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Deep learning-based fault diagnosis of rolling bearings is a hot research topic, and a rapid and accurate diagnosis is important. In
this paper, aiming at the vibration image samples of rolling bearing affected by strong noise, the convolutional neural network-
(CNN-) and transfer learning- (TL-) based fault diagnosis method is proposed. Firstly, four kinds of vibration image generation
method with different characteristics are put forward, and the corresponding pure vibration image samples are obtained according
to the original data. Secondly, using CNN as the adaptive feature extraction and recognition model, the influences of main
sensitive parameters of CNN on the network recognition effect are studied, such as learning rate, optimizer, and L1 regularization,
and the best model is determined. In order to obtain the pretraining parameters, the training and fault classification test for
different image samples are carried out, respectively.,irdly, the Gaussian white noise with different levels is added to the original
signals, and four kinds of noised vibration image samples are obtained. ,e previous pretrained model parameters are shared for
the TL. Each kind of sample research compares the impact of thirteen data sharing schemes on the TL accuracy and efficiency, and
finally, the test accuracy and time index are introduced to evaluate themodel.,e results show that, among the four kinds of image
generation method, the classification performance of data obtained by empirical mode decomposition-pseudo-Wigner–Ville
distribution (EP) is the best; when the signal to noise ratio (SNR) is 10 dB, the model test accuracy obtained by TL is 96.67% and
the training time is 170.46 s.

1. Introduction

,e safe operation of mechanical equipment is an important
guarantee for the modern industrial production. As an in-
dispensable part of intelligent equipment, the fault diagnosis
technology of rolling bearings has attracted great attention.
Rolling bearing is generally composed of inner ring, outer
ring, rolling body, and cage. After a long time of operation,
various faults are easy to occur. ,erefore, the rapid and
accurate fault identification of rolling bearing is a great
challenge and of great significance [1, 2].

,e traditional fault diagnosis method of rolling bearings
is mainly to obtain the characteristic information through
the processing of vibration signals. Different analysis algo-
rithms are selected for different types of vibration signal.

Common analysis algorithms, such as wavelet transform and
empirical mode decomposition (EMD), still play important
roles in the fault diagnosis field and are constantly being
improved [3, 4]. ,e multialgorithm fusion analysis can
synthesize the integrated advantages and improve the
analysis effect. Jiang et al. [5] used multiwavelet packet as the
prefilter to refine the vibration signal combining with en-
semble EMD (EEMD), which can implement the effective
extraction of multifault features. Guo and Deng [6] used
particle swarm optimization (PSO) algorithm to screen the
optimal intrinsic modal function (IMF), and a multi-
objective optimized EMD method was proposed to over-
come the modal aliasing of EMD and EEMD.,e authors in
[7–10] adopted the comprehensive analysis method of EMD
and pseudo-Wigner–Ville distribution (PWVD), which not
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only has the time-frequency focusing but also avoids the
problem of cross-interference terms in multicomponent
signal processing. ,e frequency band energy was divided
according to time-frequency image, which was used as the
characteristic index for the unsupervised clustering calcu-
lation and achieved a good classification effect [11].

With the rapid development of intelligent algorithms
such as deep learning and cross-integration with various
disciplines, the intelligent diagnostic methods are exten-
sively used in mechanical fault diagnosis [2, 12]. Compared
with the traditional fault diagnosis method, the intelligent
diagnostic method has no strict prior knowledge require-
ments and can avoid the dependence on the artificial feature
extraction [13, 14]. Shao et al. [15] used the dual-tree
complex wavelet packet (DTCWPT) as the signal pre-
processing, and a new adaptive deep belief network (DBN)
with DTCWPT was proposed, which can eliminate the
necessity of artificial feature selection and reliably identify
different bearing faults. As a common type of network, the
convolutional neural network (CNN) generally uses images
as input samples.When facing the fault diagnosis problem of
rotating machinery, choosing an appropriate image gener-
ation method is significant. Wang et al. [16] took the time-
frequency image gained by wavelet analysis for the CNN
training, which can achieve a good effect of fault identifi-
cation. Xiao et al. [17] compared the effects of grayscale map
samples with different sizes and different optimizers on the
accuracy and robustness of training model.,e performance
of CNN model is often related to its own parameter setting,
and Chen et al. [18] changed the extreme learning machine
(ELM) as a strong classifier to improve the classification
performance. In general, obtaining a group of highly
qualified samples in the actual industrial environment is
affected by various factors, and too few samples and the
imbalance among different data will affect the training effect
of the model. A framework based on the auxiliary classifier
generative adversarial network (ACGAN) is proposed [19],
which has the ability to generate the artificial raw data of
mechanical signals. However, in the face of data affected by
the strong background noise under the complex working
conditions, the process of using generative adversarial
network (GAN) to generate new samples is complicated.
Transfer learning (TL) provides another solution for small
sample cases.

,e data corresponding to different working conditions
are of different distributions. It is found that the classifi-
cation accuracy of CNN is low when the distribution of
training data set and test data set is different [20, 21]. Qiu
et al. [22] performed an unsupervised and semisupervised
dimensionality reduction, respectively, on the source and
target domain data so that two domain data had a relatively
similar distribution state, and then, TL was performed.
Wang et al. [23] shortened the conditional distribution
distance of vibration data acquired under different working
loads for the intraclass adaptation. Fan et al. [24] used the
designed image samples for pretraining and transferred the
CNNmodel parameters to the tested samples, and after fine-
tuning, the parameters a good classification effect was
achieved.

In order to solve the problems of the sample effectiveness
and the performance of TL under the strong noise, a method
of vibration image-driven CNN- and TL-based model is
proposed in this paper. In Section 2, four different types of
image generation method are proposed and optimized. In
Section 3, CNN is used for the adaptive feature extraction,
three sensitive parameters in the model are studied, and the
best model is determined. In Section 4, thirteen different TL
schemes are designed for the noised samples, and finally, the
recognition accuracy and efficiency for four types of image
samples are evaluated.

2. Research Framework

2.1. Overall Scheme. ,e research process of this work is
shown in Figure 1, and the main process is divided into three
parts. Part 1 is the preprocessing of samples. Four kinds of
image processing method are proposed, which are intrinsic
mode functions arrangement (IMFA), empirical mode de-
composition-pseudo-Wigner–Ville distribution (EP), sym-
metrical polar coordinates image (SPCI), and grayscale
texture map (GTM) to convert the original vibration signal
into images, which are used as the training samples of CNN
model. Part 2 is the model training process, in which the
CNN model is built and then the model parameters are
shared for the noised vibration image samples and TL. Part 3
is the test and evaluation of the recognition model.

2.2. Convolution Neural Network. As a feedforward neural
network, the CNN model is composed of convolution layer,
pooling layer, and fully connected layer, in which the
convolution layer is used to convolute the image to obtain
the featured map. ,e convolution formula is shown as
follows [24]:

Ol �∑k
i�0

∑k
j�0

W(l)
i,j I

(l−1)
n+i,m+j + b

(l), (1)

where k is the size of the convolution kernel; i and j are the i-
th row and j-th column of the convolution kernel, respec-
tively; W(l)

i,j is the weight matrix of convolution kernel in
layer l; b(l) is the offset of layer l; I(l−1)n+i,m+j is the featured map
matrix of layer l-1; and its two dimensional are n, m; and Ol

is the output featured map matrix of layer l.
After the convolution operation, the parameters are

input into the activation function, which increases the
nonlinearity of the model, so that the model can be applied
to the complex classification problems. ,e activation
function formula is shown as follows:

yl � factive O
l(i,j)( ), (2)

where factive is the activation function and yl is the output of
the l-layer featured map matrix. ,e common activation
functions are Sigmoid, Tanh, and Relu.

,e pooling layer is to reduce the dimension of the input
parameters, and the commonly used pooling operations are
maximum pooling and average pooling. ,e fully connected
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layer in the convolution network maps the distributed
features to the sample space. In the whole network structure,
the fully connected layer generally acts as a classifier, for
example, the Softmax function, and the calculated result is
the output of the whole CNN model, as shown in the fol-
lowing equations:

zli � y
(l−1)
i W(l)

+ b(l), (3)

P Yi( ) � ez
(l)
i

∑Lu�1 ez(l)u , (4)

where z(l)i is the eigenvalue of the fully connected layer, y(l−1)i

is the featured matrix before the fully connected layer, P(Yi)
is the probability prediction of theYi − th sample, L is the
total number of sample categories, and u is the u-th sample
category in order to distinguish the i in the numerator.

In the process of model training, the error between the
predicted model output and the actual target is calculated by
the loss function, and the commonly used loss function is the
cross-entropy function, as follows [24]:

C � −
1

M
∑
x

p(x)log(q(x)) +(1 − p(x))log(1 − q(x)),

(5)
where assuming that p(x), q(x) are the true target value and
the Softmax output value, respectively, and M is the total
number of samples.

,e C value in equation (5) indicates how close the
predicted value is to the target value.,e smaller the value is,
the closer the prediction is to the target, and on the contrary,
the prediction deviates from the target. ,e C value obtained
by each forward propagation is input into the optimizer, i.e.,
by reducing the C value to achieve the training effect, the
commonly used optimizer has the gradient descent, mo-
mentum optimization, etc.

2.3.TransferLearningMethod. ,eTL is an effective method
to solve small sample problem, which takes the model

developed for task A as the starting point and reuses it in the
process of developing the model for task B. In a practical
research, TL is mainly divided into three kinds: the case-
based, feature-based, and shared parameter-based transfer
[25, 26]. With the development of deep learning, the
combination of feature learning and TL is more and more
applied. In order to solve the problem of low training ac-
curacy and poor classification effect for low quality data
affected by background noise, in this paper, a method of TL
combined with CNN is used to classify rolling bearing faults.
,e original data collected are used as the pure training
samples for pretraining, and then, the model parameters will
be restored and shared to train themodel after pretraining. A
part of the convolution layer is frozen so that the parameters
cannot be updated in the process of backpropagation. Only
the designated training layer is retained to participate in the
training process of noised samples to complete the pa-
rameter updating.

3. Research Basis

3.1. CNNModel Construction. ,is paper takes the LeNet-5
network as the basic model. ,e model has a shallow net-
work layer and requires few training parameters, so it has
fast training speed and good classification effect. For the low
complexity of vibration image samples in this paper, it is
appropriate to choose this network.,e network structure is
shown in Figure 2. ,e total number of layers is 7, including
3 convolution layers, 2 pooling layers, and 2 fully connected
layers. Under the condition that the image sample is not
affected by its color, the use of single-channel image can not
only reduce the input parameters and the memory usage but
also improve the operation efficiency. ,erefore, the sample
used in this paper is a single-channel image with a size of
256∗ 256, and the output is 4 nodes, which represent 4
bearing state categories. In the training process, the
hyperparameters in the model are fine-tuned.

,e initial CNN model parameters are shown in Table 1.

IMFA

EP

SPCI

GTM

Respectively, train
with CNN for the
original samples

Respectively, train
with CNN for the

noised samples

Pretrain model test 

TL model test 

Original
signal

Add noise

Model training process
Test and evaluation of
the recognition model

Preprocessing of samples

TL

Image
generation
methods

Figure 1: Overall research flowchart.
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3.2. Vibration Image Sample Preparation. ,e original vi-
bration signals do not have the advantages of images, such as
great differences between samples and more intuitive ob-
servation. ,erefore, this paper carries out four image
generation methods for vibration signals and finds which of
4 types of image has better classification performance. ,e
samples used in this paper are the vibration data of rolling
bearing from the Case Western Reserve University [27], and
the test platform is shown in Figure 3.

,e selected data are those with 1797 r/min, fault degree
of 0.007 inch, sampling frequency of 12 kHz, and 4 kinds of
working state including normal state, inner ring fault, outer
ring fault, and rolling body fault. According to the rotational
speed and sampling frequency, it is calculated that 400
sampling points are obtained for each rotation, so this paper
converts 400 sampling points as a group of data for image
conversion.

3.2.1. IMFA Image Generation Method

(1). EMD. EMD [28] can decompose the signal into the sum
of a series of IMFs with different time scales, and each IMF is
a single component signal.

For any signalx(t), all the extreme points are firstly
determined, and then, the upper envelope xmax(t) and the
lower envelope xmin(t) are obtained by third-order spline
interpolation. If m(t) is the average value of the upper and
lower envelope, h(t) is the difference between x(t) andm(t),
then

m(t) �
xmax(t) + xmin(t)[ ]

2
,

h(t) � x(t) −m(t).

(6)

Treat h(t) as a new x(t), and repeat the above operations
until the h(t)meets certain criteria; let imf1 � h(t) and imf1
is an IMF, then

r1(t) � x(t) − imf1. (7)

Treat r1(t) as a new x(t), repeat the above process, and
get the second IMF, and the third IMF, ..., n-th IMF. When
imfn or rn(t) satisfies the given stopping criteria, the
screening process is terminated and the solution is obtained
as follows:

x(t) �∑n
i�1

imf i + rn(t), (8)

Conv1

252∗252∗6
Pool1

63∗63∗6

Conv2

30∗30∗16
Pool2

5∗5∗16

Conv3

1∗1∗120
Input

256∗256∗1

FC1

84∗1

FC2

4∗1

Figure 2: CNN model structure diagram.

Table 1: CNN model parameters preset.

Items Parameters

Batch size 24
Convolution1 kernel Length∗width∗ number� 5∗ 5∗ 6, stride� 1
Convolution2 kernel Length∗width∗ number� 5∗ 5∗16, stride� 2
Convolution3 kernel Length∗width∗ number� 5∗ 5∗120
Pool1 set Type�max pooling, length∗width� 4∗ 4, stride� 4
Pool2 set Type�max pooling, length∗width� 6∗ 6, stride� 6
Activate function Relu
Loss function Cross entropy
Optimizer Stochastic gradient descent
Initial learning rate 0.001
Regularization None

Figure 3: Bearing test platform of Case Western Reserve
University.
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where rn(t) is a residual function, which represents the
average trend of the signal.

(2). Image generation. ,e vibration signal is intercepted
according to 400 sampling points in each segment, and the
signal is decomposed by EMD in turn, in which the first six
IMFs contain the main components of the signal, so the first
six groups of IMF are extracted and arranged in the form of
six curves in order, as shown in Figure 4.

In the process of image generation, in order to show the
fluctuation state of each IMF, the method of adaptively
adjusting the vertical coordinate is adopted; i.e., the am-
plitude Ai with the largest absolute value in the i-th signal
segment is obtained, and then, the vertical coordinate range
is set as −Ai∼Ai. ,e advantage of this process is that it can
show the complete shape of the IMF component and make
the visual contrast between the IMF1∼ IMF6 and strengthen
the sample feature difference.

3.2.2. EP Time-Frequency Analysis Method

(1). EP principle. EP uses the EMD to decompose the
multicomponent signal into finite IMFs. For each IMF, the
pseudo-Wigner–Ville distribution (PWVD) is carried out,
in which the PWVD is shown as follows:

PWx(t, f) � ∫∞
−∞

h(τ)x t +
τ

2
( )x∗ t − τ

2
( )e− j2πfτdτ, (9)

where t is the time-domain variable, f is the frequency-
domain variable, and h(τ) is the window function.

,en, the Wigner time-frequency distribution of the
original signal is obtained by superposing the PWVD results
of different IMFs. ,e combination of EMD and PWVD not
only effectively eliminates the cross interference but also
retains the excellent time-frequency focusing [10].

(2). Image generation. ,e steps for generating the time-
frequency distribution map are as follows:

(a) Vibration signal segmentation: processing 400
sampling points at a time.

(b) EMD decomposition: the above signals are
decomposed by EMD, and the IMF components and
residual components from high frequency to low
frequency are obtained in turn. Only the first six
IMFs are processed in the next step.

(c) EP time-frequency analysis: the first six IMFs are
analyzed by PWVD, and then, the EP time-fre-
quency distribution is obtained.

(d) Grayscale processing: in order to reduce the input
parameters and improve the training efficiency, the
grayscale processing of the generated samples is
done.

According to the above steps and Figure 5, we can clearly
see that, for the bearing data with different fault states, the
energy distribution is different.

3.2.3. SPCI Method. ,e above two methods obtain the
images from vibration signal processing, but the SPCI does
not belong to this scope, and it represents the form of a
mirror symmetrical image in polar coordinates and directly
converts the sampled signal into an image. ,e graphic
display is intuitive and has a strong ability to express
features.

(1) SPCI principle. ,e schematic diagram of SPCI is shown
in Figure 6; c(i) is the polar radius, and α(i) and β(i) are the
rotation angles along the initial line in the counterclockwise
direction and clockwise direction, respectively.,e principle
is that, in the discrete sampling data series, the vibration
parameters at i time are xi, and the vibration parameters at
i + a time are xi+a; substituting xi and xi+a into equations
(10)–(12), it can transform vibration data into a point in the
P(c(i), α(i), β(i)) polar coordinate space. By changing the
rotation angle of the initial line, a mirror symmetrical image
can be formed [29]:

c(i) �
xi − xmin

xmax − xmin

, (10)

α(i) � φ +
xi+a − xmin

xmax − xmin

b, (11)

β(i) � φ −
xi+a − xmin

xmax − xmin

b. (12)

In the above formula, xmax is the maximum value of
vibration data, xmin is the minimum value, a is the time
interval, φ is the initial line angle, and b is the angle mag-
nification factor. It is often taken as φ � 60∘, a � 3 ∼ 10, and
b � 20° ∼ 60°.

(2) Image generation. In this paper, the image with high
resolution is obtained by adjusting the parameters a and b.

(a) (b) (c) (d)

Figure 4: IMFA sample: (a) normal state; (b) inner ring fault; (c) outer ring fault; (d) rolling body fault.
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After trying, we take a� 2 and b� 30°, and the SPCI samples
generated are shown in Figure 7. It can be found that the
SPCI samples of different data are different.

3.2.4. Improved GTM Method. In addition to the above
three vibration images, the GTM is introduced in this paper.
Before obtaining a GTM, it is necessary to convert the vi-
bration signal into a grayscale image. ,e grayscale image is
a data matrix, in which the subscript of each element

corresponds to its position in the image, i.e., row and column
coordinates, and the element value represents the luminance
value of the corresponding position. ,e generation process
of grayscale image is actually a process of data mapping. ,e
maximum value “max” in the feature matrix is mapped to
the gray level 255. ,e minimum value “min” is mapped to
the gray level 0, as shown in Figure 8 [30]. ,e relationship
between the feature matrix and grayscale value in the image
is shown as follows:

Gi,j �
di,j −min

max −min
∗ 255. (13)

In the above equation, di,j is the vibration signal data, in
which i, j is the size of feature matrix, and Gi,j is the gray
value corresponding to di,j.

,e data arrangement in traditional grayscale image is
“sequential arrangement of vibration data,” but this ar-
rangement uses a large number of data points every time. If
the image sample resolution is sacrificed and a small number
of sample points are used to convert the grayscale image each
time, it cannot highlight the characteristics of the original
signal. ,erefore, this paper uses vibration data to convert

(a) (b)

(c) (d)

Figure 5: EP sample: (a) normal state; (b) inner ring fault; (c) outer ring fault; (d) rolling body fault.

Initial line
α (i)

β (i)

Υ (i)

Υ (i)

k

o

Figure 6: Schematic diagram of SPCI.

6 Shock and Vibration



the grayscale image according to the horizontal-vertical
cross arrangement; i.e., the i-th vibration signal segment
with 400 points is longitudinally copied 400 rows, and the
matrix A with 400∗ 400 is obtained.,ematrix B is obtained
by transposing the matrix A into another matrix. ,e matrix
C is obtained by averaging the A and B, and the new
grayscale image is obtained by inputting the elements of C
into equation (13).,e grayscale image processed in this way
has two advantages:

(1) Each grayscale image with 400∗ 400 needs only 400
signal points, and the data of samples are updated
frequently. However, if the traditional grayscale
image is used, 160000 signal points are needed to
form a grayscale image with the same size.

(2) ,e horizontal-vertical cross arrangement can form
a grid structure in the grayscale image, which can
enhance the image texture feature.

After the above conversion, the grayscale image is
extracted by the local binary pattern (LBP) [31], and the
algorithm is shown as

LBP xc, yc( ) � ∑p−1
p�0

2ps ip − ic( ), (14)

where (xc, yc) represents a 3∗ 3 neighborhood center ele-
ment, its pixel value is ic, ip represents other pixel values in
the neighborhood, p represents the number of pixels in the

neighborhood center, and S(x) �
1, x≥ 0,
0, x< 0{ }.

LBP is used to show the relationship between the pixel
value of a certain point in the grayscale image and its
surrounding pixel value. ,e image processed by LBP shows
the texture information. Figure 9 is an example from
grayscale image to GTM.

(a) (b) (c)

(d)

Figure 7: SPCI sample: (a) normal state; (b) inner ring fault; (c) outer ring fault; (d) rolling body fault.

0

Greyscale mapVibration feature matrix

min

max 255

a b c

…
…

a

b

c
… … … …

Vibration signal data

Figure 8: Mapping relationship of grayscale image.
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,e four types of image generation method used in this
paper focus on showing the different features between vibra-
tion data. In this paper, four kinds of image sample will be
obtained, in which each kind of sample contains four kinds of
bearing state, and each kind has 1200 samples. ,e samples is
divided into the training set, validation set, and test set
according to 6 : 2 : 2, in which the test set does not participate in
the training process and only evaluates the final model.

4. Research on the Optimal CNN Model

,e task of deep learning is divided into two stages: training
and test, in which the training is the process of optimizing
the model, such as improving the classification accuracy and
strengthening the generalization ability. After many ex-
periments, it is found that the model performance is highly

sensitive to the initial learning rate, training optimizer, and
regularization parameters, so this paper mainly focuses on
these items. As the research methods for four types of image
sample are similar, the following only shows the research
process of EP, and the other gives their results in the end.

4.1. Determination of Pretraining Model Parameters

4.1.1. Selection of Initial Learning Rate. Learning rate is an
important parameter of CNN training. For the training with
fixed learning rate, if the learning rate value is small, the high
training accuracy can be obtained, but the convergence
speed will be affected. If the learning rate value is big, there
are the opposite results. To avoid a fixed learning rate, this
paper proposes a degenerative learning rate, i.e., to find an
equilibrium between training speed and accuracy, and the
learning rate decreases with the increase in the number of
training steps. ,e formula is shown as follows:

DLR � lr∗ dr(gs/ds), (15)
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Figure 10: Comparison of training processes with different initial learning rates: (a) training accuracy; (b) training loss.

Table 2: Comparison of test results with different initial learning
rates.

Learning rate 0.001 0.0001 0.00001

Test accuracy 98.75% 98.33% 95.42%

(a) (b) (c) (d)

Figure 9: GTM sample: (a) normal state; (b) inner ring fault; (c) outer ring fault; (d) rolling body fault.
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where dr is the decay index, lr is the initial learning rate, gs is
the current number of iterative rounds, ds is the measure of
decay in each iteration, which can be called decay speed, and
DLR is the learning rate after decay.

In order to obtain the best training effect, this paper takes
the learning rate as 0.001, 0.0001, and 0.00001, respectively.,e
accuracy and loss curves in the training process are shown in
Figure 10.,emodels trained under the above three parameter
settings are tested, and the test set includes 60 bearing samples
in each of the 4 states. ,e test results are shown in Table 2.

In Figure 10(a), when the initial learning rate is 0.0001,
the model can quickly converge and maintain a stable state,
while the initial learning rate is 0.00001, it cannot smoothly
converge and the training accuracy is low, and the early
convergence rate at 0.001 is slower than that at 0.0001. In
Figure 10(b), the loss value change at 0.00001 is unstable,
while the losses at the other two cases remain stable and low,
and 0.0001 is the best choice. In Table 2, when the learning
rate is 0.001, 0.0001, and 0.00001, the test results are 98.75%,
98.33%, and 95.42%, respectively. After comparison, 0.0001
is selected as the initial learning rate. When the learning rate
is 0.0001, the confusion matrix of the test results is shown in
Table 3.

4.1.2. Optimizer Determination. In deep learning, there are
many optimization methods to find the optimal solution of
the model. In this paper, three kinds of optimization al-
gorithms are used to select the most suitable optimizer.

(1). Gradient descent algorithm. It is often used to approx-
imate the minimum deviation model, where the gradient
descent direction is to use the negative gradient direction as
the search direction, and the minimum value is solved along
the gradient descent direction. ,e most frequently used
gradient descent algorithm is stochastic gradient descent
(SGD) [32], and SGD formula is shown as follows:

gt � ΔJis Wt, X
is( ), Y is( )( ), (16)

Wt+1 �Wt − ηtgt, (17)

where ΔJis(Wt, X
(is), Y(is)) is the cost function; Wt is the

model parameter at t time;X(is), Y(is) are the samples of each
input and output, respectively; gt is the correlation gradient
of the cost function at t time; is represents a randomly se-
lected gradient direction; and ηt is the learning rate at t time.

(2). Momentum optimization algorithm. Because the SGD
optimizer frequently updates the variables, it will cause
serious shock to the loss function, easy to fall into the local

extremum, and easy to be trapped in the saddle point.
,erefore, based on the gradient descent method, the mo-
mentum optimization is proposed. ,e commonly used
momentum optimizer is momentum [33], and its formulas
are as follows:

vt � αvt−1 + ηtΔJ Wt, X
is( ), Y is( )( ), (18)

Wt+1 �Wt − vt, (19)

where vt represents the acceleration accumulated at t time
and α indicates the magnitude of the power; generally,
α � 0.9, which means the maximum speed is 10 times that of
SGD.

Momentum adds the inertia in the gradient descent
process, which makes the speed with the same gradient
direction faster and the renewal speed of the dimension with
the change in gradient direction slower so that it can speed
up the convergence and reduce the oscillation.

(3). Adaptive learning rate optimization algorithm. ,e loss
in deep learning is usually highly sensitive to some directions
of the parameter space. ,e momentum algorithm can al-
leviate these problems to some extent, but at the cost of
introducing another hyperparameter. And the traditional
optimization algorithm needs to set the learning rate to a
constant or adjust the learning rate according to the number
of training, which greatly ignores the possibility of other
changes in the learning rate. Adaptive moment (Adam)
estimation is an adaptive optimization algorithm of learning
rate [34], and its formulas are as follows:

mt � μ∗mt−1 +(1 − μ)∗gt,

nt � v∗ nt−1 +(1 − v)∗g2t ,

 (20)

m̂t �
mt

1 − μt
,

n̂t �
nt

1 − vt
,


(21)

Δθt � −
m̂t��̂
nt
√

+ ε
∗ η, (22)

where mt, nt are the first-order and second-order moment
estimation of the gradient, respectively; m̂t, n̂t are the
corrections to mt, nt; and Δθt is the learning rate subject to
dynamic constraints.

In this paper, under the condition that the initial
learning rate is 0.0001 and the other parameters are

Table 3: Confusion matrix of test results with learning rate� 0.0001.

Bearing states Normal Inner ring fault Outer ring fault Rolling body fault

Normal 60 0 0 0
Inner ring fault 2 58 0 0
Outer ring fault 0 0 59 1
Rolling body fault 0 0 1 59
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unchanged, the model optimizer is set as SGD, momentum,
and Adam, respectively. ,e accuracy and loss comparison
curves in the training process are shown in Figure 11. ,e
model test results after training are shown in Table 4.

Compared with the three curves in Figure 11(a), when
the Adam is used, the training accuracy slightly fluctuates
below 100% with the increase in the number of iterative
steps. ,e curve of training accuracy is stable after 100 steps
with momentum. However, SGD curve constantly fluctuates
within 1000 steps. ,ere is no significant difference in three
loss curves in Figure 11(b). In Table 4, when the optimizer is
SGD, Adam, and momentum, the test results of the model
are 98.33%, 98.33%, and 99.17%, respectively. After com-
parison, the momentum optimizer should be selected for
this kind of samples. ,e confusion matrix of the test results
with momentum is shown in Table 5.

4.1.3. Regularization Parameter Determination. ,ere are
two kinds of abnormal fitting in the training process:
overfitting and underfitting. ,e overfitting means that the
model established is too superior in the training samples,
resulting in poor performance in the validation and test data
sets, while underfitting generally means that the features
extracted from the training samples are relatively few,
resulting in the training model cannot match well, and the
performance is very poor.

In order to solve the overfitting, the called regularization
is introduced into the training process. ,e main purpose of
regularization is to control the complexity of the model and

reduce overfitting. ,e basic regularization method is to add
a penalty term to the original loss function to “punish” the
model with high complexity. In this paper, several com-
monly used regularization methods, such as L1, L2, regu-
larization, and dropout, are studied in the training process,
and it is found that L1 regularization performs the best, so L1
regularization is adopted. ,e sum of squares of weight
parameters is added on the training loss function, as follows:

C1 � C0 + λ∑n
W

|W|, (23)

where C1 is the final loss value, C0 is the real loss value,W is
the network learning parameter, and λ is the adjustable
regularization parameter. In this paper, the effects are
compared when λ is 0.1, 0.01, 0.001, and 0.0001 and has no
regularization, and the contrast curves of accuracy and the
final loss C1 in the validation process are given, as shown in
Figure 12. ,e model test results after training are shown in
Table 6.

In Figure 12(a), all the validation curves under five
parameters slightly fluctuate around 98% after 50 to 200
steps, in which λ� 0.1, 0.01, and 0.0001 are more efficient.
Figure 12(b) shows the loss value in the validation process, in
which the curve of λ� 0.1 has a downward trend, but its
validation loss values keep higher within 1000 steps. ,e
value of λ� 0.1 curve stabilizes at about 9 after 20 iterations.
In Table 6, the test results of the models under the five
regularization settings are 98.75%, 98.75%, 98.75%, 99.17%,
and 99.17%, respectively. After comparison, λ� 0.0001 is
selected. ,e confusion matrix of the test results with
λ� 0.0001 is shown in Table 7. ,e training, validation
accuracy, and loss curves are given, as shown in Figure 13.
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Figure 11: Comparison of different optimizer training effects: (a) training accuracy; (b) training loss.

Table 4: Comparison of different optimizer test results.

Optimizer SGD (%) Adam (%) Momentum (%)

Test accuracy 98.33 98.33 99.17
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4.2. Optimal CNN Model Parameters for Four Image Gener-
ation Methods. Under the condition that other parameters
remain unchanged, the other three types of image samples
were trained and validated for the above three sensitive
parameters, and the final parameters are shown in Table 8.

Under the best model parameters obtained above, four
types of sample were tested, respectively, and the number of
tested samples in each type is 240. ,is paper uses the ac-
curacy, precision, recall, and F1-score of the test results as
the evaluation indexes. ,e average values of the corre-
sponding indexes for 4 types of samples are given in Table 9.
Among them, the accuracy is the proportion of all pre-
dictions that are correct, and the precision is positive in all
predictions; the recall rate is the proportion that the correct
prediction is positive, while the F1-score considers both the

accuracy rate and the recall rate to achieve the highest and
balance at the same time.

From the test results, it can be found that the model
trained by SPCI samples has a good classification effect, and
the accuracy reaches 99.19%, which is the best among four
kinds of image samples. ,e classification effect by EP
samples is also good, with the test accuracy of 98.75%. GTM
and IMFA samples have the test results of 96.67% and
93.75%, respectively.

5. Parameter-Based TL

In the actual industrial field, the collected vibration signals
will be disturbed by background noise, and the signals
polluted by noise will cover up the effective information in
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Figure 12: Comparison of validation results under different regularization parameters: (a) validation accuracy; (b) validation loss.

Table 6: Comparison of test results under different regularization parameters.

Regularization λ� 0.1 (%) λ� 0.01 (%) λ� 0.001 (%) λ� 0.0001 (%) Without regulation (%)

Test accuracy 98.75 98.75 98.75 99.17 99.17

Table 7: Confusion matrix of test results with λ� 0.0001.

Bearing states Normal Inner ring fault Outer ring fault Rolling body fault

Normal 60 0 0 0
Inner ring fault 2 58 0 0
Outer ring fault 0 0 60 0
Rolling body fault 0 0 0 60

Table 5: Confusion matrix of test results with momentum.

Bearing states Normal Inner ring fault Outer ring fault Rolling body fault

Normal 60 0 0 0
Inner ring fault 2 58 0 0
Outer ring fault 0 0 60 0
Rolling body fault 0 0 0 60
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the original signals, so it is a significant work to identify the
fault categories quickly and accurately for the noised signals.
,e samples used in the pretraining have a certain similarity
with the noised samples, which increases the probability of

successful parameter transfer. By transferring the model
parameters obtained from the pretraining, the slow training
process can be avoided and the model efficiency can be
improved. In this paper, by adding Gaussian white noise
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Figure 13: Performance curves of the model with λ� 0.0001: (a) accuracy; (b) loss.

Table 8: Best parameter determination of four models.

Sample categories Initial learning rate Optimizer L1 regularization parameters

EP 0.0001 Momentum 0.0001
IMFA 0.0001 SGD 0.01
SPCI 0.0001 Momentum 0.0001
GTM 0.0001 Momentum 0.1

Table 9: Evaluation data of test results.

Sample categories Accuracy (%) Average precision (%) Average recall rate (%) Average F1-score (%)

EP 98.75 98.75 98.75 98.50
IMFA 93.75 94.25 93.75 94.00
SPCI 99.19 99.25 99.25 99.00
GTM 96.67 96.75 96.75 96.50

Train modelPretrain model

Original samples Noised sample

Pretrain

Transfer of 
parameters

Fine-tuning

New model

i Fast training speed
ii Good classification performance 

Figure 14: Parameter transfer process.
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(GWN) to the bearing data of Case Western Reserve Uni-
versity to simulate the actual field signal, the noised signal is
converted into image. ,e designated layers of the training
model using noised samples are frozen, and the pretraining

parameters by the pure samples are shared.,e TL flowchart
is shown in Figure 14.

In order to simulate the influence of different degrees of
noise on the signal, the GWN with slight, moderate, and
severe SNR is added, respectively. ,rough a test, it is found
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Figure 15: Time-domain comparison of noised signals with different SNRs: (a) 22 dB; (b) 16 dB; (c) 10 dB.
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Figure 16: Noised image samples with a SNR of 10 dB: (a) EP; (b) IMFA; (c) SPCI; (d) GTM.

Table 10: Types of frozen layer combination.

Type A B C D E F G
Frozen layer None C1 C2 C3 F1 C1–C2 C1–C3

Type H I G K L M N
Frozen layer C1-C2-C3 C1-F1 C1-C2-C3-F1 C2-C3 C2F1 C2-C3-F1 C3-F1
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Figure 18: Performance curves of the model with type F: (a) accuracy; (b) loss.

Table 11: Summary of test results.

SNR (db) Parameters EP IMFA SPCI GTM Average

22
Freezing type H I I H —
Test accuracy 99.58% 97.75% 96.67% 91.67 96.42%
Time cost (s) 161.52 179.44 194.86 165.77 175.40

16

Freezing type B B G F —
Test accuracy 97.92% 90.42% 83.33% 76.67% 87.09%
Time cost (s) 170.68 171.54 194.14 181.55 179.48

Relative reduction rate 1.67% 7.50% 13.80% 16.36% 9.68%

10

Freezing type F F B G —
Test accuracy 96.67% 78.33% 86.67% 59.58% 80.31 %
Time cost (s) 170.46 165.36 194.19 175.27 176.32

Relative reduction rate 1.28% 13.37% -4.01% 22.29% 7.78%
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that when the SNR is 22 dB, the noised signal can drown the
pure signal slightly, so the GWNof 22 dB, 16 dB, and 10 dB is
added. ,e time-domain comparison between the pure and
noised signals is shown in Figure 15, in which the blue
waveform is the pure signal and the red waveform is the
noised signal. ,e conversions of four types of image were
performed for the noised signals of 10 dB, as shown in
Figure 16.

Firstly, the experiment for 10 db was carried out on the
noised samples obtained by the EP method. ,e layers
capable of being frozen are the convolution layer 1 (C1),
convolution layer 2 (C2), convolution layer 2 (C3), and fully
connected layer 1 (F1). ,e trainable parameters in these
four layers are 156, 1516, 48120, and 10164, respectively. In
order to study which layer parameters play an important role
in the model training process, 13 model freezing schemes are
carried out in this paper, and the nonfrozen layer (type A) is
used as the contrast group, as shown in Table 10. Figure 17
summarizes the final test accuracy and the time required for
each training process.

Among the above A∼N test results shown in Figure 17,
the type C (freeze C2) has the highest test accuracy, reaching
99.17%, and the time-consuming is 351.61 s. ,e model with
the least time consumption is type H (freeze C1-C2-C3),
whose test accuracy is 92.92% and takes 167.25 s. In the
industrial field, the ideal TL scheme should have a certain
accuracy and be able to complete the training process in a
short time, so this paper takes the top 7 with high test ac-
curacy among the above 14 types and then selects the type
that takes the shortest time, i.e., the ideal transfer type of this
paper. Type F (C1-C2) can achieve the desired results, its test
accuracy is 96.67%, and it takes 170.46 s; its training, vali-
dation, accuracy, and loss curves are shown in Figure 18.

,e noised samples with a SNR of 16 dB and 22 db were
tested in the same way, and the training and test results were
sorted out for the best scheme. ,e results for the selected
freezing type in each case are shown in Table 11. Relative
reduction rate in Table 11 represents the reduction rate of
the current test value relative to the last test value.

With the noise intensity increase in the original signal,
more noise information is introduced into the converted
image samples, and the difference between the noised
samples and the original pure samples is greater. Because
of the influence of noise on the characteristics of the
original signal, it weakens the feature differences between
different bearing samples, which makes it difficult for
CNN to obtain the distinguishable features between dif-
ferent samples.

In the experiment, under the slight noise of 22 db, the
four types of image samples have accurate classification
results, and their average accuracy is 96.42%. When the
noise intensity is increased to 16 dB, the test effect of EP
samples is not significantly reduced, and the accuracy is still
maintained at 97.92%, while IMFA, SPCI, and GTM are
significantly reduced, whose accuracy is reduced by 7.5%,
13.8%, and 16.36%, respectively. Under the strong noise of
10 dB, the relative increase in SPCI samples is 4.01%
compared to 16 dB case, and the decrease rates of EP,
IMFA, and GTM are 1.28%, 13.37%, and 22.29%,

respectively, compared to 16 dB case. It can be seen that
IMFA and GTM are more sensitive to noise intensity.
However, EP and SPCI can maintain the test accuracy of
96.67% and 86.67% under the strong noise, indicating that
they have the good tolerance ability to noise.

It is found that, under the strong noise of 10 db, the
training time of four kinds of sample is 170.46 s, 165.36 s,
194.19 s, and 175.27 s, respectively, and EP has the highest
test accuracy of 96.67%. Others are 78.33%, 86.67%, and
59.58%. From the results, it can be concluded that the long
feature extraction time can be avoided and the model
training speed can be accelerated by pretraining the model
parameters, but if only the parameter updating of the last
fully connected layer is retained, the model learning ability
will be weakened. ,erefore, different schemes should be
tried in the process of parameter transfer to obtain the best
transfer learning efficiency, i.e., to improve the speed of
network training on the premise of guaranteeing accuracy.

6. Conclusions

(1) In this paper, four vibration image generation
methods are discussed, and in order to distinguish
the features among different image samples and
optimize the resolution, the adaptive IMFA and
gridding GTM are proposed, which provide new
approaches for vibration image sample preparation.

(2) In order to give full play to the learning efficiency of
CNNmodel, the best model parameters are obtained
by adjusting sensitive parameters including learning
rate, optimizer, and regularization, and the trained
model has accurate classification result when the
samples obtained by EP and SPCI are used.

(3) Aiming at the samples with different GWN, the effect
of 13 model freezing schemes on TL is studied.
Under the strong noise, the model still has good
classification effect. ,rough the specific TL
schemes, the training time-consuming of the model
is reduced; meanwhile, the test accuracy can be kept
at a high level.
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