Vibration of Continuous Systems

Singiresu S. Rao

Professor and Chairman
Department of Mechanical and Aerospace Engineering
University of Miami
Coral Gables, Florida

JOHN WILEY & SONS, INC.

Contents

Preface Symbo			2.2.3	Free Vibration Analysis of an Undamped System Using Modal Analysis 47
	troduction: Basic Concepts and rminology 1		2.2.4	Forced Vibration Analysis of an Undamped System Using Modal Analysis 52
1.1	Concept of Vibration 1		2.2.5	Forced Vibration Analysis of a System with Proportional Damping 53
1.2 1.3	Importance of Vibration 4 Origins and Developments in Mechanics and Vibration 5		2.2.6	Forced Vibration Analysis of a System with General Viscous Damping 54
1.4	History of Vibration of Continuous	2.3		Contributions 60
	Systems 8		erences	61
1.5	Discrete and Continuous Systems 11	Prob	olems 6	52
1.6	Vibration Problems 15	3 1	Derivation	of Equations: Equilibrium
1.7	Vibration Analysis 16		Approach	68
1.8	Excitations 17			
1.9	Harmonic Functions 18	3.1	Introdu	
	1.9.1 Representation of Harmonic	3.2		n's Second Law of Motion 68
	Motion 18	3.3		mbert's Principle 69
1.10	1.9.2 Definitions and Terminology 21 Periodic Functions and Fourier Series 24	3.4	Equation Vibrati	on of Motion of a Bar in Axial on 69
1.11	Nonperiodic Functions and Fourier Integrals 26	3.5	Equation Vibrati	on of Motion of a Beam in Transverse on 71
1.12	Literature on Vibration of Continuous Systems 29	3.6	Equation Vibrati	on of Motion of a Plate in Transverse on 73
Refere	•	" تمسر	3.6.1	State of Stress 75
Proble	,,		3.6.2	Dynamic Equilibrium Equations 75
	,		3.6.3	Strain-Displacement Relations 76
	bration of Discrete Systems: Brief		3.6.4	Moment-Displacement Relations 78
2.1	Vibration of a Single-Degree-of-Freedom		3.6.5	Equation of Motion in Terms of Displacement 78
	System 33		3 .6.6	Initial and Boundary Conditions 79
	2.1.1 Free Vibration 33	3.7	Additio	onal Contributions 80
	2.1.2 Forced Vibration under Harmonic	Refe	erences	80
	Force 36 2.1.3 Forced Vibration under General Force 41			31
2.2	Vibration of Multidegree-of-Freedom Systems 43		Derivatior Approach	of Equations: Variational 85
	2.2.1 Eigenvalue Problem 45	4.1	Introdu	action 85
	2.2.2 Orthogonality of Modal Vectors 46	4.2		us of a Single Variable 85

viii	Contents				
4.3	Calculu	s of Variations 86	5.4		al Formulation of the Eigenvalue
4.4	Variatio	n Operator 89		Proble	m 130
4.5	Function	nal with Higher-Order		5.4.1	One-Dimensional Systems 130
	Derivati			5.4.2	General Continuous Systems 132
4.6	Variable			5.4.3	Orthogonality of Eigenfunctions 133
4.7	Function Variable	nal with Several Independent es 95	5.5	Solution	on of Integral Equations 133
4.8	Extremi Constra	zation of a Functional with ints 96		5.5.1	Method of Undetermined Coefficients 134
4.9	Bounda	ry Conditions 100		5.5.2	Iterative Method 134
4.10		nal Methods in Solid		5.5.3	Rayleigh-Ritz Method 139
	Mechan	ics 104		5.5.4	Galerkin's Method 143
		Principle of Minimum Potential		5.5.5	Collocation Method 144
		Energy 104		5.5.6	Numerical Integration Method 146
		Principle of Minimum Complementary Energy 105	5.6	Recent	t Contributions 147
		Principle of Stationary Reissner	Refere	ences	148
		Energy 106	Proble	ms	149
	4.10.4	Hamilton's Principle 107			
4.11	Applica	tions of Hamilton's Principle 115			Procedure: Eigenvalue and Modal
		Equation of Motion for Torsional	Aı	nalysis <i>A</i>	Approach 151
		Vibration of a Shaft (Free Vibration) 115	6.1	Introdu	uction 151
	4.11.2	Transverse Vibration of a Thin	6.2	Genera	al Problem 151
	_	Beam 1/16	6.3		on of Homogeneous Equations:
4.12		Contributions 119		Separa	ation-of-Variables Technique 153
Refer		120 20	6.4	Sturm	Liouville Problem 154
Proble				6.4.1	Classification of Sturm-Liouville Problems 155
	pproach	of Equations: Integral Equation 123		6.4.2	Properties of Eigenvalues and Eigenfunctions 160
5.1	Introduc	etion 123	6.5	Genera	al Eigenvalue Problem 163
5.2		cation of Integral Equations 123 Classification Based on the Nonlinear		6.5.1	Self-Adjoint Eigenvalue Problem 163
		Appearance of $\phi(t)$ 123 \Rightarrow		6.5.2	Orthogonality of
		Classification Based on the Location of Unknown Function $\phi(t)$ 124			Eigenfunctions 165
	5.2.3	Classification Based on the Limits of		6.5.3	Expansion Theorem 166
		Integration 124	6.6	Solutio Equati	on of Nonhomogeneous ons 167
		Classification Based on the Proper Nature of an Integral 125	6.7	Forced System	Response of Viscously Damped ns 169
5.3		on of Integral Equations 125	6.8	-	t Contributions 171
		Direct Method 125	0.6 Refere		172
	5.3.2	Derivation from the Differential			
		Equation of Motion 127	Proble	ms	173

7 S	olution Procedure: Integral Transform	8.6	Forced Vibration 227
N	lethods 174	8.7	Recent Contributions 231
7.1	Introduction 174	Refere	nces 232
7.2	Fourier Transforms 175	Proble	ms 233
	7.2.1 Fourier Series 175		
	7.2.2 Fourier Transforms 176	9 Lo	ngitudinal Vibration of Bars 234
	7.2.3 Fourier Transform of Derivatives of	9.1	Introduction 234
	Functions 178	9.2	Equation of Motion Using Simple
	7.2.4 Finite Sine and Cosine Fourier Transforms 178		Theory 234 9.2.1 Using Newton's Second Law of
7.3	Free Vibration of a Finite String 181		Motion 234
7.4	Forced Vibration of a Finite String 183		9.2.2 Using Hamilton's Principle 235
7.5	Free Vibration of a Beam 185	9.3	Free Vibration Solution and Natural
7.6	Laplace Transforms 188		Frequencies 236
	7.6.1 Properties of Laplace Transforms 189		9.3.1 Solution Using Separation of Variables 237
	7.6.2 Partial Fraction Method 191		9.3.2 Orthogonality of
	7.6.3 Inverse Transformation 193		Eigenfunctions 246
7.7	Free Vibration of a String of Finite Length 194		9.3.3 Free Vibration Response due to Initial Excitation 249
7.8	Free Vibration of a Beam of Finite	9.4	Forced Vibration 254
7.9	Length 197 Forced Vibration of a Beam of Finite	9.5	Response of a Bar Subjected to Longitudinal Support Motion 257
1.5	Length 198	9.6	Rayleigh Theory 258
7.10	Recent Contributions 201		9.6.1 Equation of Motion 258
Refer Proble			9.6.2 Natural Frequencies and Mode Shapes 259
11001		9.7	Bishop's Theory 260
8 T	ransverse Vibration of Strings 205	, ,,f	9.7.1 Equation of Motion 260
8.1	Introduction 205	1	9.7.2 Natural Frequencies and Mode Shapes 262
8.2	Equation of Motion 205 8.2.1 Equilibrium Approach 205	`	9.7.3 Forced Vibration Using Modal Analysis 264
	8.2.2 Variational Approach 207	9.8	Recent Contributions 267
8.3	Initial and Boundary Conditions 209	Refere	nces 268
8.4	Free Vibration of an Infinite String 210	Proble	ms = 268
	8.4.1 Traveling-Wave Solution 210		
	8.4.2 Fourier Transform-Based Solution 213		rsional Vibration of Shafts 271
	8.4.3 Laplace Transform-Based	10.1	Introduction 271
	Solution 215	10.2	Elementary Theory: Equation of Motion 271
8.5	Free Vibration of a String of Finite		Motion 271 10.2.1 Equilibrium Approach 271
	Length 217		10.2.1 Equinorium Approach 271 10.2.2 Variational Approach 272
	8.5.1 Free Vibration of a String with Both Ends Fixed 218	10.3	Free Vibration of Uniform Shafts 276
	LIIGO I IACG 210	10.5	110 Holding of Children Blittle 2/0

ì

	10.3.1 Natural Frequencies of a Shaft with Both Ends Fixed 277	11.10	Transverse Vibration of Beams Subjected to Axial Force 352
	10.3.2 Natural Frequencies of a Shaft with		11.10.1 Derivation of Equations 352
	Both Ends Free 278 10.3.3 Natural Frequencies of a Shaft Fixed at		11.10.2 Free Vibration of a Uniform
	One End and Attached to a Torsional	11.11	Beam 355 Vibration of a Rotating Beam 357
	Spring at the Other 279	11.11	Natural Frequencies of Continuous Beams on
10.4	Free Vibration Response due to Initial	11.12	Many Supports 359
10.5	Conditions: Modal Analysis 289	11.13	Beam on an Elastic Foundation 364
10.5	Forced Vibration of a Uniform Shaft: Modal Analysis 292		11.13.1 Free Vibration 364
10.6	Torsional Vibration of Noncircular Shafts:		11.13.2 Forced Vibration 366
2010	Saint-Venant's Theory 295		11.13.3 Beam on an Elastic Foundation
10.7	Torsional Vibration of Noncircular Shafts,	11 14	Subjected to a Moving Load 367
	Including Axial Inertia 299	11.14	Rayleigh's Theory 369 Timoshenko's Theory 371
10.8	Torsional Vibration of Noncircular Shafts: Timoshenko-Gere Theory 300	11.15	Timoshenko's Theory 371 11.15.1 Equations of Motion 371
10.9	Torsional Rigidity of Noncircular		11.15.2 Equations for a Uniform Beam 376
10.5	Shafts 303		11.15.3 Natural Frequencies of
10.10	Prandtl's Membrane Analogy 308		Vibration 377
10.11	Recent Contributions 313	11.16	Coupled Bending-Torsional Vibration of
Refere	ences 314		Beams 380
Proble	ms 315		11.16.1 Equations of Motion 381
11 Tr	ransverse Vibration of Beams 317		11.16.2 Natural Frequencies of Vibration 383
11.1	Introduction 317	11.17	Transform Methods: Free Vibration of an Infinite Beam 385
11.2	Equation of Motion: Euler-Bernoulli	11.18	Recent Contributions 387
11.2	Theory 317	Refere	nces 389
11.3 11.4	Free Vibration Equations 322 Free Vibration Solution 325	Proble	ms 390
11.5	Frequencies and Mode Shapes of Uniform		
11.5	Beams 326		bration of Circular Rings and Curved
	11.5.1 Beam Simply Supported at Both		
	Ends 326	12.1	Introduction 393
	11.5.2 Beam Fixed at Both Ends 328	12.2	Equations of Motion of a Circular Ring 393
		9	12.2.1 Three-Dimensional Vibrations of a
	11.5.4 Beam with One End Fixed and the Other Simply Supported 331		Circular Thin Ring 393 12.2.2 Axial Force and Moments in Terms of
	11.5.5 Beam Fixed at One End and Free at		Displacements 395
	the Other 333		12.2.3 Summary of Equations and
11.6	Orthogonality of Normal Modes 339		Classification of Vibrations 397
11.7	Free Vibration Response due to Initial	12.3	In-Plane Flexural Vibrations of Rings 398
	Conditions 341		12.3.1 Classical Equations of Motion 398
11.8	Forced Vibration 344		12.3.2 Equations of Motion That Include
11.9	Response of Beams under Moving Loads 350		Effects of Rotary Inertia and Shear Deformation 399

457

471

	12.4	Flexural Vibrations at Right Angles to the	14 Tr	ransverse Vibration of Plates 457
		Plane of a Ring 402	14.1	Introduction 457
		12.4.1 Classical Equations of Motion 40212.4.2 Equations of Motion That Include	14.2	Equation of Motion: Classical Plate Theory 457
		Effects of Rotary Inertia and Shear		14.2.1 Equilibrium Approach 457
	10.5	Deformation 403		14.2.2 Variational Approach 458
	12.5	Torsional Vibrations 406	14.3	Boundary Conditions 465
	12.6	Extensional Vibrations 407	14.4	Free Vibration of Rectangular Plates
	12.7	Vibration of a Curved Beam with Variable Curvature 408		14.4.1 Solution for a Simply Supported Plate 473
		12.7.1 Thin Curved Beam 408		14.4.2 Solution for Plates with Other
		12.7.2 Curved Beam Analysis, Including the		Boundary Conditions 474
	10.0	Effect of Shear Deformation 414	14.5	Forced Vibration of Rectangular Plates
	12.8	Recent Contributions 416	14.6	Circular Plates 485
	Referen			14.6.1 Equation of Motion 485
	Probler	ns 419		14.6.2 Transformation of Relations
	10 121	oration of Membranes 420		14.6.3 Moment and Force Resultants
	13 VII	oration of Membranes 420		14.6.4 Boundary Conditions 489
	13.1	Introduction 420	14.7	Free Vibration of Circular Plates 490
	13.2	Equation of Motion 420		14.7.1 Solution for a Clamped Plate
		13.2.1 Equilibrium Approach 420		14.7.2 Solution for a Plate with a Free Edge 493
	10.0	13.2.2 Variational Approach 423	14.8	Forced Vibration of Circular Plates 4
	13.3	Wave Solution 425		14.8.1 Harmonic Forcing Function
	13.4	Free Vibration of Rectangular Membranes 426		14.8.2 General Forcing Function 49
		13.4.1 Membrane with Clamped Boundaries 428	14.9	Effects of Rotary Inertia and Shear Deformation 499
		13.4.2 Mode Shapes 430		14.9.1 Equilibrium Approach 499
	13.5	Forced Vibration of Rectangular	z ¹	14.9.2 Variational Approach 505
	13.3	Membranes 438		14.9.3 Free Vibration Solution 511
		13.5.1 Modal Analysis Approach 438 41		14.9.4 Plate Simply Supported on All F Edges 513
	13.6	Free Vibration of Circular Membranes 444		14.9.5 Circular Plates 515
	13.0			14.9.6 Natural Frequencies of a Clampe
		13.6.1 Equation of Motion 444		Circular Plate 520
		13.6.2 Membrane with a Clamped Boundary 446	14.10	Plate on an Elastic Foundation 521
		13.6.3 Mode Shapes 447	14.11	Transverse Vibration of Plates Subjected In-Plane Loads 523
	13.7	Forced Vibration of Circular Membranes 448		14.11.1 Equation of Motion 523 14.11.2 Free Vibration 528
	13.8	Membranes with Irregular Shapes 452		
	43.9	Partial Circular Membranes 453		14.11.3 Solution for a Simply Supported Plate 528
		Recent Contributions 453	14.12	
	Refere			Thickness 529
45 934	Proble	ms 455		14.12.1 Rectangular Plates 529

vith Other 474 ular Plates 479 485 elations 486 488 Resultants 489 490 ates ped Plate 492 with a Free 495 Plates unction 495 ction 497 Shear ch 499 505 511 ion ted on All Four 15 of a Clamped 521 on es Subjected to 523 28 y Supported iable 529

	14.12.2 Circular Plates 531 14.12.3 Free Vibration Solution 533	15.9	Equations of Motion of Conical and Spherical Shells 591
14.13	Recent Contributions 535		15.9.1 Circular Conical Shells 591
Refere			15.9.2 Spherical Shells 591
Proble		15.10	Effect of Rotary Inertia and Shear
Proble	ms 539	10.10	Deformation 592
15 Vil	bration of Shells 541		15.10.1 Displacement Components 592
	oration of blichs 541		15.10.2 Strain-Displacement Relations 593
15.1	Introduction and Shell Coordinates 541		15.10.3 Stress-Strain Relations 594
	15.1.1 Theory of Surfaces 541		15.10.4 Force and Moment Resultants 594
	15.1.2 Distance between Points in the Middle		15.10.5 Equations of Motion 595
	Surface before Deformation 542		15.10.6 Boundary Conditions 596
	15.1.3 Distance between Points Anywhere in		15.10.7 Vibration of Cylindrical Shells 597
	the Thickness of a Shell before Deformation 547		15.10.8 Natural Frequencies of Vibration of
			Cylindrical Shells 598
	15.1.4 Distance between Points Anywhere in the Thickness of a Shell after		15.10.9 Axisymmetric Modes 601
	Deformation 549	15.11	Recent Contributions 603
15.2	Strain-Displacement Relations 552	Refere	nces 604
15.3	Love's Approximations 556	Proble	ms 605
15.4	Stress-Strain Relations 562		
15.5	Force and Moment Resultants 563	16 Ela	astic Wave Propagation 607
15.6	Strain Energy, Kinetic Energy, and Work Done	16.1	Introduction 607
	by External Forces 571	16.2	One-Dimensional Wave Equation 607
	15.6.1 Strain Energy 571	16.3	Traveling-Wave Solution 608
	15.6.2 Kinetic Energy 573		16.3.1 D'Alembert's Solution 608
	15.6.3 Work Done by External Forces 573		16.3.2 Two-Dimensional Problems 610
15.7	Equations of Motion from Hamilton's		16.3.3 Harmonic Waves 610
	Principle 575	16.4	Wave Motion in Strings 611
	15.7.1 Variation of Kinetic Energy 575		16.4.1 Free Vibration and Harmonic
	15.7.2 Variation of Strain Energy 576		Waves 611
	15.7.3 Variation of Work Done by External		16.4.2 Solution in Terms of Initial
	Forces 577		Conditions 613
	15.7.4 Equations of Motion 577		16.4.3 Graphical Interpretation of the
	15.7.5 Boundary Conditions 579		Solution 614
15.8	Circular Cylindrical Shells 582	16.5	Reflection of Waves in One-Dimensional
	15.8.1 Equations of Motion 583		Problems 617
	15.8.2 Donnell-Mushtari-Vlasov		16.5.1 Reflection at a Fixed or Rigid Boundary 617
	Theory 584		16.5.2 Reflection at a Free Boundary 618
	15.8.3 Natural Frequencies of Vibration	16.6	Reflection and Transmission of Waves at the
	According to DMV Theory 584	10.0	Interface of Two Elastic Materials 619
	15.8.4 Natural Frequencies of Transverse		16.6.1 Reflection at a Rigid Boundary 622
	Vibration According to DMV Theory 586		16.6.2 Reflection at a Free Boundary 623
	15.8.5 Natural Frequencies of Vibration	16.7	Compressional and Shear Waves 623
	According to Love's Theory 587	•	16.7.1 Compressional or P Waves 623

	16.7.2 Shear or S Waves	625	17.8	Collocation Method 680	
16.8	Flexural Waves in Beams	628	17.9	Subdomain Method 684	
16.9	Wave Propagation in an Infin Medium 631	ite Elastic	17.10	Least Squares Method 686	
	•	621	17.11	Recent Contributions 693	
	16.9.1 Dilatational Waves	631	Refere	nces 695	
	16.9.2 Distortional Waves	632	Proble	ms 696	
	16.9.3 Independence of Dila Distortional Waves	632	A Ba	sic Equations of Elasticity 70	0
16.10	Rayleigh or Surface Waves	635	A.1	Stress 700	
16.11	Recent Contributions 643				5 00
References 644			A.2	Strain-Displacement Relations	700
Proble	ms 645		A .3	Rotations 702	
			A.4	Stress-Strain Relations 703	
17 Ap	proximate Analytical Method	ds 647	A.5	Equations of Motion in Terms of Stresses 704	
17.1	Introduction 647		A.6	Equations of Motion in Terms of	
17.2	Rayleigh's Quotient 648			Displacements 705	
17.3	Rayleigh's Method 650				
17.4	Rayleigh-Ritz Method 6	51	B La	place and Fourier Transforms	707
17.5	Assumed Modes Method	670			
17.6	Weighted Residual Methods	673	Indo-	712	
17.7	Galerkin's Method 673		Index	713	