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1. Introduction

The study of flow-induced vibrations of slender structures
has been intensified in the past decades. This may be
partly due to the increased need for stability and reliability,
especially in the power generating industry where repeated
equipment failures have evidenced the inadequate state-of-
the-art. Thus, it has now become increasingly important to
try to understand and to be able to predict the dynamical
behaviour of slender structures in flow, such as what might
be found in mechanical equipments, nuclear reactors, heat
exchangers, steam generators, ocean mining pipes and
drill-strings [1–3]. Unlike the case of vibrations of slender
structures induced by cross-flow, the study of dynamical
behaviours of such structures induced by axial flow is a
relatively new phenomenon, beginning seriously in the
1960s [4, 5]. Although most failures are associated with
the cases of cross-flow, the conditions of axial flow have
also been shown to be of importance. Moreover, quite
apart from practical considerations, these problems are of
sufficient intrinsic interest, in the realm of dynamics of
various dynamical systems subjected to gyroscopic forces
(e.g., axially accelerating belts), to merit study for their own
sake.

Motivated by the quest for a fundamental understanding
of fluid-structure interactions as well as by applications in
several areas of engineering, the vibrations of axially moving
slender beams or cylinders in fluid has also attracted the
attention of several investigators [6–8]. As can be expected,
the dynamics of slender structures axially towed in fluid
should be different from that of slender structures conveying
fluid or immersed in axial flows.

The current paper attempts to present a selective review
of the published literature, emphasizing the work dealing
with slender structures subjected to axial flow or axially
towed in fluid, specifically the vibrations and stabilities of (i)
pipes conveying fluid, both straight and curved (ii) carbon
nanotubes conveying fluid (iii) tubular beams subjected
both internal and external axial flows (iv) cylindrical shells
conveying fluid (v) plates in axial flow and (vi) slender
structures axially towed in quiescent fluid. The main purpose
of this article is to review the recent literature which is
relevant to all aspects and ramifications of slender structures
subjected to axial flow or axially towed in fluid. In order
to display some new results reported on this problem, the
related background theory and some of the early work will

also be discussed.
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2. Dynamics of Straight Pipes Conveying Fluid

Since the dynamics of straight and curved pipes, cantilevered
and supported pipes, are fundamentally different, they will
be treated separately. In each case the linear dynamics will be
treated first.

2.1. Linear Dynamics of Straight Pipes Conveying Fluid

2.1.1. The Simplest Equation of Motion. Consider a straight
pipe conveying fluid (Figure 1). If externally imposed ten-
sion, internal damping, gravity, a possible elastic foundation
and pressurization effects are either neglected or absent, the
linear equation of motion can be written in a particularly
simple form [9]

EI
∂4w

∂x4
+ MU2 ∂

2w

∂x2
+ 2MU

∂2w

∂x∂t
+ (M + m)

∂2w

∂t2
= 0, (1)

where EI is the effective flexural rigidity of the pipe, m
is the mass of the pipe per unit length, M is the mass of
fluid per unit length, flowing with a steady flow velocity
U , and w is the lateral deflection of the pipe; x and t are
the axial coordinate and time, respectively. The fluid forces
are modeled in terms of a plug flow model, which is the
simplest possible form of the equation of motion for straight
pipes conveying fluid. A more detailed treatment of the linear
equation of motion was given in [9].

The various terms in (1) may be defined, sequentially,
as the flexural restoring force, a centrifugal force, a Coriolis
force, and the inertia force.

2.1.2. Straight Pipes with Supported Ends. The linear dynam-
ics of the system for a pipe simply supported at both ends is
very clear now. After a Galerkin discretization, the equation
of motion, as given by (1), can be solved by considering
a characteristic eigenvalue problem. The eigenfrequencies
(denoted by ω in this paper) of the pipe system are generally
complex. For the sake of convenience, we may define U as the

dimensionless flow velocity, that is, U = (M/EI)1/2LU . Note
that Re(ω) is the oscillation frequency, while Im(ω) is related
to the damping, the damping ratio being Im(ω)/Re(ω). It
has been found that divergence in the first mode occurs at
U c = π and in the second at U c = 2π. Linear theory predicts
a coupled-mode flutter for U > 6.375.

In [9], a similar result was obtained for a clamped-
clamped pipe. In this case, the first-mode divergence occurs
at U c = 2π; then the system is restabilized at U ≈ 9.
Again, still according to linear theory, another form of
postdivergence (coupled-mode) flutter was predicted at U ≈

9.3.
However, the physical existence of this postdivergence

flutter instability is questionable, since the linear equation of
motion cannot be used to provide reliable information once
the displacements become large. Therefore, this postdiver-
gence flutter would have to be verified by nonlinear theory,
as will be discussed later.

2.1.3. Straight Pipes with Clamped-Free Ends. Unlike the
straight pipes with both ends supported, the linear dynamics

L

x

U

Figure 1: Schematic of a fluid-conveying straight pipe with both
ends supported.

for a cantilevered system may show significant difference
[10]. Up to now, it has been reported that the effect of
increasing U , provided it remains small, is to generate flow-
induced damping in the system. For a relatively small flow
velocity, it was shown that the value of Im(ω) remains pos-
itive. For increasing values of U (e.g., U ≈ 4), however, this
damping begins to be attenuated. The damping eventually
vanishes (at U ≈ 5.6) and then becomes negative. This
implies that a single-degree-of-freedom (DOF) flutter via a
Hopf bifurcation occurs. The presence of nonzero damping
at U = 5.6, therefore, merely postpones the onset of flutter.

In the last two decades, a vertically cantilevered pipe
conveying fluid upwards was also studied by several inves-
tigators [11–14]. It ought to be recalled that this problem
is not wholly academic. One important application may
be in the ocean mining industry. The ocean mining of
manganese nodules, by essentially vacuuming the sea floor
from a surface vessel, thus involves a flexible, long pipe. In
this case, the vertical pipe is always aspirating fluid; thus, the
dynamics may be different from that of the system conveying
fluid downwards, as discussed in the foregoing.

Up to now, in several experiments, it was observed
that a fluid-aspirating pipe is stable for small flow velocity.
However, theoretical results [14] have shown that flutter
might occur even for pipes aspirating fluid with sufficiently
low-flow velocity. In 2005, a reappraisal of why aspirating
pipes do not flutter at infinitesimal flow is made by
Paı̈doussis et al. [14]. In that paper, the linear equation of
motion of a cantilevered pipe aspirating fluid was written as
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in which the added mass per unit length Ma of the
ambient fluid has been included; c is the viscous damping
coefficient, A is the cross-section-area of the fluid, α∗ is the
coefficient of Kelvin-Voigt internal dissipation, p is the global
pressurization, and T the externally imposed tension.

From (2), if the dissipation is absent or neglected, it can
be easily verified that instability is possible for small internal
flow velocity. If, however, a realistic amount of dissipation is
taken into account, the straight pipe was found to remain
stable up to flow velocities covering the range of practical
interest (for the ocean mining application, e.g.). Thus, it has
now become imperative to try to understand the stability
mechanism of pipes aspirating fluid. However, this question
remains unresolved. In [14], it has been suggested that
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more precise assumptions made on the intake flow structure
should be developed in the near future. Was the observed
stability only due to dissipation? Or was it because the flow
at the intake is such as to make flutter impossible? To help get
to the bottom of things, a CFD study of the flow field would
be helpful, as mentioned in [14].

2.2. Nonlinear Dynamics of Straight Pipes Conveying Fluid

2.2.1. Straight Pipes with Supported Ends. Presuming the
existence of periodic motions, the rate of work done by
the fluid on the pipe over a period of oscillation T may be
obtained from (1) [13]
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Clearly, if both ends of the straight pipe are positively
supported, then (∂w/∂t) = 0 at both ends, and

∆W = 0. (4)

This implies that self-excited oscillatory motion (flutter) is
not possible for pipes with both ends supported. However,
this does not mean that the system remains stable even for
sufficiently high U . The +MU2(∂2w/∂x2) term can be viewed
as an effective compression associated with the exiting fluid
momentum at the downstream end. This might be linked
to a slender column subjected to a compressive force. For
high enough U , therefore, the system would lose stability by
buckling (static divergence).

In fact, even in the context of linear theory, the existence
of flutter is problematic for a pipe with positively supported
ends. This delicate question was first addressed by Done
and Simpson [15]. The question of the existence of post-
divergence flutter (coupled-flutter) in this system has been
answered by Holmes and his coworker [16–18]. Reference
[17] is categorically entitled “Pipes supported at both ends
cannot flutter”—for pipes positively supported at both ends,
that is, where axial sliding is not permitted. Obviously, this
important conclusion was based on analyzing the nonlinear
dynamics of fluidelastic systems.

All the work mentioned in the last paragraph relates
to theoretical work. In fact, the postdivergence flutter has
never been observed experimentally in pipes with both ends
supported, though the loss of stability by divergence is easily
observable. Perhaps this is the most potent evidence of
nonoccurrence of postdivergence flutter in pipes with both
ends supported.

Moreover, parametric resonances may occur if the flow
in the pipe is not wholly steady but contains periodic
pulsations. Recently, quasiperiodic and chaotic motions were
detected in pipes conveying fluid with both ends supported;
see, for example, [19, 20].

2.2.2. Straight Pipes with Clamped-Free Ends. For a can-
tilevered pipe system, it is assumed that the free-end is at
x = L. Then, one obtains [13]
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By analyzing the above equation, it is clear that ∆W < 0 for
U > 0 and small, and free motions of the pipe are damped.
If, however, U is sufficiently high, while over most of the
cycle (∂w/∂x)L and (∂w/∂t)L have opposite signs, then one
can obtain ∆W > 0. This implies that the pipe will gain
energy from the flowing fluid, and hence free motions will
be amplified.

The nonlinear dynamics of straight pipes with clamped-
free ends is concordant. If we denote the onset of flutter as
a Hopf bifurcation, the Hopf bifurcation gives rise to limit
cycle motions, which is also what is observed experimentally.
In this case, however, the dynamics can be much more
complex. The Hopf bifurcation can be either supercritical
or subcritical, depending on the parameter of mass ratio
β(= M/(M + m)) and a parameter involving the friction
coefficient and the slenderness of the pipe [21]. Moreover,
the limit cycle motion can be either two or three dimensional
[22], again depending on β.

The chaotic dynamics of cantilevered systems was also
investigated extensively in the past two decades (see, e.g.,
[23–32]). In the first such study, Tang and Dowell [23]
considered a cantilevered pipe with an inset steel strip and
two equispaced permanent magnets on either side of the free-
end, thus exerting nonlinear forces on the strip and buckling
it into one of the two potential wells on either side of the
pipe. If the flow velocity is increased sufficiently above the
critical value for flutter about the buckled state, numerical
results will show that the cantilevered system might display
chaotic motions. This autonomous system was studied only
briefly and theoretically. A more extensive theoretical and
experimental study was made of a pipe system with external
excitation. In the experiments, the pipe was excited by a
shaker. Once again, chaotic motions were detected when the
amplitude of the external excitation was sufficiently higher
than the threshold value of this force for chaos. The chaotic
motions, strongly influenced by the flow velocity, have also
been observed experimentally.

At about the same time, Paı̈doussis and Moon [24]
undertook a combined theoretical and experimental study
of the autonomous system of a cantilevered pipe conveying
fluid. In this case, however, the pipe is interacting with
motion constraints somewhere along the length of the pipe.
The only nonlinearity considered in the system was due
to the nonlinear constraints, modeled by cubic springs.
The experiments for a cantilevered pipe, with either air or
water internal flow, showed that, when the flow velocity
was sufficiently beyond the onset of flutter for the pipe,
the pipe would impact on the motion constraints, thus
introducing nonlinear force. The system became chaotic
through the route of period doubling bifurcations. The
analytical model, after Galerkin discretization to two DOFs.,
exhibited a similar behaviour. The same analytical model
was further studied and some new results were obtained
by Paı̈doussis et al. [25]. It was shown that, after the Hopf
bifurcation, a symmetry-breaking transcritical-like pitchfork
bifurcation occurs, followed by a sequence of period-
doubling bifurcations, leading to chaotic motions. Sample
results of phase portraits based on the equation of motion
given in [25] are shown in Figure 2.
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This same system was restudied with higher dimensional
models (up to 7 d.o.f.) by Paı̈doussis et al. [26]. More
significantly, the impact models for the motion constraints
were improved. In this case, for the exact experimental
parameters in the analytical model, excellent quantitative
agreement (within 5–10%) was obtained.

Finally, by using the full nonlinear equations of motion
[27], the same cantilevered system was re-examined, com-
pleting the circle of studies on this system. The post-Hopf
dynamics predicted with lower d.o.f. (e.g., 3 d.o.f.) was quite
different from that predicted with higher d.o.f (e.g., 4 d.o.f.).
It was found that, the degree of agreement with experiment
becomes excellent for at least 4 d.o.f..

Also, if the cantilevered system is standing, interesting
dynamics (e.g., the pipe regains stability after flutter instabil-
ity as the flow velocity is increased) may arise [28, 29]. How-
ever, in the study of [29], the only nonlinearity considered is
the nonlinear force induced by the motion constraints.

Moreover, chaotic motions may also occur for a can-
tilevered system with an intermediate linear spring support,
or with a mass added at the free-end [30–32]. In [31,
32], the pipe is allowed to vibrate in a 3D space. The
intermediate spring supports were disposed in symmetrical
fashion with respect to two axes. For the pipe with a four-
spring array placed somewhere along the length of the pipe
(but not close to the free-end), it was found that the system
loses stability via a Hopf bifurcation (i.e., similarly to the
planar motion of a cantilevered pipe). Again, a pitchfork,
or symmetry breaking bifurcation was detected at a higher
flow velocity. However, the pipe was predicted to oscillate
asymmetrically; and symmetry is regained for a higher flow
velocity. Interestingly, quasiperiodic oscillations, followed by
chaotic oscillations, have been found in such a dynamical
system with sufficiently high-flow velocity. However, if the
array of four springs is positioned closer to the free-end and
the total stiffness of the springs is much larger, the initial
instability was predicted to be a pitchfork bifurcation.

3. Dynamics Of Curved Pipes Conveying Fluid

One might have thought that a similar analysis of straight
pipes conveying fluid can be extended to curved pipes. This is
not so, however. Actually, in contrast to the systems reported
so far, until 1988, there remained considerable confusion and
uncertainty as to the vibrations and stability of curved pipes
conveying fluid.

Work on the vibration and stability of curved pipes
conveying fluid appears to have started in the 1960s. Some
of the key contributions in this realm were made by, but
not limited to, Svetlitskii [33–35], Chen [36–38], Doll and
Mote Jr. [39, 40], Hill and Davis [41], Dupuis and Rousselet
[42], Misra et al. [43–45], Ni et al. [46], Qiao et al. [47,
48], and Jung and Chung [49]. The systems studied range
from curved pipes shaped as circular arcs, L- or S-shaped
configurations, analyzed by finite-element techniques [39–
41, 43–45], transfer-matrix technique [42, 50] or differential
quadrature method (DQM) [46–48, 51, 52].

Unlike the straight pipes, motions of curved pipes gener-
ally require four displacement variables (three displacements

of the centerline and a twist angle) and hence at least four
equations to govern the motions. For the circular-centerline
pipes, depending on the initial shape and state of the system
as well as assumptions made, it is often possible to decouple
the motions into in-plane and out-of-plane motions.

There are three main theories available for predicting
the stability and vibrations of curved pipes conveying fluid:
the so-called “inextensible theories” [36, 37, 43, 46–48], the
modified inextensible theory [44], and the complete “exten-
sible” theories [33, 34, 40–42, 44, 45, 49]. The inextensible
theories assume that the circular centerline of the pipe is
essentially inextensible and all steady-state stress resultants
are absent or neglected. The complete extensible theories,
however, do not make this assumption and generally take
into account the changes in form with increasing flow
velocity, as well as the forces generated thereby; thus, the
steady-state axial tension-pressure force has been considered.
The modified inextensible theories take into account the
initial stresses due to flowing fluid in a curved pipe.

The inextensible theories predict that curved pipes
with both ends supported are subject to divergence at
sufficiently high-flow velocities, similar to straight pipes.
However, instability was predicted to be impossible by using
the modified inextensible and the extensible theories. One
interesting practical result is that the modified inextensible
theory gives results very close to those of the complete
extensible theory. For the cantilevered system, however, both
the inextensible and extensible theories predict that the
form of flutter instability might occur with sufficiently high-
flow velocity. The reason may be that the steady-state axial
tension-pressure force has a less pronounced effect on the
dynamics of cantilever system [48].

Here, it should be pointed out that, the literature on
the nonlinear dynamics of curved pipes conveying fluid is
very limited. Dupuis and Rousselet [53] have undertaken
a careful derivation of the nonlinear equations of motion
by the Newtonian approach; however, their equations are
not easy to solve because of their complexity. In 2005, by
using the inextensible theory, Ni et al. [46] developed a
cantilever model, in which a curved pipe is embedded in
nonlinear foundations. Based on DQM discretization, the
in-plane vibrations of the system were discussed, showing
that chaotic transients could occur. Recently, Qiao et al.
[47] investigated another cantilevered curved pipe conveying
fluid with motion constraints (Figure 3) and explored some
interesting dynamics. Again, the inextensible theory was
utilized for the cantilevered system. As can be expected, the
curved pipe would impact on the motion constraints when
the deflection of the pipe becomes reasonably large due to
increasing fluid velocity. The analytical model, after DQM
discretization, exhibited various behaviors (see Figure 4).
The route to chaos was shown to be via period-double
bifurcations. This curved pipe model was further analyzed
by Lin et al. [48] by applying an external excitation at the
free-end of the curved pipe. In the forced pipe system, the
routes to chaos were found to be via either period-double
bifurcations or quasiperiodic motions. Therefore, the forced
system can also display rich dynamics.
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Figure 2: Theoretical phase portraits of the free-end of the pipe, with motion constraints modeled by a cubic spring and 2 d.o.f., for different
flow velocities.

Before closing this section, it ought to be noted that the

fluid velocity flowing in curved pipes was assumed to be

steady, in all the related work cited in the foregoing. More

significantly, the geometric nonlinearities induced by the

deformation of curved pipes have been neglected in [46–48].

If, however, the fluid velocity is not steady and the geometric

nonlinearities are considered, the nonlinear dynamics of the

curved pipe may be much richer.



6 Advances in Acoustics and Vibration

Flow in

Figure 3: Schematic of a fluid-conveying curved pipe with motion
constraints.

4. Vibrations of Nanotubes Conveying Fluid

After the invention of carbon nanotubes (CNTs) by Iijima
[54], it has been shown that CNTs have good electrical
and mechanical properties and so they have potential
applications in design for nanoelectronics, nanodevices,
nanocomposites, and so forth, [55]. Because of perfect
hollow cylindrical geometry and high mechanical strength,
CNTs hold substantial promise as nanocontainers for gas
storage, and as nanopipes for conveying fluid (such as gas or
water) [56–58]. It is not surprising, therefore, fluid flowing
inside CNTs has become an attractive research topic [59–62].

In an attempt to understand and be able to predict
the fluid-structure interactions in CNTs conveying fluid,
Tuzun et al. [63] developed molecular dynamics simulations
of fluids flowing through CNTs. It was found that in a fluid
conveying CNT system, the motion of the CNTs plays a
significant role in the fluid flow. For example, a fluid flowing
through the CNTs tends to straighten out the CNT as it flexes,
and simultaneously excites longitudinal vibration modes of
the CNTs.

Since molecular dynamic simulations are difficult for
large-scale systems, continuum mechanics models have been
utilized to investigate the vibrational behavior of CNTs
conveying fluid [64–70]. Natsuki et al. [64] studied the wave
propagation in single- or double-walled carbon nanotubes
(DWCNTs) filled with internal flowing fluids by using an
elastic shell model.

On the other hand, the transverse vibrations of fluid-
conveying CNTs by using Euler beam theory, have been
studied recently. Yoon et al. [65, 66] have developed a single-
elastic Euler beam model for vibrating CNTs containing
flowing fluids, both for the cantilevered and supported
systems. It was found that the effect of fluid flow velocity
on the resonant frequencies of CNTs is significant. Structural
instability of the CNTs could occur at a critical flow velocity.
The critical flow velocity could cover the range of practical
interest. However, the effects of flow velocity on the resonant
frequencies and the instability of CNTs would be mitigated
when a CNT is embedded in a surrounding elastic medium
(such as polymer matrix). As pointed out by Yoon et al.
[65], the available data in the literature showed that the flow
velocity inside CNTs might range from 400 m/s to 2000 m/s,
or even up to 50000 m/s, in spite of the fact that the available
data for flow velocity of water inside CNTs (of very small

innermost diameter) are much lower than this value. In 2007,
Reddy et al. [67] investigated the effect of fluid flow on the
free vibration and instability of fluid-conveying single-walled
carbon nanotubes (SWCNTs), using both atomistic and
Euler beam models. Wang et al. [68] reported some results of
an investigation into the influence of internal flowing fluid
on the coupling vibration of fluid-filled CNTs; again, the
Euler beam model was used. Recently, Wang and Ni [69]
further analyzed the fluid-conveying CNT model developed
by Yoon et al. [65] and explored the possible postdivergence
flutter existing in the same dynamical model. Of course, the
postdivergence flutter was predicted by the linear theory.
More recently, Wang et al. [70] considered the thermal effect
on the vibration and instability of a fluid-conveying CNT.
Based on the Euler beam theory, it was concluded that at low
or room temperature the critical fluid velocity for nanotube
including the thermal effect is larger than that excluding the
thermal effect and increases with the increase of temperature
change. At high temperature the critical fluid velocity for the
nanotube including the thermal effect is smaller than that
without considering the thermal effect and decreases with the
increase of temperature change.

It is noted that [65–70] only considered the vibrations of
single-walled carbon nanotubes conveying fluid. Continuing
this line of investigation, the flow-induced vibrations of
DWCNTs (Figure 5) or MWCNTs conveying fluid were
also examined by using Euler beam theory [71–74]. Based
on the multiple-elastic beam model, the van der Waals
interaction between tubes has been accounted for, showing
some important results.

Finally, it ought to be stressed that, in [65–74], the
vibration and stability of nanotubes conveying fluid were
described by the Euler beam model, which also has been
utilized to predict the dynamics of straight pipe conveying
fluid, as discussed in Section 2. Therefore, the effect resulting
from the small (nano-) scale on the vibrational properties
of nanotubes conveying fluid has not been included so far.
Although the Euler beam model and several other classical
continuum models are relevant to some extent, the length
scales associated with nanotechnology are often sufficiently
small to call the applicability of continuum models into
question. The main reason is that at small length scales
the material microstructure (such as lattice spacing between
individual atoms) becomes increasingly important. The
effects of these small length scales can no longer be ignored.
This has raised a major challenge to the classical continuum
mechanics. Therefore, a possible solution is to develop some
new fundamental theories based on the classical continuum
models. Such new theories would account for the small
length scales by incorporating information regarding the
behavior of material microstructure.

5. Dynamics of Tubular Beams Subjected to
Both Internal and External Axial Flows

Because of important applications and academic require-
ments, the vibration and stability of a tubular beam system,
subjected to both internal and external axial flows, have
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Figure 4: Theoretical phase portraits of the free-end of the curved pipe, with motion constraints modeled by a cubic spring, for different
flow velocities; from [47].
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Figure 6: (a) Schematic of a tubular beam subjected to both
internal and external axial flows; (b) the system considered in [83].

been studied by many investigators in the past decades. In
Figures 6(a) and 6(b), two typical tubular beam systems are
given. The configuration of Figure 6(b) thus resembles that
of a drill-string with a floating fluid-powered drill-bit; for
example, several related models developed in [3, 75–77].

It is noted that, the tubular beams shown in Figure 6
are subjected concurrently to internal and external axial
flows. In fact, the problem of a tubular beam subjected to
both internal and external flows has been studied before,
by many investigators. Cesari and Curioni [78] have studied
the buckling instability in tubular beams subject to internal
and external axial flows. Hannoyer and Paı̈doussis [79]
combined theory and experiments on the linear vibrations
and stability of a tubular beam with two supported ends
or cantilevered, subject to both internal and external axial
flows; they found multiple divergence and flutter instabilities.
Theory and experiments were in quite good agreement. At
about the same time, Grigoriew [80] considered a drill beam

with an initial curvature in the axial stream and analyzed its
stability. Another notable work by Paı̈doussis and Besancon
[81] discussed various aspects of the vibrations and stability
of clusters of tubular beams conveying internal fluid and sur-
rounded by a confined external axial flow. By calculating the
eigenfrequencies of the tubular beam system and studying
their evolution with various flow velocities of either internal
or external fluid, the free vibrations were investigated. Wang
and Bloom [82] formulated a mathematical model to study
the dynamics of a submerged and inclined concentric tubular
beam system with internal and external flows, the resonant
frequencies of that system obtained and analyzed.

Recently, Paı̈doussis et al. [83] reported some interesting
results on this problem. The basis of that work is Luu’s thesis
[84]. Luu [84] and Paı̈doussis et al. [83] differed from the
work of [78–82] in two significant ways: first, the external
and axial flows are countercurrent, and second the two flows
are not independent of each other (see Figure 6(b)). In
the study by Paı̈doussis et al. [83], a theoretical model was
developed for the dynamics of a hanging tubular cantilever,
centrally located in a cylindrical container, with fluid flowing
downwards inside the cantilever. The internal fluid, after
exiting from the free-end, is deflected at the bottom of the
container, and thereafter flows upwards in the annular space
between the cantilever and container. It is noted that the
configuration developed in Paı̈doussis et al. [83] was inspired
by the geometry of a drill-string with a drill-bit at the lower
end.

The drill-string-like system considered in [83] consists of
a uniform tubular beam of length L, external cross-sectional
area Ao, flexural rigidity EI , and mass per unit length Mt,
conveying downwards incompressible internal fluid of mass
per unit length M f , flowing axially with constant velocity Ui.
The internal fluid leaving the lower end of the tubular beam
then flows upwards with velocity Uo within an outer rigid
channel. The linear equation of motion for this system can
be written as [83]

EI
∂4w

∂x4
+ Mt

∂2w

∂t2
+ M f

(

∂2w

∂t2
+ 2Ui

∂2w

∂x∂t
+ U2

i
∂2w

∂x2

)

+ χρ fAo

(

∂2w

∂t2
− 2Uo

∂2w

∂x∂t
+ U2

o
∂2w

∂x2

)

−

[

(T − A f pi + Aopo)L +
(

Mt + M f − ρ fAo

)

g(L− x)

−
1

2
C f ρ fDoU

2
o

(

1 +
Do

Dh

)

(L− x)

]

∂2w

∂x2

+

[

(

Mt + M f − ρ f Ao

)

g−
1

2
C f ρ fDoU

2
o

(

1 +
Do

Dh

)]

∂w

∂x

+
1

2
C f ρ fDoUo

∂w

∂t
+ k

∂w

∂t
= 0,

(6)

where w(x, t) is the lateral deflection of the tubular beam
and t is time; ρ f is the mass density of the fluid; g is the
acceleration due to gravity; C f and k are the viscous damping
coefficients; TL is the axial tension, induced by the fluid
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Figure 8: Schematic of a solitary plate in axial flow.

pressure at the lower end; Do is the outer diameter of the
tubular beam and Dh is the hydraulic diameter of the annular
channel flow. The definitions of poL, piL and χ can be found
in [83].

Based on numerical calculations, Paı̈doussis et al. [83]
have analyzed the evolution of the eigenfrequencies. It was
found that, if the annular space is wide, the dynamics is
dominated by the inside flow (i.e., the flow within the
drill-string), for low-flow velocities, the flow increases the
damping associated with the presence of the annular fluid;
if the annular space is narrow, however, the annular flow is
dominant, tending to destabilize the system, giving rise to
flutter at remarkably low-flow velocities.

From the viewpoint of string-drill dynamics these results
are interesting for the following reason: it was shown that,
even if the drill-bit never makes mechanical contact with the
drill-string, the system experiences flutter type of instability;
and hence the string would soon touch the surrounding
walls. In a real system, however, effective contact between the
drill-bit and the drill-string is inevitable, and so the dynamics
is more likely to resemble those of a pipe with clamped or
pinned ends [83].

6. Dynamics of Cylindrical Shells
Subjected to Axial Flow

Of academic and practical interest is the dynamics of thin-
wall pipes conveying fluid. For very thin pipes conveying

fluid, Paı̈doussis and Denise [85, 86] accidentally found that
this type of pipe systems are not only subject to beam-
type, but also to shell-type instabilities. For sufficiently high-
flow velocities, if the thin pipe is relatively short, then the
instability observed is not one of lateral motions of the pipe
(n = 1, where n is the circumferential mode number), but
rather involves deformation of the pipe cross-section; that
is, the instability is associated with a shell-type breathing
mode (typically n = 2 or 3). When the diameter of the
middle surface of the thin-wall pipe is relatively large, the
problem should be analyzed by using elastic shell theory. In
the past decades, the subject was studied theoretically and
experimentally, both for clamped-clamped and cantilevered
shells.

Consider a cylindrical shell either conveying fluid or
immersed in an axial flow, as shown in Figure 7. In this
case, however, the internal flow can no longer be treated as
a plug flow, but rather as a three-dimensional one. The linear
equations of motion may be written as [86]

ℓ1(u, v,w) = γ
∂2u

∂t2 , ℓ1(u, v,w) = γ
∂2v

∂t2
,

ℓ1(u, v,w) = −γ

[

∂2w

∂t2
−

qr

ρsh

]

,

(7)

in which ℓi (i = 1, 2, 3) denote linear differential operators of
the axial coordinate x and the circumferential angle θ; u, v
and w are defined, respectively, as the axial, circumferential
and radial displacements of the middle surface of the shell;
qr is the radial surface loading per unit area, which can be
written as

qr = pi − pe. (8)

In the above equation, pi and pe are the internal and
external pressures exerted on the shell. The fluid is assumed
to be inviscid and incompressible for simplicity; the flow
is irrotational. Moreover, pi and pe are supposed to be
composed of mean steady components and the perturbation
components.

If the effect of the steady components is ignored, the
perturbation components may be obtained via potential flow
theory [86] and can be written as

pi
∗ = −

ρia

n + λIn+1(λ)/In(λ)

[

∂

∂t
+ Ui

∂

∂x

]2

w, (9)

pe∗ = −
ρea

n− λKn+1(λ)/Kn(λ)

[

∂

∂t
+ Ue

∂

∂x

]2

w, (10)

at r = a − 0+ and r = a + 0+, respectively, for h/a ≪ 1(h
and a are defined in Figure 7). In the above two equations,
ρi and ρe are the fluid densities of the internal and external
flows, respectively; Ui and Ue are, respectively, defined as
the internal and external flow velocities; λ and n are the
axial wavenumber and the circumferential wavenumber,
respectively. For the particular case of the internal or external
fluid being quiescent, (9) and (10) still apply but with Ui = 0
or Uo = 0.
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It can be seen that the terms arising from the square-
brackets operator in (9) and (10) can be written as ∂2w/∂t2 +
U2∂2w/∂x2 + 2U∂2w/∂x∂t. These various terms are asso-
ciated, respectively, with the inertia of the fluid, and the
centrifugal and Coriolis forces of the moving fluid. Thus,
the fluid effect is wholly analogous to that acting on a
straight pipe conveying fluid. It is not surprising that the
mechanism of underlying instabilities appears to be quite
similar to that of beam-like instabilities of pipes conveying
fluid. If the shell is supported at both ends, corresponding
to a conservative system, it loses stability by divergence at
a certain flow velocity. For a slightly higher flow velocity,
the shell may subject to a coupled-mode flutter. Once again,
the reliability of the postdivergence flutter predicted by
means of linear theory is questionable and hence needs to
be re-examined by means of nonlinear theory, as discussed
later.

In the case of a cantilevered shell conveying internal fluid,
corresponding to a nonconservative system, the instability
is in the form of single-mode flutter, similar to the case
of thicker pipes. The dynamics with external flow is quite
similar to that with internal flow. This form of single-mode
flutter is what was observed experimentally [85, 86].

Experiments with elastomer shells and air-flow showed
that cantilevered shells lose stability by flutter, as predicted
by theory [86, 87]. In the case of shells with clamped
ends, however, the dynamics observed in experiments with
internal and external flows were quite different: with external
flow the system lost stability by divergence, while with
internal flow the system lost stability by flutter [86, 88].
Therefore, the dynamics of shells conveying internal fluid
predicted by linear theory did not agree with that observed
experimentally, since divergence has not been detected in
experiments. It would seem that re-examination of the
dynamics was necessary. Clearly, this re-examination must
involve both nonlinear theory and further experiments. This
was discussed in greater detail by Karagiozis et al. [89–91]
and Paı̈doussis [13].

The question of nonoccurrence of divergence in exper-
iments with shells conveying internal flow was resolved
[13, 92] by conducting experiments with stiffer shells. It
was found that the stiffer shells did indeed lose stability by
divergence, which is what is predicted by theory.

Based on the nonlinear theory, Amabili et al. [93] further
analyzed a shell with simply supported ends conveying
fluid. They predicted that the shell would lose stability by
divergence via a strongly subcritical pitchfork bifurcation.
However, they did not develop coupled-model flutter. As the
experiments [89] were always done with shells with clamped
ends (for experimental convenience), a new nonlinear the-
oretical model was developed for shells with clamped ends
[90, 91]. Again, the postdivergence flutter was not detected.
Theory and experiments are in reasonable agreement with
each other quantitatively.

7. Dynamics of Plates in Axial Flow

Vibration of flexible plates due to axial flow is an important
issue, for instance, in paper manufacturing and paper

printing [94, 95], also in parallel-plate assemblies used as
core elements in some research and power nuclear reactors.

7.1. Solitary Plate in Axial Flow. First, consider a two
dimensional plate of flexural rigidity ℘ = Eh3/[12(1 −
υ2)], E and υ being the elastic modulus and Poisson ratio,
respectively, h being the plate thickness and ρp the density.
The plate is subjected to a flow-related perturbation pressure
p∗. The schematic of the analytical system is shown in
Figure 8. The linear equation of motion can be written as

℘
∂4w

∂x4
+ Cd

∂w

∂t
+ ρPh

∂2w

∂t2
= −p∗, (11)

where Cd is viscous damping coefficient. It is assumed that
the flow is inviscid, the complete solution for p∗ has been
obtained by Kornecki et al. [96] and is given by

−p∗ =
ρ

πL

{

∫ 1

0

[

L2 ∂
2w

∂t2
+ 2UL

∂2w

∂ξ∂t
+ U2 ∂

2w

∂ξ2

]

× ln
∣

∣x − ξ
∣

∣dξ − R(x)

}

,

(12)

where

R(x) = U2
{[

w
′

(1) + (L/U)ẇ(1)
]

ln(1− x)

−
[

w
′

(0) + (L/U)ẇ(0)
]

ln x
}

,
(13)

in which x and ξ are defined by x = x/L and ξ = u/L,
respectively, u being a dummy variable; t is dimensional time;
ρ is the fluid density.

The terms given in the square-brackets on the right-
hand side of (12) have the similar functional form as in (1),
and the function ln|x − ξ| may be viewed as the effect of
spatial memory. The difference in the theories mentioned
in Sections 2, 3, 4, 5, and 6 and that for the plate here is
significant. For pipes, tubular beams and shells of the local
fluid forces depend only on the local displacement. For the
plate problem, however, the local fluid forces depend on the
global flow field.

By using linear theory, it has been found that a plate
with supported ends loses stability by divergence and then
by coupled-model flutter subsequently. These theoretical
findings were broadly supported by experiments conducted
by Dugundji et al. [97]. It is recalled that, for fluid-conveying
pipes with both ends supported, the coupled-model flutter
instability, which is predicted by the linear theory, has not
been observed experimentally. In the case of supported plates
subjected to axial flow, however, this coupled-model flutter
was indeed observed in experiments.

For a cantilevered plate subjected to axial flow, the
dynamics is much clearer; the system loses stability by flutter,
as predicted by theory. Also, this form of instability has been
observed experimentally. The similarity in the form of the
fluttering plate to a fluttering pipe, in all its features, is quite
remarkable. In the case of a cantilevered plate, however, the
prediction is much more complicated, since the vorticity
shed by the flapping plate into the wake should be taken into
account [97–100].
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More recently, Tang and Paı̈doussis [101–103] further
investigated the instability and nonlinear vibrations of two-
dimensional cantilevered plates in axial flow. In [101, 102],
a nonlinear equation of motion has been utilized, assuming
the middle plane of the plate to be inextensible, together
with the unsteady lumped-vortex model for calculating the
unsteady fluid loads. The flutter boundary obtained was
compared with available experimental data. It was found
that, when the plate is long, the theoretical predictions are
in very good agreement with measurements from different
experiments. In contrast, agreement with experiments is
rather poor for short plates. In another recent work reported
by Tang and Paı̈doussis [103], the nonlinear vibration of
the same dynamical system developed in [101, 102] was
further studied. However, an additional spring support of
either linear or cubic type was installed at various locations
on the plate. When the flow velocity is sufficiently high,
the plate was predicted to exhibit chaotic motions via a
period-doubling route. However, these interesting dynamical
behaviours should be examined experimentally.

7.2. Parallel-Plate Assembly. A parallel-plate assembly, gener-
ally, consists of many thin plates stacked in parallel; between
these parallel plates there are narrow channels to let coolant
flow through. The main problem in this type of fuel system
is the static and/or dynamic instabilities due to the flowing
fluid. In some practical tests, large deflections and/or flutter
were observed when the flow velocity became sufficiently
high (see, e.g., [104–107]). The large deflections and/or
flutter might lead to failure in practice.

Many attempts have been made to theoretically analyze
the vibrations and study instability. Perhaps the first study on
this problem was by Miller [108], who presented a theory for
predicting the critical velocity for static divergence (collapse)
of parallel-plate assembly. In his analysis, based on wide-
beam theory and Bernoulli’s theorem, the critical velocity
was obtained by equating pressure differences between chan-
nels to the elastic restoring force of a plate. Miller’s theory
was further improved by Johansson [109], who included the
effects of fluid friction and flow redistribution. Scavuzzo
[110] and Wambsganss [111] made further improvements
upon Miller’s and Johansson’s model by considering the
nonlinearity caused by large deflections (i.e., geometric
nonlinearity). Rosenberg and Youngdahl [112] formulated
a dynamical model and obtained the same critical velocity
by using a two-dimensional mode. Yang and Zhang [113]
developed a multispan elastic beam model to imitate a typical
substructure of a parallel-plate structure. In their analytical
model, there exists a narrow channel between the lower
surface of the wide beam and the upper surface of the bottom
plate of the water trough. By using the added water mass
and damping coefficients, the free vibrational frequencies
of the system were analyzed. Yang and Zhang [114] further
investigated a parallel flat plate-type structure in rigid water
trough or rigid rectangular tube.

More recently, Guo and Paı̈doussis [115] developed a
more accurate and general theoretical analysis for parallel-
plate assembly system. In their analysis, the plates were
treated as two dimensional, with a finite length, and the flow

field is taken to be inviscid, three dimensional. In [115], the
equation of motion of an elastic plate is given by

℘

(

∂4w

∂x4
+

∂4w

∂x2∂y2
+
∂4w

∂y4

)

+ ρPh
∂2w

∂t2
+ P∗ = 0, (14)

where P∗ = P∗(x, y, t) may be viewed as the net load per
unit area on the plate, equal to the difference between the
perturbation pressures on the upper and lower surfaces of
the plate caused by its deflection. Because of antisymmetry
with respect to the plate, the perturbation pressures on the
upper and lower surfaces must be equal in magnitude, but
opposite in sign.

Based on (14), several important conclusions were [115]
(i) single-mode divergence, mostly in the first mode, and
coupled-mode flutter involving adjacent modes were found;
(ii) the frequencies at a given flow velocity and the critical
velocities increase as the aspect ratio decreases; (iii) in the
case of large aspect ratios and small channel-height-to-
plate-width ratios, the plates lose stability by first-mode
divergence, however, very short plates usually lose stability
by coupled-model flutter in the first and second modes;
(iv) critical velocities for both divergence and flutter are
insensitive to changes in damping coefficients.

Before closing this section, it should be remarked that
most studies discussed in the foregoing were based on
linear theories for parallel-plate assembly. Unfortunately,
the literature on the nonlinear dynamics of such type of
structures is very limited. If the essential nonlinearity is
accounted for, the dynamical behaviour may be much richer.

8. Dynamics of Slender Structures in Axial
Flow or Axially Towed in Quiescent Fluid

8.1. Slender Structures in Axial Flow. As indicated in the
Introduction, although most failures of slender structures
(mostly cylinders or rods) are associated with the conditions
of cross-flow, the cases of axial flow have also been shown
to be of significance. In the first such study, motivated by
application to the vibration of fissile fuel rods in nuclear
reactors, Paı̈doussis [116] has investigated the dynamics of
cylinders or rods in axial flow. In his two later papers,
Paı̈doussis [117, 118] led to a still-used semi-empirical
relation for predicting the turbulence-induced vibration
levels in such systems.

Further research, however, was mainly driven by curios-
ity. Nevertheless, many applications can be found in practice.
These applications should include, but not limited to (i)
dynamics of rods and reactivity monitors in nuclear reactors;
(ii) the vibration in closely spaced clusters of cylinders; (iii)
the turbulence-induced vibration of tube (or cylinder) arrays
in heat exchangers.

8.1.1. Solitary Cylinders or Rods. The schematic of a can-
tilevered cylinder in axial flow is shown in Figure 9. As
developed in [119], the simplest form of the linear equation
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Figure 10: Idealized system of a towed cylinder with noncylindrical
“nose” and “tail” segments.

of motion of a cylinder in axial flow may be written as

EI
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∂x4
+ MU2 ∂
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∂2w
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+ (m + M)

∂2w
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ρD2U2Cb
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+
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2
ρDUCN

(

∂w

∂t
+ U

∂w

∂x

)

+
1

2
ρDCD

∂w

∂t
= 0,

(15)

where M = ρA is the virtual, or added, mass of the fluid per
unit length for unconfined flow, A being the cross-sectional
area of the cylinder and ρ the fluid density, w(x, t) is the
lateral deflection, CT and CN are viscous force coefficients
in the longitudinal and normal direction, respectively, CD is
the linearized zero-flow viscous drag coefficient for lateral
motions, Cb is the base drag coefficient, D is the diameter
of the cylinder, and the other symbols are the same as for
internal flow.

If both ends are supported, the equation of motion is
slightly more complicated, depending also on whether the
downstream end is free to slide axially, pressurization of the
external fluid, and so on.
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Figure 11: The cantilevered and supported axially moving beams.
(a) The system considered in [7]. (b) The system considered in [8].

In the case of a cantilevered cylinder, it was generally
supposed that the free-end is ogive-shaped. The simplest of
the boundary conditions are

EI
∂2w

∂x2
= 0,

EI
∂3w

∂x3
+ f MU

(

∂w

∂t
+ U

∂w

∂x

)

−
(

m + f M
)

xe
∂2w

∂t2
= 0,

(16)

where xe = (1/A)
∫ L
L−lA(x)dx, l being the length of the shaped

end; f is a parameter first introduced by Hawthorne [120],
equal to unity for a truly streamlined end. However, f is
generally smaller because of 3D flow over the free-end and
boundary-layer effects.

From (15), it is immediately seen that its first line
is identical to the equation of motion of straight pipes
conveying fluid (see (1)). Examining (15), it can be found
that its second line is associated with the viscosity of the fluid.
In fact, (1) and (15) differ only because of the viscous terms
constituting in (15). Generally, the viscous terms are small
compared to the first four terms in (15). Therefore, it may
be expected that the dynamics, for cylinders with supported
ends at least, is similar to that of the fluid-conveying pipe.
This similarity is confirmed by Paı̈doussis [119].

For a cylinder with simply supported ends, as discussed
in [119], divergence can be predicted at a nondimensional
flow velocity only slightly higher than U = π in the first
mode, followed at U ≈ 2π by divergence in the second
mode. Coupled-flutter is predicted at U ≈ 6.48. Indeed,
postdivergence (couple-mode) flutter has been observed in
experiments [121]. In fact, recent calculations by means
of nonlinear theory have confirmed the existence of post-
divergence flutter [122], and more recently reconfirmed
experimentally [123]. In the study of [122], it was found that
a Hopf bifurcation arises from loss of stability of the trivial
equilibrium state. More interestingly, the system displays
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Figure 12: The imaginary and real components of the dimensionless frequency, Ω, as functions of the moving speed, V , for the lowest three
modes of a pinned-pinned beam; from [8].
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Figure 13: The imaginary and real components of the dimensionless frequency, Ω, as functions of the moving speed, V , for the lowest three
modes of a clamped-clamped beam; from [8].

quasiperiodic and chaotic motions at higher flows, of course,
predicted by means of nonlinear theory.

The dynamics of a cantilevered system should be dis-
cussed here, since it is not similar to that of a cantilevered
pipe conveying fluid. As reported in [119], for f = 0.8,
the cantilevered system first loses stability by divergence at
U ≈ 2.04, and then by single-mode flutter at U ≈ 5.16, and
after restabilization by flutter in the third mode at U ≈ 8.17.
The reader may be surprised by the fact that the cantilevered
system first loses stability by divergence at low-flow velocity.

The reason is that the divergence is related to the presence

of the tapered free-end. It is recalled that the case f = 0.8
suggests a fairly well-streamlined end. If f = 0, however, the
end is blunt, and hence divergence is not possible.

The dynamics of cantilevered system predicted by linear
theory has been re-examined theoretically, by means of
nonlinear theory, and experimentally [124, 125]. It was
found that the essential dynamical behaviour is as predicted
by linear theory. However, the bifurcations do not arise in the
same way.

8.1.2. Clustered Cylinders. The dynamics of clustered cylin-
ders in axial flow has received considerable attention [126,
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127], because such systems exist in many engineering
applications, as discussed in the foregoing.

The vibrations of such cylinders compared with that
of isolated cylinder are characterized by (i) the effect of
proximity of the other cylinders being important, causing
various instabilities to occur at lower flow velocities, and (ii)
the effect of intercylinder motion coupling, decreasing the
critical flow velocities. Therefore, predicting the critical flow
velocities for instability requires one very important piece of
data: the cluster geometry and the intercylinder separation.
For more details on this topic, one can refer to [127].

8.2. Slender Structures Towed in Quiescent Fluid. A con-
siderable amount of notable work has been conducted on
towed cylinders, rods, or tubular beams. Many applications
of this system have emerged as follows: (i) vibrations of
extruding metal and plastic rods in fluid [6, 7]; (ii) stability
and vibrations of extremely long “seismic arrays,” mostly
towed behind boats and used in mineral exploration in
the deep seas; (iii) the vibrations of towed pipelines for
easy relocation mostly used in ocean; (iv) the vibrations
of articulated submarine transporters; (v) high-speed trains
traveling in narrow tunnels.

A sketch of towed slender structures shown in Figure 10
has received considerable attention [128, 129]. For this
dynamical model, it was found that the dynamics with low
towing speed is dominated by rigid-body instabilities. At
higher towing speeds flexural instabilities might arise, much
as for a cantilevered cylinder. Recently, in a work by Langre
et al. [130], flutter was indeed found to exist.

Another typical system of a flexible cylinder or a tubular
beam axially towed in fluid is shown in Figure 11. In
Figure 11(a), a slender cantilevered beam is extending axially
in the horizontal direction at a known rate, while immersed
in a dense incompressible fluid. This tubular beam system
has been studied by Taleb and Misra [6] and Gosselin et
al. [7]. In the study by Gosselin et al., the fluid-dynamic
forces obtained by Taleb and Misra were perceived to
be not correctly accounted for. Thus, Gosselin et al. [7]
re-examined the fluid-dynamic forces. It was found that,
in the case of low constant extension rates, the system
displays a phase of oscillation with increasing amplitude and
decreasing frequency until the motion is strongly damped
and later becomes statically unstable. For faster deployment
rates, the beam has a short flutter phase at the beginning
of the deployment, followed by a brief phase of damped
oscillation until it exhibits static divergence. For fast enough
deployment rates, the system is unstable from the beginning
and never stabilizes. It should be mentioned that the effective
length of the towed beam is increased with time, since the
axially moving beam is clamped-free. It was also found that
the axial added mass coefficient plays significant role in the
stability of the system.

More recently, an axially towed system in fluid, shown
in Figure 11(b), was investigated by Lin and Qiao [8].
Compared with the system in Gosselin et al. [7], this beam
system has hybrid supports at both ends. It is worth noting
that the formula of the total axial tension (T(x)) in the

supported beam is different from that in the cantilevered
system. In the study of Gosselin et al. [7], a nonzero value
of T(L) arises from drag-induced compression at the free-
end. Therefore, the final equation of motion of a supported
system does differ from that of a cantilevered system.
Compared with the cantilevered system, the effective length
of the supported beam system keeps constant with time.

Figure 12 [8] shows the effect of moving speed on the
variation of the lowest three eigenvalues (Ω1, Ω2, and Ω3) of
the moving beam with pinned-pined supports. It was found
that the first mode first becomes unstable by divergence
instability when the moving speed becomes equal or larger
than the lowest critical moving speed (nondimensional) V ≈

1.06. However, flutter instability was predicted to occur at
a higher moving speed (V = 2.27) in the first mode. The
critical moving speeds at which divergence may occur in the
second and third modes were both higher than V = 2.27.

It is of special interest to see the case of clamped-clamped
moving beam. In this case, typical results are shown in
Figure 13 [8]. It is obviously seen that divergence in the first
mode occurs at V = 2.072 and in the third at V = 4.18.
However, the second mode was predicted to be stable in the
range 0 < V < 4.3.

9. Conclusions

The knowledge base associated with the basic dynamics
of slender structures subjected to axial flow or towed in
quiescent fluid has expanded greatly in recent years, as the
number of applications continues to grow. Obviously, the
literature survey is not exhaustive. For example, in Becker’s
survey [131] associated with the topic of pipes conveying
fluid, 223 references were cited; in a more recent review by
Paı̈doussis and Li [132], again, more than 200 references
associated with pipes conveying fluid were cited. This
paper, therefore, presents a selective review of the research
undertaken on the vibrations of slender structures subjected
to axial flow or axially towed in fluid. Undoubtedly many
important contributions have been missed. Other aspects,
which have been covered in a recent book by Paı̈doussis
[133], also have not been fully discussed here.

One item of particular interest to the readers is that
the fundamental understanding and experience gained and
the methodology employed in the studies of the dynamical
model of fluid-conveying pipes has proved to be very useful
in the study of several other dynamical models, particularly
shells conveying or immersed in axial flow, nanotubes
conveying fluid, tubular beams subjected to both internal
and external axial flows, cylinders and plates in axial flow,
and tubular beams or cylinders axially towed in fluid.
As reported in [132], it can be now understood that the
dynamics of thin shells containing or surrounded by annular
flows, with applications to aircraft engines and some types
of nuclear reactors utilizing thermal shields. Similarly, the
understanding of the dynamics of heat exchanger tube arrays
and nuclear reactor fuel clusters subjected to external axial
flows owes a great deal to the understanding gained in the
study of pipes conveying internal flow. Furthermore, the
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dynamics of various cylindrical beam-like components sub-
jected to internal or annular flows (e.g., solar thermal power
plant chimney subjected to internal and external flows) can
be understood in terms of what has been presented in the
fluid-conveying thin pipe system. Interestingly, however, as
indicated in [132], all these mostly unexpected applications
came 10–40 years after the basic research on the topic had
already been done.

From the history of investigating the slender structures
subjected to axial flow or axially towed in fluid, it can be
seen that, various important issues, such as, but not limited
to, vibrations of nanotubes conveying fluid when accounting
for small-length effect, instability of pipes aspirating fluid,
and nonlinear vibrations of tubular beams concurrently
subjected to internal and external axial flows, remain not
wholly resolved. To the authors’ knowledge, several items
may be of future interest on analyzing the stability and
vibrations of slender structures associated with axial-flow-
forces.

(i) With the development of computer techniques,
utilizing advanced numerical approaches to simulate the
dynamical behaviour of slender structures subjected to axial
flow or towed in quiescent fluid becomes realistic. To-
day, the simulation results may play an important role,
intuitively showing the dynamical behaviour of such systems.
To advance in this direction, numerical (CFD) studies using
ANSYS or other procedures should be initiated, which would
help reveal the dynamics closer to the truth. The CFD results
may meet the requirement for better coupling between the
solid and fluid models, and making fluid models more
realistic.

(ii) The effect resulting from the nanoscale on the
vibration of nanotubes conveying fluid has not been included
so far. At small length scales the material micro-structure
becomes increasingly important and its effect can no longer
be ignored. Thus, the direct use of classic continuum
approach to small length scales may be questionable. It is a
possible solution to extend the classic continuum approach
to smaller length scales by accounting for the information
regarding the behavior of material microstructure. There-
fore, some new theoretical models should be developed to
resolve such an important issue.

(iii) In practice, the axial flow is always with stochastic
velocity or has a stochastic component superposed on
steady flow. Therefore, the study on stochastic dynamics of
slender structures subjected to axial flow has more practical
application in this area. However, the literature on this topic
is quite limited.

(iv) Nonlinear problems of various slender structures
discussed in Sections 2, 3, 4, 5, 6, 7, and 8 are not wholly
resolved. For example, the nonlinear equation of motion of
parallel-plate assembly in axial flow, slender structures axially
towed in quiescent fluid, tubular beams subjected to both
internal and external axial flows (may not be independent),
and pipes aspirating fluid, have not been derived out, and
hence the corresponding nonlinear dynamics has not been
explored yet. Therefore, much attention may be concentrated
on the nonlinear aspects of those slender structures men-
tioned in the foregoing.

(v) In the past decades, various methods of vibration
control mostly considered the linear equations of motion
for slender structures subjected to axial flow. More impor-
tantly, in a vibration control system, time-delayed feedback
unavoidably exists. As reported by Xu and Chung [134],
time delayed feedback may change the stability and dynamics
of dynamical systems, leading to much more complex
dynamical behaviors. To suppress the amplified oscillations,
therefore, the methods of nonlinear control for slender
structures, subjected to axial flows or towed in fluid, should
also be developed by considering time delayed feedback.
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