
For Peer Review
Vibration control of spar-type floating offshore wind turbine 

towers using a tuned mass-damper-inerter

Journal: Structural Control and Health Monitoring

Manuscript ID STC-19-0130.R1

Wiley - Manuscript type: Research Article

Date Submitted by the 
Author: n/a

Complete List of Authors: Sarkar, Saptarshi; University of Dublin Trinity College, Civil, Structural 
and Environmental Engineering
Fitzgerald, Breiffni; University of Dublin Trinity College, Civil, Structural 
and Environmental Engineering

Keywords: offshore wind turbine, vibration control, TMD, TMDI, Inerter, Stochastic 
wind-wave loads

 

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc



For Peer Review

Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Vibration control of spar-type floating offshore wind turbine
towers using a tuned mass-damper-inerter

Saptarshi Sarkar | Breiffni Fitzgerald*

1Department of Civil, Structural and
Environmental Engineering, Trinity
College Dublin, Dublin, Ireland

Correspondence
*Breiffni Fitzgerald, Department of Civil,
Structural and Environmental Engineering,
Trinity College Dublin, Ireland. Email:
breiffni.fitzgerald@tcd.ie

Summary

This paper investigates the use of a passive tuned mass-damper-inerter (TMDI) for
vibration control of spar-type floating offshore wind turbine towers. The TMDI is a
relatively new concept as a passive vibration control device. The configuration con-
sists of an ‘inerter’ attached to the tuned mass, parallel to the spring and damper of a
classical tuned mass damper (TMD). The inerter provides a mass amplification effect
on the classical TMD. The presence of the inerter virtually increases the mass of the
damper leading to greater vibration control capabilities. This enables one to achieve
improved vibration control using a lighter damper. Using a lightweight damper is
particularly important for an offshore wind turbine since increasing mass on top of
the tower can destabilize the overall system and increase tower vibrations, as demon-
strated in this paper. The development of a passive TMDI for an offshore wind turbine
tower has been proposed in detail in this work. Numerical simulations have been
performed and results are presented demonstrating the impressive vibration control
capabilities of this new device under various stochastic wind-wave loads. It has been
shown that the TMDI has considerable advantages over the classical TMD, achiev-
ing impressive response reductions with reductions in the stroke of the tuned mass.
The TMDI has been shown to be a promising candidate for replacing the classical
TMD for offshore wind applications.

KEYWORDS:
Offshore wind turbine, Vibration control, TMD, TMDI, Inerter, Stochastic wind-wave loads

1 INTRODUCTION

Offshore wind turbines are the largest rotating structures on earth. Wind turbine towers are very flexible structures that must
support a large mass at their tip. It is not uncommon for modern towers to exceed 120 m in height. These structures are subjected
to turbulent aerodynamic loads and hydrodynamic loads and must remain operational in very harsh environments. Wind turbine
towers are dynamically sensitive and as such tower vibrations can cause damage to acceleration sensitive equipment housed in the
nacelle leading tomalfunctions causing turbine shutdown and reduced power output. Dueñas-Osorio andBasu1 demonstrated the
unavailability of wind turbines due to tower vibrations. Much work has been undertaken in the past decade to control vibrations
of wind turbine towers. Tower vibrations may have a significant impact on downtime, lifetime of the components, and even
on the overall integrity of the structural system. These impacts will have associated implications for the cost of wind power.
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Therefore, there is now increasing interest on reducing the harmful effects of mechanical vibration on wind turbine towers in
the wind energy industry.
The application of structural control devices to wind turbines is now a very active area of research. Studies have been carried

out to investigate the effectiveness of various devices such as Tuned Liquid Dampers2,3; Tuned Liquid Column Dampers4;
Circular Liquid Dampers5; and Roller Dampers6 when applied to wind turbines. Tuned Mass Dampers (TMDs) have been
investigated inmany studies.Murtagh et al.7, Lackner and Rotea8 and Fitzgerald et al.9 demonstrated the effectiveness of passive
tuned mass dampers (TMDs) in reducing blade vibration. Arrigan et al.10 and Fitzgerald et al.11 developed semi-active TMDs
to control the vibrations of wind turbine towers and blades. Active TMDs have also been investigated by Lackner and Rotea12,
Fitzgerald and Basu13, and Fitzgerald et al.9,14. Liquid dampers have also been used by researchers for vibration control of wind
turbines. Tuned Liquid Column Damper (TLCD) was used by Colwell and Basu4, Zhang et al.2; Tuned Liquid Damper (TLD)
was used by Zhang et al.3, Circular Liquid Column Damper was used by Basu et al.5 and Magneto-Rheological Tuned Liquid
Column Damper (MR-TLCD) were used by Sarkar and Chakraborty15,16. The industry has embraced this research and modern
multi-megawatt wind turbines are now designed and deployed with TMDs at the top of their towers as standard (see17 and18).
In the meantime there have been some important developments in relation to TMDs. Recent studies have shown that using so

called ‘inerters’ in TMDs improves the effectiveness of these devices. Smith19 presented the concept of the inerter. The ideal
inerter was defined as “a mechanical two-node, one-port device with the property that the equal and opposite force applied
at the nodes is proportional to the relative acceleration between the nodes”. The constant of proportionality was termed the
‘inertance’ with units of kilogrammes. Smith stated that one possible application of the inerter would be that of mechanical
vibration suppression. In recent years the inerter has been applied in the fields of vibration control and structural control, with
many studies investigating novel TMD configurations incoporating inerters. TMD performance is heavily dependent on the
mass ratio, however, inerter-based TMDs employ a ‘gearing’ that ensures the effective mass of the device is much greater than
the actual mass of the device. The mass amplification is usually achieved via a rack and pinion mechanism or inertial hydraulic
devices. Inerter-based TMDs can therefore achieve larger effective mass ratios than classical TMDs without excessive weight
in the damper. Ikago et al.20 developed a novel tuned viscous mass damper (TVMD) for seismic applications. This device
utilises an inerter, in the form of a ball screw mechanism and spring connected to the primary structure, to provide an apparent
mass amplification to the TMD. The authors derived a closed-form expression for optimum TVMD design and verified the
efficacy of the device with shake table tests. Garrido et al.21 devised a novel device they termed a rotational inertia double-
tuned mass damper (RIDTMD). This device consists of a traditional TMD with the viscous damper element replaced with a
TVDM. The authors derived optimum parameters for the RIDTMD. The RIDTMD was found to be more effective than a TMD
of the same mass ratio with a broader suppression band and nearly identical stroke. Marian and Giaralis22 utilised the inerter
to develop a novel passive damper they have called the tuned mass-damper-inerter (TMDI). This device takes advantage of the
mass amplification effect of the inerter to achieve improved performance over a classical TMD of the same mass ratio. Lazar et
al.23 also proposed a novel TMD device utilising the inerter. The new device uses the inerter’s principle of mass amplification
to improve on the performance of classical TMDs. Hu and Chen optimally designed inerter-based devices for random force
excitation on the primary system using a numerical optimization method24.
All of these studies have demonstrated that inerters are capable of producing a large effective mass by using a relatively

small physical mass. TMDs equipped with inerters, TMDIs, therefore require a smaller physical mass than classical TMDs to
be effective. Since the mass ratio, i.e. the ratio of the mass of the TMD to the mass of the primary structure, is the governing
parameter that affects the performance of a TMD this is a significant development.
There have been some recent works on the use of inerter-based devices for vibration control of wind turbines. Hu et al.25

applied an inerter-based structural control device to a barge-type floating offshore wind turbine. The inerter consisted of a parallel
connection of a spring, a damper, and an inerter-based network. Zhang et al.26 proposed the tuned parallel inerter mass system
(TPIMS) for seismic response mitigation of wind turbine towers. Using the TPIMS the tower top displacement, base shear, and
moment were reduced significantly compared to results with a classical TMD of the same mass ratio. Ma et al.27 developed the
tuned heave plate inerter (THPI), an inerter-based device for vibration control of semi submersible platform heave motions. The
presence of the inerter transforms the linear motion into high-speed rotation thereby amplifying the damper mass. The THPI
was shown to be more effective at controlling vibrations than conventional structural control schemes.
In this paper, a TMDI is employed to reduce tower vibrations in spar-type floating offshore wind turbines. A comprehensive

multi-body dynamic model of the offshore wind turbine is developed for this purpose. Various wind-wave loading environments
have been simulated to evaluate the performance of the passive TMDI under various conditions. A parametric study on two
key parameters of the TMDI i.e., the mass ratio and the inerter ratio is conducted and presented in this paper to serve as design
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guidelines for practical implementation.The results have indicated encouraging prospects for the use of TMDIs in the control of
vibrations of wind turbine towers with implications for the wind energy industry.

2 COUPLING OFFSHOREWIND TURBINE WITH TMDI

A multi-body dynamic model of an offshore wind turbine coupled with a TMDI is developed using Kane’s method28. Kane’s
method, reduces the labour required to derive the equations of motion of a dynamic system. The equations of motion derived by
Kane’s method are simpler and more readily solveable by a computer, in comparison with earlier classical approaches. State of
the art wind turbine simulation tools such as FAST29 employs Kane’s method to model offshore wind turbines. Kane’s method
presents a powerful vector approach that offers considerable advantages over the tradition Euler-Lagrangian formulation. The
dynamic equations of motion of complicated systems can be obtained from kinematics. Therefore, a description of the kinematics
of the system instead of the total energy is enough to enable derivation of the governing equations of motion.
For accurate modelling of a multi-body system like a offshore wind turbine, it is necessary that every component is defined in

its local coordinate system and then referred back to the global, in this case, inertial reference frame denoted by ẑ. Refer Figure 1
for the different reference frames. Hence, local coordinate systems are assigned to the platform (â), tower nodes, tower-top (b̂),
nacelle (d̂), low-speed shaft (ĉ), azimuth (ê) and the blades (ĝ). The blades have more than one coordinate system assigned
to them. For detailed modelling of the blades, they are referred to their coned coordinate system (î) followed by the pitched
coordinate system (not in picture). Aerodynamic loads are applied on the blade nodes that are not only coned and pitched but
also rotated due to elastic deformation of the blades in out-of-plane and in-plane directions. The coordinate systems used (except
the tower and blade element fixed coordinate systems and blade pitched coordinate system) are shown in Figure 1. The platform
rotation and rotation of the elastic members (tower and blades) occurs simultaneously about more than one axis. This restricts the
use of a simple Euler rotation matrix to establish transformation relations between two coordinate systems. Although advanced
methods can be used to derive these transformation relations, the small magnitude of these angles allows the use of small angle
approximation that makes a Euler 1-2-3 rotation matrix independent of the sequence of rotation. The resulting transformation
matrix is not orthogonal, hence, singular value decomposition is used to obtain the nearest orthogonal transformation. The reader
may refer? for details on this transformation.
By a direct result of Newton’s law of motion, Kane’s equations of motion for a simple holonomic multi-body system can be

stated as28
Fk + F ∗k = 0 for k = 1, 2, ... N (1)

where, N is the total number of degrees of freedom required to describe the complete kinematics of the wind turbine system.
With a set of M rigid bodies characterized by reference frame Ni and center of mass point Xi, the generalized active force
associated with the ktℎ degree of freedom is given as28

Fk =
M
∑

i=1

[

EvXi
k ⋅ FXi + E!Ni

k ⋅MNi

]

(2)

where FXi is force vector acting on the center of mass of point Xi and MNi is the moment vector acting on the Ni rigid body.
EvXi

k and E!Ni
k are the partial linear and partial angular velocity of the point Xi and rigid bodyNi respectively associated with

the ktℎ degree of freedom in the inertial (E) reference frame. The generalized inertia force for ktℎ degree of freedom is given as

F ∗k = −
M
∑

i=1

[

EvXi
k ⋅

(

mNiEaXi
)

+ E!Ni
k ⋅ EḢNi

]

(3)

where it is assumed that for each rigid body Ni, the inertia forces are applied at the centre of the mass point Xi. EḢNi is the
time derivative of the angular momentum of rigid body Ni about its center of mass Xi in the inertial frame28. For the wind
turbine model, the mass of the platform, tower, yaw bearing, nacelle, hub, blades, generator contributes to the total generalized
inertia forces. Generalized active forces are the forces applied directly to the wind turbine system, forces that ensure constraint
relationships between the various rigid bodies and internal forces within flexiblemembers. Forces applied directly on the offshore
wind turbine system include aerodynamic forces on the blades and the tower, hydrodynamic forces on the platform, mooring
forces on the platform, gravitational forces, generator torque, high-speed shaft brake. Here it must be noted that gearbox friction
forces are neglected. Yaw springs and damper contribute to forces that enforce constraint relationship between rigid bodies.
Internal forces within flexible members include elasticity and damping in tower, blades and drive-train.
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As can be observed from the above equations, the kinematic description, i.e., the position, velocity and acceleration vectors
of all important points on the offshore wind turbine system is the key requirement. As shown in Figure 3a, the TMDI is placed
at the tower-top denoted by the point O, and hence the position vector of the damper from the tower-top can be given as

rOD =
{

qDb̂3 coupled to side-to-side direction
qDb̂1 coupled to fore-aft direction

(4)

where D denotes the center of mass of the damper and qD is the displacement of the damper from its neutral position. The
kinematics of the coupled system is derivedwhich, although straightforward, can be extensive due to the complexity of the overall
system. The mass of the damper contributes to the generalized inertia forces and the spring, damper and inerter contributes to
the generalized active forces of the entire system. To describe the complete motion of the coupled offshore wind turbine TMDI
system the degrees of freedom/generalized coordinates used are given in equation 5.

q ={qSg qSw qHv qR qP qY qTFA1 qTSS1 qTFA2 qTSS2 qyaw qGeAz qDrT r
qB1F1 qB1E1 qB1F2 qB2F1 qB2E1 qB2F2 qB3F1 qB3E1 qB3F2 qD}

(5)

The subscripts define the degrees of freedom under consideration and are described in Appendix A. Once the linear and angular

Shaft Tilt

Cone Angle

FIGURE 1 Coordinate systems

velocity vectors for every important point and rigid body in the system are defined, the partial linear and angular velocities are
obtained as per28 assuming the time derivatives of the generalized coordinates as the generalized speed (i.e., uk = q̇k). The
complete non-linear time-domain equations of motion for the offshore wind turbine system in its general form can be written as

M(q,u, t)q̈ = −f(q̇,q,u, t) (6)
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where,M is the inertial mass matrix that is a non-linear function of the set of degrees of freedom q, control input u, and time t.
The forcing function f depends non-linearly on the degrees of freedom, the time derivative of the degrees of freedom, control
input and time.

2.1 Dynamic loads
Aerodynamic loads
Aerodynamic loads on the wind turbine are estimated using steady Blade ElementMomentum (BEM) theory. Three-dimensional
(3D) wind fields are generated using the TurbSim30 package distributed by National Renewable Energy Laboratory (NREL),
USA. The wind fields generated by TurbSim account for vertical and horizontal wind shear and spatial coherence of the turbulent
wind field. The package can be used to generate complete wind fields with varying turbulence intensity levels, power-law
coefficients for wind shear and characteristic wind speeds. The steady BEM theory interpolates the wind speed at the blade nodes
from the TurbSim generated 3D wind field to estimate aerodynamic loads based on the quasi-static aerodynamic properties (i.e.,
lift and drag) of the blades. This theory is widely available in the literature31,32,33 and hence, it is not described in this paper. The
BEM equations are solved using an approach proposed by Ning34. This approach solves for the unknown inflow angle instead
of solving for the axial and the tangential induction factors as in earlier work. For this purpose, different equations are used in
different solution regions (e.g. momentum, empirical or propeller brake region). Furthermore, the empirical region is estimated
using Glauert’s correction with Buhl’s modification. Adjusting different equations for each region circumvents the traditional
two-point iterative procedure of solving the BEM equations as described in34. Prandtl’s hub and tip loss correction factors are
also included to account for the vortices generated by the blade tips and the hub. The model is also capable of accounting for
skewed inflow using a correction on the axial induction factor proposed by Pitt and Peters as obtained from35. The solution of
the BEM equations at each section gives the elemental lift and drag forces. The elemental out-of-plane force (thrust) and in-
plane force (torque) on the blade sections can be estimated from the elemental lift and drag forces. For details on the procedure
please refer35.

Hydrodynamic loads
Morison’s representation is used to estimate hydrodynamic loads on the cylindrical spar of the floating wind turbine. In con-
junction with strip theory, Morison’s equations can be used to compute linear wave inertia forces and non-linear viscous drag
forces. The total load on the platform is then obtained by integrating the elemental forces along the depth of the platform. The
forces associated with a strip dz of the platform in surge and sway direction are given as

dF P
i (z, t) =−CA�

(

�D(z)2

4

)

q̈i(z, t)dz

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
added mass

+CM�
(

�D(z)2

4

)

afi (z, t)dz

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
fluid inertial force

+ 1
2
CD�D(z)

(

vfi (z, t) − v
p
i (z, t)

)

|vfi (z, t) − v
p
i (z, t)|dz

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
viscous drag force

for i = Sg, Sw (7)

Where, the superscript ‘P ’ denotes the platform and dF P
i is the elemental force on the platform for the itℎ degree of freedom.

Similarly, the roll and pitch moments on the platform can be given as

dMP
i (z, t) =

{

−dF P
Sg(z, t)z i = P

dF P
Sw(z, t)z i = R

(8)

Where, dMP
i is the elemental moment on the platform for the itℎ degree of freedom. The total forces and moments on the

platform are obtained by integration of the elmental forces and moments along the depth of the platfrom. Since, the spar is
symmetrical about its vertical axis, the yaw moment and heave force are assumed to be zero. Morison’s representation assumes
that viscous drag force dominates the total drag force and radiation damping is negligible. This is valid only for rigid platforms
with small motion, which is true in this case. Equation 7 does not include the added mass associated with the heave motion of
the platform. Hence, added mass coefficient for heave degree of freedom is included as per36.
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FIGURE 2Model verification: motion of the wind turbine tower and blades

3 MODEL VERIFICATION

The codes for the offshore wind turbine are developed in MATLAB R© 37. The offshore wind turbine model developed is bench-
marked against the state-of-the-art wind turbine simulator FAST29. FAST has been used in many previous studies on wind
turbine dynamics and control38 39 8 and is verified and validated by DNV GL40. The spar-type offshore wind turbine defined
in41 is used for analysis. The verification results are shown in Figure 2 and in Appendix B. For brevity only the main structural
responses are shown in Figure 2. The other responses of the offshore wind turbine are provided in Appendix B. The offshore
wind turbine is simulated under steady rated wind speed of 11.4 m/s in still water.
An excellent similarity is observed for the wind turbine tower, nacelle and blade motion while some dissimilarities are

observed in the platform motion. The main difference is a phase shift in the response time histories. This is due to the fact
that while FAST applies hydrodynamic damping from both linear potential flow theory and viscous drag forces from Morison’s
equation, the derivedmodel in this paper uses only viscous drag forces fromMorison’s equation. This difference in hydrodynamic
damping results in a phase shift in the response time histories. Also, the degrees of freedom that experience less hydrodynamic
damping like platform surge, heave or reaches steady state quickly like platform pitch, yaw is less affected by the phase shift. The
platform sway and roll degrees of freedom experience a noticeable phase shift due to the difference in hydrodynamic damping.
However, the mean and the frequency content of the responses remain the same which is important from a dynamic analysis
point of view.
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(a) Offshore wind turbine tower coupled with TMDI (b) Schematic diagram of a tower with a TMDI placed on
the top

FIGURE 3

4 DAMPER OPTIMIZATION USING A REDUCED MODEL

The coupled offshore wind turbine TMDI system presents a rather complicated set of equations of motion for which optimization
of damper properties in closed form is not possible. Therefore, the optimal properties of the TMDI are derived using a simple
reduced model subjected to white noise excitation. The simplified model of a tower with a TMDI placed on its top is shown
in Figure 3b. It is assumed that the mass of the blades, hub and nacelle are lumped on the top of the tower and the base of the
tower is fixed. The inerter is hooked between the mass of the damper and the tower at an arbitrary height HI from the base
of the tower. It is also assumed that the primary structure does not offer any damping force. For such a system, the governing
equations of motion normalized by the mass of the primary structure m0 is given as

[

1 + � + �(1 − �)2 � + �(1 − �)
� + �(1 − �) � + �

](

q̈t
q̈d

)

+
[

0 0
0 2�!t�d!r

](

q̇t
q̇d

)

+
[

!2t 0
0 �!2t!

2
r

](

qt
qd

)

=

(

F
m0
0

)

(9)

The tower and damper degrees of freedom are denoted by qt and qd respectively. The mass ratio of � and inerter ratio � are
defined as

� =
md
m0

� = b
m0

(10)

where md is the mass of the damper and b is the constant of proportionality of the force generated by the inerter. It has the units
of mass and details on this parameter can be found in22,42. The natural frequency of the tower and damper is denoted by !t and
!d respectively. The tuning ratio and damping ratio of the damper are defined as

!r =
!d
!t

�d =
cd

2md!d
(11)

where cd is the damping coefficient of the TMDI. � is the normalized displacement ratio between tower top displacement and
the displacement at a heightHI from the base. It can be obtained directly from the normalized primary mode shape as

� = �t(HI ) where 0 ≤ � ≤ 1 (12)
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where, �t is the normalized primary mode shape of the tower. F is the stationary stochastic excitation force. The excitation force
is assumed to be white with a constant intensity of S0 over all frequencies. For this case the variance of the tower can be given as

�2t =
1
m0

+∞

∫
−∞

|Λ11(!)|2S0d! (13)

where, Λ11 is the first component of the transfer function matrix that can be obtained from equation 9 as

Λ(i!) = [−!2M + i!C +K]−1 (14)

Using an analytical technique as per43 equation 13 can be obtained as

�2t =
�S0
m0

|

|

|

|

|

|

|

|

|

0 b2 b1 b0
−d4 d2 −d0 0
0 −d3 d1 0
0 d4 −d2 d0

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

d3 −d1 0 0
−d4 d2 −d0 0
0 −d3 d1 0
0 d4 −d2 d0

|

|

|

|

|

|

|

|

|

(15)

where

b0 = �2!4t!
4
r

b1 = 2�!2t!
2
r (2��

2
d − � − �)

b2 = �2 + 2�� + �2

d0 = �!4t!
2
r

d1 = 2�!3t �d!r
d2 = −!2t (−�

2!2r − ��
2�!2r + 2���!

2
r − ��!

2
r − �!

2
r − � − �)

d3 = −2�!t�d!r(−� − �2� + 2�� − � − 1)
d4 = −2�!t�d!r(−� − �2� + 2�� − � − 1)

The optimal TMDI parameters can be then obtained as
)�2t
)!r

= 0
)�2t
)�d

= 0 (16)

Assuming that the mass ratio �, inerter ratio � and � are held constant the equations in 16 lead to the optimal tuning ratio

!r =

√

−B +
√

B2 − A ∗ C
2A

(17)

where

A = 3�2(�2 + 2��2� − 4��� + 2�� + 2� + �4�2 − 4�3�2 + 6�2�2 + 2�2� − 4��2 − 4�� + �2 + 2� + 1)
B = �(4�2�2d − �

2 + 4��2�2d� − 2��
2� − 8���2d� + 2��� + 4��

2
d� + 4��

2
d − 2�� − 2� − �

2�2 + 2��2

− �2 − 2�)
C = −(�2 + 2�� + �2)

and the optimal damping ratio

�d =
1

2�!r

√

D
E

(18)
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FIGURE 4 Optimum TMDI parameter for � = 0.5.

where

D = �4!4 + 2�3�2�!4r − 4�
3��!4r + 2�

3�!4r + 2�
3!4r − �

3!2r + �
2�4�2!4r − 4�

2�3�2!4r + 6�
2�2�2!4r + 2�

2�2�!4r
− 2�2�2�!2r − 4�

2��2!4r − 4�
2��!4r + 2�

2��!2r + �
2�2!4r + 2�

2�!4r − 2�
2�!2r + �

2!4r − 2�
2!2r + �

2

− ��2�2!2r + 2���
2!2r − ��

2!2r − 2��!
2
r + 2�� + �

2

E =� + �2� − 2�� + � + 1

It is important to note that when b = � = 0 the equations 17 and 18 reduce to the optimal tuning parameters for a classical
TMD coupled to a primary structure excited by white noise. Since � is an independent parameter, the optimal parameters for the
TMDI can be obtained directly from the above equations when the inerter is hooked at an arbitrary height. It is also important to
note that equations 17 and 18 are interdependent. Hence, the optimum parameters cannot be obtained in one step and an iterative
procedure must be used until the two parameters converge with a sufficiently small tolerance.
In the following optimal tuning ratio !r and optimal damping ratio �d at different values of mass, inerter and tip displacement

ratios are shown in Figure 4 and Figure 5. It can be observed that the tuning parameters are significantly different from those of
a classical TMD. Very high tuning ratios and damping ratios are required for optimum performance when � is increased from
0 to 1. At � = 0 the optimum parameters match that of a classical TMD, as expected. Figures6 through 9 show the minimum
variance ratio between a TMDI with b = 0 (classical TMD) and b > 0 for different � and �. The important points to note from
these plots are - (i) the performance improves with increased � and decreased�, therefore, the lower the inerter hook on the tower
and higher the inerter ratio the better; (ii) for � > 0.8, in most cases, the performance is worse compared to a classical TMD,
therefore, the inerter is essentially ineffective; and; (iii) the minimum variance ratio saturates with increasing � and decreasing
�, therefore, it is the designer’s decision to choose an optimum value for these two parameters based on desired performance
and practical/physical restrictions of the structure.

5 CONTROLLER PERFORMANCE

To evaluate the performance of the passive TMDI the damper is coupled to the derived model represented by Eq. 6 using
Kane’s method. The coupling is preformed in the side-to-side and fore-aft directions one at a time and the results are presented
in this section. A few representative met-ocean conditions are selected to represent calm and violent conditions. To represent
calm conditions small waves of Hs = 0.75 m are selected with a wave period of Tp = 6 sec. It is assumed that small wave
heights are accompanied by low wind speeds. Similarly, to represent violent environmental conditions large waves ofHs = 6 m
along with high wind speeds are assumed. Every wind-wave condition is simulated with a wave direction of 0 and 90 degrees.
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FIGURE 5 Optimum TMDI parameter for � = 0.9.
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FIGURE 7Minimum variance ratio between TMDIwith � =
0 and � > 0 for � = 1%.

Resonance of the tower response is another aspect that needs to be investigated. Since the tower frequency is ≈ 0.4885 Hz the
wave period needs to be ≈ 2.05 sec. It is known from literature44,45 that waves of such short periods are highly improbable and
hence resonance with wave excitation frequency is ignored. However, aerodynamic loads can resonate with the tower’s natural
frequency when 3P≈ 0.4885 Hz⇒ P≈ 0.163 Hz; i.e., at a rotor speed of≈ 9.78 rpm. Since 9.78 rmp falls within the operational
range of the wind turbine this case is also investigated although the wind speed varies constantly and a constant rmp of 9.78
cannot be maintained. Table 1 and Table 2 shows the performance of the passive TMDI for the aforementioned wind-wave
environmental conditions in controlling the side-to-side and fore-aft displacements of the tower. The mass ratio of the TMDI
is fixed at 1% and the inerter is hooked to the tower at a height of 54 m from the base of the tower that gives � = 0.5. It can
be clearly observed that considerable gain in performance is obtained when an inerter is attached to the tuned mass damper. As
expected the performance improves with an increase in the inerter ratio � and the behaviour is the same for all the investigated
loading environments. It is also noticeable that the performance of the TMDI does not improve or rather marginally deteriorates
in some cases when the inerter ratio is increased from 0.4 to 0.8. It is known from recent literature22 and from the previous
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Section that the performance of the TMDI saturates as � is increased. The performance saturates from � = 0.4 to � = 0.8. The
exact behaviour of this saturation is studied in detail later. Another noticeable impact of installing an inerter is a large reduction
in TMD stroke. Large TMD stroke is always a hindrance in the installation of these devices on actual structures. Researches,
therefore, have utilised the concept of TMDs with stroke constraints. But, the simple installation of an inerter in parallel with
the spring and damper of the TMD can drastically reduce (approximately by 90%) the stroke of the TMD and this can be a major
asset in the practical installation of TMDs especially on structures such as wind turbines where space constraints are a concern.
Figure 10 through Figure 19 show the Fourier spectrum of the tower side-to-side and fore-aft displacement for the load cases

and damper properties defined in Table 1 and Table 2. The drastic reduction of TMDI stroke is visualized in Figure 10b and
Figure 11b. The qualitative behaviour of stroke reduction is similar for all other load cases and hence is not shown in this paper.
The quantitative reduction in the peak value of TMDI stroke is provided in the tables. Important things to note from the Fourier
spectra are listed below:

• The roll and pitch degrees of freedom of the platform affects the dynamics of the tower in the side-to-side and fore-aft
directions respectively.

• Wave directions of 90 degrees and 0 degrees have a considerable effect on the dynamics of the tower side-to-side and
fore-aft motion respectively even though the wave excitation frequency does not resonate with the natural frequency of
the tower. And of course, larger waves have a bigger effect.

• Energy associated with the tower side-to-side natural frequency is considerably higher compared to the tower fore-aft
natural frequency and hence the reductions obtained in the side-to-side direction are greater. The tower in the fore-aft
direction experiences a larger amount of aerodynamic damping, explaining this behaviour.

• The optimum tuning parameters obtained in the previous section, although approximate, provide very good tuning as the
damper is capable of almost entirely damping out the energy associated with the tower’s natural frequency.

5.1 Parametric study: On TMDI mass ratio and inerter ratio
The results provided above establishes the fact that the passive TMDI system performs well in different loading environments.
Now it is of interest to investigate the sensitivity of the two key parameters (i.e., the mass ratio � and inerter ratio �). The primary
aim of this investigation is to identify the parameters at which a heavier classical TMD can be replaced by a lighter TMDI while
maintaining, or even improving upon, the performance of the damper. A nominal wind-wave loading environment is chosen for
this investigation. Rated hub height wind speed of 11.4 m/s along with wave height and a wave period of 2.25 m and 6.25 sec are
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FIGURE 10 Load Case 1.1: Uncontrolled and controlled tower side-to-side response and TMD stroke
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FIGURE 11 Load Case 1.2: Uncontrolled and controlled tower side-to-side response and TMD stroke

selected. Simulations are performed for various mass ratios and inerter ratios and the reduction obtained in fore-aft and side-to-
side response of the tower are presented in Figure 20 and Figure 21 respectively. It can be observed that the performance sharply
increases initially when � is increased but also saturates very quickly when � ⪆ 0.2. This shows that increasing � indefinitely
will not have any significant improvement in the performance.
However, the key thing to note from the curves is that although the performance increase for increased mass ratio when � = 0,

the performance eventually drops when a � > 0 is introduced, and a TMDI with smaller mass ratio works better than a TMDI
with a larger mass ratio. This behaviour is unlike fixed base structures as available in literature22,42. To investigate this behaviour,
further investigation was carried on into the platform motion with increasing mass ratio of the damper. Understandably, the
motion of the platform increases when a heavier mass is placed on top of the tower. A quantitative estimate of the increase in the
roll and pitch of the platform is provided in Figure 22. It shows that with increasing mass ratio of the TMDI the roll and the pitch
of the platform also increases linearly. This increase in platform vibrations is reflected in the increase of tower vibrations and
hence the reduction in performance of the damper. Hence, for an offshore wind turbine tower it is not ideal to increase the mass
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ratio of a passive damper to improve performance not only because of spatial restrictions at the top of the tower but also because
it will result in increased vibrations of the overall system. A TMDI with low mass ratio and a high inerter ratio is recommended.
It is well known from literature46 that the blades and the tower are dynamically coupled. Therefore the effect of tower vibration

reduction on the blades must be studied. For that purpose, the tower fore-aft displacement and the blade out-of-plane displace-
ment is shown in Figure 23 and Figure 24 respectively subjected to load case 2.1. The dynamic coupling between the blades
and the tower can be clearly observed as the change in tower motion is reflected in the blade response. However, even though
the reduction in the tower fore-aft vibrations alters the blade out-of-plane tip displacement, the blade out-of-plane response is
not mitigated by the presence of a damper at the tower top.
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6 CONCLUSIONS

Passive vibration control of a spar-type floating offshore wind turbine tower using tuned mass-damper-inerter has been investi-
gated in detail in this paper using a comprehensive multi-body dynamic model of the offshore wind turbine. Various wind-wave
loading environments have been simulated to evaluate the performance of the controller under various conditions. A parametric
study on the two key parameters of the TMDI i.e., the mass ratio and the inerter ratio, has been conducted and presented in this
paper to serve as design guidelines for practical implementation. The key highlights can be summarized as follows

• For a fixed mass ratio (�) the performance of the TMDI improves with an increasing inerter ratio (�), highlighting the
fact that a heavier classical TMD can be easily replaced by a TMDI of smaller mass.

• Although the performance of a TMDI increases with increasing �, it has been found that the improvement saturates above
a value of 0.4. Hence, an inerter ratio higher than 0.4 is generally not required and very good performance can be achieved
with a low inerter ratio of 0.1 to 0.2.

Page 16 of 22

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

SARKAR AND FITZGERALD 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Inerter ratio ( )

2

3

4

5

6

7

8

9

10
P

er
ce

nt
ag

e 
R

ed
uc

tio
n 

(%
)

 =0.5%
 =1%
 =2%
 =3%

FIGURE 20 Percentage reduction at different mass and
inerter ratios

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Inerter ratio ( )

16

18

20

22

24

26

28

30

32

34

P
er

ce
nt

ag
e 

R
ed

uc
tio

n 
(%

)

 =0.5%
 =1%
 =2%
 =3%

FIGURE 21 Percentage reduction at different mass and
inerter ratios

0 0.5 1 1.5 2 2.5 3

Mass ratio (%)

0

1

2

3

4

5

6

7

8

9

10

P
er

ce
nt

ag
e 

In
cr

ea
se

 (
%

)

Pitch
Roll

FIGURE 22 Percentage increase in standard deviation of platform pitch and roll at various mass ratios

300 310 320 330 340 350 360 370 380 390 400

Time (sec)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

T
ow

er
 fo

re
-a

ft 
di

sp
la

ce
m

en
t (

m
)

Uncontrolled
Controlled

FIGURE 23 Load case 2.1: Tower fore-aft response

300 310 320 330 340 350 360 370 380 390 400

Time (sec)

1.5

2

2.5

3

3.5

4

4.5

B
la

de
 o

ut
-o

f-
pl

an
e 

di
sp

la
ce

m
en

t (
m

)

Uncontrolled
Controlled

FIGURE 24 Load case 2.1: Blade out-of-plane response

Page 17 of 22

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

18 SARKAR AND FITZGERALD

• The optimum tuning parameters presented in this paper are derived for a simplified fixed base tower subjected to white
noise excitation. It has been shown that these tuning parameters are capable of damping out the energy associated with the
tower’s natural frequency almost completely. Therefore, these parameters can be used for a floating offshore wind turbine
tower with sufficient reliability.

• Impressive response reductions of about 10% and 32% in tower fore-aft and side-to-side directions respectively are
achieved in the nominal case and reductions of up to 18% and 53% in the two respective directions have been observed in
the most extreme cases.

• Unlike vibration control of a building or fixed base tower, the performance of the TMDI drops for higher mass ratio when
� > 0. An investigation into this behaviour revealed that increasing the mass at the top of the tower increases the motion
of the platform (increased platform pitch and roll) which in turn results in larger vibrations of the tower. Therefore, unlike
traditional civil engineering structures, it is very important that for an offshore wind turbine tower a TMDI with a smaller
mass ratio and a higher inerter ratio is used to achieve maximum performance.

• Another key benefit observed from the introduction of an inerter is the drastic reduction in TMD stroke. Large TMD
stroke is a practical hindrance in the installation of classical TMDs in structures. A huge reduction in TMD stroke of about
90% has been observed consistently by the introduction of an inerter in the system. This along with improved vibration
control properties (when tuned properly) offered by a tunedmass-damper-inerter makes it an exciting candidate for passive
vibration control of offshore wind turbines with space constraints.

APPENDIX

A DEGREES OF FREEDOM

The complete nonlinear floating offshore wind turbine model has 22 degrees of freedom. Six degrees of freedom are used to
describe the motion of the platform. Four degrees of freedom to describe the motion of the tower. One degree of freedom is
used to describe the rotation of the nacelle. The rotation of the low speed shaft is modeled using two degrees of freedom. And
nine degrees of freedom are used to describe the motion of the three blades. The degrees of freedom are listed in Table A1.

B MODEL VERIFICATION RESULTS

The derived model is benchmarked against FAST29 and the motion of the nacelle, low-speed-shaft and the platform are is shown
in Figure B1 and Figure B2.
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TABLE A1 Degrees of freedom
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qHv Platform heave
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qDrT r Drive-train torsional flexibility
qBiF1 First flapwise bending mode for itℎ blade
qBiF2 Second flapwise bending mode for itℎ blade
qBiE1 First edgewise bending mode for itℎ blade
qD Damper
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