PVðtÞ þ PTðtÞ:

ð12Þ

Multiplying each term of Eq. (12) by the mode shape

function and integrating over the length of the bridge, we

can obtain the following equation, after applying orthog-

onality principle of mode shape function for the nth mode

of vibration of the bridge

MnqnðtÞ þ Cn _qnðtÞ þ KnqnðtÞ ¼ PnVðx; tÞ þ PnTðx; tÞ; ð13Þ

where Mn, Kn and Cn are representing the modal mass,

modal stiffness and modal damping of the nth mode,

respectively; qnðtÞ, _qnðtÞ and qnðtÞ represent the modal

displacement, modal velocity and modal acceleration of the

bridge in the nth mode of vibration, respectively. The

modal interacting forces for the nth mode become:

PnVðx; tÞ ¼
ZL

0

Xlw

i¼rw

PunðxÞ d x� v t � ði� 1Þ xVð Þð Þ

¼
Xlw

i¼ rw

Pun v t � ði� 1Þ xVð Þ; ð14Þ

PnTðx; tÞ ¼
Xr

j¼1

Kdj Zdj �
Xn

i¼1

ui xTLS þ j� 1ð ÞxTð Þ qiðtÞ
 !

þ fsj sgn _Zdj �
Xn

i¼1

ui xTLS þ j� 1ð ÞxTð Þ _qiðtÞ
 !

2
666664

3
777775

un xTLS þ j� 1ð ÞxTð Þ:
ð15Þ

The natural frequencies and the mode shape functions

for the nth mode of a simply supported bridge are given as:

xn ¼
n2p2

L2

ffiffiffiffiffiffiffiffiffiffiffi
EmIm

m

r
; ð16Þ

unðxÞ ¼ sin
np x

L

� �
: ð17Þ

The modal mass is the same for all the modes and is

equal to half total mass of the bridge. Modify Eq. (13) by

substituting Mn = mL/2 and replacing suffix n by 1 to

obtain the equation of motion for the fundamental mode of

vibration.

mL

2
q1 þ 2

mL

2

� �
n1x1 _q1 þ

mL

2
x2

1q1 ¼
Xlw

i¼rw

Pu1ðv t � ði� 1Þ xVÞ

þ
Xr

j¼1

Kdj Zdj � u1 xTLS þ j� 1ð ÞxTð Þ q1

� �

þ fsj sgn _Zdj � u1 xTLS þ j� 1ð ÞxTð Þ _q1ðtÞ
� �

" #

� u1 xTLS þ j� 1ð ÞxTð Þ:
ð18Þ

Similarly, the equation of motion for TMFD can be

written as Eq. (19) by modifying Eq. (10)

mdjZdj þ Kdj Zdj � u1 xTLS þ j� 1ð ÞxTð Þ q1

� �

¼ �fsj sgn _Zdj � u1 xTLS þ j� 1ð ÞxTð Þ _q1

� �
: ð19Þ

Equation (20) represents the coupled equation of motion

in matrix form for the bridge equipped with TMFD. This

equation is obtained by combining Eqs. (18) and (19)

M1½ � y1f g þ C1½ � _y1f g þ K1½ � y1f g ¼ E½ � P1Vf g þ B½ � Fsf g;
ð20Þ
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y1f g ¼

q1

Zd1

Zd2

..

.

Zdr

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

; ð21Þ

where q1 is the first modal displacement vector of the

bridge, and Zdj (j = 1 to r) is the displacement vector of

TMFD units of MTMFD; [M1], [C1] and [K1] denote the

mass, damping and stiffness matrix of the configured sys-

tem of order (r ? 1) 9 (r ? 1), respectively, considered

for the study for the fundamental mode of vibration of

bridge; [E] and [B] are placement matrices for the train-

induced excitation force and friction force, respectively; y,

_y and y are the vertical displacement, velocity and accel-

eration vector of configured system, respectively; P1V is

the interacting force vector between the vehicle and the

bridge in fundamental mode and Fs denotes the vector of

friction force provided by the TMFD. These matrices can

be shown as:

M1½ � ¼ diag
mL

2
m1 m2 � � �mr

� �
; ð22Þ

C1½ � ¼

mLn1x1 0 0 � � � 0

0 0 0 � � � 0

0 0 0 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 0

2
66664

3
77775
; ð23Þ

Fs ¼
Xr

j¼1

Fsj � Fs1 � Fs2 � � � � Fsr

" #
; ð25Þ

where the friction force of the jth damper is given as:

Fsj ¼ fsj sgn _Zdj � u1 xTLS þ j� 1ð ÞxTð Þ _q1

� �
; ð26Þ

where _Zdj shows the velocity of the jth TMFD, and _q1

shows the first modal velocity of the bridge. Furthermore,

the damper forces are calculated using the hysteretic model

proposed by Constantinou et al. (1990), using the Wen’s

equation (Wen 1976), which is expressed as:

Fsj ¼ fsj Z; ð27Þ

where fsj is the limiting friction force or slip force of the jth

TMFD, and Z is the non-dimensional hysteretic compo-

nent, which satisfies the following first-order non-linear

differential equation:

q
dZ

dt
¼ A ð _Zdj � _q1Þ

� b _Zdj � _q1

� �  Z Zj jn�1�s _Zdj � _q1

� �
Zj jn;

ð28Þ

where q represents the yield displacement of frictional

force loop, and A, b, s and n are non-dimensional param-

eters of the hysteretic loop which controls the shape of the

loop. These parameters are selected in such a way that it

provides typical Coulomb-friction damping. The recom-

mended values of these parameters are taken as

q = 0.0001 m, A = 1, b = 0.5, s = 0.05, and n = 2

(Bhaskararao and Jangid 2006). The hysteretic displace-

ment component, Z, is bounded by peak values of ±1 to

account for the conditions of sliding and non-sliding pha-

ses. The limiting friction force or slip force of the jth

friction damper is expressed in the normalized form by Rfj,

which can be expressed as:

Rfj ¼
fsj

mdj � g
; ð29Þ

where g represents acceleration due to gravity.

The coupled differential equations are solved using the

Newmark’s linear acceleration method (Chopra 2003).

Critical velocities of train

Dynamic response of the bridge becomes excessive under

resonating conditions, i.e., when the vehicle velocities are

critical. The critical velocities of the vehicle depends on the

K1½ � ¼

mL

2
x2

1 þ
Xn

j¼1

Kdju
2
1 xTLS þ j� 1ð ÞxTð Þ �Kd1u1ðxTLSÞ �Kd2u1ðxTLS þ xTÞ � � � �Kdru1ðxTLS þ ðr � 1ÞxTÞ

�Kd1u1ðxTLSÞ Kd1u1ðxTLSÞ 0 � � � 0

�Kd2u1ðxTLS þ xTÞ 0 Kd2u1ðxTLS þ xTÞ � � � 0

..

. ..
. ..

.
� � � 0

�Kdru1ðxTLS þ ðr � 1ÞxTÞ 0 0 0 Kdru1ðxTLS þ ðr � 1ÞxTÞ

2

666666664

3

777777775

;

ð24Þ
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fundamental frequency of the bridge and axle spacing of

the vehicle which can be expressed as (Wang et al. 2003):

vc ¼
x1xv

2l p
; ð30Þ

where x1 is the fundamental frequency of the bridge, xv is

the vehicle’s axle spacing and l ¼ 1; 2; 3; . . . etc. At these

critical velocities of the vehicle, the dynamic response of

the bridge becomes excessive, generally when l = 1. Thus,

the resonant responses occurring due to the first critical

velocity vc for i = 1 are of major concern.

Numerical study

The THSR bridge that is considered for the numerical

study and properties of this bridge is listed in Table 1

(Wang et al. 2003). The bridge is subjected to Japanese

SKS train, modeled as a series of moving planar forces

with the same magnitude of axle load and equal axle

spacing. The properties of this Japanese SKS train have

been presented in Table 2. The bridge undergoes resonant

vibration whenever the velocity of the train reaches its

critical value. The response quantity of interest for the

study is the mid-span vertical displacement of the bridge.

For numerical study, TMFD and MTMFD systems are

installed under the bridge. Maximum displacement

response of the simply supported bridge occurs at mid-

span; hence for the proposed TMFD system, the damper is

placed at the mid-span of the bridge. In the case of

MTMFD systems, all the TMFD units can be concentrated

at the mid-span or can be distributed at an equal interval

along the length of the bridge. Furthermore, for distributed

MTMFD system, the TMFD units are distributed at an

interval of 2 and 5 m, respectively. Time interval,

Dt = 0.001 has been considered for numerical solution.

The performance of the bridge installed with TMFD sys-

tem has been compared with the uncontrolled response of

the bridge.

Uncontrolled response of the bridge under train
load

The generalized responses of the first three modes of the

THSR bridge without the installation of TMFD under the

effect of Japanese SKS train induced vibration is studied. It

is seen that both dynamic displacement as well as dynamic

acceleration responses are dominated by fundamental

mode and the contribution of higher modes can be

neglected to approach at the feasible solution for response.

The contribution of the first three modes towards vertical

displacement of THSR bridge subjected to Japanese SKS

train is 5.249, 0.205 and 0.026 mm, respectively, and that

towards acceleration response is 3.028, 1.301 and 0.122 m/

s2, respectively. Therefore, it is apparent that only funda-

mental mode requires to be considered especially for the

displacement response in practice. As excessive dynamic

displacement affects the long-term safety, serviceability of

the bridge and comfort of the passenger, hence, main focus

of study is on the dynamic displacement and fundamental

mode of vibration of the bridge.

To study the response of the bridge with respect to

varying the velocity of the vehicle, the peak mid-span

vertical displacement and acceleration response of the

bridge are plotted in Fig. 3, against varying the velocity of

the vehicle. It is observed that the displacement and

acceleration responses of the bridge become excessive at

the first critical train velocity, which confirms the agree-

ment of Eq. (30), that for higher values of l, the critical

velocities are lower and the corresponding response peaks

are not large and do not require to be controlled practically.

The time history of uncontrolled displacement and accel-

eration responses at mid-span of the bridge along the ver-

tical translational DOF for the first critical velocity of

Japanese SKS train moving over the bridge are shown in

Fig. 4. It shows that the dynamic responses of the bridge

become excessive when the vehicle moving over it runs at

critical velocities, leading to the resonating conditions. The

critical velocity depends on the fundamental frequency of

the bridge and the axle spacing of vehicles.

Table 1 Properties of the THSR bridge

Properties Values

Length of span, L (m) 30.0

Elasticity modulus, Em (N/m2) 2.83 9 1010

Moment of inertia, Im (m4) 7.84

Mass per unit length, m (kg/m) 41.74 9 103

Modal damping ratio, n (%) 2.5

Fundamental natural frequency, x1 (rad/s) 25.3

Table 2 Properties of model of Japanese SKS train

Properties Values

Length of train, Lv (m) 402.1

Number of axles, nw (number) 16

Axle distance, xv (m) 25.0

Axle load, P (N) 552.0 9 103

Critical velocity, (vc)l¼1 (m/s) 101.0
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Controlled response of bridge and optimization
of parameters

To control response of the bridge, different TMFD systems

are concentrated at the mid-span of the bridge or dis-

tributed at an equal interval along the length of the bridge.

These systems perform effectively only when the appro-

priate value of controlling parameters, namely, frequency

spacing, tuning frequency ratio, damper slip force Rf and

number of TMFD units in an MTMFD, is selected. In the

case of inaccurate selection of these parameters, the system

may under-perform and the responses may not reduce

effectively up to a desirable value. Hence, the optimization

of the parameters of TMFD systems is a very important

criterion for its effective functioning. In this study, the

parameters are optimized to reduce the peak mid-span

displacement response of the bridge to its minimum value.

The mass ratio of all the TMFD units of MTMFD sys-

tems is kept the same as that of TMFD system. However,

the criteria of optimization of parameters of all the TMFD

systems (TMFD, concentrated MTMFD and distributed

MTMFD) are the same, i.e., the minimization of peak mid-

span displacement response of the bridge. After the

selection of the number of TMFD units in MTMFD sys-

tems and the mass ratio of TMFD system, the maximum

responses of the bridge subjected to multi-axle vehicles are

studied.

Optimization of parameters for concentrated TMFD

The variation of the optimum parameters, bopt, fopt, and R
opt
f

against the number of TMFD units in an MTMFD system

concentrated at the mid-span of the bridge is shown in

Fig. 5. It is observed that the optimum frequency spacing,

bopt, increases sharply with the increase in the number of

the TMFD units and beyond certain numbers of TMFD

units, it increases gradually. Similarly, the optimum fre-

quency ratio, fopt, increases with the increase in the number

of TMFD units and remains constant after a certain number

of TMFD units. The optimum value of normalized slip

force, R
opt
f , of MTMFD system is much lower than single

TMFD system. It is visible from the plot that the optimum

values of R
opt
f reduce sharply with the increase in the

number of TMFD units, up to a certain number of TMFD

units, and beyond this number, the response curve becomes

flatter. It is also observed from the response plot that with
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the increasing number of TMFD units, the peak response

reduces monotonically up to a certain number of TMFD

units and after that the reduction becomes insignificant. In

the present case, the increase in the number of TMFD units

beyond 5 will make the reduction of dynamic displacement

response of THSR bridge practically insignificant. Hence,

in this present context, the MTMFD system is selected with

five TMFD units. Thus, an optimum value of controlling

parameters, such as, bopt, fopt, and R
opt
f varies with respect

to the number of TMFD units at which system can perform

effectively.

The peak mid-span displacement response of the bridge

is plotted against various controlling parameters of TMFD

systems in Fig. 6 for the mass ratio of 2 % for TMFD and

concentrated MTMFD system (containing five numbers of

TMFD units). In Fig. 6a, the response of system is plotted

against the varying values of frequency spacing, keeping

the optimum value of tuning frequency ration and Rf

constant. Similarly, in Fig. 6b, the optimum value of fre-

quency spacing and Rf is kept constant for each TMFD

system and the response of the system is plotted against

tuning frequency ratio. In addition, Fig. 6c shows the

response of system against varying the values of Rf for both

the TMFD systems, keeping the optimum value of tuning

frequency ratio and frequency spacing constant. It is

observed from Fig. 6 that the MTMFD system is sensitive

to the frequency spacing. In addition, peak mid-span dis-

placement response of the bridge reduces to its minimum

value at a particular value of tuning frequency ratio, fre-

quency spacing and Rf for each TMFD unit. The optimum

parameters of concentrated MTMFD system are summa-

rized in Table 3. Thus, MTMFD system is sensitive to the

frequency spacing. At the optimum value of controlling

parameters, namely frequency spacing, tuning frequency

ratio and Rf and optimum number of TMFD units, the

response of the bridge reduces to its minimum value.

Optimization of parameters for distributed

MTMFD

To optimize the parameters of distributed MTMFD, the

TMFD units of MTMFD are distributed at an equal interval

of 2 and 5 m, respectively, along the length of the bridge.

For a fixed number of TMFD units distributed at fixed

interval, the parameters can be optimized in a similar way

as optimized for concentrated MTMFD system with the
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Fig. 5 Variation of optimum parameters and peak mid-span response of bridge against the number of TMFD units concentrated at the mid-span

of bridge
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same governing criteria of minimization of peak mid-span

displacement response of the bridge. In this study, the

distributed MTMFD system is always placed symmetri-

cally with respect to the mid-span of the bridge with the

heaviest TMFD unit always at the mid-span and the mass

of TMFD unit decreasing with its distance from the mid-

span on either side, hence, only odd number (minimum

three) of TMFD units are considered to comprise the

distributed MTMFD system. The maximum number of

TMFD units which can be used depends on the length of

the bridge and the interval of TMFD units. Figure 7 shows

that the nature of variation of optimum parameters with

respect to the number of TMFD units composing the dis-

tributed MTMFD system is very similar to that of con-

centrated MTMFD system shown in Fig. 5, if the TMFD

units are distributed at a fixed interval of 2 m. The opti-

mum frequency spacing and optimum tuning frequency

ratio increase with the increasing number of TMFD units.

The optimum normalized slip force, R
opt
f , of MTMFD

system is lower than TMFD system, as it reduces with the

increase in the number of TMFD units up to a certain

number of TMFD units and after that the response curve

becomes flatter. Similar to the case of concentrated

MTMFD system, the peak mid-span displacement response

of the bridge reduces monotonically with the increase in

the number of TMFD units of distributed TMFD system up

to a certain number of TMFD units and beyond this

number, and the rate of response reduction becomes

practically insignificant.

Like concentrated MTMFD, the optimum parameters of

distributed MTMFD system are summarized in Table 3.

The responses shown in Fig. 7d are the minimized peak

mid-span displacement responses of the bridge, consider-

ing optimum values of controlling parameters corre-

sponding to each number of TMFD units. Thus, the

optimum frequency spacing of MTMFD system increases

with the number of TMFD units of MTMFD system. The

optimum tuning frequency ratio increases with the number

of TMFD units. The optimum Rf reduces with the increase

in the number of TMFD units. The optimum Rf of TMFD is

much higher than that of MTMFD system. The response of

the bridge decreases with the increase in the number of

TMFD units of a distributed MTMFD system up to a cer-

tain number of TMFD units and after that the reduction of

response becomes practically insignificant which shows an

optimum number of TMFD units in distributed MTMFD

exists. For the present study, the optimum number of

TMFD units is selected as 5 to compose distributed TMFD

system.
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different TMFD parameters

Table 3 Optimum parameters of TMFD systems

TMFD system Mass ratio

(l)

Frequency

spacing (b)

Tuning frequency

ratio (f)

Normalized

friction force (Rf)

TMFD 0.02 – 0.988 0.08

5-TMFD units concentrated at

mid-span of bridge

0.02 0.07 0.998 0.075

5-TMFD units distributed at 2 m

interval under bridge

0.02 0.03 1.0 0.07
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Effect of distribution of TMFD units along length

of bridge

The effect of distribution of TMFD units along the length

of the bridge is studied in Fig. 8. For this purpose, five

TMFD units are distributed with equal interval of different

values along the length of the bridge. It is observed that

with the increase in the interval of the TMFD units, the

peak mid-span displacement and acceleration response of

the bridge increase. Thus, the MTMFD system consisting

of five TMFD units is most effective when all the TMFD

units are concentrated at the mid-span of the bridge, i.e.,

when the interval is zero, and its efficiency in reduction of

bridge responses decreases with the increase in interval of

the TMFD units. Thus, the MTMFD is most effective, if all

the TMFD units are concentrated at the mid-span. Wang

et al. (2013) has shown that the maximum response of the

bridge can be noticeably suppressed if VED is installed at

the midpoint of each span of the bridge, and the same is

also confirmed for MTMFD system having all the TMFD

units concentrated at the mid-span of the bridge.

Effect of mass ratio

The effect of mass ratio on the performance of different

TMFD systems is studied in Fig. 9 by plotting the peak

mid-span displacement and acceleration response of the

bridge against the varying mass ratio for different

TMFD systems, namely, TMFD, concentrated MTMFD

and MTMFD distributed at 2 m interval. It is observed

that the peak mid-span responses of the bridge decreases

with an increase in the mass ratio of all the TMFD

systems up to a certain value of mass ratio and after that

it gradually increases. In addition, the reduction is

maximum for concentrated MTMFD system and mini-

mum for TMFD system. Thus, similar to the optimum

controlling parameters, an optimum value of mass ratio

exists for all the TMFD systems, at which the response

reduction of the bridge is maximum. In addition, the

distributed MTMFD system having optimized control-

ling parameters with appropriately distributed TMFD

units within a certain interval can be more effective than

a TMFD.
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Fig. 7 Variation of optimum TMFD parameters and peak mid-span response of bridge against the number of TMFD units distributed at a fixed

interval of 2 m along the length of the bridge
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Resonant response control of the bridge
with different TMFD systems

In this section, the effectiveness of TMFD, concentrated

MTMFD and distributed MTMFD systems in the reduction

of excessive dynamic responses of the bridge under the

excitations induced by moving multi-axle vehicle is high-

lighted. The functioning of different TMFD systems is

compared with the help of figures. The distribution of mass

of TMFD and TMFD units of MTMFD system are men-

tioned in Table 4. It is observed from Figs. 10 and 11 that

optimized TMFD systems are very effective in the reduc-

tion of resonant displacement as well as acceleration

responses of bridge under excitations induced by moving

multi-axle vehicles. All the TMFD systems are effective at,

or very near to the vicinity of resonant zone only, and apart

from this zone, they are not so effective. This is because the

TMFD systems are sensitive to the frequency change, and

in this study, the TMFD system are tuned to the resonating

frequency of the bridge. Furthermore, the comparative

study of performance of all the TMFD systems shows that

at resonating condition, the maximum reduction of mid-

span displacement and mid-span acceleration responses is

achieved with the use of optimized concentrated MTMFD

systems, i.e., placing all the TMFD units at the mid-span of

the bridge. It is also observed that when the same number

of TMFD units is distributed at a fixed interval of 2 and

5 m, respectively, along the length of the bridge, it

becomes less effective than a concentrated MTMFD sys-

tem, but if the frequencies of the TMFD units are opti-

mized efficiently, and they are placed at an interval within

a certain limit then this distributed system becomes more

effective than a TMFD system in the reduction of resonant

responses of the bridge. In this present case, it is observed

that an optimized distributed MTMFD system consisting of

five TMFD units is more effective than an optimized

TMFD system when the interval of the TMFD units is 2 m,

but at the same time, it is less effective when the interval

becomes 5 m. Thus, all the optimized TMFD systems are

very effective in reducing the resonant displacement as
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Table 4 Mass distribution of TMFD units of different TMFD

systems

Mass ratio Distribution of mass of TMFD units (kg)

TMFD Concentrated and distributed MTMFD systems

0.02 25,044 5369, 5179, 5000, 4829, 4667
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well as acceleration responses of the bridge at or very near

to the vicinity of resonant zone and a very part from this

zone, they are not so effective. An optimized concentrated

MTMFD system is the most effective system in reducing

the resonant displacement and acceleration response of the

bridge. When the number of TMFD units of an MTMFD

system is distributed at a fixed interval along the length of

the bridge, it becomes less effective than a concentrated

MTMFD system, but if the frequencies of TMFD units are

optimized efficiently, it becomes more effective than a

TMFD system in reducing the resonant responses of

bridge.

Furthermore, the performance of all the optimized

TMFD systems is studied at different sections along the

length of the bridge and is represented in Figs. 12 and 13. It

is observed that all the TMFD systems are effective in

reducing displacement as well as acceleration responses of

the bridge at all the considered sections along its length,

with the reduction being maximum at the mid-span of the

bridge. It is also observed that the optimized MTMFD

system consisting of five TMFD units concentrated at the

mid-span of the bridge significantly reduces the response of

the bridge at all the considered sections, under the influ-

ence of moving multi-axle vehicle. The reduction with the

optimized TMFD system is less than the reduction with
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Fig. 10 Peak mid-span displacement response of the bridge against

the varying vehicle velocities with different TMFD systems
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optimized MTMFD (consisting of five TMFD units) sys-

tem distributed at 2 and 5 m interval. Thus, all the opti-

mized TMFD systems are effective in reducing the

resonant displacement and acceleration responses at all the

sections of the bridge, with the maximum reduction at the

mid-span of the bridge.

The mid-span displacement and acceleration responses

of the bridge with installation of different TMFD systems

are listed in Table 5. It shows that all the TMFD systems

appreciably reduces the mid-span displacement and

acceleration response of the bridge. MTMFD system which

is concentrated at the mid-span of the bridge can reduce

displacement response up to 60.28 % and acceleration

response up to 77.87 %, respectively.

Conclusions

The performance of MTMFD in controlling the undesirable

response of the bridge is investigated. Simplified model of

THSR bridge and Japanese SKS train is prepared, and the

velocities of train causing undesirable resonant responses

in the bridges are considered. To suppress excessive reso-

nant responses of the bridge, different TMFD systems are

employed under the bridge. The optimum parameters of

different TMFD systems are found out with the criteria of

minimization of peak mid-span displacement response of

the bridge. The effect of distribution of TMFD units along

the length of the bridge for MTMFD system is also

investigated. On the basis of trends of results obtained, the

following conclusions are drawn:

1. The dynamic responses of the bridge become excessive

when the vehicle moving over it runs at critical

velocities, leading to the resonant conditions. The

critical velocity depends on the fundamental frequency

of the bridge and the axle spacing of the vehicles.

2. An optimum value of controlling parameters, such as,

bopt, fopt, and R
opt
f varies with respect to the number of

TMFD units at which system can perform effectively.

3. MTMFD system is sensitive to the frequency spacing.

At the optimum value of controlling parameters,

namely, frequency spacing, tuning frequency ratio

and Rf and optimum number of TMFD units, the

response of the bridge reduces to its minimum value.

4. The MTMFD is most effective if all the TMFD units

are concentrated at the mid-span.

5. An optimum value of mass ratio exists for all the

TMFD systems, at which the response reduction of the

bridge is maximum.

6. All the optimized TMFD systems are very effective in

reducing the resonant displacement as well as accel-

eration responses of the bridge at or very near to the

vicinity of resonant zone and very apart from this zone,

they are not so effective. An optimized concentrated

MTMFD system is the most effective system in

reducing the resonant displacement and acceleration

response of the bridge.
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Fig. 13 Peak acceleration responses at different sections of bridge

along its length with different TMFD systems

Table 5 Peak mid-span displacement and acceleration responses of bridge with different TMFD systems

TMFD condition Displacement

(mm)

Acceleration

(m/s2)

Displacement

reduction (%)

Acceleration

reduction (%)

Without TMFD 5.249 3.028 – –

With TMFD at mid-span 2.955 1.431 43.70 52.74

With 5-TMFD units at mid-span 2.085 0.670 60.28 77.87

With 5-TMFD units at 2 m interval 2.101 0.846 59.97 72.06

With 5-TMFD units at 5 m interval 2.128 1.084 59.46 64.20
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7. When the number of TMFD units of a MTMFD

system is distributed at a fixed interval along the length

of the bridge, it becomes less effective than a

concentrated MTMFD system, but if the frequencies

of TMFD units are optimized efficiently, it becomes

more effective than a TMFD system in reducing the

resonant responses of the bridge.

8. All the optimized TMFD systems are effective in

reducing the resonant displacement and acceleration

responses at all the sections of the bridge, with the

maximum reduction at the mid-span of the bridge.

9. This study can be continued in the future to investigate

the effect of track irregularity, lateral displacement, 3D

effect of bridge-vehicle system on the response of the

bridge. In addition, the performance of continuous

span of the bridge with some rigid supports can be

studied, using different TMFD systems.
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