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This paper investigates the active damping of the vibration of a rotating beam by using a pair of piezoelectric

sensor and actuator layers. It uses Hamilton’s principle to derive the governing differential equations and the

boundary conditions for the coupled axial-bending vibration of a piezoelectric rotating beam. The derivative control

law is used to apply the active damping of a rotating beam. An analytical method to determine the transient response

of a piezoelectric rotating beam is proposed. The relation among the energy dissipation, the frequency, and the decay

rate is revealed. The of the gain factor, the hub radius, the setting angle, and the rotating speed on the oscillating

frequency and the decay rate are investigated.

Nomenclature

Ai = cross-sectional area of theQ1 beam, Ai � wb

R zi;upper
zi;bottom dz

a = aa � ah � as

ai = dimensionless rotary inertia per unit length,
�iIi=��hAhL

2�
Bi = wb

R zi;upper
zi;bottom z dz

b = ba � bh � bs

bi = dimensionless bending rigidity, EiIi=�EhIh�
c = elastic stiffness constant
D = electric displacement
dh = dimensionless piezoelectric parameter,

f�"
33Aaz

2
s �hse31;s=��"

33Lha��2=��hAhL
2�gk2d

dq = dimensionless piezoelectric parameter,
��e31;ae31;sBazshs=��"

33L
2ha

��������������������
�hAhEhIh

p ��kd
E = Young’s modulus of the beam
Ep = electric field intensity
EA = E1A1 � E3A3

EB = E1B1 � E3B3

EI = E1I1 � E2I2 � E3I3
e = piezoelectric constant
H = f�"

33�hse31;s=��"
33Lha��2gk2d

Ii = area moment inertia of the beam, wb

R zi;upper
zi;bottom z

2 dz
j = imaginary unit
L = length of the blade
m = ms �mh �ma

mi = dimensionless mass per unit length, �iAi=��hAh�
N = centrifugal force
n = dimensionless centrifugal force, �2

R
1
� m�r� �� d�

Q = ��e31;ae31;shs=��"
33L

2ha��kd
R = radius of the root
r = dimensionless radius of the root, R=L
t = time variable
u, v, w = displacements in the x, y, and z directions,

respectively
W = dimensionless lateral displacements in the z

direction, w=L
wb = width of the beam
x, y, z = principal frame coordinates of the blade
zc = the neutral axis, zc �

P
i�a;h;sEihi��

P
i
j�a hj� �

1
2
hi�=

P
i�a;h;sEihi

� = dimensionless rotational speed, �L2
���������������������������
�hAh=�EhIh�

p
�i, �i = coefficients of the governing equation

" = strain
� = decay rate
	 = setting angle
� = dimensionless distance to the root of the beam, x=L
� = permittivity
� = mass density per unit volume of the beam

 = stress
� = dimensionless time, t

��������������������������������
EhIh=��hAhL

4�
p

� = rotational speed
! = dimensionless frequency,$

��������������������������������
�hAhL

4=�EhIh�
p

$ = frequency

Subscripts

a = actuator
h = host beam
s = sensor
1, 2, 3 = in the x, y, and z directions, respectively

Superscripts

* = independent of *

I. Introduction

R OTATING beams, which have importance in many practical
applications such as turbine blades, helicopter rotor blades,

airplane propellers, and robot manipulators, have been investigated
for a long time. An interesting review of the subject can be found in
the papers by Leissa [1], Ramamurti and Balasubramanian [2], Rao
[3], and Lin [4]. Much attention has been focused on the undamped
vibration problems. Lin et al. [5] and Lin and Lee [6] studied the
passive damping of a rotating beam. So far, little research has been
done on the active-damping problem of a piezoelectric rotating beam
because of its complexity. No analytical solution for the vibration of
the dynamic system has been presented.

Turcotte et al. [7] studied the vibration of a mistuned bladed-disk
assembly using nonrotational structurally damped beams. The
structural damping was introduced through a complex bending
rigidity. Patel and Ganapathi [8] studied the free torsional vibration
of nonrotating damped sandwich beams. Friswell and Lees [9]
studied the free vibration of simply supported nonrotating damped
beams. Lin et al. [5,6] investigated the vibration and instability of a
rotating structurally and viscously damped beam with an elastically
restrained root and root damping. The complex frequency relations
among different systems were revealed. The instability of
divergence, oscillating, and nonoscillating motions were predicted
exactly, via the relations. The preceding literature investigated the
passive damped vibration problems. Piezoelectric materials have
been applied to the active control of structural vibrations and noises.
Because of the complexity of analytical methods, the approximated
finite element method has been investigated by many researchers

Received 19 April 2006; accepted for publication 4 October 2006.
Copyright ©2006 by theAmerican Institute ofAeronautics andAstronautics,
Inc. All rights reserved. Copies of this paper may be made for personal or
internal use, on condition that the copier pay the $10.00 per-copy fee to the
Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA
01923; include the code $10.00 in correspondence with the CCC.

∗Professor, Mechanical Engineering Department.
†Graduate Student, Mechanical Engineering Department.

AIAA JOURNAL

1

http://dx.doi.org/10.2514/1.24692


[10,11]. So far, little research has been done on the active-damping
problem of a piezoelectric rQ2 otating beam because of its complexity.

In this paper, the governing differential equations and the
boundary conditions for the coupled axial-bending vibration of a
piezoelectric rotating beam are derived by Hamilton’s principle. An
analytical method to determine the transient response of a
piezoelectric rotating beam is derived. A system composed of the
complex differential equations is written as a coupled real system
expressed in terms of real and imaginary variables. A frequency
equation is derived in terms of the eight normalized fundamental
solutions of the two coupled characteristic governing differential
equations. The relation among the energy dissipation, the frequency,
and the decay rate is studied. The influences of the gain factor, the
setting angle, and the rotating speed on the natural frequencies and
the decay rate are investigated.

II. Governing Equations and Boundary
and Initial Conditions

Consider the transient response of a rotating smart beammounted
with 	 on a hub with R, rotating with constant angular velocity �.
The upper and bottom surfaces of the beam are bonded piezoelectric
sensor and actuator layers, as shown in Fig. 1. A set of differential
equations of coupled axial-bending motion for the rotating beam are
derived based on the following assumptions:

1) If the beam is assumed to be narrow in both the y and z
directions and not loaded in these directions, then 
2 � 
3 � 0.

2) The shear deformation is negligible.
3) The rotary inertia is considered.
4) The transverse displacement is the same for all three layers.
5) The linear theory of piezoelectricity is applicable.
6) The electric field will be applied to the piezoelectric actuator on

the z direction (perpendicular to the planes of piezoelectric film).
Therefore, Ep1 � Ep2 � 0.

The displacement fields of the beam are

u� u0�x; t� � z
@w�x; t�

@x
; v� 0; w�w�x; t� (1)

Based on the effect of centrifugal force, the nonlinear term of strain of
the host beam is considered

"1 �
@u0

@x
� z

@2w

@x2
� 1

2

�
@w

@x

�
2

; "2 � 0; "3 � 0 (2)

The kinetic energy T of the beam is

T � 1

2

Z
L

0

Z
A

V � V� dA dx (3)

where the velocity vector of a point (x, y, z) in the beam is

V �
�
@u

@t
��sin 	�z�w� � y�cos 	

�
i� ��x� R

� u��cos 	�j�
�
@w

@t
� �x� R� u��sin 	

�
k (4)

The extended potential energy including the electric contribution is

U� 1

2

Z
�


1"1 d� � 1

2

Z
�

Ep3D3 d� (5)

The constitutive equation of the piezoelectric material is


1 � cE11"1 � e31Ep3
; D3 � e31"1 � �"

33Ep3 (6)

The piezoelectric layer is used to sense the vibration of the rotating
beam. The charge accumulated on the layer due to the direct
piezoelectric effect is evaluated by

q� wb

Z
e31"1 dx (7)

Considering the sensor to be a parallel capacitor, the voltage of the
sensor is

Vs �
hs

�E
33L

Z
e31"1 dx (8)

In closed-loop control, the control voltage on the piezoelectric
actuator is designed by the following derivative control law [12]

Va ��kd
@Vs

@t
(9)

where kd is a gain factor. Application of Hamilton’s principle yields
the following governing differential equations:

� �A
@2u0

@t2
� �B

@

@x

�
@2w

@t2

�
� 2�A�sin 	

@w

@t
� �B�2

@w

@x

� �A�2�x� u0 � R� � @N

@x
� EA

@2u0

@x2
� EB

@3w

@x3

� 2QA1

@2u0

@x@t
�Q�B1 � A1z3�

@3w

@t@x2
�HA1

@2u0

@t2

�HA1z3
@3w

@t2@x
� 0 (10)

Fig. 1 Geometry and coordinate system of a rotating beam.
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� �B
@2

@t2

�
@u0

@x

�
� �I

@2

@t2

�
@2w

@x2

�
� �B�2

@u0

@x
� �I�2

@2w

@x2

� 2�A�sin 	
@u0

@t
� 4�B�sin 	

@2w

@t@x
� �A

@2w

@t2

� �B�2sin2	� �Aw�2sin2	� @

@x

�
N
@w

@x

�
� EB

@3u0

@x3

� EI
@4w

@x4
�Q�B1 � A1z3�

@3u0

@x2@t
� 2QB1z3

@4w

@t@x3

�HA1z3
@3u0

@x@t2
�HA1z

2
3

@4w

@t2@x2
� 0 (11)

It should be noted that there exists a term in Eq. (11), �B�2sin2	,
which is independent of time. It represents a small transverse static
centrifugal force due to the coupled effect of the rotational speed and
the small difference between the geometric center and the neutral one
at which the bending stress is zero. Because it will not affect the
dynamic behavior, the static term is negligible in studying the
dynamic behavior of the beam.

The associated boundary conditions at x� 0 are

u0 � 0 (12)

@w

@x
� 0 (13)

w� 0 (14)

and at x� L,

N � EA
@u0

@x
� EB

@2w

@x2
�QA1

@u0

@t
�QA1z3

@2w

@t@x
� 0 (15)

EB
@u0

@x
� EI

@2w

@x2
�QB1

@u0

@t
�QB1z3

@2w

@t@x
� 0 (16)

�B
@2u0

@t2
� �I

@2

@t2

�
@w

@x

�
� �I�2

@w

@x
� �B�2�x� u0 � R�

� 2�B�sin 	
@w

@t
� N

@w

@x
� EB

@2u0

@x2
� EI

@3w

@x3

�Q�B1 � A1z3�
@2u0

@x@t
� 2QB1z3

@3w

@t@x2
�HA1z3

@2u0

@t2

�HA1z
2
3

@3w

@t2@x
� 0 (17)

Assume that the beam is inextensional and the Coriolis force effect
is neglected. Moreover, because the sensor and actuator layers are
considered to be thin, the axial force in Eq. (10) is dominated by the
centrifugal force �A�2�x� R�. As a result, the centrifugal force can
be expressed as

N�x� ��2

Z
L

x

��x�A�x��R� x� dx (18)

The governing equation in terms of the transverse displacementw
becomes

�I
@2

@t2

�
@2w

@x2

�
� �I�2

@2w

@x2
� �A

@2w

@t2
� �Aw�2sin2	

� @

@x

�
N
@w

@x

�
� EI

@4w

@x4
� 2QB1z3

@4w

@t@x3
�HA1z

2
3

@4w

@t2@x2
� 0

(19)

The boundary conditions at x� 0 are

@w

@x
� 0 (20)

w� 0 (21)

and at x� L,

� EI
@2w

@x2
�QB1z3

@2w

@t@x
� 0 (22)

� �I
@2

@t2

�
@w

@x

�
� �I�2

@w

@x
� N

@w

@x
� EI

@3w

@x3
� 2QB1z3

@3w

@t@x2

�HA1z
2
3

@3w

@t2@x
� 0 (23)

It should be noted thatwhen the sensor and the actuator are neglected,
the differential equations are the same as those given by Lin [13].

In terms of the dimensionless quantities listed in the
Nomenclature, the governing differential equation (19) and the
boundary conditions (20–23) of the system are nondimensionalized
as follows:

a
@4W

@�2@�2
� a�2

@2W

@�2
�m

@2W

@�2
�mW�2sin2	� @

@�

�
n
@W

@�

�

� e
@4W

@�4
� 2dq

@4W

@�3@�
� dh

@4W

@�2@�2
� 0 (24)

at x� 0,

@W

@�
� 0 (25)

W � 0 (26)

and at x� 1,

� e
@2W

@�2
� dq

@2W

@�@�
� 0 (27)

� a
@3W

@�@�2
� a�2

@W

@�
� n

@W

@�
� e

@3W

@�3
� 2dq

@3W

@�2@�
� dh

@3W

@�@�2

� 0 (28)

The dimensionless initial conditions of the motion at the tip are

W�1; 0� � w0 and
@W�1; 0�

@�
� _w0 (29)

III. Solution Method

A. Characteristic Governing Equations and Boundary Conditions

Assume that the solution to Eqs. (24–29) is

W��; �� � ~W���e
� (30a)

where ~W represents the complexmode function and 
 is the complex
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frequency. They can be expressed as

~W��� � �WR��� � j �WI���; 
���� j! (30b)

The imaginary term ! is the damped frequency. Letting

ReW�1; 0� � w0 and Re _W�1; 0� � _w0, one obtains

WR�1� �w0 and �WI�1� �
�1
!

��w0 � _w0� (31)

Substituting Eq. (30) into the governing equation (24) and the
boundary conditions (25–28) and taking the real and imaginary parts
apart, the coupled real differential equations can beQ4 obtained:

� e
d4 �WR

d�4
� 2dq

�
�
d3 �WR

d�3
� !

d3 �WI

d�3

�
� a

�
��2 � !2 � �2� d

2 �WR

d�2

� 2�!
d2 �WI

d�2

�
� n

d2 �WR

d�2
� dh

�
��2 � !2� d

2 �WR

d�2
� 2�!

d2 �WI

d�2

�

� dn

d�

d �WR

d�
�m���2 � !2 � �2sin2	� �WR � 2�! �WI � � 0

(32a)

� e
d4 �WI

d�4
� 2dq

�
�
d3 �WI

d�3
� !

d3 �WR

d�3

�
� a

�
��2 � !2 � �2� d

2 �WI

d�2

� 2�!
d2 �WR

d�2

�
� n

d2 �WI

d�2
� dh

�
��2 � !2� d

2 �WI

d�2
� 2�!

d2 �WR

d�2

�

� dn

d�

d �WI

d�
�m���2 � !2 � �2sin2	� �WI � 2�! �WR� � 0

(32b)

at �� 0,

�W R � 0 (33a)

�W I � 0 (33b)

d �WR

d�
� 0 (34a)

d �WI

d�
� 0 (34b)

at �� 1,

e
d2 �WR

d�2
� dq

�
�
d �WR

d�
� !

d �WI

d�

�
� 0 (35a)

e
d2 �WI

d�2
� dq

�
!
d �WR

d�
� �

d �WI

d�

�
� 0 (35b)

e
d3 �WR

d�3
� 2dq

�
�
d2 �WR

d�2
� !

d2 �WI

d�2

�
� a

�
��2 � !2 � �2� d

�WR

d�

� 2�!
d �WI

d�

�
� dh

�
��2 � !2� d

�WR

d�
� 2�!

d �WI

d�

�
� 0 (36a)

e
d3 �WR

d�3
� 2dq

�
�
d2 �WR

d�2
� !

d2 �WI

d�2

�
� a

�
��2 � !2 � �2� d

�WR

d�

� 2�!
d �WI

d�

�
� dh

�
��2 � !2� d

�WR

d�
� 2�!

d �WI

d�

�
� 0 (36b)

B. Frequency Equations

The fundamental solution of the characteristic differential
equations (32) is assumed to be

�WR���
�WI���

� �
�

X8
i�1

Ci

�WR;i���
�WI;i���

� �
(37)

where the eight linearly independent fundamental solutions
�WR;i��� �WI;i���

� �
T , i� 1; 2; . . . ; 8, of Eq. (32) are chosen such

that they satisfy the following normalization conditions at the origin
of the coordinated system:

�WR;1
�WR;2

�WR;3
�WR;4

�WR;5
�WR;6

�WR;7
�WR;8

�W 0
R;1

�W 0
R;2

�W 0
R;3

�W 0
R;4

�W 0
R;5

�W 0
R;6

�W 0
R;7

�W 0
R;8

�W 00
R;1

�W 00
R;2

�W 00
R;3

�W 00
R;4

�W 00
R;5

�W 00
R;6

�W 00
R;7

�W 00
R;8

�W 000
R;1

�W 000
R;2

�W 000
R;3

�W 000
R;4

�W 000
R;5

�W 000
R;6

�W 000
R;7

�W 000
R;8

�WI;1
�WI;2

�WI;3
�WI;4

�WI;5
�WI;6

�WI;7
�WI;8

�W 0
I;1

�W 0
I;2

�W 0
I;3

�W 0
I;4

�W 0
I;5

�W 0
I;6

�W 0
I;7

�W 0
I;8

�W 00
I;1

�W 00
I;2

�W 00
I;3

�W 00
I;4

�W 00
I;5

�W 00
I;6

�W 00
I;7

�W 00
I;8

�W 000
I;1

�W 000
I;2

�W 000
I;3

�W 000
I;4

�W 000
I;5

�W 000
I;6

�W 000
I;7

�W 000
I;8

2
66666666666666664

3
77777777777777775

��0

�

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
66666666666666664

3
77777777777777775

(38)

where primes indicate differentiation with respect to the
dimensionless spatial variable �.

Substituting Eq. (37) into the boundary conditions (33) and (34),
one obtains the coefficients C1 � C2 � C5 � C6 � 0. Further,
substituting the solution into Eq. (35) and the initial conditions (31),
the following relation is obtained:

�3 �4 �7 �8

��3 ��4 ��7 ��8

�WR;3�1� �WR;4�1� �WR;7�1� �WR;8�1�
�WI;3�1� �WI;4�1� �WI;7�1� �WI;8�1�

2
66664

3
77775

C3

C4

C7

C8

2
66664

3
77775

�

0

0

w0

�1
!
��w0 � _w0�

2
66664

3
77775 (39a)

where

�i � eW 00
R;i�1� � dq��W 0

R;i�1� � !W 0
I;i�1��

��i � eW 00
I;i�1� � dq��W 0

I;i�1� � !W 0
R;i�1��

(39b)
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Given the initial displacement w0 and velocity _w0, the oscillating
frequency and the decay rate can be easily determined via the coupled
frequency Eq. (36) by using the numerical method proposed by Lin
[13].

C. Exact Fundamental Solutions

In general, the closed-form fundamental solutions of two coupled
differential equations with variable coefficients cannot be
determined. However, if the coefficients of the equations, which
involve the material properties and/or geometric parameters, can be
expressed in matrix polynomial form, then a power series
representation of the fundamental solutions can be constructed by the
modifiedmethod of Frobinius [6]. Equation (32) can be expressed as

�A1

d4 �WR

d�4
� �A2

d3 �WR

d�3
� �A3

d2 �WR

d�2
� �A4

d �WR

d�
� �A5

�WR � �A6

d3 �WI

d�3

� �A7

d2 �WI

d�2
� �A8

�WI � 0 (40a)

~A1

d4 �WI

d�4
� ~A2

d3 �WI

d�3
� ~A3

d2 �WI

d�2
� ~A4

d �WI

d�
� ~A5

�WI � ~A6

d3 �WR

d�3

� ~A7

d2 �WR

d�2
� ~A8

�WR � 0; � 2 �0; 1� (40b)

where

�A1 � a0; ~A1 � �a0; �A2 � b0; ~A2 � �b0

�A3 � c0 � c1�� c2�
2; ~A3 � �c0 � �c1�� �c2�

2

�A4 � d0 � d1�; ~A4 � �d0 � �d1�; �A5 � e0; ~A5 � �e0

�A6 � f0; ~A6 � �f0; �A7 � g0; ~A7 � �g0; �A8 � h0

~A8 � �h0

(41a)

in which

a0 � �a0 ��e; b0 � �b0 ��2Dq�

c0 � �c0 � a��2 � !2 � �2� �Dh��2 � !2� � �2m�r� 1=2�

c1 � �c1 ��r�2m; c2 � �c2 �� 1

2
�2m

d0 � �d0 ��r�2m; d1 � �d1 ���2m

e0 � �e0 ��m��2 � !2 � �2sin2	�; f0 �� �f0 ��2Dq!

g0 �� �g0 � 2�!a� 2�!Dh; h0 �� �h0 ��2�!m
(41b)

One can assume that the eight fundamental solutions of Eq. (32) are
in the form of

�WR;j

�WI;j

� �
�

X1
k�0

�j;k�
k

�j;k�
k

� �
; j� 1; 2; . . . ; 8 (42)

and

for �WR;1: �1;0 � 1; �1;1 � �1;2 � �1;3 � 0

for �WR;2: �2;1 � 1; �2;0 � �12 � �2;3 � 0

for �WR;3: �3;2 � 1=2; �3;0 � �3;1 � �3;3 � 0

for �WR;4: �4;3 � 1=6; �1;1 � �1;2 � �1;3 � 0

for �WR;5: �5;0 � �5;1 � �5;2 � �5;3 � 0

for �WR;6: �6;0 � �6;1 � �6;2 � �6;3 � 0

for �WR;7: �7;0 � �7;1 � �7;2 � �7;3 � 0

for �WR;8: �8;0 � �8;1 � �8;2 � �8;3 � 0

for �WI;1: �1;0 � �1;1 � �1;2 � �1;3 � 0

for �WI;2: �2;0 � �2;1 � �2;2 � �2;3 � 0

for �WI;3: �3;0 � �3;1 � �3;2 � �3;3 � 0

for �WI;4: �4;0 � �4;1 � �4;2 � �4;3 � 0; for �WI;5: �5;0 � 1

�5;1 � �5;2 � �5;3 � 0; for �WI;6: �6;1 � 1

�6;0 � �6;2 � �6;3 � 0; for �WI;7: �7;2 � 1=2

�7;0 � �7;1 � �7;3 � 0; for �WI;8: �8;3 � 1=6

�8;0 � �8;1 � �8;2 � 0

(43)

These eight fundamental solutions satisfy the normalization
condition (38). Upon substituting Eq. (42) into Eq. (32) and
collecting the coefficients of like powers of �, the following
recurrence formulas can be obtained:

�j;4 �
�1
24a0

�h0�j;0 � 2g0�j;2 � 6f0�j;3 � e0�j;0 � d0�j;1

� 2c0�j;2 � 6b0�j;3�

�j;4 �
�1
24 �a0

� �h0�j;0 � 2 �g0�j;2 � 6 �f0�j;3 � �e0�j;0 � �d0�j;1

� 2�c0�j;2 � 6 �b0�j;3�

�j;m�4 �
�1

a0�m� 4��m� 3��m� 2��m� 1�
�
h0�j;m � g0�m

� 2��m� 1��j;m�2 � f0�m� 3��m� 2��m� 1��j;m�3

� e0�j;m �
Xm
k�0

dk�m � k� 1��j;m�k�1 �
Xm
k�0

ck�m � k� 2��m

� k� 1��j;m�k�2 � b0�m� 3��m� 2��m� 1��j;m�3

�

�j;m�4 �
�1

�a0�m� 4��m� 3��m� 2��m� 1�
�
�h0�j;m � �g0�m

� 2��m� 1��j;m�2 � �f0�m� 3��m� 2��m� 1��j;m�3

� �e0�j;m �
Xm
k�0

�dk�m � k� 1��j;m�k�1 �
Xm
k�0

�ck�m � k� 2��m

� k� 1��j;m�k�2 � �b0�m� 3��m� 2��m� 1��j;m�3

�

m� 1; 2; . . .

(44)

With these recurrence formulas (44), one can generate the eight exact
normalized fundamental solutions of the differential equation (32).
Consequently, upon substituting these fundamental solutions into
the frequency equation (36), the exact complex frequencies of the
beam are obtained.
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IV. Relation Among Energy Dissipation, Frequency
Shift, and Decay Rate

Consider the transient behavior of a beam and the definition of the
Q factor. With the active damping of piezoelectricity, the amplitude
of vibration decreases from the initial value. The total energy is a
function of time. Neglecting the electrostatic energy of two
piezoelectric thin layers, the strain energy of the beam is

Es��� �
1

2

X
i�a;h;s

bi

Z
1

0

�ReW 00��; ���2d� (45)

If the initial velocity is zero, the initial total energy is Et�0� � Es�0�.
Similarly, the total energy through a period T is Et�T� � Es�T�. The
total energy and the energy lost through a cycle,
Eloss � Et�0� � Et�T�, are derived as

Et�0� �
1

2

X
i�a;h;s

bi

Z
1

0

�W 00
R����2 d�

Eloss � �1 � e�4��=!� 1
2

X
i�a;h;s

bi

Z
1

0

�W 00
R����2 d�

(46)

Substituting Eq. (46) into the definition of theQ factor, one obtains

Q factor� 2�
Et

Eloss

� 2�

�1� e�4��=!� (47)

V. Numerical Results and Discussion

To demonstrate the efficiency and convergence of the proposed
method to solve the vibration problem, the transient response, the
frequency shift, and the decay rate of a rotating beam are determined.
Figure 2 demonstrates the transient response of the beam. The initial
displacement and velocity are given. The larger the gain factor, the
faster the decay of the oscillation of the beam. In Table 1, the
convergence pattern of the complex eigenvalues of the beam is
shown. It shows that the eigenvalues determined by the proposed
method converge very rapidly. The convergent frequency shift
without the piezoelectric damping is the same as that given by Lin
[13].

Figure 3 shows the influence of the gain factor and the rotational
speed on the frequency and the decay rate. It is found that when the
gain factor is increased or decreased from zero, the fundamental
frequency is decreased. A positive or negative gain factor results in a
corresponding positive or negative decay rate. It means that if the
decay rate is positive, the amplitude decays exponentially and the
system is stable; otherwise, it is unstable. Increasing the gain factor
from zero, the decay rate increases rapidly from zero to a critical
value and then decreases slowly. The influence of the gain factor on

0 5 10 15 20 25

-0.016

-0.008

0

0.008

0.016

w(1,τ

τ

)

?

: Kd=0.0001:Kd=0.05♦:Kd=0.1

Fig. 2 Oscillation of a rotating cantilever beam [w0 � 0:01, _w� 0,

a� 0:00001, e�m� 1, dh � 0:98k2d , dq � 1:892kd , r� 0:5, �� 1, and

�� 30deg].

Table 1 Convergence pattern of the first eigenvalue of a rotating

cantilever beam [w0 � 0:01, _w� 0, a� 0:00001, e�m� 1, dh � 0:98k2d ,
dq � 1:892kd , r� 0:5, �� 1, and �� 30deg]

No. of terms kd � 0 kd � 0:05 kd ��0:03
! ! � ! �

10 3.7562 3.6709 0.004021 3.7253 �0:000805
20 3.7534 3.6652 0.011003 3.7211 �0:002479
30 3.7534 3.6652 0.011003 3.7211 �0:002479
40 3.7534 3.6652 0.011003 3.7211 �0:002479
50 3.7534 3.6652 0.011003 3.7211 �0:002479
*a 3.7534 	 	 	 	

a[13] Q7

-1 0 1 2 3

0

1

2

3

4

5

6

=0 =1

=2 =3

kd

a)

-1 0 1 2 3

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

=0 =1

=2 =3

kd

b)

Fig. 3 Influence of the gain factor kd and the rotational speed � on the
frequency and decay rate of a rotating cantilever beam [w0 � 0:01,
_w� 0, a� 0:0000096, e� 1:722, m� 1:807, dh � 0:98k2d , dq � 1:892kd ,
r� 0:5, and �� 30deg].
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the frequency and the decay rate is more obvious, especially at a
larger rotational speed.

Figure 4 shows the influence of the gain factor kd and the radius of
hub rQ5 on the frequency and the decay rate. It is well known that
increasing the radius of hub r increases the stiffness and the natural
frequency of a rotating conventional beam. Figure 4 shows that
increasing the hub radius increases the frequency and the decay rate.
Moreover, increasing the gain factor from zero will increase the
decay rate. However, when the gain factor is larger than a critical
value, increasing the gain factor will decrease the decay rate. This
phenomenon has also been verified in Fig. 3b. Figure 5 shows the
influence of the setting angle and the rotational speed on the
frequency and the decay rate, with kd � 0:5. Increasing the setting
angle decreases the frequency and the decay rate, especially at a
larger rotational speed.

Figure 6 shows the influence of the gain factor kd on the Q factor
via Eq. (47). When kd is very small, the decay rate approaches zero
and theQ factor is very large. It means that energy dissipation is very
small. When kd increases over a critical value, the Q factor
approaches a fixed value. It is easily understood via Eq. (47) and
Fig. 3.Moreover, it is found that the influence of rotating speed on the
Q factor is slight. The Q factor depends predominantly on the gain
factor.

0 1 2 3 4 5

0

2

4

6

kd=0 kd=0.5
kd=1 kd=2
kd=3

r
a)

0 1 2 3 4 5

-0.4

0

0.4

0.8

1.2

kd=0 kd=0.5
kd=1 kd=2
kd=3

r
b)

Fig. 4 Influence of the gain factor kd and the radius of hub r on the
frequency and the decay rate of a rotating cantilever beam [w0 � 0:01,
_w� 0, a� 0:0000096, e� 1:722, m� 1:807, dh � 0:98k2d, dq � 1:892kd,
�� 1, and �� 30deg].

0 10 20 30 40 50 60 70 80 90
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2.4

2.8

3.2

3.6

4

=0 =1

=2 =3

a)

0 10 20 30 40 50 60 70 80 90

0.2

0.4

0.6

0.8

1

=0 =1
=2 =3

b)

Fig. 5 Influence of the setting angle and the rotational speed � on the

frequency and the decay rate of a rotating cantilever beam [w0 � 0:01,
_w� 0, a� 0:0000096, e� 1:722, m� 1:807, dh � 0:98k2d , dq � 1:892kd ,
kd � 0:5, and �� 0:5].

Fig. 6 Influence of the gain factor kd on the Q factor of a rotating

cantilever beam [w0 � 0:01, _w� 0, a� 0:0000096, e� 1:722,
m� 1:807, dh � 0:98k2d , dq � 1:892kd , r� 0:5, and �� 30deg].
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VI. Conclusions

In this paper, Hamilton’s principle is used to derive the governing
differential equations and the boundary conditions for the coupled
axial-bending vibration of a piezoelectric rotating beam. The
analytical solution of a piezoelectric rotating beam is derived. The
relation among the energy dissipation, the frequency, and the decay
rate is revealed. The influences of the gain factor, the setting angle,
and the rotating speed on the frequency and the decay rate are
investigated. The findings are as follows:

1) When the gain factor is increased or decreased from zero, the
frequency is decreased.When the gain factor increases from zero, the
decay rate increases rapidly from zero to a critical value and then
decreases slowly.

2) Given a gain factor, increasing the setting angle decreases the
frequency and the decay rate, especially at a larger rotational speed.

3) When the gain factor is large enough, the Q factor is almost
constant. The influence of rotating speed on theQ factor is slight. The
Q factor depends predominantly on the gain factor.
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Queries

Q1. Please check that all equations given in the nomenclature are displaying adequately or if, due to their length and height, they
should be moved to the appropriate text discussion (and perhaps made display form there, for increased legibility).

Q2. This sentence is duplicated in the previous paragraph.
Q3. Duplicate nomenclature definitions are prohibited and all were removed; please check that the amended sentences retain your

meaning. Also note that the definition of Omega is different here from that in the nomenclature.
Q4. The variable d was assumed to be a derivative/differential expression and made roman font, except when used with any

superscripts/subscripts; please confirm.
Q5. Is r here the label of the hub or does it refer to the r=radius in the nomenclature?
Q6. Is there an issue number (or month of publication) available for [5, 6, 10–12]?
Q7. Is there a need to have [13] as a footnote vs. using [13] instead of the asterisk?
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