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Vibration of wavy single-walled carbon nanotubes
based on nonlocal Euler Bernoulli and
Timoshenko models
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Abstract

The transverse vibration of a single-walled carbon nanotube (SWCNT) with light waviness along its axis is modeled
by the nonlocal Euler-Bernoulli and Timoshenko beam theory. Unlike the Euler-Bernoulli beam model (EBM), the
effects of transverse shear deformation and rotary inertia are considered within the framework of the Timoshenko
beam model (TBM). The surrounding elastic medium is described as both Winkler-type and Pasternak-type
foundation models. The governing equations are derived using Hamilton’s principle, and the Galerkin method is
applied to solve these equations. According to this study, the results indicate that the frequency calculated by TBM
is lower than that obtained by EBM. Detailed results show that the importance of transverse shear deformation and
rotary inertia become more significant for stocky SWCNTs with clamped-clamped boundary conditions. Moreover,
the influences of the amplitude of waviness, nonlocal parameter, medium constants, boundary conditions and
aspect ratio are analyzed and discussed. It is shown that waviness in the curved SWCNT causes an obvious increase
in the natural frequency in comparison with the straight SWCNT, especially for a compliant medium, pinned-pinned
boundary condition, short SWCNT and large nonlocal coefficient.
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Introduction
The discovery of carbon nanotubes (CNTs) by Ijima
(Iijima 1991) in the past decade has stimulated research
communities in nanotechnology and the development of
nano-scale functional devices designed for, and devoted
to, carbon nanostructures. The superior mechanical,
thermal and electrical properties of CNTs have been
investigated in extensive research. For instant, the results
show that in its mechanical properties, CNTs have exhibited
excellent mechanical stiffness and strength (Dresselhaus
et al. 2004; Treacy et al. 1996; Walgraef 2007). These proper-
ties have caused CNTs to become one of the most promising
materials for nano-electronics, nano-devices and nano-
composites (Chen et al. 2004; Hafner et al. 1999; Nishide
et al. 2003; Tsukagoshi et al. 2002).
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Recently, the mechanical behavior has become the
main topic of interest. Therefore, several studies have
been done to investigate the vibration of CNTs, since it
is essential to understand their dynamical behavior.
There are two main categories for simulating the mech-
anical and physical properties of CNTs: the first is
atomic modeling, which includes such techniques as
classical molecular dynamics (MD). This method is time
consuming, complex, expensive in computational cost
and limited to maximum system sizes of about 109

atoms (Lau et al. 2004; Liew et al. 2004). The second
type is continuum-based modeling, which includes elas-
tic beam models (Yoon et al. 2005; Zhang et al. 2006;
Wang et al. 2008; Kuang et al. 2009) and elastic shell
theories (Yakobson et al. 1997; Nguyen et al. 2009; Yan
et al. 2009; Liew & Wang 2007). For the beam models,
the Euler-Bernoulli beam model (EBM) (Fu et al. 2006;
Chaterjee & Pohit 2009; Chowdhury et al. 2009) as well
as the Timoshenko beam model (TBM) (Hsu et al. 2008;
Wang et al. 2006; Lee & Chang 2009; Mahdavi et al.
2011) have been widely employed. The EBM ignores the
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Figure 1 Configuration of the doubly simply support single-
walled carbon nanotube resonator having waviness defined by
the amplitude H.
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effect of rotary inertia and transverse shear deformation
and is applicable to analysis of vibrational characteristics of
CNTs. Therefore, the TBM model offers a more pre-
cise model compared with the Euler-Bernoulli theory
(Rao 2007). The above mentioned literature cannot con-
sider the nano-scale effect on the formulation. The small-
scale effect in elasticity is described by assuming that
the stress at a point is a function, not only of the strain
at that point, but the stress at all reference points
and is a function of strain field at every point in the
body, as proposed in Eringen’s nonlocal elasticity theory
(Eringen 1983). Nowadays, many studies have been devoted
to analysis of the vibration of CNTs, based on this non-
classical theory (Murmu & Pradhan 2009a; Şimşek 2011;
Mehdipour et al. 2011; Wang & Ni 2008; Yang et al. 2010;
Murmu & Pradhan 2009b).
Most previous theoretical studies are for straight nano-

tubes, but theoretic and experimental investigations show
that the CNTs are not straight in the environment. There
are few investigations performed to examine the vibration
of curved CNTs. For example, Joshi et al. (Joshi et al.
2010) investigated the vibrational response analysis of car-
bon nanotubes with their waviness treated as a thin shell.
Furthermore, Mayoof and Hawwa (Hawwa & Mayoof
2009) used classical EBM to study the dynamics of the
CNT when it acted as the first-mode resonator, with a
focus on the chaotic behavior of a curved carbon nano-
tube under harmonic excitation.
In the present study, both nonlocal Euler-Bernoulli and

Timoshenko beam theories are used to simulate the linear
transverse vibration of an embedded SWCNT with wavi-
ness. To the best of our knowledge, no previous work has
been done concerning the vibration behavior of curved
CNTs based on TBM. The surrounding elastic medium is
described as a Winkler and Pasternak model. The equa-
tions of motion are derived by Hamilton’s principle, and
they are solved using the Galerkin method to obtain fun-
damental frequencies. The importance of rotary inertia
and transverse shear deformation has been explored by
comparing the natural frequencies for both EBM and
TBM theories. In addition, the effects of amplitude of
curvature on the fundamental frequency are discussed.
Moreover, the variation of frequency has been considered
based on the different parameters such as the surrounding
elastic medium, the boundary conditions, the aspect ratio
of the SWCNTand the nonlocal coefficient.

Modeling
The system under consideration in Figure 1 is a doubly
simply supported ends SWCNT with immovable ends,
length L, initial waviness amplitude H, Young’s modulus E,
shear modulus G, cross-sectional area A, cross-sectional
moment I, mass moment inertia J and mass per unit length
m. The surrounding elastic medium is simulated by both
Pasternak-type and Winkler-type variables. The Winkler-
type elastic foundation is assumed to act as a vertical linear
spring while the Pasternak-type explains the transverse
shear stress due to interaction between SWCNT and shear
deformation of its medium (Murmu & Pradhan 2009b).
This medium is defined by KW and KG to represent the
Winkler modulus and Pasternak shear modulus of the
elastic medium, respectively.

Nonlocal Timoshenko Beam Theory
Because it considers the transverse shear deformation
and rotary inertia, TBM provides more reliable results
compared to other elastic beam theories. Thus, based on
this theory, the displacement field in x-z plane and at
any point in the body is as

~U x; z; tð Þ ¼ U x; tð Þ þ zψ x; tð Þ; ~W x; z; tð Þ
¼ W x; tð Þ ð1Þ

Where x is the longitude coordinate, z the coordinate
measured from the mid-plane of the beam and t is time.
Moreover, U(x,t) and W(x,t) are axial and transverse dis-
placement components in the mid-plane, respectively,
and ψ is the rotation of the cross- section.
According to Eq. (1), the linear and nonzero strains

are expressed as

εxx ¼ ∂U
∂x

þ ∂R
∂x

∂W
∂x

þ z
∂ψ
∂x

� �
; εzz ¼ 0; εxz

¼ ∂W
∂x

þ ψ ð2Þ

Where, εxx is the axial strain, εxz is the shear strain
and R(x) represents the small rise function that is
described as R(x) =H sin(πx/L).
The potential energy of strain Vs is given by

Vs ¼ 1
2

Z L

0

Z
A
σxxεxx þ σxzεxzð ÞdAdx ð3Þ

Where, σxx and σxz are normal stress and shear stress,
respectively. By substituting Eq. (2) into Eq. (3), the
strain energy Vs can be written as



Vs ¼ 1
2

Z L

0

Z
A

σxx
∂U
∂x

þ ∂φ
∂x

∂W
∂x

þ z
∂ψ
∂x

� �� �
þ σxz

∂W
∂x

þ ψ

� �� �
dAdx

¼ 1
2

Z L

0
Nx

∂U
∂x

þ ∂φ
∂x

∂W
∂x

� �
þMx

∂ψ
∂x

� �
þ Qx

∂W
∂x

þ ψ

� �� �
dx

ð4Þ
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The axial resultant force Nx, bending moment Mx and
transverse resultant force Qx can be obtained from

Nx ¼
Z
A
σxxdA;Mx ¼

Z
A
σxxzdA;Qx ¼

Z
A
σxzdA: ð5Þ

The kinetic energy T is calculated from

T ¼ 1
2
m
Z L

0

∂W
∂t

� �2

dxþ
Z L

0
J
∂ψ
∂t

dx: ð6Þ

The work Ve done by external load can be expressed as

Ve ¼
Z L

0
feWdx: ð7Þ

fe indicates the external load and corresponds to

fe ¼ �KWW þ KG
∂2W
∂x2

: ð8Þ

According to the nonlocal elasticity theory of Eringen,
shear force and bending moment in the nonlocal beam
theory are different from those in the classical TBM due
to the nonlocal constitutive equations (Eringen 2002), The
one-dimensional form for nonlocal constitutive relations
can be approximated as

σxx � e0að Þ2 d
2σxx
dx2

¼ Eεxx ð9� aÞ

σxz � e0að Þ2 d
2σxz
dx2

¼ Gεxz: ð9� bÞ

It should be noted that by setting the nonlocal param-
eter e0a = 0 the constitutive relations in classical elasti-
city theories can be recovered.
Substituting Eqs. (4), (6) and (7) into Hamilton’s

principle
R

0
L(δT − δVs + δVe)dt = 0, integrating by parts

and setting the coefficients of δW, δU and δψ to zero
leads to the differential equations of motion as

δU :
∂Nx

∂x
¼ 0 ð10� aÞ
and corresponding boundary conditions at beam ends
(x = 0, L) entail

U ¼ 0orNx ¼ 0;W ¼ 0orQx ¼ 0;ψ ¼ 0orMx ¼ 0:

ð11Þ

By using Eqs. (2), (5) and (9), the normal resultant force,
bending moment and shear force can be expressed as

Where k is the shear correction factor, depending on the
shape of the cross-section of the beam. By sequence
substituting Eq. (10-a), (10-b) and (10-c) into Eqs. (12-a),
(12-b) and (12-c), the explicit expressions of nonlocal nor-
mal resultant force Nx, bending moment Mx and shear
force Qx can be obtained as

Nx ¼ EA
∂U
∂x

þ ∂R
∂x

∂W
∂x

� �
ð13� aÞ

δW :
∂2Mx

∂x2
¼ m

∂2W
∂t2

� �
� ∂
∂x

Nx
∂W
∂x

� �
� ∂
∂x

Nx
∂Z
∂x

� �
� ∂Qx

∂x
þ fe

ð10� bÞ

δψ :
∂Qx

∂x
¼ J

∂2ψ
∂t2

� ∂M
∂x

þ Qx ð10� cÞ

Nx � e0að Þ2 ∂
2Nx

∂x2
¼ EA

∂U
∂x

þ ∂R
∂x

∂W
∂x

� �
ð12� aÞ

Mx � e0að Þ2 ∂
2Mx

∂x2
¼ EI

∂ψ
∂x

ð12� bÞ

Qx � e0að Þ2 ∂
2Qx

∂x2
¼ kAG

∂W
∂x

þ ψ

� �
: ð12� cÞ

Mx ¼ EI
∂ψ
∂x

þ e0að Þ2�
m
∂2W
∂t2

� ∂
∂x

Nx
∂R
∂x

� �
þ J

∂3ψ
∂t2∂x

� fe

�
ð13� bÞ



 
Qx ¼ kAG

∂W
∂x

þ ψ

� �
þ e0að Þ2

m
∂3W
∂x∂t2

� ∂2

∂x2
Nx

∂R
∂x

� �
� ∂fe

∂x

� �
:

ð13� cÞ
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The governing equation for nonlocal SWCNTs can be
derived by inserting Eqs. (13) into Eqs. (10)

EA
∂2U
∂x2

þ ∂2R
∂x2

∂W
∂x

þ ∂R
∂x

∂2W
∂x2

� �
¼ 0 ð14� aÞ

EA e0að Þ2Σ1 � Σ2
� 	� KAG þ KGð Þ ∂

2W
∂x2

þm
∂2W
∂t2

� kAG
∂ψ
∂x

þ KWW �m
∂4W
∂x2∂t2

�KW
∂2W
∂x2

þ KG
∂4W
∂x4

¼ 0 ð14� bÞ
ð14� bÞ

J e0að Þ2 ∂4ψ
∂x2∂t2

� ∂2ψ
∂t2

� �
� KAG

∂W
∂x

þ ψ

� �
þ EI

∂2ψ
∂x2

¼ 0

ð14� cÞ
Where

Σ1 ¼ ∂R
∂x

 
∂4U
∂x4

þ 2
∂4R
∂x4

∂W
∂x

þ 6
∂3R
∂x3

∂2W
∂x2

þ6
∂2R
∂x2

∂3W
∂x3

þ ∂R
∂x

∂4W
∂x4

!

þ ∂2R
∂x2

 
3
∂3U
∂x3

þ 6
∂3R
∂x3

∂W
∂x

þ 6
∂2R
∂x2

∂2W
∂x2

!

þ3
∂3R
∂x3

∂2U
∂x2

þ ∂4R
∂x4

∂U
∂x

ð15� aÞ
ð15� aÞ

Σ2 ¼ ∂R
∂x

∂2U
∂x2

þ 2
∂2R
∂x2

∂W
∂x

þ ∂R
∂x

∂2W
∂x2

� �
� ∂2R

∂x2
∂U
∂x

:

ð15� bÞ
By integrating over the domain [0-L] from Eq. (14-a),

displacement along x axes can be obtained as

U ¼ �
Z x

0

1
2

∂W
∂x

� �2

þ ∂R
∂x

∂W
∂x

" #
dx

þ x
1
L

Z L

0

1
2

∂W
∂x

� �2

þ ∂R
∂x

∂W
∂x

" #
dx: ð16Þ

Eqs. (14-a), (14-b) and 14-c) are consistent basic equa-
tions of the curved TBM. By using Eq. (16) and eliminat-
ing ψ, Eqs. (14) are summarized as an uncoupled
equation as
e0að Þ4
kAG

� EJA
L

∂6R
∂x6

Z L

0

∂R
∂x

∂W
∂x

dxþ JKW
∂6W
∂x4∂t2

�KG
∂8W
∂x6∂t2

þ Jm
∂8W
∂x4∂t4

!
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a

þ e0að Þ2
kAG

"
� 2JEA

L
∂4R
∂x4

Z L

0

∂R
∂x

∂3W
∂x∂t2

dx

þ EI
∂6R
∂x6

� kAG
∂4R
∂x4

� �
EA
L

Z L

0

∂R
∂x

∂W
∂x

dx

þ 2JKW
∂4W
∂x2∂t2

þ Jm
∂6W
∂x2∂t4

�mEI
∂6W
∂x4∂t2

� JKG
∂6W
∂x4∂t2

þ EI KG
∂6W
∂x6

� KW
∂4W
∂x4

� �#

þ e0að Þ2 J
∂6W
∂x4∂t2

þm
∂4W
∂x2∂t2

� KG
∂4W
∂x4

þ KW
∂2W
∂x2

� �

þ 1
KAG

"
�EI

∂4R
∂x4

þ kAG
∂2R
∂x2

� �
EA
L

Z L

0

∂R
∂x

∂W
∂x

dx

þ JEA
L

∂2R
∂x2

Z L

0

∂R
∂x

∂3W
∂x∂t2

dxþ JKG þmEIð Þ ∂4W
∂x2∂t2

� EIKG þ Jmð Þ ∂
4W
∂x4

þ EI � Jð ÞKW
∂4W
∂x4

#

þ J
∂4W
∂x2∂t2

þ EI
∂4W
∂x4

�m
∂2W
∂x2

þ KG
∂2W
∂x2

þ KWW ¼ 0:

ð17Þ

Nonlocal Euler-Bernoulli Beam Model
The governing equation of EBM contains only the de-
flection of the beam because the effects of transverse
shear deformation and rotary inertia are ignored. There-
fore, the linear strain–displacement relations for curved
Euler beam are expressed as
εxx ¼ ∂U
∂x

þ ∂R
∂x

∂W
∂x

� z
∂2W
∂x2

� �
; εzz ¼ εxz ¼ 0: ð18Þ

By performing a similar approach to that presented for
the TBM, the differential equation that governs the vi-
bration of the curved SWCNT based on the EBM is
obtained as
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EI
∂4W
∂x4

þm
∂2W
∂t2

� e0að Þ2 ∂4W
∂x2∂t2

� �

þ KG e0að Þ2 ∂
4W
∂x4

� ∂2W
∂x2

� �

þKW W � e0að Þ2 ∂
2W
∂x2

� �

¼ EA
∂2R
∂x2

� e0að Þ2 ∂
4R
∂x4

� �Z x

0

∂R
∂x

∂W
∂x

� �
dx:

ð19Þ

The boundary conditions for SWCNTs with immov-
able ends can be considered as

W ¼ ψ ¼ 0x ¼ 0; L: ð20Þ

For clamped ends and

W ¼ 0;

Mx ¼ EI
∂ψ
∂x

þ e0að Þ2
 
m
∂2W
∂t2

� ∂
∂x

Nx
∂R
∂x

� �

þJ
∂3ψ
∂t2∂x

þ KWW � KG
∂2W
∂x2

!
¼ 0 x ¼ 0; L

ð21Þ

For pinned ends.

Solution Method
In this study, the free vibration equation of the curved
SWCNT has been investigated by using the nonlocal
TBM and EBM. The influences of transverse shear de-
formation and rotary inertia on the vibration frequencies
are investigated by comparing the TBM results with
those based on the EBM.
For rewriting the governing equations in a non-

dimensional form, introducing the following dimension-
less quantities is important

τ ¼ tω;ω ¼
ffiffiffiffiffiffiffiffiffi
EI
mL4

r
;Ω ¼ ω

ω0
ξ ¼ x

L
;

w ¼ W
L
; b ¼ J

mL2
r ¼ R

L
; s ¼ AL2

I
;

kW ¼ KWL4

EI
; h ¼ H

L
kG ¼ KGL2

EI
; en ¼ e0a

L
;

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

kAGL2

r
; k ¼ 2 1þ υð Þ

4þ 3υ

ð22Þ

Where ω and υ are the natural frequency andpoisson
ratio respectively.
By utilizing Eqs. (22), the TBM equation of motion

(17) can be rewritten in dimensionless form
en
4sbkG

∂8w

∂ζ6∂τ2
� en

4sb
∂8w

∂ζ4∂τ4

 
en

2 þ 2en
2kWsbþ bþ sþ sbkG

!

∂4w
∂ζ2∂τ2

�en2 bþ sþ en2kWsbþ 2kWsbð Þ ∂6w
∂ζ4∂τ2

þ 2en
2sb

∂6w
∂ζ2∂τ4

þ en
2kGs

∂6w

∂ζ6

� skWen2 þ en2kG þ skG þ 1ð Þ ∂
4w

∂ζ4
� sb

∂4w
∂τ4

þ
"
kW

 
s� en

2

!
þ kG

#
∂2w

∂ζ2

� sbkW þ 1ð Þ ∂
2w
∂τ2

þ p
∂2r

∂ζ2
þ psen

2 ∂
6r

∂ζ6
� ∂4r

∂ζ4
pen

2 þ sp
� �
Z 1

0

∂r
∂ζ

∂w
∂ζ

dζ

þpsb en4
∂6r

∂ζ6
� 2en

2 ∂
4r

∂ζ4
þ 1

� �Z 1

0

∂r
∂ζ

∂3w
∂ζ∂τ2

dx� kWw

ð23Þ

Moreover, the non-dimensional EBM governing equa-
tion is obtained from Eq. (19) as
∂4w
∂ξ4

þ ∂2w
∂τ2

� en
2 ∂4w
∂ξ2∂τ2

þ kG
∂4w
∂ξ4

� en
2 ∂

2w

∂ξ2

� �

þkW w� en2
∂2w
∂ξ2

� �
¼ s

∂2r
∂ξ2

� en
2 ∂

4r

∂ξ4

� �Z 1

0

∂r
∂ξ

∂w
∂ξ

� �
dξ

ð24Þ

The Galerkin method is a powerful solution technique
to solve the differential equations. The Galerkin method
of decomposition is used to obtain the governing ordin-
ary differential equation (ODE) from a partial counter-
part. For one-term approximation the deflection of the
beam w(ξ,τ) separates as

w ξ; τð Þ ¼ φ ξð Þ:eiΩτ ð25Þ

Where ϕ(ξ) is the fundamental mode shape for bound-
ary conditions of beam and Ω is the dimensionless nat-
ural frequency.
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The non-dimensional form of boundary conditions
from Eqs. (20) and (21) can be written as

φ ¼ ψ ¼ 0ξ ¼ 0; 1 ð26Þ
For clamped ends and

φ ¼ 0;

∂ψ
∂ξ

þ en
2

 
Ω2φ� ∂

∂ξ
nx

∂r
∂ξ

� �

þbΩ2 ∂ψ
∂ξ

þ kWφ� kG
∂2φ
∂ξ2

!
¼ 0 ξ ¼ 0; 1

ð27Þ

For pinned ends. Here nx is the dimensionless axial re-
sultant force expressed as nx =NxL

2/EI.
It is interesting to note that there isn’t any discrepancy

in boundary equations between classical and nonlocal
beam theories for simply supported boundary condition
(Murmu & Pradhan 2009b). This is in view of ϕ = 0 at
the boundaries. Here the dependency of ϕ and ψ is
assumed. Therefore, the nonlocal effects are ignored in
the Eq. (27). By using the assumption that ψ = dϕ/dξ, the
boundary conditions can be simplified as

φ ¼ dφ
dξ

¼ 0ξ ¼ 0; 1: ð28Þ

For clamped ends and

φ ¼ d2φ

dξ2
¼ 0ξ ¼ 0; 1: ð29Þ

In this study three boundary value problems with im-
movable ends (one for simply supported beam, the sec-
ond for double clamped and another for clamped-
pinned beam) are considered.
Consequently, ϕ (ξ) from the boundary conditions will

be obtained as follows

1) A beam clamped at both ends or the clamped–
clamped boundary condition (C–C):

φ ξð Þ ¼ cosh 4:73ξð Þ � 0:9825 sinh 4:73ξð Þ
� cos 4:73ξð Þ þ 0:9825 sin 4:73ξð Þ ð30Þ

2) A beam clamped at one end and simply supported at
the other end, i.e. clamped–pinned condition (C–P):

φ ξð Þ ¼ cosh 3:92ξð Þ � 1:0008 sinh 3:92ξð Þ
� cos 3:92ξð Þ þ 1:0008 sin 3:92ξð Þ ð31Þ

3) And a simply supported beam at both ends or
pinned–pinned condition (P–P):

φ ξð Þ ¼ sin 3:14ξð Þ ð32Þ

Applying Eqs. (30–32) into partial equations of motion
SWCNT and multiplying of the these equations by ϕ(ξ)
and then integrating over the length of SWCNT, the
ODE of motion can be obtained.
Therefore, the following linear fourth-order ODE is

obtained from TBM as

AΩ4 � BΩ2 þ C
� �

q ¼ 0 ð33Þ

Where A, B and C are the coefficients of general equa-
tion of motion (33) that represented in appendix A. The
dimensionless linear fundamental frequency represented
as

ΩTBM ¼ 1
2

B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
 �
: ð34Þ

Similarly, by applying the EBM for the free vibration
of a curved SWCNT, the governing equation can be sim-
plified to the following dimensionless equation

MeqΩ
2 þ Keq

� �
q ¼ 0: ð35Þ

Where Meq and Keq are the equivalent of mass and
stiffness of the vibrational system that are described in
appendix B, and the resonant frequency becomes

ΩEBM ¼
ffiffiffiffiffiffiffiffi
Keq

Meq

s
: ð36Þ

Results and discussion
In this case study, the diameter, aspect ratio, thickness of
SWCNT and Young’s modulus of the nanotube are
assumed to be de = 3.19 nm, L/de = 6.052 nm, tc =
0.137 nm, and E = 2.407 TPa, respectively (Gupta et al.
2010). The mass density of the SWCNT is 2300 kg/m3

with nonlocal parameter e0a of 2 nm. Also, the Winkler
modulus and Pasternak modulus are estimated at the
values of KW = 1 MPa and KG = 5nN, in that order
(Murmu & Pradhan 2009b). Moreover, the amplitude of
curve H is 1 nm (Mayoof & Hawwa 2009).
In order to explore the effects of rotary inertia and

transverse shear deformation on the frequency of the
curved SWCNT, one makes a comparison between the
results obtained from the EBM and TBM as mentioned
in Table 1. The values in the brackets are the relative
errors between the EBM and TBM. It is found from this
table that the resonant frequencies of the TBM are smal-
ler than those predicted by EBM, which overestimates
the resonant frequencies for a linear vibration. It is
noted that the difference between the values of the res-
onant frequencies predicted by different beam models in
this study is more significant for the stiffer boundary
conditions and stocky SWCNTs. In other words, for
long and slender SWCNTs with a high aspect ratio, the
impacts of transverse shear deformation and rotary



Table 1 Comparison of the dimensionless linear
fundamental frequency by TBM and EBM for different
boundary conditions and length (de = 3.19 nm, H = 1 nm,
e0a = 2 nm, KW = 1 MPa, KG = 5nN)

boundary
condition

L = 20 nm L = 40 nm L = 60 nm

EBM TBM EBM TBM EBM TBM

C-C 17.93 15.19
(15.2%)

21.65 20.94
(3.2%)

22.86 22.58
(1.2%)

C-P 13.24 11.96
(9.7%)

15.71 15.34
(2.3%)

16.65 16.49
(0.9%)

P-P 10.02 9.51(5%) 11.41 11.23
(1.5%)

12.1 12(0.6%)

Figure 3 The difference percent DP against the curvature
amplitude H for a clamped-clamped SWCNT with different
values of the Winkler modulus KW (de = 3.19 nm, e0a = 2 nm, L/
de = 6.052 nm, KG = 5nN).
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inertia on the vibration of curved SWCNTs can be
ignored, especially for P-P boundary condition.
As mentioned before, another main purpose of this paper

is to show the significance of curvature in modeling of the
SWCNT vibration. Hence, Figure 2 illustrates the funda-
mental frequencies of TBM ΩTBM against the amplitude of
curvature H for various boundary conditions. It has been
shown from this figure that with increasing the amplitude
of waviness H, the frequency increases. Furthermore, the
fundamental frequencies are completely dependent on the
boundary conditions and they are increased while the bend-
ing stiffness of the SWCNT rises from P-P to C-C, in par-
ticular for low curvature amplitude.
Moreover, to see the effects of curvature clearly, the

difference percent (DP) is defined as a parameter that shows
the percent increment of frequency for a curved SWCNT
(H ≠ 0 nm) compared with a straight nanotube (H = 0 nm).

DifferencePercent DPð Þ ¼ ΩH¼Hnm
TBM �ΩH¼0nm

TBM

� �� 100

ΩH¼0nm
TBM

ð37Þ
Figure 2 The fundamental frequency ΩTBM against the
curvature amplitude H for three typical boundary conditions
(de = 3.19 nm, e0a = 2 nm, L/de = 6.052 nm, KW = 1 MPa, KG =
5nN).
Certainly, DP gives a better illustration for the pure
effects of the amplitude of curvature H. Figures 3, 4, 5,
6, 7 represent the difference percent DP as a function of
the waviness amplitude H, while the effects of a certain
parameter such as the stiffness of model, the length of
SWCNT and the nonlocal parameter have been evalu-
ated in each figure. Obviously, the variation of funda-
mental frequencies is increased when the waviness is
amplified, in all the figures.
The surrounding elastic medium can be described by

Winkler and Pasternak modulus that are determined by
the material properties of the elastic medium (Yoon et al.
2003; Lanir & Fung 1972). The DP is very responsive to
the stiffness of the model, due to foundation and boundary
conditions. As the Winkler modulus KW and Pasternak
modulus KG of the surrounding elastic medium increase,
the shift of the DP is significant (Figures 3 and 4). There-
fore, in a soft elastic medium, the effects of the curvature
Figure 4 The difference percent DP against the curvature
amplitude H for a clamped-clamped SWCNT with different
values of the Pasternak modulus KG (de = 3.19 nm, e0a = 2 nm,
L/de = 6.052 nm, KW = 1 MPa).



Figure 7 The difference percent DP against the curvature
amplitude H for a clamped-clamped SWCNT with different
values of the nonlocal parameter e0a (de = 3.19 nm,
L/de = 6.052 nm, KG = 5nN, KW = 1 MPa).

Figure 5 The difference percent DP against the curvature
amplitude H with different types of boundary conditions
(de = 3.19 nm, e0a = 2 nm, L/de = 6.052 nm, KW = 1 MPa, KG = 5nN).
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on the vibration of SWCNT increase. In addition, stiffness
of boundaries has a similar behavior as the stiffness of the
medium. As mentioned previously, to show the effects of
boundary condition, this model solved for P-P, C-P and P-
P boundary conditions. Figure 5 indicates that the bound-
ary conditions have considerable effects on the DP. The il-
lustration demonstrates that with decreasing the stiffness
of the SWCNT from C-C to P-P, the effects of waviness
on vibrational frequency increase.
Figure 6 is presented in order to see the role of the

SWCNT dimension. It shows the importance of the
SWCNT length in the natural frequency and associated
difference percent. Results show that an increase in the
slenderness ratio causes the DP to considerably de-
crease. According to this figure, the rise of frequency
with curvature amplitude is found to be significantly
dependent on the aspect ratio. It means for a long nano-
tube, the difference of frequency between the straight
SWCNT and curved SWCNT is reduced.
Figure 6 The difference percent DP against the curvature
amplitude H for a clamped-clamped SWCNT with different
values of the length L (de = 3.19 nm, e0a = 2 nm, KG = 5nN,
KW = 1 MPa).
Finally, to investigate the effects of nonlocal theory,
the DP is plotted as a function of the curvature ampli-
tude H and the nonlocal parameter e0a, in Figure 7.
Nonlocal curves have been plotted for three different e0a
values. The e0a values taken are 0 nm, 2 nm and 5 nm.
The nonlocal elasticity theory makes nano-devices more
flexible and reduces the stiffness of the SWCNTs. As the
figure shows, with an increase in model stiffness, by de-
creasing the nonlocal coefficient, the DP decreases con-
sequently. Therefore, the larger DP occurred at higher
nonlocal values and the nonlocal theory provides a
higher sensitivity of curved amplitude for the waviness
SWCNT.
Conclusions
The nonlocal Timoshenko beam model (TBM) and
Euler-Bernoulli beam model (EBM) have been intro-
duced to analyze the effect of waviness on the curved
single-walled carbon nanotube (SWCNT). The surrounding
elastic medium is simulated using Winkler and Pasternak
models. Comparing the results predicted by these two
beam models, it is found that the EBM may provide as
accurate results as the TBM for SWCNTs with larger
length-to-diameter ratio. However, the Timoshenko
beam model is highly recommended for stiffer bound-
ary conditions and stocky SWCNTs due to the effects
of shear deformation and rotary inertia. In addition, the
results show that the waviness has a significant effect
on the vibrational behavior of the SWCNT. Detailed
results indicate the influence of the curvature, the stiff-
ness of medium around the SWCNT, the boundary
conditions, the length of SWCNT and the nonlocal par-
ameter on the natural frequency. Our investigation
demonstrates that increasing the amplitude of curva-
ture causes the fundamental frequency to increase.
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Furthermore, with an increase in the stiffness of the
model, due to the boundary conditions and the founda-
tion, the length of SWCNT and the nonlocal constant,
a higher frequency value is obtained for a curved
SWCNT in comparison to a straight SWCNT.
Appendix A
The coefficients of Eq. (33)
C-P condition

A ¼ 2þ 46:05en4 þ 475:34en2

B ¼ 475:34en2

s
þ 475:34en2

b
þ 23:02en2

sb
þ 5:99en

2π5ph2

þ23:02kG þ 5473:78kGen
4 þ 475:34kWen

4 þ 2π4kWen
2

þ 2:99en
4π7ph2 þ 2kW þ 996:73kWen

2 þ 2:99e2π3p

þ 23:02
s

þ 23:02
b

þ 2
sb

C ¼ 1
b

 
23:02kW þ 475:34kG þ 475:34en

2kW þ 916:65ph2

þ 9047:04en
2ph2 þ 5473:78kGen

2

!

þ 1
sb

 
23:02kG þ 475:34þ 2kW þ 475:34en

2kG

þ 92:87ph2 þ 916:65en
2ph2 þ 23:02kWen

2

!

C-C condition

A ¼ 2þ 49:2en4 þ 1001:15en2

B ¼ 1001:15en2

s
þ 1001:15en2

b
þ 24:6en2

sb
þ 1865:17en

2ph2

þ24:6kG þ 12315:84kGen
4 þ 1001:15kWen

4

þ 2051:51kWen
2 þ 9194:93en

4ph2 þ 2kW þ 996:73kWen
2

þ 94:58h2pþ 24:6
s

þ 24:6
b

þ 2
sb

C ¼ 1
b

 
24:6kW þ 1001:15kG þ 1001:15en

2kW

þ 932:58ph2 þ 9194:93en
2ph2 þ 12315:84kGen

2

!

þ 1
sb

 
24:6kG þ 1001:15þ 2kW þ 1001:15en

2kG

þ 94:58ph2 þ 932:58en
2ph2 þ 24:6kWen

2

!

P-P condition

A ¼ 2þ 39:47en4 þ 194:81en2

B ¼ 194:81en2

s
þ 194:81en2

b
þ 19:73en2

sb
þ 1922:73en

2ph2

þ19:73kG þ 1922:73kGen
4 þ 194:81kWen

4 þ 429:1kWen
2

þ 9488:33en
4ph2 þ 2kW þ 996:73kWen

2 þ 97:4h2p

þ 19:73
s

þ 24:6
b

þ 2
sb

C ¼ 1
b

 
19:73kW þ 194:81kG þ 194:81en

2kW þ 961:36ph2

þ 9488:33en
2ph2 þ 1922:73kGen

2

!

þ 1
sb

 
19:73kG þ 194:81þ 2kW þ 194:81en

2kG

þ 97:4ph2 þ 961:36en
2ph2 þ 19:73kWen

2

!

Appendix B
The coefficients of Eq. (36)
C-C condition

Keq ¼ 1þ 12:3en2

Meq ¼ 12:3kWen2 þ 500:56kGen2 þ 12:3kG

þ 467:53ph2en2 þ kW þ 47:37ph2 þ 500:56

C-P

Keq ¼ 11:51en2 þ 1
Meq ¼ 237:7en2kG þ 11:5en2kW þ 11:5kG þ kW

þ 458:4ph2en2 þ 46:4ph2 þ 237:7

P-P

Keq ¼ 9:8en2 þ 1
Meq ¼ 97:4en2kG þ 9:8en2kW þ 9:8kG þ kW

þ 480:6ph2en2 þ 48:7ph2 þ 97:4
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