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Abstract The present review article addresses the vi-
bration behavior of bladed disks encountered e. g. in air-

craft engines as well as industrial gas and steam tur-
bines. The utilization of the dissipative effects of dry
friction in mechanical joints is a common means of the

passive mitigation of structural vibrations caused by

aeroelastic excitation mechanisms. The prediction of

the vibration behavior is a scientific challenge due to

(a) the strongly nonlinear and non-uniform contact in-

teractions involving local sticking, sliding and liftoff, (b)
topological complexity of the coupled structure, and (c)
the multi-disciplinary character of the problem associ-

ated with the need to account for structural mechanical

as well as fluid dynamical effects. The purpose of this

article is the overview and discussion the current state

of the art of vibration prediction approaches. The mod-

eling approaches in this work embrace the description

of the rotating bladed disk, the contact modeling, the

consideration of aeroelastic effects, appropriate model

reduction techniques and the exploitation of the rota-

tionally periodic nature of the problem. The simulation

approaches cover the direct computation of periodic,

steady-state externally forced and self-excited vibra-
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tions using the high-order harmonic balance method,

the formulation of the contact problem in the frequency

domain, methods for the solution of the governing al-

gebraic equations and advanced simulation approaches,

including the concept of nonlinear modes.
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Nomenclature

Scalars, sets

N0 initial normal load

gn,0 initial normal gap

H set of (temporal) harmonics

m engine order

m0 fundamental engine order

M set of relevant engine orders

ǫDL Dynamic Lagrangian penalty coefficient

Ωrot rotational speed

θ inter-blade phase angle

Vectors

fa aerodynamical forces

fae,F ae aerodynamical external forces (time

domain, frequency domain)

fai aerodynamical interaction forces

f c,F c global contact forces (time domain,

frequency domain)
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Vectors

g contact gaps

λ,Λ local contact forces (time domain,

frequency domain)

u,U vector of (generalized) coordinates

(time domain, frequency domain)

p pressure

Matrices

B interface coupling matrix

D damping matrix

Gai aeroelastic transfer matrix

H dynamic compliance matrix

I identity matrix

K matrix of velocity proportional forces

M mass matrix

S dynamic stiffness matrix

T matrix of component modes

W ns
discrete Fourier matrix for ns samples

∇ frequency domain derivative matrix

Numbers

nc number of contact points

nd number of (generalized) coordinates

nfe number of finite element nodal

degrees of freedom

nfe,s ... per sector

nif number of interfaces

nr number of component modes

ns number of sectors

Subscripts, superscripts

( )n associated to the normal

direction

( )t associated to the tangential

direction
(n)( ) associated to sector n

C( ) in the coordinates of the

continuous contact interface

c( ) in the coordinates of the

discrete contact interface

fe( ) in the physical degrees of

freedom of the finite element model

r( ) in the generalized coordinates

of the component modes

tw( ) in traveling wave coordinates

Operators

( )
∗

complex conjugate

ℑ{( )} imaginary part

ℜ{( )} real part

( )+ pseudo inverse

( )H Hermitian transpose

( )T transpose

NA null space of matrix A

1 Introduction

1.1 Engineering relevance of friction damping of

bladed disks

Fig. 1: Examples for High-Cycle-Fatigue failures of
bladed disks: (a)-(b) debris of the first stage aero engine
compressor rotor and its blades [100], (c) fracture of an

aero engine low pressure turbine rotor blade [4]

In the ongoing quest for improved efficiency, mod-

ern turbomachines are driven near their structural me-

chanical limits. The successful operation of these ma-

chines depends largely on the structural mechanical

integrity of the rotating components, owing to their

comparatively high loading [152]. Bladed disks undergo

high mechanical stress during operation. Static stresses

are caused by thermal loads, static fluid pressures and

rotation-induced centrifugal loads. Mechanical vibra-

tions, caused by additional dynamic loads of different

origins, lead to dynamic stresses. Depending on the

static stress level, sustained and high dynamic stresses

can lead to high cycle fatigue (HCF). This type of fa-

tigue leads to substantial life cycle costs and presents a

major safety issue. A primary goal of the design process

is to ensure the structural mechanical integrity. Hence,

vibrations are a central concern in the design of aircraft

engines as well as industrial gas and steam turbines.
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resonances

flutter

forced NSV

Fig. 2: The schematic Campbell diagram illustrates

natural frequencies, frequencies of synchronous excita-

tion (integer multiplesmΩrot, depicted as so-called load

lines), and representative vibration regimes

Vibration mechanisms

Two of the most important vibration mechanisms of
bladed disks are of aeroelastic nature: (a) forced re-
sponse and (b) flutter [152].

(a) Synchronous forced response In the case of forced

response, the dynamical loads are caused by the rota-
tion of the blades through the circumferentially inho-

mogeneous pressure field. Pressure inhomogeneities are
caused by aerodynamical blade row interactions and
non-uniform inflow conditions. An example for blade
row interaction are wakes from upstream stator vanes

which leads to the so-called nozzle-excitation. Non-uniform

inflow conditions are caused by asymmetries in the flow

path due to e. g. struts or casing ovality. In steady op-

eration, the resulting inhomogeneous pressure field is

essentially time-invariant in the non-rotating frame of

reference. From the perspective of the rotating bladed

disk, this pressure field takes the form of a wave trav-

eling with rotor speed. This results in dynamic load-

ing with frequencies being integer-multiples of the ro-

tational frequency, hence the term synchronous exci-

tation. Under the condition of resonance; i. e. , if an

excitation frequency coincides with a natural frequency

of the structure, the forced vibration response can reach

particularly high levels. Resonance coincidences are com-

monly identified using the Campbell diagram, see Fig. 2.

(b) Flutter Flutter refers to the unstable aeroelastic in-

teraction of a vibrating structure with the surrounding

fluid flow. In turbomachinery, flutter is mainly caused

by the cascade effect; i. e. , the aerodynamical interfer-

ence among the blades within a blade row. If this in-

teraction is unstable, the blades receive energy from

the unsteady flow as a consequence of their vibration,

which represents a self-excitation mechanism. This pos-
itive feedback leads to continuously increasing vibration
level, until nonlinear effects come into play or the struc-
ture fails. Form and frequency of the vibration are usu-

ally similar to one of the structure’s normal modes of

vibration. In contrast to forced response, the oscillation

frequency is generally not an integer-multiple of the ro-

tational speed [152,101].

Other vibration mechanisms of aeroelastic nature in-

clude vortex shedding and rotating instabilities that oc-

cur largely under the condition of partial loading. These

unsteady mechanisms cause non-synchronous forced or

self-excited vibrations. Besides aeroelastic mechanisms,

mechanical effects can lead to vibrations of the bladed
disk. Common examples are the rubbing between blades
and the casing, vibrations due to torsional or lateral

dynamics of the rotor shaft, and extreme events such

as ingestion of birds or ice (foreign object damage) or

structural failure of individual blades (domestic object

damage).

Means of vibration reduction

Fig. 3: Common types of friction joints [143]: (a) roots
joints, (b) tip shrouds, (c) underplatform dampers, (d)
damper wires, (e) damper pins

Different strategies are pursued to avoid and miti-

gate vibrations of bladed disks. An important approach
is to avoid the excitation of resonant vibrations and
aeroelastic instabilities in the operating range. This can
be achieved by adjusting the system’s dynamical char-

acteristics (e. g. blade counts, natural frequencies) with

appropriate design measures. If resonance coincidence

cannot be completely avoided, one has to make sure

that the vibration response remains within tolerable
bounds. This can be accomplished by mitigating the
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excitation level of the associated wave lengths in the

relevant frequency range. An important means to avoid

flutter is intentional mistuning, i. e. , a deliberate vari-

ation of the blade-to-blade properties. If excessive ex-

citation by resonant forcing or flutter still cannot be

avoided for all important modes in the relevant oper-

ating range, one may have to increase the damping of

the system. The total damping Dtotal of the system is
composed as,

Dtotal = Daerodynamical+Dmaterial +Djoints
︸ ︷︷ ︸

Dmechanical

+Drest . (1)

In the case of resonant forced response, an increase of
the total damping can lead to a significant reduction of

the vibration levels. In the case of flutter, the aerody-
namical damping, Daerodynamical is negative, and addi-

tional damping can lead to the complete suppression or,
if nonlinear effects become important, the stabilization

of vibrations in so-called limit cycles.
Mechanical damping, Dmechanical, can be grouped into

material damping, Dmaterial, which is usually compara-

tively small, and the damping due to mechanical joints,
Djoints. Dissipation can also have non-aerodynamical

and non-mechanical, e. g. electromagnetic origin. Such

dissipation mechanisms are accounted for in Drest.

The most important sub-group of joint damping,Djoints,
is friction damping, which refers to the dissipative ef-

fects related to dry frictional local sliding in mechan-

ical joints. Friction damping is certainly the most es-

tablished damping technology of bladed disks. A major

drawback of friction damping is that it comes at the

cost of wear effects. It should be remarked that many

damping technologies with successful applications in

other fields, cannot cope with the harsh environment

(high temperatures, high centrifugal stresses, corrosive

gases), and the strictly limited design space. Also, the

application of active or semi-active vibration control

strategies is hampered by the requirement of fail-safe

operation. Noteworthy alternatives to friction damping

include piezoelectric shunt damping [58,178], eddy cur-

rent damping [88,87], viscoelastic material damping of

coatings [177,60], and impact or particle damping.
Friction damping takes place in mechanical joints that
are either inherent to bladed disks, such as the ones
between blades and roots, or can be introduced ad-

ditionally, e. g. in the form of underplatform dampers.

Some of the most common forms of mechanical joints

are illustrated in Fig. 3. Besides damping, additional

joints also increase the elastic coupling among adjacent
blades. This changes the structure’s modal characteris-
tics and is in fact sometimes the primary motivation for

the introduction of these joints. By means of an appro-

priate design of mechanical joints, a considerable miti-

gation of vibrations and resulting dynamic stresses can

be achieved. This, in turn, leads to an improved struc-

tural reliability and decreases fatigue-related costs. Fur-

thermore, this can lead to an increased feasible blade

design space and an extended range of tolerable oper-

ating conditions, and, thus, contributes to an increased

efficiency of the turbomachine.

1.2 Scientific complexity of the topic

The design of bladed disks with mechanical joints relies

on a profound understanding of the relevant physical

phenomena and adequate tools for the assessment of

the structural dynamic characteristics. Important char-

acteristics in this context are the vibration level, the res-

onance frequencies and the mechanical damping. Dur-

ing the design phase, these measures are determined

largely by means of vibration prediction, whereas tests

are many carried out for validation. The vibration pre-

diction is particularly difficult due to the following as-

pects.

(a) Nonlinearity The contact interactions in mechani-

cal joints represent strongly nonlinear phenomena. This

nonlinearity leads to a strong coupling of different time

and length scales. More specifically, the local stick, slip

and liftoff phenomena in the mechanical joints, occur-
ring on relatively short time and length scales, have
considerable effects on the global vibration behavior
of bladed disks, occurring on much longer time and

length scales, and vice-versa. Moreover, the dependence

on the vibration level needs to be taken into account in

the analysis of structural dynamic characteristics, such

as resonance frequencies, effective damping and deflec-
tion shape. Also, nonlinearity can give rise to phenom-
ena such as co-existence of multiple stable vibration

states, and steady-state vibrations that exhibit signif-

icant frequency components not present in the excita-

tion spectrum. Suitable simulation methods are often

based on iterative, numerical procedures which are com-

paratively time-consuming.

(b) Model order Turbomachinery bladed disks exhibit

blades with generic, three-dimensional profiles and of-

ten consist of a large number of components, possibly

including additional devices such as friction dampers.

Hence, spatial discretization is commonly carried out

using finite elements. Moreover, the different compo-

nents have a number of extended contact interfaces
where nonlinear contact interactions may take place.
A fine spatial discretization is required to accurately

resolve the local contact interactions and the dynamic
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stress field. This leads to a comparatively high order of

the mathematical model.

(c) Multi-disciplinary character : Since the most im-

portant vibration mechanisms are of aeroelastic type,
both the structural mechanical and the fluid dynami-
cal domain need to be taken into account. These do-

mains can in general not be regarded as independent

of each other. For instance, the aeroelastic interaction

is essential to understand the physical phenomenon of

flutter [152,101]. Besides aerodynamics and structural
mechanics, tribology is another scientific field inher-
ently associated with friction damping.

In addition to these aspects, several system parameter

are considered uncertain, and may have to be accounted

for using probabilistic methods. Finally, many turbo-

machines undergo a large range of operating conditions.

The structural mechanical and aerodynamical proper-

ties can vary considerably with the operating condition,

which has to be considered during the vibration predic-

tion. The development of suitable vibration prediction

methods encompasses a variety of scientific topics. A

non-exhaustive list is illustrated in the mind map in
Fig. 4.

1.3 Motivation and scope of this review article

The development of approaches for the vibration pre-

diction of bladed disks coupled by friction joints was

and still is the objective of intensive research efforts.

Since the first contributions in the 1970ies [33], the

degree of detail in the modeling and simulation ap-

proaches has gradually increased and reached a consid-

erable level. Considering the sheer number of incremen-

tal contributions to the topic, the authors are convinced

of the need for an overview. The purpose of this article

is the concise presentation and discussion of state-of-

the-art methods for the vibration prediction of bladed

disks coupled by friction joints. Instead of an exhaustive
presentation of all previously used variants, we present

the central notions of general approaches and then fo-

cus on established variants. Moreover, it is our intention

to provide a thorough presentation and discussion of

the typical assumptions underlying the specific model-

ing and simulation approaches. It should be noted that

this goes beyond the scope of most original research

articles, although this is essential for a profound un-

derstanding of the approaches. Finally, we propose a

consistent notation, which is used throughout this arti-

cle, and we hope that this notation is adopted by the

scientific community. In contrast, we do not provide an

introduction to the topics of vibrations of bladed disks

or friction damping in general. These aspects are exten-

sively covered by the available literature, see e. g. [152].
Useful concepts related to these topics, such as the
Campbell diagram, the nodal diameter diagram, and

typical characteristics such as damper optimization and

performance curves, are therefore not the focus of this

work. Previous efforts should be mentioned [126,39,

135], which also fall into the category of overviews, but

aim at presenting rather specific methodologies with

interesting numerical examples [126,39], or focus more

on the historical development without going into the

mathematical details of the approaches [135].

The prospective primary reader group are engineers and

researchers in the field of structural mechanics of bladed

disks, who might consider this article as a useful in-
troduction to the topic of vibration prediction. They
will find this article particularly appealing if they are
using or developing according simulation tools. This

article also provides an overview for related scientific

communities, such as the aerodynamics and aeroelas-

tics communities. Finally, it should be stated that the

approaches are presented in a generality that permits
the application to the much broader problem class of
jointed structures.
The article is organized as follows: The modeling is

addressed in Section 2. Here, the equations governing

the vibrations of a bladed disk, coupled by mechani-

cal joints, and exposed to the fluid flow are derived.

Starting from the resulting set of nonlinear ordinary
differential equations (ODEs), appropriate simulation
methods are addressed in Section 3. In the focus are ef-

ficient computation methods for periodic, steady-state

vibrations in the dynamic regimes of primary impor-

tance, namely synchronous forced response and flutter.

An overview of the overall vibration prediction process,

and possible directions of future research end this arti-

cle in Section 4.

2 Modeling

The bladed disk illustrated in Fig. 5 serves as notional

model in this section. The bladed disk rotates at the

speed Ωrot and is exposed to a fluid flow. The structure

is essentially rotationally periodic; i. e. , the full bladed

disk consists of ns almost identical sectors. The sector

with index (0) is referred to as the reference sector.

Blades and disk can be individual bodies coupled by

mechanical joints, or they are integrated in one body as

a blade integrated disk (blisk). A sector may also con-

tain one or multiple friction dampers, which are sepa-

rate bodies. In general, a mechanical joint couples either

certain parts within a sector (intra-sector coupling), or
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Fig. 4: Mind map of the scientific topics relevant for the development of suitable tools for the vibration prediction

of bladed disks coupled by friction joints

Fig. 5: Schematic illustration of a rotating bladed disk

with mechanical joints, possible contact interfaces are

indicated in red

certain parts of adjacent sectors with each other (inter-

sector coupling). An example for intra-sector coupling

is the clamping of the blades in the disk. An example

for inter-sector coupling are shroud joints. Depending

on the local behavior in the contact interfaces under the

considered operating conditions, it is appropriate to de-

scribe the mechanical coupling (in specific regions) in

either a linear or a nonlinear way. This will be detailed

later in Subsection 2.2.

Since the model in Fig. 5 only contains a single bladed

disk, it is a priori limited in three respects:

(a) The mechanical contact occurring between the bla-

ded disk and the casing is not considered. Such

strongly nonlinear contact interactions between ro-

tating and fixed components are usually temporary

in nature, and they require designated modeling

and simulation techniques. For a recent overview,
the reader is referred to [61].

(b) The mechanical coupling between different stages is

excluded. This coupling is usually linear in nature,
and it can have considerable effects on the vibra-
tion behavior in certain configurations [6]. The ap-
proaches presented in this article can be modified to

take into account bladed disks of multiple intercon-
nected stages [93,90]. Hence, the multi-stage cou-
pling does not represent an important conceptual

difficulty. We still preferred to exclude the aspect of

multi-stage coupling, since it is only rarely consid-

ered in the literature and would make the notation

of the equations more complicated.

(c) The third aspect is related to rotor-dynamic effects.
The bladed disk can generally be excited by the mo-

tions of the shaft, and the vibrations of the bladed

disk may feedback on the dynamics of the shaft.

To the authors’ knowledge, however, this aspect

has only rarely been investigated in the context of

nonlinearly-coupled bladed disks [53], and is there-

fore not considered in this paper.

This section is divided into four subsections. The mod-

eling of the rotating structure is presented in Subsec-

tion 2.1. The contact modeling in the mechanical joints
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is addressed in Subsection 2.2. The reduced description

of the system in terms of component modes follows in

Subsection 2.3. Finally, aeroelastic effects are addressed

in Subsection 2.4.

2.1 Description of the rotating structure

2.1.1 Governing equations in the rotating frame of

reference

Modern turbomachinery blades exhibit three-dimensional

profiles, optimized to achieve the desired aerodynami-

cal efficiency. Thus, the spatial discretization of bladed

disks is commonly conducted in terms of finite elements.

As mentioned earlier, the structural dynamic character-

istics significantly depend on the operating conditions
[96]. It is common practice to regard these conditions
as fixed, and thus to assume centrifugal, thermal and

static fluid pressure loading as constant. To determine

the effect of the static loading, a static finite element

analysis (FEA) step is carried out. The static, and in

particular the centrifugal loading often results in large

deformations of the blades. Mechanical joints that are
initially open, may thus close beyond a certain rota-
tional speed. The static FEA thus needs to take into

account nonlinear geometrical effects and the nonlinear

behavior in the contact interfaces.

Remark The consideration of a fixed operating point is

a major simplification. It should be recalled that an im-

portant vibration mechanism is the synchronous forced

response, where the excitation frequencies are integer

multiples of the rotational speed. Fixed operating con-

ditions imply a fixed rotational speed and hence con-

stant excitation frequencies. In a typical forced response

analysis, it is, however, crucial to vary the excitation

frequency in the neighborhood of specific resonance fre-

quencies. Varying the excitation frequency while re-

garding a model derived for fixed rotational speed in-

troduces a certain degree of inconsistency. Fortunately,

the relevant rotational speed range is typically small,

e. g. only a few percent around the nominal speed, so

that the assumption of constant mechanical, thermal

and aerodynamical characteristics is often justified. In

general, the validity of this procedure can be assessed by

a point-wise simulation for different rotational speeds.
As alternative, the dependence of certain properties on
the rotational speed can be explicitly modeled. To this

end, an interpolation method is proposed in [153]. This

method is, however, so far limited to structures without

nonlinear coupling.

The motion of the structure is described in terms of

nodal displacements measured from the static equilib-

rium position in the rotating frame of reference. Small

vibrations are commonly assumed. This permits the lin-
ear description of mechanical elastic and inertia forces
within the structure. This assumption also lays the foun-

dation for the linearization of the aeroelastic forces,

which will be addressed later. Consequently, only the

contact forces, which are localized at the mechanical

joints, are considered nonlinear. This greatly simplifies

the structural dynamic analysis. The dynamic defor-

mation of the entire bladed disk, including all blades,

disk and, if applicable, dampers and other structural

elements is completely described by the nodal displace-

ment vector feu. The equations governing the system’s
motion can be expressed as a set of second-order ODEs

in feu,

feM feü(t) + feD feu̇(t) + feK feu(t) + fef c [ feu]

= fefa ( feu, feu̇, feü, t) . (2)

Herein, overdot denotes differentiation with respect

to time t. feM , feD, feK are the matrices of accel-

eration, velocity and displacement proportional struc-
tural forces, respectively. Their physical meaning is de-

scribed in detail below. fef c gathers the nonlinear con-
tact forces acting on all (intra- and inter-sector) contact

interfaces of the bladed disk. The operator notation [·]
is used to indicate that, owing to the hysteretic charac-

ter of friction, fef c is generally not an explicit function

of feu, feu̇ at time instant t, but also depends on the
time history of these variables. This aspect is further

addressed in Subsection 2.2. fefa denotes the aerody-
namical forces and is detailed in Subsection 2.4.

The nodal displacement vector, feu, is organized sector-

wise,
[ (0)
fe uT · · · (ns−1)

fe uT
]
, where

(n)
fe u refers to the

nodal displacement vector of sector n. Note that one

sector may comprise different individual bodies, typi-

cally a disk segment, a blade and possibly a friction

damper or other structural elements. The forces fef c, fefa

are organized in accordance with feu. The number of

degrees of freedom of sector n is nfe,n, such that the to-

tal number of degrees of freedom is nfe =
ns−1∑

n=0
nfe,n. The

dimension of feu, fef c, and fefa is accordingly nfe × 1,

that of the structural matrices is nfe × nfe.

If all sectors have identical (aerodynamical, material,

geometrical, and contact) properties, the system ex-

hibits ideal rotational periodicity, as opposed to only es-

sential rotational periodicity. For congruent discretiza-

tion and ordering, the structural matrices take a block

circulant form, and the force-deformation relations un-

derlying
(n)
fe f c and

(n)
fe fa are identical for all sectors
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n ∈ [0, ns − 1].1 If, on the other hand, sector-by-sector

deviations exist, the system’s rotational periodicity is
perturbed, which is referred to as mistuning.
The mass matrix feM represents the system’s inertia,

and it is symmetric and positive-definite. The displace-
ment proportional forces described by feK comprise
linear-elastic forces, as well as stress stiffening and spin

softening effects [24]. Stress stiffening is caused by large
static deformations, as a consequence of high static,
mainly centrifugal, loading. Spin softening is caused by

static deflections in the radial direction, which results

in an alteration of the centrifugal forces. As a conse-

quence, feK generally depends on the rotational speed.

feK depends nonlinearly on the static deformation and

is obtained by linearization2. Like the mass matrix, feK

is symmetric, but it is only positive-semidefinite, since

rigid body modes may be present.

The velocity proportional forces can be split into damp-

ing and coriolis forces associated with the symmetric

and skew-symmetric part of feD, respectively. Coriolis

forces become relevant if the vibrations have a consid-

erable component perpendicular to the rotation axis,

and they depend on the rotational speed. In particu-

lar, if blade and disk are relatively compliant, signif-

icant radial deflections may occur, which give rise to

tangential coriolis forces [171,112]. The effect of cori-

olis forces on the dynamics of bladed disks is still a

matter of research at present, and they have commonly
been neglected in the past. We will therefore not fur-
ther consider coriolis forces in this work. Consequently,

feD is assumed symmetric and reflects only structural

damping forces related to dissipative material behavior.
In contrast to the feM and feK, the damping matrix
cannot be derived from conventional FEA. In general,

the precise characterization and quantification of ma-
terial damping forces is still an unresolved problem. In
the case of bladed disks, material damping is compara-
tively weak, but in the absence of other damping mech-

anisms, it can have a significant influence. Owing to

its weakness, material damping forces are usually mod-

eled linearly; i. e. , in terms of a constant damping ma-

trix feD. The damping matrix is commonly assumed
to be symmetric and at least positive semi-definite. It

is often defined in terms of logarithmic decrements, ob-

tained e. g. from free-decay experiments. It should be

noted that the damping forces do not necessarily have

viscous (velocity-proportional) character. The damping

term feD feu̇ in Eqs. (2) should therefore be regarded

1 Note that the actual values of
(n)
fe fc and

(n)
fe fa still de-

pend on the independent displacement vectors
(n)
fe u and are,

of course, generally not equal to each other.
2 Hence, the part feK related to elastic forces is sometimes

referred to as ‘tangent’ stiffness matrix

as a ‘place holder’ for any type of linear damping, in-

cluding linear-hysteretic damping which is very popular

in the context of periodic vibrations [34,41].

2.1.2 Mistuning

Mistuning refers to the deviation of properties among

the sectors within periodic structures. In the case of

bladed disks, these deviations can appear as stiffness

or density variations within the mechanical structure,

geometrical variations of the structure’s surface, and

variations of the contact properties within the joints.
These deviations can be small, for instance in the case
of material inhomogeneities, or large, for instance in

the case of fatigue cracks or foreign object damages. To

a certain extent, these deviations are inevitable due to

manufacturing and repair tolerances. During operation,

these deviations can be magnified or diminished due to

wear and tear. These deviations can affect both the
structural mechanical and the aerodynamical behavior
of the bladed disk. An important phenomenon associ-

ated with mistuning is the localization of the structural

dynamic behavior, in particular in the presence of near-

resonant forcing. The global vibration is then no longer

a (pure) traveling wave, but may typically has a con-

siderable stationary component with a large response

in only a few sectors. At these sectors, the vibration re-

sponse is magnified compared to the tuned case, which

is known as mistuning magnification. It is known that

the mistuning magnification attains a maximum versus

the mistuning level and then becomes comparatively in-

sensitive with respect to additional mistuning. In order

to increase the robustness with respect to unintentional

and uncertain parameter deviations, it is thus a com-

mon strategy to introduce intentional mistuning [11,12,

98,67,68]. Mistuning is also known to have a beneficial

effect on the aeroelastic stability of blade cascades [72,

149,164].

The uncertain character of the properties is usually de-

scribed in terms of its stochastic characteristics. Once

these (input) stochastic characteristics are quantified,

probabilistic methods, such as Monte Carlo simulations,

are utilized in order to determine the stochastic charac-

teristics of the (output) vibration behavior. To estimate

the worst or the best configuration with regard to a

specific performance measure, optimization techniques
are often applied. If the mistuning level is rather small,
or the inter-sector coupling is sufficiently strong, the ef-

fect of mistuning remains comparatively small [147,116,

127,113]. Mistuning is often neglected in the presence of

strong coupling by inter-sector contact interfaces. Most

of the approaches in this work are kept sufficiently gen-

eral so that they can be applied to both tuned as well
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as mistuned systems. We will emphasize the possible

simplifications in the tuned case, where appropriate. It

should be noted that some of these simplifications are

also relevant in the analysis of mistuned systems, since

the nominal modes of the tuned system often serve as

basis for the mistuned case [97,89]. We will, however,

not address mistuning-specific methods, since these are

extensively covered by the available literature, see for
instance the reviews [151,13].

2.1.3 Traveling wave coordinates

It is generally possible to expand any given physical

quantity in terms of its wave components. Due to the

cyclically closed topology with only a finite number of

ns sectors, the possible wave forms are limited to a dis-
crete set of wave lengths. An exact coordinate trans-

form can be defined between the physical coordinates

of the individual sectors and the traveling wave co-

ordinates3 associated with the different wave lengths.

The traveling wave coordinate system represents an apt
basis for the description and interpretation of typical

vibration phenomena and excitation mechanisms. The
mathematical preliminaries and the notion of traveling
waves is presented in A. In the following, this coordi-

nate transform is applied to the bladed disk model.

For the transformation of the structural matrices A ∈
{ feM , feD, feK}, it is useful to distinguish between a
block circulant component A and a deviation compo-

nent ∆A,

A = A+∆A , A ∈ { feM , feD, feK} . (3)

If each sector has identical matrices, ∆A = 0, and ma-

tricesA are strictly block circulant. The transformation

of the equations of motion (2) in physical coordinates

to traveling wave coordinates yields

twM twü(t) + twD twu̇(t) + twK twu(t) + twf c [ twu]

= twfa ( twu, twu̇, twü, t)− tw∆M twü(t)

− tw∆D twu̇(t)− tw∆K twu(t) . (4)

In accordance with the transform (41), the forces are

defined as twf =
[

twf
T
0 · · · twf

T
ns−1

]T
with twfk =

(
wH

k+1 ⊗ Infe,s

)
f , where f denotes either the contact or

the aeroleastic forces, f ∈ { fef c, fefa}. The application
of the coordinate transform (41) to the block circulant

matrices A gives rise to block diagonal matrices twA =

bdiag{ twAk} on the left hand side of Eq. (4), whereas

the matrices tw∆A =
(

WH
ns

⊗ Infe,s

)

∆A
(
W ns

⊗ Infe,s

)

are generally fully occupied, where A denotes any of

the structural matrices, A ∈ { feM , feD, feK}. The

3 sometimes also referred to as cyclic or nodal diameter
coordinates

matrices twMk, twDk, twKk can be obtained from the

structural matrices of the reference sector by applying
appropriate boundary conditions of the form u

(0)
l =

u
(0)
r eiθk . Since the structural matrices in physical co-

ordinates are assumed symmetric, the structural ma-

trices in traveling wave coordinates are hermitian; i. e. ,

twAk = twA
H
k . Moreover, since the matricesA are real-

valued, the traveling wave structural matrices come in

complex conjugate pairs twAk = twAj
∗ for correspond-

ing inter blade phase angles (IBPAs) θk = 2π−θj , which

can be useful for their calculation.

Remark It is important to note that Eq. (4) represents

a complete description of the full structure, and is thus
absolutely equivalent to Eq. (2). Only the equivalent
discretization of each sector was assumed, which is a
prerequisite for the application of the transform defined

in Eq. (41). So far, no assumption was made regarding
the symmetry of the response feu(t), the aeroelastic

forces fefa or the (typically nonlinear) forces at the

contact interfaces fef c.

Traveling wave coordinates are particularly useful to de-

scribe the common aeroelastic excitation mechanisms.

As mentioned earlier, in the case of synchronous forced

response, the excitation takes the form of a traveling

wave from the perspective of the rotating bladed disk.

In the case of flutter, usually only the traveling wave

forms associated with specific IBPAs are aeroelastically

instable. In these cases, the excitation acts on only a

small subset of traveling wave components k, whereas

twfa,k = 0 for most wave numbers. The subproblems
related to individual wave numbers k are decoupled if

(a) the structural properties are identical for each sector

( fe∆M = fe∆D = fe∆K = 0), and if also (b) fefa

and fef c are linear in feu and feu̇ and take the same

functional form for each sector. In this case, the nature

of the excitation propagates to the response, and hence

only the corresponding traveling wave components will

exhibit a non-trivial response. This leads to a consider-

able reduction of the problem and permits to decrease

the vibration prediction effort compared to the cou-

pled (even though sparse) nsnfe,s-dimensional problem

in Eq. (2), especially if ns is large.

The subproblems in Eq. (4) related to individual wave

numbers k are generally coupled in the mistuned and/or
the nonlinear case. The perturbation of the rotational

periodicity by mistuning can impede the development
of traveling wave vibrations and cause localized vibra-
tions, as discussed in the previous subsubsection. Often,
the sector-to-sector deviations are small; i. e. , |∆A| ≪
∣
∣A

∣
∣, such that Eq. (4) represents an apt basis for the ap-
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plication of perturbation techniques. Nonlinearity may

also lead to non-trivial response in not directly driven

wave components, as it introduces coupling among the

different wave components. In particular, higher har-

monics (in time and in space) are excited by the action

of the nonlinear force. In certain situations, nonlinearity

alone may change the nature of response from traveling

waves to standing waves, associated with the localiza-
tion of vibration energy [167,76,43,49]. But this repre-
sents a strongly nonlinear behavior related to breaking

of the underlying symmetries. In the tuned and weakly

nonlinear case, the traveling wave character of the ex-

citation is typically propagated to the response. This

greatly simplifies the evaluation of the nonlinear force

term and permits the reduction of the nonlinear prob-

lem to a reference sector with appropriate boundary

conditions, as will be shown in Subsection 3.3.

Finally, it should be remarked that the formulation in

Eq. (4) can only be rarely found in the literature. This

is because the governing equations of motion are of-

ten further transformed to the frequency domain. The

time domain formulation given in Eq. (4) is considered

particularly useful for the investigation of transient vi-

bration problems, such as resonance passages, in the

linear or weakly nonlinear regime, for rotationally pe-

riodic structures or those with only small mistuning

effects.

Most of the approaches presented throughout this work

can be applied both in physical and traveling wave co-

ordinates. In order to keep the notation general, we do

not explicitly denote the indices fe and tw in the follow-

ing, such that e. g.u can stand for either feu or twu.
We highlight the specific features related to either co-

ordinate system, where the distinction is relevant.

2.2 Contact modeling

For bladed disks, contact modeling involves describing
the essential interactions between dry, rough, usually

metallic surfaces of elastic bodies. The bodies are com-

monly considered as closed systems in the sense that

no material transport occurs, as in the case of wear or

diffusion. Furthermore, it is usually assumed that the

contact interactions do not affect the temperature field
such that only the mechanical interactions are taken
into account. These mechanical interactions can gen-

erally be split geometrically into the normal contact,

related to the normal direction of the surfaces in con-

tact, and the tangential contact, related to the inter-
actions perpendicular to the normal direction. For the

normal contact, unilateral interactions are commonly

considered, and frictional interactions for the tangen-

tial contact. Even in the comparatively narrow field of
friction damping, it has to be stated that there is not
yet a scientific consensus regarding the accurate mod-

eling of contact interactions, and this remains to be a

lively field of research. General overviews on the topic

of contact modeling can be found e. g. in [174,64,172].

In the following, we discuss the different aspects of con-

tact modeling in the light of friction damping of bladed

disks. These aspects are grouped into splitting static

and dynamic contact problems, contact discretization

(kinematics, kinetics), contact laws, and solution ap-

proaches for the contact problem.

2.2.1 Splitting the contact problem into static and

dynamic subproblems

On the one hand, it is essential to account for the large

deformation of the blades due to static forces, which

has an important influence on the contact interactions.

On the other hand, it is commonly assumed that the vi-

brations only lead to small deformations. From a math-

ematical perspective, it is therefore useful to divide the
contact problem into a static and a dynamic one. From
the solution of the static problem, three results are ob-
tained that are important for the dynamic contact prob-

lem: (a) the deformed shape, (b) the active contact re-

gions, and (c) the contact situation in these regions in

terms of pressure and clearance distributions. The ac-

tive contact regions in (b) are defined in such a way
that these cover at least those regions that may change

their contact behavior due to vibrations, that is, they

might liftoff, come into contact, or undergo frictional

sliding during contact. More specifically, areas with a

large gap do not have to be further considered in the

dynamic contact modeling. The same applies to contact

areas with excessive normal pressure that will remain in
sticking conditions in the presence of vibrations. For the
dynamic contact problem, small deformations relative

to the static equilibrium position are assumed. Hence,

contact detection is usually not a relevant task in the

dynamic problem. When the static equilibrium changes,

e. g. if a different operating point and rotational speed

is considered, the deformation of the contact interface

and the initial contact situation generally needs to be

updated.

Remark It should be emphasized, that the dynamic

variation of the effective contact area is allowed for,

which occurs if initially closed (open) contact regions

undergo partial liftoff (contact) during vibration. Also,

it should be remarked that the static equilibrium po-

sition of the nodes is generally not identical to their
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mean position in the dynamic problem, since the mean

gap distribution depends on the vibration behavior. In

this sense, the splitting into static and dynamic sub-

problems is fully consistent with the small vibrations

assumption and does not introduce any further approx-

imation.

2.2.2 Contact discretization

It is state of the art to discretize the contact problem

in accordance with the finite element description of the

underlying continua. The most accurate, but, at the

same time, most involved discretization is a Mortar-

like4 formulation which accounts for the consistent cou-

pling of subdomains with generally non-matching meshes

[174,172]. The simplest case, on the other hand, is a

lumped formulation where the displacement of the in-

teracting surfaces is constrained to certain rigid body

motions, controlled by one reference node per surface.

A phenomenological generalized force-deformation re-

lation can then be introduced between the reference

nodes. In between these two extreme cases, a variety
of approaches with intermediate levels of discretization
was used in the field friction damping of bladed disks.

It should be emphasized that a finer discretization has

certainly the potential of a higher degree of predictabil-

ity. However, a finer discretization alone does not nec-

essarily lead to a more accurate description of the real

behavior.

In order to assess the discretization quality, it is gen-

erally advisable to investigate the convergence behav-

ior of the sought results with respect to an increasing

level of discretization. The discretization should be as

coarse as possible to avoid spurious computational bur-

den and as fine as necessary to achieve sufficient con-

vergence among the quantities of interest. In the case

of friction damping, the measures of interest are typi-

cally resonance frequencies and global vibration levels.

Often, a relatively coarse discretization is sufficient to

determine these global vibrational quantities. In con-

trast, a much finer local discretization is required to

accurately resolve the contact stress field. In general, it
should be remarked that such convergence studies are
only rarely found in the literature, and, hence, the ap-

propriate contact discretization remains an open ques-

tion in the modeling of friction-damped systems. Fi-

nally, a posteriori error estimates should be mentioned

as a potential alternative to conventional convergence

4 The actual Mortar method does not only involve the dis-
cretization by means of contact segments, but is commonly
associated with an augmented Lagrangian formulation of the
contact laws. Here, ‘Mortar-like’ only refers to the discretiza-
tion using contact segments.

studies, see e. g. [25]. However, such approaches have

not been applied to blade vibration problems to the

authors’ knowledge.

Fig. 6: Contact discretization

We would like to keep the following mathematical de-

scriptions as general as possible. To this end, we use
the notion of contact points, where the contact laws

are locally evaluated. These points could be the ref-

erence nodes in the case of a lumped formulation, or

integration points of contact segments in the case of a

Mortar-like formulation. We further assume fully three-

dimensional contact, since special cases such as pure

frictional contact with constant normal load can be eas-
ily derived from this. The contact gap, cgk, for the con-

tact pair k refers to the (three-dimensional) relative dis-

placement between the two contact points Pk1 and Pk2

(belonging to surface 1 and 2, respectively), see Fig. 6.
The gap can be split into a scalar normal contact gap

gn,k, and a two-dimensional tangential gap vector gt,k,

cgk =

[
gn,k
gt,k

]

, cg =






cg1
...

cgnc




 . (5)

The normal gap is defined in such a way that a posi-

tive value indicates separated contact conditions. The
relative displacements are assembled for all nc contact

gaps in the vector cg of dimensions 3nc×1, as indicated

in Eq. (5). Of course, the contact points may belong
to disjunct contact interfaces. In accordance with the
small vibrations assumption, there is a linear relation-
ship between the contact gaps cg and the coordinates

u5, which can be expressed as,

cg = BTu , (6)

5 u is a vector of generalized displacements of dimension
nd × 1. In particular, it can stand for feu or twu.
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in terms of the constant coupling matrix B of dimen-

sion nd × 3nc. The coupling matrix has the form B =
[
b1 · · · bnc

]
with the columns bk = bk,1 − bk,2 can be

split into portions associated with contact point Pk1

and Pk2 , respectively. In the case of a node-to-node

contact formulation (with conforming meshes), the ma-
trix B is a signed boolean matrix [77], provided that

the local coordinates systems are aligned with the con-
tact coordinate systems,. In general, B accounts for

the possible mapping between non-conforming finite el-

ement meshes and other coordinate transformations6.

In the case of traveling wave coordinates, the phase lag

boundary conditions must be considered. Suppose that

contact gap k refers to an inter-sector coupling. In this

case, the phase lag boundary condition for wave num-

ber j is incorporated into bk by multiplying either bk,1
or bk,2, whichever is attached to the lower-numbered

sector, with eiθj .

To obtain the contact forces, the local contact pres-

sure Cp (x) =
[
pn pT

t

]T
needs to be integrated over the

(union of) contact surfaces C,

f c =

∫

C

Cb (x) Cp (x) dA

≈
nc∑

k=1

Cb (xk) Cp (xk)∆Ak
︸ ︷︷ ︸

λk

= Bλ . (7)

Herein, Cb (x) denotes the union of shape functions re-

stricted to C, which relates the nodal coordinates as-

sembled in u with the relative displacement field at the

contact interface as Cg (x) = Cb
T (x)u. As indicated

in Eq. (7), the continuous integral is approximated by

a weighted sum over a finite set of nc contact points,
where xk and ∆Ak refer to the location and the area

associated with contact point k, respectively, see Fig. 6.

The contact laws presented in the following define a re-

lation between Cp and Cg (and their time derivatives).

Note that impact-type contact behavior could be ac-

counted for equivalently to Eq. (7), where the forces
had to be replaced by impulses.

Remark In order to ensure consistency with finite ele-

ment modeling, the contact laws generally have to be

evaluated on the pressure level instead of the force level.

Otherwise, the different weights ∆Ak are neglected,

which leads to inconsistencies in the case of non-regular

6 This coordinate transform may also involve reduced de-
scriptions of subdomains in terms of component modes, see
Subsection 2.3, in which case u refers to generalized coor-
dinates instead of nodal coordinates. This also includes the
special case where one or both of the contacting surfaces be-
longs to a rigid body, where B takes into account rigid body
kinematics.

grids or at the boundary of regular grids.

Note that the coupling matrix B also relates the lo-

cal with the global kinetics. In fact, it might be easier

to determine B from Eq. (7) if a finite element ap-

proach is pursued. In the case of a lumped formulation,
the integral and shape functions in Eq. (7) should be

considered notional, since B can usually be directly for-
mulated in this case. In practice, it is useful to break

down Eq. (7) into the different contact interfaces, and

to formulate the related sub-matrices of B only for the

nodes directly involved in the respective interface dis-

cretization.

2.2.3 Contact laws

Contact laws define relationships between the local con-

tact kinetics (pressure or force) and the local kinematics

(gap and/or gap velocity). Throughout this work, we

use pressure-based formulations, while force-based for-

mulations can be obtained by spatial integration using

Eq. (7). Besides pressure/force laws, impact laws are

commonly used, particularly in the field of rigid body

dynamics. It is still an open question if it is reason-

able to apply impact laws to elastic bodies described

in terms of finite elements. To the authors’ knowledge,

impact laws have never been used in the context of

bladed disks coupled by friction joints. Hence, we ex-

clude impact laws from the further discussion. In gen-
eral, the contact laws should be as detailed as necessary,
to account for the expected interactions in the dynamic
regime of interest. On the other hand, they should be

as simple as possible; in particular, it is desirable that

they only involve a small number of empirical param-

eters to be obtained from measurements or experience

without loosing the main tribological characteristics of
the surfaces in interaction.

Normal contact For the normal contact, a unilateral

law is commonly used which restricts the interpenetra-
tion of the interacting surfaces and avoids the trans-

mission of tensile forces (absence of adhesive effects).

Due to vibrations, the normal contact generally under-

goes oscillating normal load, including the possibility

of vanishing normal load in the case of separation. The

dynamic contact interactions depend on the static sit-
uation; if the contact is initially open, the contact may
close due to vibrations. Similarly, if the contact is ini-

tially closed, liftoff is possible if the vibrations are large

enough. The normal load determines the limit friction

force and thus has a considerable influence on the tan-

gential contact interactions. Unilateral contact repre-

sents a strong nonlinearity and may significantly affect
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the vibration behavior, even in the frictionless case.

Different unilateral normal contact laws are depicted

in Fig. 7a. Apart from the non-regular rigid formula-

tion, the linear-elastic unilateral law is widely used. We

discuss rigid vs. compliant contact laws at the end of

this subsubsection. Moreover, nonlinear relations may

be employed to account for the effect of varying effective

contact area, e. g. due to the deformation of the local
surface roughness asperities [47,172,174]; see [146,159]
for applications to bladed disks. The normal contact in-

teraction is typically considered conservative, although

few approaches can be found that model the dissipative

character of normal impacts in terms of a coefficient of

restitution or viscous damping elements.

The rigid and linear-elastic unilateral laws are particu-

larly popular in the field of contact modeling of bladed

disks. Also, the treatment of these two laws in the con-

text of the harmonic balance method is also be ad-

dressed in Subsubsection 3.3.5. Therefore, we recap their

mathematical formulations. For the rigid formulation,

the contact law assumes the form of a linear comple-

mentarity inequality,
{

pn = 0 ∧ gn − gn,0 ≥ 0 separation

pn ≤ 0 ∧ gn − gn,0 = 0 contact
. (8)

For the elastic formulation, the contact law is regular

and can be written in explicit form,

pn =

{

0 gn − gn,0 ≥ 0 separation

kn (gn − gn,0) gn − gn,0 < 0 contact
. (9)

Herein, kn is the normal stiffness per area value.

Tangential contact The interface behavior can gener-

ally be modeled using dedicated constitutive approaches.

It has been proven that discontinuous behavior like

friction [107,108] could be modeled by means of the

free energy and a specific pseudo-potential including

thermal effect and wear phenomena. This procedure al-
lows to formalize rigorously the definition of the inter-
face behavior in accordance with the thermodynamic

laws. Strmberg [154,155,156] proposed defining inter-

face laws by taking into account the thermodynamic

principles as well as all possible wear mechanisms. We

will not repeat the theoretical developments at this

point, but instead provide a clear framework for the
interface behavior using specific rheological models. In
this model, the different regimes of sticking and slid-

ing behavior between the dry surfaces are commonly

distinguished in the tangential contact plane. Friction

has dissipative character and is the primary cause for

damping in mechanical joints.

Common friction laws are illustrated in Fig. 7b in terms

of their steady-state hysteresis for harmonic, one-

dimensional motion gt and constant normal pressure
pn. It should be noted that pn is generally not constant,

as explained in the previous paragraph. For the general

case of spatial friction, the two-dimensional character

of the relative motion needs to be taken into account.

It should be noted that it is common practice to ac-

count for each direction in a decoupled manner by treat-

ing them as independent, one-dimensional friction laws,

see e. g. [124,150,180]. This can significantly decrease

the computational burden in the dynamic analysis [20].

However, substantial quantitative differences between

the coupled and the uncoupled approach are generally

possible [125]. A qualitative difference is the possibility

of a periodic sliding state which can only exist in the

case of spatial friction.

The rigid and elastic Coulomb laws distinguish strictly

between sliding and sticking contact. As opposed to

this, they do not take into account microslip implicitly.
The microslip regime is of particular interest, since it

provides a comparatively high dissipation, while retain-

ing a relatively strong elastic coupling between the in-

terfaces. Mircroslip effects are particularly relevant for

large rough interfaces of compliant bodies subject to

high normal loads [54]. When the contact area is dis-

cretized and either the rigid or elastic Coulomb law is
applied locally, the effect of microslip can be described.
A comparatively fine spatial discretization is required to

accurately capture the microslip behavior in this case.

Instead, or in addition to the fine discretization, mi-

croslip effects can be taken into account implicitly using

an appropriate hysteretic law, as indicated in Fig. 7b.

Common examples are the Dahl [29], the LuGre [173],

the Bouc-Wen [169], the Iwan [144], the Valanis [59] and

the Preisach [168] models. It can be generally stated

that the microslip laws are frequently applied to contact

problems with time-constant normal load. In the case

of variable normal load, and in particular in the case of

liftoff, numerical difficulties typically arise using these

models [125]. In the context of microslip, multi-scale

approaches for the contact formulation between rough

surfaces should also be mentioned [176], which have,
however, not been applied to blade vibration problems
to the authors’ knowledge.
Analogous to the normal contact case, the rigid and

elastic Coulomb laws are particularly popular in the

field of contact modeling of bladed disks, and we there-

fore provide their mathematical formulation at this point.

For the rigid formulation, the contact law assumes the

form of a nonlinear complementarity inequality,

{

ġt = 0 ∧ ‖pt‖ < µ |pn| sticking

ġt 6= 0 ∧ pt = µ |pn| ġt

‖ġt‖
sliding

. (10)
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Fig. 7: Common contact laws: (a) unilateral laws for the normal contact, (b) friction laws for the tangential plane

illustrated by their steady-state hysteresis for one-dimensional harmonic displacement and constant normal load

Note that pn ≤ 0, and, thus, pt points into the direction

of −ġt during sliding. In the general field of tribology,

distinct values of the friction coefficient µ are often used

for sticking and sliding, and a characteristic dependence

of µ on the relative sliding velocity is frequently used. In

the field of blade vibrations, however, a constant value

for µ is typically assumed, as is done throughout this
work.

In contrast to the set-valued law in Eq. (10), the elastic

Coulomb law is regular. The hysteretic character of the

tangential pressure pt is governed by the differential

equation,

dpt =

{

ktdgt ‖pt + ktdgt‖ ≤ µ |pn| sticking

0 ‖pt + ktdgt‖ > µ |pn| sliding
. (11)

Herein, kt is a scalar tangential stiffness per area value.
This most common case implies isotropic tangential

stiffness. To account for anisotropic friction, the scalar

kt is replaced by a two-dimensional matrix.

Rigid vs. compliant contact laws The question whether

a rigid or a compliant model better describes the real

physical behavior is an ill-posed one. The appropriate

choice of the contact model is always strictly related

to the appropriate choice of the model of the underly-
ing bodies. Just as it is impossible to tell where surface
roughness asperities end and where the underlying body
begins, the integral model of both contact and underly-

ing bodies should be regarded as a unit and these two

sub-models must be well inter-coordinated.

Typically, the finite element model only accounts for the

macroscopic geometry of the contact interface, and the
surface roughness is not explicitly captured. An inher-
ent artificial stiffness is introduced by finite discretiza-
tion. Depending on the resolved length scales, it might

be appropriate to neglect this artificial stiffness and to

use a rigid contact law. As alternative, one can take
the neglected compliance into account in a ‘smeared’
way by using a compliant contact model. To this end,

the normal and tangential stiffness can be utilized to

account for the neglected compliance. This represents

a physical motivation for using compliant contact mod-

els. It should be emphasized that in this case, the pa-

rameters kn, kt are related to the discretization, and,
therefore, we regard it as inappropriate to refer to them

as ‘contact stiffness’.

Remark In fact, the idea of the lumped discretization

is to deliberately neglect the structural compliance of
the region close to the contact interface by consider-

ing it as rigid in the model of the underlying bodies,
and to account for its compliance instead in the con-
tact model [21]. In this case, kn, kt mainly represent

the structural stiffness. While this approach introduces
notable inaccuracies, the resulting model has compara-
tively good mathematical properties (low to moderate
numerical stiffness).

From this discussion, it can be ascertained that the

question whether to use a rigid or a compliant contact

model boils down to the question if and, if so, where

to account for the residual compliance. This question,

in turn, is mainly of mathematical nature, as it influ-

ences the solution method for the contact problem, as

addressed in the following subsubsection. In any case,

the modeling approach must be consistent with the ex-

perimental parameter identification method.

2.2.4 Solution approaches for the contact problem

The mathematical properties of the contact laws are

essential for the choice of suitable solution approaches.

In the case of the elastic formulation, the contact law



Vibration Prediction of Bladed Disks Coupled by Friction Joints 15

is regular, giving rise to ODEs, which can generally be

solved using standard methods. An important mathe-

matical property of these equations is their numerical

stiffness. The ODEs are stiff, if the contact model is

stiff (e. g. large values of kn, kt) compared to the char-

acteristic stiffness of the underlying structure. This can

result in ill-conditioning of the problem and the need

for a comparatively fine time discretization.

Table 1: Solution approaches and their properties for
rigid and compliant contact laws

contact law regularization non-smooth formulation
rigid by penalty method, standard approach

resulting in stiff
ODEs

compliant already regular, re-formulation using
stiffness depends on
model

supplementary nodes

In the case of the rigid formulation, the contact law

is set-valued. The motions are not simply governed by

the ODEs, but the complementarity inequalities must

be satisfied as well. The governing equations can be

stated as a constraint optimization problem involving

the Karush-Kuhn-Tucker optimality conditions [45,1].

One of the methods qualified for the approximate solu-

tion of constrained optimization problems is the penalty

method. If a linear penalization with according coeffi-

cients is used, this approach becomes mathematically

fully equivalent to the elastic formulation. It must be

stressed, however, that there is a substantial difference

in the physical interpretation of these contact formula-

tions. While kt and kn have a physical motivation and
a specific finite value in the case of the elastic formula-

tion, they are the penalty coefficients in the case of the
rigid formulation, and thus a mathematical parameter.
The penalty coefficients should be specified as large as
possible to ensure that the constraints are not signifi-

cantly violated. Hence, the numerical stiffness dilemma

is inevitable in this case. For rigid contact laws, it is

more appropriate to employ robust numerical methods

specifically designed for non-smooth problems, such as
the augmented Lagrangian method. The literature on
such methods is rich. In this work, we focus on the so-
lution of the contact problem in the case of periodic vi-

brations using the framework of spectral methods, and

the harmonic balance method in particular, see Sub-

subsection 3.3.5.

Consider the case of a compliant contact model with

comparatively high stiffness. In order to overcome nu-

merical difficulties, an interesting approach is to re-

formulate the problem into a non-smooth one, and use

appropriate solution methods. This can be achieved by

introducing massless supplementary nodes attached to

the contact points via the stiffness characteristics of the

contact model [15]. Thus, the comparatively high stiff-

ness is moved to the structural model. At the supple-

mentary nodes, rigid contact laws are considered, ren-

dering the problem non-smooth. Hence, both rigid and

compliant contact models can, in principle, be solved

using either a regularization or a non-smooth formu-

lation. However, not all combinations are recommend-
able. The possible solution approaches are summarized
in Tab. 1. Besides physical and mathematical reason-

ing, one may characterize the affinity of certain research

groups to either regularized or set-valued formulations

as a ‘fetish’.

2.3 Dynamic substructuring

The number of nodal DOFs of finite element models

of a bladed disk can be considerable. In the industrial

design process, typical numbers are in the order of mag-

nitude of several millions [122]. With today’s computa-

tional resources, comprehensive nonlinear dynamical in-

vestigations are practically intractable without further

model reduction. To reduce the computational burden,
dynamic substructuring is commonly applied. Dynamic
substructuring of nonlinearly-coupled bladed disks in-

volves two steps: (a) preparing the nonlinear interface

coupling for the dynamic analysis, and (b) the reduced

description of the underlying linear structure. These

two steps are described in the following two subsubsec-

tion. Dynamic substructuring can be directly applied to
the whole bladed disk in physical coordinates. As men-
tioned in Subsubsection 2.1.3, the use of traveling wave

coordinates is more useful in a rotationally periodic set-

ting. In this case, only a reference sector is considered

and appropriate boundary conditions are applied for

each relevant wave number. The methods presented in

this subsection are applicable to both cases and, hence,
the notation is kept general. The specific features of
cyclic boundary conditions are explicitly stated, where

appropriate.

2.3.1 Preparation of the nonlinear coupling

In the dynamic substructuring procedure, special at-

tention is paid to the treatment of coupling interfaces,

at which nonlinear contact interactions are taken into

account in the later dynamic analysis. It is therefore

useful to distinguish between the coupling coordinates,

i. e. , the physical coordinates directly involved in the

description of the contact interfaces, and the remaining

coordinates which describe those motions that do not

directly influence the relative interface deformation. It



16 Malte Krack et al.

is common practice to retain the coupling coordinates

in the reduced description of the structure, whereas

the interior dynamics is approximated in terms of a

reduced set of generalized coordinates (by the meth-

ods described in the next subsubsection). This strategy

permits an accurate description of the local kinematics

of the interface. Also this makes it easier to take into

account the static residual compliance of the interface,
i. e. to retain a statically complete description of the in-
terface [28].

Two variants for the definition of coupling coordinates

(a) nodal coordinates: The coupling coordinates describe
the (absolute) deformation of both surfaces meet-

ing at the contact interface.

(b) relative coordinates: The coupling coordinates only

describe the relative deformation (contact gap) of

the contact interface, usually in the local contact

coordinate system.

In case (a), only the interior DOFs, which are not as-

sociated to any of the interfaces, correspond to the re-

maining coordinates. In contrast, in case (b), those in-

terface coordinates that describe the absolute motion,

are also excluded from the coupling coordinates. The

set relations between the different types of coordinates

are illustrated in Fig. 8.
The most important benefit of variant (b) is that the
number of coupling coordinates is reduced by factor
of approximately two7 compared to variant (a). This

can significantly decrease the computational effort of
the dynamic substructuring procedure, and reduce the
number of unknowns considered in the nonlinear dy-

namic analysis. Furthermore, the use relative coordi-
nates simplifies the coupling formulation, since the con-
tact laws are formulated in terms of the contact gaps.
Hence, no further coordinate transformation is neces-

sary in the nonlinear dynamic analysis. Finally, when

the relative coordinates are retained, it is easier to lo-

cally introduce a problem-adjusted approximation or-

der, for instance by considering a larger number of base
functions to accurately resolve the local dynamic be-
havior of the contact interface. It should be noted that

variant (a) is widely used in the vibration analysis of

bladed disks with contact interfaces, while variant (b)

is much less common. In C, we describe how the trans-

formation to relative coordinates is applied.

7 The actual reduction depends on the discretizaton. In ac-
cordance with the notation introduced in the previous subsec-
tion, for the variant (a), the number of coupling coordinates
equals the number of rows of B containing non-zero elements.
For variant (b), the number of coupling coordinates is 3nc,
that is, the dimension of the vector of contact gaps cg.

2.3.2 Reduced description of the underlying linear

structure

Consider a substructure, such as the reference sector of

a bladed disk or a sub-domain of it, described either in

physical or in traveling wave coordinates. The substruc-

ture has a number of nd coordinates assembled in the

vector u. The general idea of component mode synthe-

sis (CMS) techniques is to approximate u via a set of
nr vectors of component modes, assembled as columns

in the matrix T , and associated generalized coordinates

assembled in the vector ru,

u ≈ T ru . (12)

Substituting the linear transform defined in Eq. (12)

into the equation of motion generally results in an error

term. This error term is then made orthogonal with
respect to the base vectors. This procedure gives rise to
the projected equations,

rM rü(t) + rD ru̇(t) + rK ru(t) + rf c [ ru]

= rfa ( ru, ru̇, rü, t) , (13)

where the projected matrices are read rA = THAT

for any of the structural matrices A ∈ {M ,D,K},
and the projected force vectors read rf = THf for

f ∈ {f c,fa}. Thus, the problem is reduced to the sub-

space spanned by the component modes, and the num-
ber of unknown coordinates is reduced to nr. Hence, the

nonlinear dynamic analysis can be solved in the reduced
space of component modes, where typically nr ≪ nd

such that considerable computational savings are often

accomplished.
In general, any type of base vector could be used such as
modal deflection shapes (under appropriate boundary
conditions) and static deflection shapes. The various

CMS techniques mainly differ in the selection of the

component modes. The selection of appropriate base

vectors has a crucial influence on the approximation

quality and convergence. The number of component
modes assembled in T should be as large as necessary to

capture the vibration behavior in the dynamic regime
of interest with sufficient accuracy, and as small as pos-

sible to achieve a significant model order reduction. To

assess the accuracy of the selected CMS method, it is

common to conduct a convergence study with respect

to the number of considered component modes. To this
end, correlation measures such as the Modal Assurance
Criterion can be evaluated to compare approximated

mode shapes with a reference. Most CMS techniques

define the component modes based on the underlying

undamped structural mechanical problem, that is, by

neglecting the damping matrix. The literature is rich

in reviews of CMS techniques, see e. g. [28,77].
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Fig. 8: Classification of coordinates for structures coupled by nonlinear interfaces: (a) coupling based on nodal

coordinates, (b) coupling based on relative coordinates

Remark It is important to note that the basis vectors

assembled in the matrix T do not depend on the dis-

placement. Hence, the CMS formalism represents a lin-
ear transform and projection procedure. This is rea-
sonable as long as the nonlinearities are local [145,24].

In the presence of global nonlinearities, as in the case

of large dynamical deflections of the blades, a variable

base in conjunction with a nonlinear projection tech-

nique seems more appropriate.

Some of the most popular methods Probably the most

popular CMS methods are the Craig-Bampton (CB)

method and the MacNeal-Rubin (MR) method. Both

methods permit to maintain a statically complete de-

scription of so-called retained DOFs. Moreover, the trans-
formation matrix T is brought into such a form that

these DOFs are still directly accessible in the reduced

problem, as opposed to the remaining deleted DOFs. To

accurately represent the dynamical behavior, the com-

ponent modes include a set of normal modes. Mathe-

matical details on the computation of T is given in D for

both methods. The CB method is particularly known

for its numerical stability and great modal convergence.

It is known that the MR method leads to comparatively

large computational effort and may suffer from numer-

ical difficulties in some situations [42]. Batailly et al. [2]

compared the MR with the CB method for a dynamical

contact problem and found that both methods lead to

similar results for reasonably large numbers of modes.

Definition of the set of retained DOFs It is common
practice to retain not only the coupling DOFs, but

also other DOFs of particular relevance, such as DOFs

where the vibration response is of interest or DOFs

where local forcing is applied. Conceptually, this is not

necessary since the forcing can be projected into the re-

duced space, and the response of any physical DOF can

be determined a posteriori by means of expansion using

Eq. (12). In fact, it influences the boundary conditions

for the considered normal modes in the case of the CB

method, if DOFs other than the coupling DOFs are re-
tained. This tends to degrade the convergence behavior
of the reduction basis such that a much larger number

of normal modes needs to be retained in order to achieve

the sufficient accuracy [17]. Hence, it is recommended

to retain only the coupling DOFs in conjunction with

the CB and the MR method.

Accurate representation of the static interface behavior

The local relative displacement in the contact interface

is typically small compared to the global displacement

of the structure. An accurate description of the local

elasticity is essential for the modeling of contact in-

teractions. This needs to be ensured by the reduction

method. Both the CB and the MR method permit the

complete description of the static deformation behavior

of the contact interface. In contrast, the modal trun-

cation method in its conventional form is not suitable

for contact problems, since the first modal deflection
shapes barely contain information about the elasticity
of contact interfaces. To describe the dynamic compli-

ance of the coupled structure it is therefore useful to

augment the dynamic compliance associated to the con-

sidered modes by the so-called static residual compli-

ance, i. e. , the static compliance of the neglected modes

[122].

Comment on the use of relative coordinates at the in-

terface If the transformation to relative coordinates at

the interface is applied, as defined in Eq. (51), prior
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to computing the reduction basis, only the relative co-

ordinates are retained as coupling DOFs. In this case,

the ‘fixed interface modes’ involved in the CB formu-

lation can be identified as the modes for tied contact

conditions, while the interface itself can deform with re-

spect to the inertial frame of reference. In contrast, in

the case of the classical formulation, the fixed interface

modes represent the modes for literally fixed interfaces;
i. e. , where the surfaces are fixed to the inertial frame of
reference. This does not represent a physically relevant

situation. Since tied contact conditions are an impor-

tant limit case of the nonlinear contact behavior, it is

useful to exactly describe the associated modal deflec-

tion shapes. For instance, this property can be helpful

for the consistency with boundary conditions imposed

in computational fluid dynamics simulations or exper-

iments. If the transformation to relative coordinates is

not applied, a comparatively large number of modes is

necessary to accurately describe the behavior of a tied

interface.

On the number of coupling DOFs Both the CB and
the MR method have the disadvantage that a compar-

atively large number of retained DOFs is required at

the interface. More specifically, the number of retained

DOFs depends on the level of spatial discretization at

the interface. While a comparatively coarse discretiza-

tion may be sufficient to approximate the relative dis-

placement field at the interface, a much finer discretiza-

tion is required to accurately resolve the contact stress

field. Procedures have been developed to reduce the
number of coupling DOFs, see e. g. [161,31,179]. How-
ever, in the presence of nonlinearity, a reduction of the
interface description is often associated with a signifi-

cant decrease in accuracy [145,24], or a rather limited

range of validity.

Specific features in the case of traveling wave coordi-
nates For rotationally periodic sturctures, the CMS pro-

cedure is applied to the equations of motions (4) formu-

lated in traveling wave coordinates. Since the traveling

wave structural matrices generally depend on the as-

sociated wave number, the reduction basis T and the
projected structural matrices will also exhibit this de-

pendence. Hence, the CMS procedure needs to be ap-
plied for each relevant wave number. Which of the pos-
sible ns wave numbers are relevant, depends on the ex-

citation properties and the dynamic regime, as will be
explained in Subsection 3.3. As explained in Subsubsec-
tion 2.1.3, the traveling wave structural matrices come

in complex-conjugate pairs (for real-valued matrices in

physical coordinates). This property can be utilized in

the dynamic substructuring procedure. Hence, the ac-

tual computation of the projected structural matrices
must be carried out at most for ns

2 + 1 or ns+1
2 wave

numbers for even or odd numbers of sectors ns, respec-

tively.

2.3.3 Cascading the dynamic substructuring procedure

In general, dynamic substructuring can be applied in
multiple steps. For instance, the bladed disk is divided
into the ns sectors, and each sector is further divided

into smaller substructures such as blade, disk section
and friction dampers. Reduced models for these sub-
structures are then derived and subsequently coupled to

obtain a reduced description for the entire system. This
multi-step strategy produces a computational overhead
for the preliminary reduction steps, while computational
effort for the generation of the individual reduced mod-

els is decreased [44].

In a cascade-like procedure, the transformation to rel-

ative coordinates can be carried out at different stages.

An interesting variant is to first reduce the nonlinearly-
coupled components, while retaining all DOFs at the
coupling surface. Starting from the reduced component

models, the transformation to relative coordinates can

be applied. Finally, a second CMS step is carried out

in which only the relative coordinates at the interface

are retained. It should be noted that the transforma-

tion to relative coordinates generally has a detrimental
effects on the sparsity of the structural matrices. For

the computation of the component modes, this means

that the linear algebraic operations (eigenvalue anal-

ysis, solution of linear equations) are computationally

more involved.

As mentioned earlier, friction dampers are sometimes

approximated as rigid bodies. This can be interpreted
as a first dynamic substructuring step, where the elastic
modes are neglected.

2.4 Consideration of aeroelastic effects

As mentioned in the introduction, two of the major

causes for vibrations of bladed disks are of aeroelastic

nature, namely forced response and flutter. For the vi-

bration prediction, it is therefore essential to take into

account the aeroelastic effects introduced by the sur-

rounding fluid flow. In general, the aeroelastic effects

on the structure can be split into external forces fae,

and coupling forces fai,

fa(u, u̇, ü, t) = fae(t)− fai (u(t), u̇(t), ü(t)) . (14)

The external forces explicitly depend on time, but not

on the structural vibrations u(t), u̇(t). Consequently,
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these forces are also present if the vibrations cease to

exist. In contrast, the coupling forces describe the mu-

tual interaction between structural and aerodynamical

forces, and therefore depend on the structural vibra-

tions, but they are typically assumed not to have an

explicit time dependence. These forces vanish in the

absence of vibrations. External forces lead to forced vi-

brations. Coupling forces mainly introduce aerodynam-
ical damping. If the aerodynamic work done per cycle
(or equivalently, the damping) is negative, for a par-

ticular form of vibration, an aeroelastic instability is

present. As a consequence, the coupling forces can lead

to self-excited vibrations (flutter). Moreover, the cou-

pling forces introduce elastic coupling among the blades

in a blade row, which leads to a shift in the natural fre-

quencies, and alters the modal deflection shapes. How-

ever, the latter effect is often neglected considering the

typically large mass ratio between the structure and the

fluid. Even in the absence of flutter, the aerodynamical

damping is of foremost importance for forced response

analyses, since the vibration level in the resonant case

is largely controlled by this quantity.

2.4.1 External forces

Nature of external forcing The causes for synchronous

aerodynamical forces were already described in the in-

troduction. The frequencies of this forcing are integer

multiples of the rotational speed Ωrot. Hence, this form
of excitation is termed engine order excitation. A char-

acteristic feature of engine order excitations is their

symmetry order around the circumference, that is, their

so-called engine order m where m ∈ N+ positive inte-

ger. An example for a distribution of the pressure p

around the circumference is illustrated in Fig. 9, which

corresponds to a dominant engine order m = 3. Note
that the steady fluid pressure field, which could be de-

scribed by a zeroth engine order, is already taken into
account in the static analysis, cf. Subsection 2.1. In the
case of nozzle excitation, this number corresponds to

the number of guide vanes of the upstream vane clus-

ter, and is thus comparatively large. Lower engine or-

ders are typical for casing ovality and inlet or outlet

asymmetries.

For a constant rotational speed Ωrot, an engine order
excitation of specific order m introduces a periodic ex-

ternal forcing of the bladed disk with frequency Ω =

mΩrot. Due to rotation, adjacent blades are exposed to

the same pressure with a constant time delay. Math-

ematically, the pressure (n)p(t) at a certain location

on the surface of blade n, at time t, is thus related

to the pressure (0)p(t) at the corresponding location

Fig. 9: Engine order excitation with dominant engine

order m = 3

on the reference blade, (n)p(t) = (0)p(t + n∆t), with

∆t = 2π
mΩrotns

. Hence, the forcing takes the form of

a traveling wave from the perspective of the rotating

bladed disk8. If multiple engine orders are present, the

periodic excitation can be expanded in a Fourier series,

fefae(t) =
∑

m∈M

feF ae,meimΩrott

=
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(0)
fe F ae,meimΩrott . (15)

Herein, feF ae,m is the forcing amplitude of the full

bladed disk associated with the engine order m. Of-

ten only few of the engine order components feF ae,m

exhibit a considerable magnitude and have to be con-

sidered in the simulation. The engine orders m associ-
ated with significant components are collected in the set

M. Owing to the traveling wave character, the forcing

of the full bladed disk can be expressed by the forcing
(0)
fe F ae,m of the reference sector, as indicated in Eq. (15).

This property can be utilized to simplify the numerical

computation of the excitation forces. For the nonlinear
vibration prediction, it is useful to define the so-called
fundamental engine order m0, as the greatest common

divisor, m0 := gcdM, among the engine orders within

the set M.

The form of the engine order excitation, as defined in
Eq. (15), is well-suited for the description in the travel-

ing wave coordinate system. To this end, the transform

8 For more information and an illustration of such traveling
waves, see A.
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defined in Subsubsection 2.1.3 is applied to Eq. (15).

It can be ascertained that a specific engine order com-

ponent, m, results in only a single non-trivial traveling

wave component twfae,k,

twfae,k(t) =
√
ns

∑

m∈Mk

(0)
fe F ae,meimΩrott , (16)

with Mk = {m | mmodns = k, m ∈ M}.

Numerical computation Computational fluid dynamics

tools, based e. g. on the unsteady Reynolds-averaged Navier-

Stokes (URANS) equations, are commonly utilized to

determine the excitation forces in terms of the engine

order components
(0)
fe F ae,m. Typically, a unidirectional

approach is followed by prescribing only the rigid body

rotation, but not the dynamic deformation of the blades

[37,46,163]. Depending on the major source of the flow

defects, the system boundary for the fluid dynamic com-

putations is defined. Appropriate boundary conditions

need to be imposed at the inlet and the outlet of the

considered domain. Moreover, the data transfer between
rotor and stator must be ensured, e. g. by using the
mixing plane or the sliding mesh technique [163]. Fi-

nally, the fluid pressure at the blade surface needs to

be mapped from the fluid domain to the finite element

model.

The time-dependent fluid pressure field p(x, t) is then

integrated over the blade surface (0)Sb of the reference
sector to determine the consistent nodal forces. The

Fourier transform is applied to determine the different

engine order components m ∈ M,

(0)
fe F ae,m =

1

2π

∫

(2π)

∫

(0)Sb

ηS(x)p(x, t)dA e−imΩrott d (Ωrott) .

(17)

Herein, ηS(x) is the vector of finite element shape func-

tions associated with the vector of nodal displacements
(0)
fe u, restricted to the surface normal direction (with

Su(x) = ηT
S (x)u)

9. The discretization of the surface

integral in Eq. (17) leads to a linear relationship be-

tween the vector of nodal forces and the vector assem-

bling the pressure evaluated at the discrete integration

points (e. g. the nodes of the underlying finite element

model). The formulation in Eq. (17) is limited to the ef-
fect of the fluid pressure. Shear forces can be accounted
for analogously. The forces can then be projected onto
the reduced basis T .

9 Note that one approach to formally derive Eq. (17) is the
principle of virtual work.

Remark For the actual implementation, it is useful to

distinguish between steady and unsteady pressure. The
steady fluid pressure does not contribute to the dy-
namic loading, provided that ηS(x) is constant in time,

i. e. , the structure’s does not undergo dynamic defor-
mation, which is a common simplification in forced re-
sponse investigations.

2.4.2 Linearized coupling forces

Theoretical concept It is the current state of the art

in the vibration prediction of bladed disks coupled by

friction joints to describe the aeroelastic coupling in

a linear form. Moreover, it is commonly assumed that

the mechanisms underlying the aeroelastic coupling are
of rotationally periodic nature. Hence, the aeroelastic
coupling between different traveling wave forms is ne-
glected, and the coupling is defined separately for each

relevant IBPA. The coupling forces are usually expressed

in a displacement-proportional form in terms of a complex-

valued, aeroelastic transfer matrix10 twGai,k,

twfai,k = twGai,k (Ω) twuk . (18)

Herein, Ω is the oscillation frequency. The coupling
forces as defined in Eq. (18) can then be substituted

into Eq. (4) or, more specifically, into its projected form

with respect to the component modes.

Often the transfer matrix is defined with respect to a

given set of in-vacuum normal modes of vibrations for

appropriately linearized contact conditions. The trans-

fer matrix is then typically diagonal dominant, which

means that the modal deflection shapes are not signif-

icantly affected by the surrounding fluid flow. In this

case, the imaginary part of a specific diagonal element

of twGai,k corresponds to the aerodynamical damping

of the associated mode, while the real part is related to

the shift in the natural frequency caused by the aeroe-

lastic coupling. The classical (linear) flutter analysis,

the energy method relies on the aerodynamical damp-

ing ratios (or equivalently, the aerodynamic work done

per cycle) obtained in this way. A negative sign or the

damping (or the aerodynamic work) indicates that the

corresponding mode is prone to flutter vibrations.11

The transfer matrix contains also non-zero off-diagonal

terms that describe the conservative and dissipative

10 Since this matrix is formulated in the modal space, it is
often referred to as modal aerodynamical influence matrix,
and its entries are referred to as modal aerodynamical influ-

ence coefficients.
11 Note that for assessing the aeroelastic stability, an alter-
native to the energy method is to carry out a fluid-structure
simulation of the whole annulus, starting from an initial per-
turbation, and analyzing whether the vibrations grow or de-
cay [165].
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cross-coupling among the modes. This cross-coupling

does not have to be reciprocal such that the transfer

matrix is generally not symmetric.

Numerical computation As in the case of external aeroe-

lastic forces, the aeroelastic coupling is determined us-

ing computational fluid dynamics. To this end, a set of

modes is first defined for each IBPA to be considered in

the coupling formulation. Here, the term ‘modes’ has a
rather general meaning and is not necessarily restricted
to natural modes of vibration. Instead, a set of represen-

tative modes can be selected, which comprises general

vibrational deflection shapes that are deemed relevant
for the expected vibration behavior. These modes do
not have to coincide with the component modes used

for the reduced description of the structural dynamics.
However, the representative modes should ideally live
in the subspace spanned by the component modes as-

sembled in T , such that the aeroelastic coupling can be

well-described in this basis.

In the second step, an unsteady fluid dynamics compu-

tation is carried out, see e. g. [105,70]. The dynamical

displacement of the blades is prescribed, separately for

every considered mode, with oscillation frequency Ω.

The resulting fluid pressure is then integrated over the

blade surface to determine the consistent nodal forces

similar to Eq. (17). However, in this case, it is impor-

tant to account for the time variation of the surface nor-

mal, so that ηS(x, t) is no longer constant but depends

on time t. Moreover, only the fundamental component
of the dynamic forces is usually considered, which cor-

responds to the imposed traveling wave motion. Fi-

nally, the forces are projected onto the set of represen-

tative modes to determine the aeroelastic transfer ma-

trix twGai,k for each relevant IBPA θk. If applicable, an

according coordinate transform between representative

and component modes needs to be taken into account.

The transfer matrix twGai,k depends on the oscilla-

tion frequency Ω used in the above described analysis.

This frequency-dependence is generally nonlinear in na-

ture, but it is sometimes linearized if the considered fre-

quency range is comparatively small [56]. It should be

emphasized that the oscillation frequency is generally
independent of the rotational speed Ωrot, and does not

have to coincide with a particular natural frequency.

In the framework of the high-order harmonic balance

method, presented in the next section, higher order fre-

quencies nΩ are taken into account besides the funda-
mental oscillation frequency Ω. This should be consid-

ered in the aeroelastic coupling definition.

2.4.3 Comment on integrated approaches

It should be noted that integrated approaches exist for

the closely coupled analysis of fluid-structure interac-

tions [101,32,65]. However, these approaches have cur-

rently a limited applicability in the field of nonlinearly-

coupled bladed disks, due to their prohibitive computa-

tional effort. Hence, these approaches are not presented

in this work. The strategies for computing aerodynam-

ical external forces and linearized aeroelastic coupling

forces are presented in the following two subsubsections,

respectively.

3 Simulation

In the previous section, a model for the structural dy-

namic behavior of bladed disks was presented, which

considers the nonlinear contact interactions in the fric-

tion joints as well as the aeroelastic effects introduced

by the surrounding fluid flow. In the present section,

simulation approaches are presented. The purpose of

these approaches is to determine the vibration behav-

ior, i. e. , the time evolution of the coordinates based on

presented model. The approaches can be applied to the

equations of motion in physical coordinates, Eq. (2),

in traveling wave coordinates, Eq. (4), and their pro-

jected variants (limited to the subspace of the compo-

nent modes). To keep the formulations general, the vec-

tor u is used in this section, which shall represent the
respective set of coordinates. The specific features in

the case of traveling wave coordinates are highlighted,

where applicable. This section is organized as follows.

In Subsection 3.1, the dynamic regime of interest is

defined, for which the vibration behavior is to be de-

termined. This definition is of crucial importance for
the choice of suitable simulation techniques. In Sub-
section 3.2, an overview is given on general simulation

methods capable of computing both non-periodic as

well as periodic vibration regimes. Fourier methods rep-

resent a particularly popular family of methods capable

of directly computing steady-state vibrations; they are

addressed in detail in Subsection 3.3. These methods
give rise to nonlinear equations. Appropriate numerical
methods for the computation of solutions, their contin-

uation and the calculation of their branching behavior

are presented in Subsection 3.4. Finally, advanced sim-

ulation techniques of particular relevance to friction-

damped bladed disks are addressed in Subsection 3.5.
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3.1 Dynamic regimes of interest

In this subsection, we describe the vibration regimes of

particular interest in the design of bladed disks. To this

end, vibration phenomena are categorized in Subsub-

section 3.1.1. The category of periodic, traveling wave-

type vibrations is of foremost importance, and it is de-

scribed in detail in Subsubsection 3.1.2.

3.1.1 Vibration mechanisms and their dynamical

features

In general, vibrations can be categorized according to

the nature of the excitation and the character of the

vibration response, see Fig. 10a and b respectively. Vi-

brations of bladed disks can be induced by either sus-

tained or event-like excitation mechanisms. An exam-

ple for an event-like excitation mechanism is the im-

pulsive impingement of foreign or domestic objects on
the blades. Also, the rubbing between blades and the
casing is normally considered to be of event-like nature.

Event-like excitations typically lead to free vibrations

and are not further discussed in this work. On the other

hand, the important aeroelastic excitation mechanisms

described in Subsection 2.4 represent sustained excita-

tion mechanisms.

Sustained excitation mechanisms can lead to forced vi-

brations, self-excited vibrations or parameter-excited

vibrations. The most common source of forced vibra-

tions is the engine order excitation introduced in Sub-

section 2.4. Here, the vibration behavior in the neigh-

borhood of a specific resonance is typically of interest,

i. e. , near a particular coincidence of an excitation fre-

quency mΩrot with one of the system’s natural frequen-

cies. The most common source of self-excited vibrations

are aeroelastic instabilities which lead to flutter vibra-

tions. Parametric excitation can be caused by the rota-

tion in the gravity field, and certain other rotordynami-

cal phenomena. Parameter-excited vibrations currently

play a minor role in the design of bladed disks.

In the case of forced vibrations, the excitation can be

further grouped into stationary and transient excita-

tion. An example of an transient excitation is the exter-

nal forcing during run-up or run-down of the machine.

While, in this case, the excitation is typically regarded

as sustained, its frequency spectrum varies with the ro-
tational speed. From the design perspective, stationary
excitation forces are particularly critical, since the vi-

brations can fully develop to a possibly high level and

persist, which can cause fatigue. In addition, situations

of resonance passages are of interest, where the time-

varying excitation frequency coincides with one of the

system’s natural frequencies. While the vibrations are

a priori transient, excessive vibration levels could still

be reached, if the resonance is passed sufficiently slowly.
Resonance passages are attested an increasingly impor-
tant role in the design of industrial turbines for power

generation, since more run-ups and run-downs are re-

quired in the course of the transition to more renewable

energies [7]. The by far most important form of exter-

nal forces are periodic excitation forces. We will focus

on periodic excitation forces in this work, as these are

of primal relevance in the design of bladed disks with

regard to high cycle fatigue, and these represent one of

the main motivations for the use of friction damping.

Certain aerodynamical phenomena may lead to ran-

dom excitation, i. e. , stationary, non-periodic excitation

where the external forces are described in terms of their

stochastic characteristics rather than their exact time-

dependence (e. g.Gaussian noise).

In the presence of periodic external forces or aeroelastic

instabilities, one can further distinguish between tran-

sient and steady-state vibrations, cf. Fig. 10b. Transient

vibrations refer to the transitional regime from cer-

tain initial conditions until a steady state is reached
or the vibrations grow unboundedly. Steady-state vi-
brations are typically of most importance. They can be
either periodic or non-periodic, namely quasi-periodic

or chaotic. Periodic vibrations are certainly the most

important case. In bladed disks, they occur in partic-

ular as forced vibrations or flutter-induced limit cycle

oscillations. In the case of flutter, it should be remarked
that it is not uncommon to have multiple unstable trav-
eling wave forms within a specific mode family. The re-
sulting nonlinear vibration behavior in this case is still a

lively area of research. First investigations suggest that

multiple distinct steady states are possible in this case

[102,103]. Under the condition of a rotationally peri-

odic structure, each of these steady states corresponds

to a limit cycle oscillation, where the vibration form is

dominated by one of the unstable wave numbers. The

basins of attraction of the limit cycles associated with

the most unstable wave numbers tend to be the largest

ones.

In the special situation where flutter occurs in the neigh-

borhood of a possible external resonance, both excita-

tion sources should be considered. First investigations

suggest that there exists a lock-in frequency region close

to the resonance coincidence point [26]. In this lock-in

region, the vibration is synchronous to the external forc-

ing, and thus oscillates with an integer multiple of the

rotational speed. In a certain distance from resonance,
the autonomous behavior prevails, and the vibration is
no longer synchronous to the rotor speed. According
to [26], the vibration behavior is periodic in a wide fre-

quency range, with a potential chaotic transition regime
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excitation

event-like sustained

self-excitation external forcing

transient stationary

periodic non-periodic

periodically excited vibrations

transient

periodic quasi-periodic chaotic

(a) (b)

parametric exc.

traveling wave-type forcing Gaussian noise

steady-state

Fig. 10: Categories of excitation mechanisms and resulting vibration regimes: (a) excitation mechanisms, (b)

vibrations in the presence of periodic loading

.
In summary, the by far most important dynamic regime
of bladed disks is that of periodic vibrations. Periodic

vibrations are relevant both in the case of forced re-

sponse and flutter. In the next subsubsection, we will

discuss a particularly important form of periodic vi-

brations of bladed disks, namely traveling wave-type

vibrations.

3.1.2 Periodic traveling wave-type vibrations

Consider a periodic vibration with fundamental fre-

quency Ω,

u(t) = ℜ{
∞∑

n=0

Une
inΩt} . (19)

where Un are complex-valued amplitudes. A particu-

larly important special case of periodic vibrations in

rotationally periodic structures are traveling wave-type

vibrations. The general notion of traveling waves was

already introduced in A. A periodic vibration is con-

sidered to be of traveling wave-type, if the generalized

coordinates (l)u of sector l exhibit a constant time lag

l∆t with respect to the coordinates (0)u of the reference

sector,

(l)u(t) = (0)u(t+ l∆t) l ∈ [0, ns − 1] . (20)

Herein,∆t is the constant inter-sector time lag. Eq. (20)

shall be valid for any choice of the reference sector. This

implies that (0)u(t + ns∆t) = (0)u(t). Therefore, ∆t

can only assume discrete values ∆t = m 2π
Ωns

with an

arbitrary integer m ∈ Z. Due to aliasing, it is sufficient

to consider only wave forms corresponding to integers

within the interval [0, ns − 1]. We denote the integer

Fig. 11: Illustration of the phase lag boundary condition
defined in Eq. (21)

m0 ∈ [0, ns − 1] fundamental wave number. By substi-

tuting Eq. (20) into Eq. (19), a relationship between the
complex amplitude vector (l)Un of sector l and that of

the reference sector can be established,

(l)Un = (0)Une
i 2π
ns

m0nl . (21)

This relationship is illustrated in Fig. 11.

This way, Eq. (20) can be understood as a constraint
that only permits specific wave forms, namely those of
traveling type. To provide more insight into this con-

straint, consider the following extreme cases:

1. A single blade vibrates, while all other blades re-

main static for all times. This vibration behavior is

not captured by Eq. (20). Indeed, it represents a lo-

calized standing wave (soliton) from the perspective

of the bladed disk.
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2. A single blade oscillates, one after the other. This

vibration behavior is in fact captured by Eq. (20).
It represents a localized wave, traveling around the
bladed disk.

3. All blades oscillate synchronously with the same

magnitude. This is a standing wave in the rotat-
ing frame of reference. However it satisfies Eq. (20)

since it can also be represented as the special case
of a traveling wave with m0 = 0 (due to the aliasing

effect).

Traveling wave-type vibrations are expected if (a) the
mechanical structure is rotationally periodic, (b) the
aeroelastic effects do not introduce coupling among dif-

ferent traveling wave forms, and (c) the external forc-

ing, if any, is of traveling wave type. The rotational pe-

riodicity of the mechanical structure, condition (a), im-

plies that the effect of mistuning remains negligible12.

Condition (b) implies that the aeroelastic coupling in-
fluences the traveling wave vibration forms individually.

This is a common assumption, in particular, if the cou-
pling is assumed to be of linear type, cf. Subsection 2.4.
Finally, condition (c) is often satisfied since the most
common form of external forcing is the engine order

excitation, which takes the form of a traveling wave.

It must be noted that the above stated conditions are

not sufficient, since strongly nonlinear effects can gen-

erally impede the emergence of traveling waves. As dis-
cussed in Subsubsection 2.1.3, however, the effects caused
by the local contact interactions in friction-damped bladed
disks are commonly assumed to remain weak or moder-

ate. Hence, it is typically expected that under the above

stated conditions, the traveling wave nature of system

and forcing propagates to the vibration response. It is,

however, taken into account that the local nonlinear ef-
fects may introduce certain higher-order components in
the vibration behavior (in time and space).

The relation (21) can be exploited to greatly simplify

the simulation in the case of traveling wave-type vibra-

tions. In accordance with the above stated assumption

of rotational periodicity, the form of the contact laws

and associated parameters are identical for each sector.

Eq. (21) defines a phase shift between the input dis-

placements for the nonlinear forces of each sector. This

implies that the harmonics F c,n of the nonlinear forces

strictly satisfy the same relation as the coordinates Un

in Eq. (21). Hence, the nonlinear forces also take the

form of periodic traveling waves. The nonlinear forces
f c(t) acting on the global structure can thus be ex-

pressed in terms of the harmonic components (0)F c,n

12 As discussed in Subsubsection 2.1.2, this is the case if
the sector-to-sector deviations of (geometrical, material and
contact) properties are sufficiently small or the inter-sector
coupling is sufficiently strong.

of the nonlinear force acting on the reference sector,

f c(t) =
∞∑

n=0

√
nswkn+1 ⊗ (0)F c,ne

inΩt , (22)

where kn is defined by the congruence rule13,

kn = nm0 modns . (23)

Lastly, the harmonic components of the nonlinear force

are transformed to traveling wave coordinates,

twf c,j(t) = wH
j+1c(t) =

∑

n∈Kj

√
ns

(0)F c,ne
inΩt . (24)

with Kj = { m | mm0 modns = j, m ∈ [0,∞[ }. Note
that Eq. (24) only involves the contact forces at the in-
terfaces of the reference sector, whereas in the general

case of periodic or non-periodic vibrations, all contact
interfaces of the bladed disk have to be considered in-
dividually. The problem of analyzing the vibrations of

the global structure is thus reduced to the analysis of a

reference sector. Therefore, the assumption of traveling

wave-type vibrations is a very substantial one.

3.2 General methods for non-periodic and periodic

motions

Exact solutions of the nonlinear equations of motion are

limited to rather simplified special cases, which are of

rather limited usefulness in the design of bladed disks

coupled by mechanical joints14. Hence, only approxi-

mate solutions will be discussed in this work. In general,

asymptotic solutions can be obtained analytically or

semi-analytically by means of perturbation techniques.

However, the application of such approaches to prob-

lems involving three-dimensional, possibly non-smooth

contact interactions is a rather difficult issue. More im-

portantly, these approaches have a comparatively lim-

ited range of applicability. Instead, numerical methods
are usually employed for the vibration prediction of
nonlinearly-coupled bladed disks.
The most versatile class of numerical simulation meth-

ods is the class of time integration methods. Starting

13 For enlightening illustrations of this rule, the reader is
referred to [113]
14 It appears to be a common belief that the equations of
motion can be solved exactly if piecewise linear contact laws
are considered. Indeed, the set of ordinary differential equa-
tions becomes piecewise integrable. However, the transition
times between the different contact states (stick, slip, liftoff)
are generally not a priori known and need to be determined
from the transition conditions. The latter are usually tran-
scendental equations in the unknown transition times, ren-
dering an exact solution impossible.
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from a given set of initial values, the unknown time evo-

lution of the generalized coordinates in accordance with

the differential equations of motion is determined, suc-

cessively, via appropriate quadrature rules until a spec-

ified stop time is reached. For contact problems, time

integration methods can be grouped into event-driven

and time stepping algorithms. Event-driven algorithms

aim at directly resolving the transitions between differ-
ent contact states. This becomes a comparatively ex-
pensive strategy if numerous events occur [35,129]. On

the other hand, event-driven algorithms lead to more

relatively accurate results, since they do not suffer from

the inherent discretization errors associated with time

stepping algorithms. Time integration methods can also

be categorized according to whether their quadrature

rule can be given in explicit or only in implicit form.

Explicit methods are more prone to numerical stability

problems, while implicit methods are known for inac-

curacies associated with numerical damping [71].

As discussed in Subsection 2.2, contact problems of-

ten lead to numerically stiff ODEs. Even if the contact

problem is solved in its non-smooth formulation using

appropriate methods, comparatively small time steps

are required to ensure sufficient accuracy, which leads

to considerable computational effort [131]. As an exam-

ple, Phadke and Berger [130] simulated the steady-state

forced response of a blade model with underplatform

dampers by means of time step integration technique
using a conventional finite element tool. To evaluate the
vibration response for a single frequency point, a com-
putation time of 40 hours was necessary (in 2008). This

clearly demonstrates the prohibitive computational cost

associated with time integration methods. Therefore,

these methods cannot be applied in the context of com-

prehensive parameter studies, required for the design of
bladed disks coupled by friction joints. However, time
integration methods are widely used as reference for
other approximate methods.

As discussed in Subsection 3.1, periodic vibrations are

of primary importance in the design of bladed disks

with mechanical joints. For their efficient computation,

specific methods have been developed. The central idea
of these approaches is the reformulation of the initial
value problem into a two-point boundary value prob-

lem, where periodicity is enforced by requiring equal-

ity of the generalized coordinates and velocities at the

beginning and at the end of the period. The methods

for the solution of this boundary value problem can be

grouped as follows:

(a) Shooting methods : The purpose of shooting meth-

ods is to find the appropriate initial values of the
generalized coordinates and velocities which satisfy

periodicity boundary condition. The problem is for-

mulated as a set of nonlinear equations in the un-

known initial values. For given initial values, the
values at the end of the period are still determined
by means of time integration.

(b) Spectral methods: Here, the generalized coordinates

and velocities are approximated in terms of suit-
ably chosen base functions and associated coeffi-
cients. Periodic base functions are used, in order

to satisfy the periodicity boundary condition a pri-

ori. Since the number of considered base functions

is finite in practice, the equations of motion can

in general not be satisfied at all times. Instead, the

time-dependent error term is made orthogonal with

respect to suitably selected weight (or test) func-

tions. This projection gives rise to a set of nonlinear

algebraic equations in the unknown coefficients.

In contrast to direct time integration from given initial

values, the transient regime is not explicitly computed

in the case of shooting methods. This is an important

advantage, considering that the transient regime is com-

paratively long due to the typically weak damping [36].

Owing to the use of time integration, shooting meth-

ods are applicable to various problems, including those

involving non-smooth contact laws. It should be re-

marked, however, that shooting methods are only rarely

applied to nonlinearly-coupled bladed disks [35].

Many variants of spectral methods are available [57].

Compared to shooting methods, they do in general not

rely on time integration. If the base and weight func-

tions are carefully selected, a high accuracy and a com-
paratively high efficiency can be achieved with spec-
tral methods. An important category of spectral meth-
ods are Galerkin methods, where the base functions are

used as weights. Another category are collocation meth-

ods, where the error term is enforced to vanish at cer-

tain time instants [57]. A particularly popular Galerkin

method is the harmonic balance method, where har-
monic base functions are used. This method is widely
used in the vibration prediction of friction-damped bladed
disks, and is presented in the next subsection.

3.3 The harmonic balance method

The harmonic balance method15 is well suited for the

computation of periodic solutions of ODEs [162,14,111].
As discussed in the previous subsection, the harmonic
balance method is a Galerkin method with harmonic

15 In the literature, other widely used names for the method
described here are the ‘Describing Function method’ and the
‘Krylov-Bogoliubov-Mitropolsky method’. Moreover, the pre-
fixes ‘multi’ or ‘high-order’ are often used for the harmonic
balance method in order to clarify the difference to the single-
term variant which only considers the fundamental harmonic.
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base functions. Hence, the generalized coordinates u(t)

are expanded in a truncated Fourier series,

u(t) ≈ ℜ{
∑

n∈H

Une
inΩt} . (25)

Herein, n are the (temporal) harmonic indices, Ω is

the fundamental vibration frequency and Un are the
complex-valued amplitudes (often simply referred to as

harmonics). H is the set of considered harmonic com-

ponents. In general, the size of the set H is referred to

as the number of harmonics. In the simplest case, all

harmonics up to a specified harmonic order nh are con-

sidered; i. e. , H = {0, . . . , nh}.
As mentioned before, the substitution of Eq. (25) into

the equations of motion produces an error term. In ac-

cordance with the Galerkin idea, this error term should

not have a component in the subspace spanned by the

base functions. This is achieved by making the error

term orthogonal to the base functions, i. e. , by ensur-

ing that the Fourier components of the residual term

are zero (Fourier-Galerkin projection). To this end, the

different terms in the equations of motion are repre-

sented by truncated Fourier series. This gives rise to

a set of nonlinear algebraic equations in the unknown

Fourier coefficients Un,

[
−(nΩ)2Mn + inΩDn +Kn +Gai,n (nΩ)

]

︸ ︷︷ ︸

Sn(Ω)

Un

+ F c,n (U0, . . . ,Unh
, Ω) = F ae,n ∀n ∈ H , (26)

Herein, Sn is the so-called dynamic stiffness (or

impedance) matrix with regard to the n-th harmonic.
Regarding the structural matrices Mn, Dn, Kn and

the aeroelastic transfer matrix Gai,n one needs to dis-

tinguish between physical and traveling wave coordi-

nates. In the case of physical coordinates, these matri-

ces do not depend explicitly on n. In the case of trav-

eling wave coordinates, the situation is slightly more
complicated. The corresponding traveling wave struc-
tural matrices twKk, twDk and twMk, as defined in B,

have to be inserted. Thereby, the (spatial) wave number
k and the temporal harmonic index n are related via the

congruence rule k = nm0 modns, cf. Eq. (23). Here, the

fundamental wave number m0 is defined as discussed in

Subsubsection 3.1.2. Moreover, Gai,n in Eq. (26) is re-
placed by twGai,n, as defined in Eq. (18). In general,

the complex amplitudes F c,n,F ae,n of the forces are

related to their respective time-domain counterpart by
the Fourier transform. However, F ae,n is readily avail-

able in the frequency domain, see Eq. (17). The treat-

ment of the contact forces requires special attention and

is addressed in Subsubsection 3.3.5.

The fundamental wave number m0 and the fundamen-

tal oscillation frequency Ω depend on the considered
load case. In the case of forced response to engine order

excitation, typically the fundamental wave number is

equal to the fundamental engine order andΩ = m0Ωrot.

If period doubling or general period multiplication oc-

cur, m0 and Ω have to be adjusted accordingly. In

the case of flutter-induced limit-cycle vibrations, m0

is equal to the considered (unstable) wave number, or,

equivalently, the corresponding IBPA, cf. Tab. 3. The

fundamental frequency of the limit cycle oscillation is

not directly linked to the rotation speed and has to be

treated as an unknown. As a consequence, the problem

in Eqs. (26) is under-determined. In this autonomous

case, the absolute phase of the oscillation is arbitrary.
For normalization, a phase constraint can thus be im-
posed such that the number of equations matches the

number of unknowns again.

The Eqs. (26) for each harmonic can be assembled into

a global set of equations of the form,

S (Ω)U + F c (U , Ω) = F ae , (27)

or

U +H (Ω)F c (U , Ω) = Uae . (28)

Herein, S denotes the (global) dynamic stiffness ma-

trix, and H denotes the dynamic compliance (or re-

ceptance, or FRF) matrix, which is related to S by

HS = I. Eq. (28) is obtained from Eq. (27) by left-
multiplication with H. It should be noted that Eq. (27)

and Eq. (28) are mathematically fully equivalent, as
long as S is invertible. While Eq. (27) represents a bal-

ance of generalized forces, Eq. (28) balances general-

ized displacements, which can be interpreted as the re-

quirement that the actual displacement should be com-

patible with the displacement induced by the external

forces (Uae = HF ae) as well as the displacement in-

duced by the nonlinear forces (HF c). The formulation
in Eq. (28) is sometimes preferred if the FRF matrix H

is expressed directly, e. g. in terms of the natural modes

and possibly the static residual compliance [122].

Methods for the numerical solution of nonlinear equa-

tions (27) or (28), including methods for the contin-

uation of solution branches and computation of the

branching behavior are presented in Subsection 3.4. Be-

fore that, we discuss different theoretical and computa-

tional aspects related to the harmonic balance method

in the following three subsubsections.

3.3.1 Critique of the harmonic balance method

The approximation of u(t), defined in Eq. (25), is per-

fectly smooth, i. e. , the time-derivatives exist and are
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continuous for any order (differentiability class C∞).

The contact forces, on the other hand, have typically
a limited degree of smoothness. Suppose that the con-
tact forces are C0 functions. As a consequence, the ex-

act solution u(t) will be a C2 function (ü(t) and u̇(t)

are C0 and C1, respectively). Hence, the exact solution
does not live in the space spanned by the harmonic

base functions, even if an infinite number of base func-
tions was considered. Besides this mathematical con-
tradiction, the harmonic balance method may suffer

from poor convergence behavior. Specifically, it can be

shown that the harmonic balance method converges

only point-wise and at a comparatively low rate in the

presence of non-smooth forces [73]. In the neighborhood

of discontinuities, the approximation exhibits oscilla-

tory behavior, known as the Gibbs phenomenon.

In spite of the above mentioned difficulties, the har-

monic balance method is commonly applied to prob-

lems involving non-smooth contact forces. It should be

noted that one is mainly interested in predicting the

global vibration behavior rather than in the detailed

resolution of the locally non-smooth contact interac-

tions. Owing to the ‘filtering’ behavior of the elastic

structure, the global deformation behavior exhibits a

higher degree of smoothness than the local relative de-

formations, velocities and forces in the contact inter-

face. Numerical studies indicate that the global vibra-

tion behavior can often be predicted with sufficient ac-
curacy, as compared with time integration of the non-
smooth model [110]. This might explain the great suc-
cess of the harmonic balance method in the field of

jointed structures.

3.3.2 Choice of the harmonic order and selection of

harmonics

The number of considered harmonics should be as large

as necessary to approximate the exact solution with suf-

ficient accuracy, cf. Fig. 12. In order to avoid spurious

computational effort, on the other hand, the number of
harmonics should be as small as possible. A minimum
set of harmonics is dictated by the considered excita-

tion. Those harmonics that are directly driven, or where

a significant response is expected, should always be con-

sidered.

Example A non-trivial, but, at the same time, not un-

common example should be mentioned here: the exter-

nal forcing with different harmonics. Suppose that the

external forcing of engine order type is in accordance

with Eq. (16), and only the engine orders m1 = 20

and m2 = 21 provide a significant loading; i. e. , M =

Fig. 12: Example of the convergence of the harmonic

balance method with respect to increasing harmonic

order nh, with H = {0, . . . , nh}

{m1,m2}. In this case, the fundamental engine order
is m0 = 1 (defined as the greatest common divisor).

It is certainly necessary to consider the 20th and the

21st harmonic, in order to capture the excitation. Be-

sides multiples of 20 and 21, combination harmonics

z1m1 + z2m2 with integers z1, z2 ∈ Z become relevant
in general. Determining the smallest set H that cap-

tures the dynamic behavior with satisfying accuracy is

not trivial in such a situation.

Several strategies have been proposed to automatically

adjust the harmonic order nh during the solution pro-

cess, or, more generally, to adapt the set H of consid-

ered harmonics. A simple approach is to determine the

approximation for an initial harmonic order and for a

higher one. If the difference does not exceed a certain

tolerance with respect to an appropriate measure, the

initial harmonic order is sufficient, otherwise not. For

instance, a measure based on the strain energy was pro-

posed in [62]. Grolet and Thouverez [50] suggested to

estimate how the spectral energy distribution varies in

the progress of the continuation of the solution. Specific

harmonics can then be included or excluded depending

on whether its associated energy is predicted to exceed
or fall below a certain threshold, respectively.
It can be useful to select different harmonic orders for
different coordinates. If the nonlinearities are localized

in the contact interfaces, it is usually necessary to ap-

proximate the associated coordinates with a compara-

tively high number of harmonics, while a much smaller

number is often sufficient for the remaining coordinates.

Experiments and simulations of friction-damped sys-

tems often suggest that the fundamental harmonic com-

ponent of the (global) response is predominant within
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the dynamic regime of interest [63]. Hence, the single-

term variant, where only the harmonic n = 1 is retained
in the balance (26), has been very popular for a long

time [140,19,115,8]. However, accounting for higher har-

monics can considerably influence the fundamental har-

monic component of the response [27]. The higher-order

contributions are important for the accurate resolution

of the local stick, slip, and lift-off behavior in the con-
tact interface [19]. Furthermore, it is crucial to consider
the static balance, i. e. , the zeroth harmonic in Eq. (26)

for contact problems. Otherwise, the effects of settling

and realignment of the contact interface [38,40,180,139]

and the static deflection typical for breathing contact
which involves dynamic opening and closing of the con-

tact. Hence, the single-term variant can suffer from poor

accuracy [36,175]. Particularly for the case of small

clearances or low normal pressures [175], so-called sub-

or superharmonic resonances are reported for numerical

as well as for experimental investigations [170,3,19,18,81].

In these dynamic regimes, several modes and multiple

frequencies (not only the fundamental one) contribute

substantially to the global vibration behavior. In sum-

mary, the appropriate selection of harmonics depends

on the considered dynamic regime, the contact formu-

lation (see discussion in Subsubsection 3.3.5), and the

desired accuracy. This makes it impossible to provide a

general recommendation for all cases.

3.3.3 Stability of periodic motions

The periodic motion computed by means of the har-

monic balance method is not necessarily stable. In this

work, stability refers to the conventional concept of

asymptotic stability of a periodic orbit in the phase

space [160]. If the periodic orbit is stable, all trajecto-

ries starting in a sufficiently small neighborhood of the

orbit will converge towards it. Otherwise, in the pres-

ence of slightest perturbations, a motion initiated on

this orbit will diverge, and eventually approach a sta-

ble limit state in another region in phase space. Hence,

the stability indicates whether the vibration behavior

can be expected in the real world, where small pertur-
bations are inevitable. It is therefore relevant to assess
the stability of the computed periodic motion.

The Floquet theorem can be utilized to assess a poste-

riori whether a found periodic motion is asymptotically

stable. Two different computational methods for stabil-

ity analysis are highlighted at this point:

(a) Monodromy matrix based method : The stability can

be inferred from the eigenvalues of the so-called

monodromy matrix (Floquet multipliers). The mon-

odromy matrix represents the mapping of infinites-

imal perturbations at the beginning of the period

to the end of the period. If there is an eigenvalue

with a magnitude greater than unity, this indicates
a perturbation would be magnified, and, hence, the
motion is unstable. If, on the other hand, all eigen-

values are located within the unit disk in the com-

plex plane, the motion is asymptotically stable.

(b) Hill method : The departure point for the Hill method
is the linearization of the dynamic behavior around

the periodic motion. This leads to a linear ordi-

nary differential equation with periodic coefficient

matrices. Using the Hill method, the problem can

be transformed to a quadratic eigenvalue problem

in the frequency domain [52]. The eigenvalues are

the so-called Floquet exponents. If all eigenvalues

have negative real part, the periodic motion is sta-
ble, whereas it is unstable if any of the eigenvalues
exhibits a positive real part.

For method (a), the central task is the computation of

the monodromy matrix. This usually involves numeri-
cal time integrations. Hence, this approach is compar-
atively expensive. On the other hand, this method is
particularly popular in combination with the shooting

method, where the monodromy matrix is often readily

available from the calculation of the Jacobian of the

residual [114,157,158]. The Hill method is well-suited

for the frequency domain framework [52,74,95]. The
coefficient matrices of the quadratic eigenvalue prob-
lem only depend on quantities readily available from
the solution of the harmonic balance equations. A dif-

ficulty with the Hill method is the size of the quadratic

eigenvalue problem, which scales with the number of

harmonics. For large problems, the stability analysis

based on the Hill method can become numerically more
expensive than the computation of the periodic motion
itself. Moreover, a much larger number of harmonics is

commonly required for the accurate stability analysis

compared to the computation of the vibration behav-

ior [118]. Finally, a numerical difficulty is associated

with the finite harmonic truncation of the Hill matrix

[95]. The number of eigenvalues obtained by the Hill
method exceeds the number of Floquet multipliers by a
factor corresponding to the number of harmonics. Ow-

ing to finite truncation, however, these eigenvalues are

not identical, and some of them are more accurate than

others. It is suggested to filter the eigenvalue spectrum

in order to obtain only the most converged values [95].

Under the variation of a system parameter, the peri-
odic motion may change its stability, which is referred
to as bifurcation. In the case of an unstable periodic

motion, one or more new stable motions may emerge

beyond a bifurcation point, each being either periodic

or non-periodic. The different possible steady states of

a nonlinear dynamical system are illustrated in the so-
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Fig. 13: Important phenomena of a nonlinear dynamical system: (a) conceptual bifurcation diagram, (b) Poincaré

section of possible attractors

called Poincaré maps in Fig. 13b. A Poincaré map illus-

trates the returns of a trajectory to a section through
the phase space. A common example for bifurcation
points are the turning points in the frequency response
of nonlinear mechanical systems. Consider the case of

a structure with opening contact; this system exhibits

a softening-type nonlinear behavior. In this case, the

amplitude-frequency curves of periodic forced vibra-

tions near a specific resonance are typically bent to-
wards the left, as indicated in Fig. 13a. As a conse-
quence, there is a range with (at least) three possible

amplitudes for the same frequency. Not all of the so-

lutions are stable. At the turning points, saddle node

bifurcations take place. The periodic motions associ-

ated with the overhanging branch, connecting the turn-

ing points, is typically unstable. In general, bifurcations
may also give rise to emanating solution branches, and
detached solution branches may be present, as illus-

trated in Fig. 13a.

It can generally be stated that the analysis of the stabil-

ity and the bifurcation behavior of periodic solutions,

as well as the consideration of quasi-periodic and non-

periodic motions, are only rarely addressed in the field

of nonlinearly-coupled bladed disks. In Subsection 3.4,

methods are presented for the continuation and the

computation of the branching behavior of solutions.

3.3.4 Extension to quasi-periodic motions

Besides periodic motions, chaotic and quasi-periodic

motions are possible forms of steady-state vibrations of

bladed disks. Quasi-periodic motions represent motions

with multiple rationally independent (or non-

commensurable) base frequencies. From a topological

point of view, the trajectory of a quasi-periodic motion

covers an invariant torus in the phase space, as opposed

to the closed orbit in the case of a periodic motion.

In the presence of multi-frequency excitation with in-
commensurable frequencies, the vibration response is a
priori quasi-periodic. But even in the presence of har-

monic external forcing, nonlinearity can lead to the loss

of stability of periodic motions, and give rise to quasi-

periodic motions. Besides the excitation frequency, a

new frequency emanates in this case, which contributes

to the vibration behavior.

To compute quasi-periodic motions, both the shooting

method and the harmonic balance method can be ex-

tended, see [99] and [142], respectively. In the case of

Fourier methods, this extension is known as the multi-

dimensional harmonic balance method (or variable-

coefficient harmonic balance method). The central idea

is to consider the rationally independent frequencies as

fundamental frequencies. Hence, Ω and n in Eq. (25)

become vectors of according dimensions, and nΩ is to

be understood as inner product. Thus, besides multiples

of either fundamental frequency, combination frequen-

cies can be taken into account. In the case of travel-

ing wave-type vibrations, the fundamental wave num-
bers associated with the fundamental frequencies are
collected in the vector m0, and the congruence rule in

Eq. (23) governs the corresponding wave numbers as-
sociated with hyper-index n, cf. e. g. [91]. Accordingly,

the one-dimensional (inverse) Fourier transform has to
be replaced by its multi-dimensional counterpart, thus,

acting on a multi-dimensional hyper-time. While hys-
teresis can be handled in the one-dimensional case, as

will be detailed in Subsubsection 3.3.5, it represents a

principal problem in hyper-time. Therefore, hysteretic

nonlinearities, such as dry friction, have to be re-formu-
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lated by incorporating appropriate internal variables

into the set of differential equations, such that the phase

space does no longer have a ‘memory’ [84]. Finally, it

should be mentioned that for assessing the asymptotic

stability of quasi-periodic motions, the Floquet stabil-

ity theorem can be accordingly extended [55].

3.3.5 General strategies for the treatment of the

nonlinear forces

Most harmonic balance formulations in the field of bla-

ded disks with contact interfaces do not treat the non-
linear forces explicitly as unknowns. Hence, the nonlin-
ear equations are solved only for the harmonics of the

generalized coordinates U , as indicated in Eqs. (27)-

(28). To this end, the harmonics of the nonlinear forces

F c need to be expressed as a function ofU . This is anal-
ogous to the primal assembly approach in dynamic sub-

structuring, where the a priori unknown coupling forces

are expressed as a function of the displacements, and

not treated explicitly as unknowns. In this sense, a dual

assembly is also possible, which means that the nonlin-

ear forces F c are considered as additional unknowns.

Alternatively, the problem in Eqs. (27)-(28) could be

re-formulated in such a way that the nonlinear forces

F c are treated as the only unknowns. It should be kept
in mind that the nonlinear forces are typically of lower

degree of smoothness than the generalized coordinates.

Therefore, a larger number of harmonics would is typi-

cally necessary to approximate the nonlinear forces with

satisfying accuracy. By treating the nonlinear forces im-

plicity, this problem is circumvented, and a compara-

tively small number of harmonics is usually sufficient in

the simulation.

In most cases, it is not possible to express the relation

between the harmonics of the generalized coordinatesU

and the harmonics of the nonlinear forces F c in closed

form. Instead, numerical procedures have to be utilized

to evaluate the term F c(U). This is a crucial task and

often represents the bottleneck of the simulation pro-
cedure. A major problem is the case of set-valued rela-

tions between u and f c. This problem can be tackled

by means of the Dynamic Lagrangian method presented

in Subsubsection 3.3.6. Two aspects further complicate

the computation of F c(U): (a) The need to account for

the different contact states (stick, slip, liftoff), and (b)

the hysteretic character of the friction force. Regarding

(a), the approaches can be grouped into event-driven

and time stepping schemes, analogously to time inte-

gration methods. These approaches are presented in the

following two paragraphs. The specific treatment of the

hysteretic character is addressed in the third paragraph.

For convenience, we assume a regular relation of the

form f c [u] in the following; the presented approaches

apply accordingly in conjunction with the Dynamic La-
grangian method.

Event-driven schemes In the case of event-driven

schemes, the key idea is to directly determine the tran-

sitions between the different contact states [124,8,82].

This step involves the root finding of (functions of)

trigonometric polynomials. In general, the roots of trigono-

metric polynomials are governed by transcendental equa-

tions, so that the computation of the transitions has to

be carried out numerically. Once the transition time in-
stants are known, the harmonics of the nonlinear forces
F c can be computed by piecewise integration. As op-

posed to the computation of the transition times, this

integration step can be carried out analytically for many
systems. For the class of piecewise polynomial systems,
this has been shown in [82]16. Note that piecewise poly-

nomial systems include systems with unilateral elastic
contact and one-dimensional elastic Coulomb friction,
which are piecewise linear. However, the comparatively

common case of spatial Coulomb friction, where the

friction force needs to remain within the friction cone,

is not included. In fact, an analytical integration is im-

possible in the case of spatial friction. Hence, spatial

friction can only be tackled by considering the two co-

ordinates, that span the tangential contact plane, as

independent of each other, which represents a major

limitation17.

The analytical formulation results in a comparatively
accurate description of the functional value F c and its

derivatives of different order. This can be an important

aspect in the context of design studies and sensitivity

analyses. However, in accordance with the discussion in

Subsection 3.2, event-driven schemes become compara-

tively expensive if numerous events occur (per vibration

period). This is why they are less frequently applied to

structures with a fine discretization of the contact area.

As described above, the Gibbs phenomenon leads to
artificial oscillations of the Fourier approximation near
discontinuities such as contact state transitions. This,
in turn, may lead to artificial contact state transitions

in addition to the (physical) contact state transitions.

Hence, the character of the approximation, by design,

gives rise to a large number of events, which makes

event-driven schemes less attractive in the context of

the Harmonic Balance method.

16 Hence, this procedure is considered a pure frequency-
domain method, since there is no need to switch to the time
domain, in contrast to the alternating frequency-time scheme
presented in the following paragraph.
17 cf. discussion in paragraph ‘Tangential contact’ in Sub-
subsection 2.2.3
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Fig. 14: Alternating-frequency-time scheme

Alternating frequency-time scheme The evaluation of

F c using time stepping is referred to as alternating

frequency-time (AFT) scheme [9]. It relies on the evalu-

ation of the nonlinear forces at discrete time steps and

the conversion between time and frequency domain, as

illustrated in Fig. 14. The evaluation of the nonlin-

ear force laws in the time domain is usually straight-

forward. Different events are handled simply by piece-

wise definition of the nonlinear forces. The AFT scheme

is very popular also beyond the realm of contact non-

linearities. Mathematically, the AFT scheme can be ex-

pressed as

F c = DFT [ f c (iDFT [U0, . . . ,Unh
]) ] , (29)

where (i)DFT denotes the (inverse) discrete Fourier
transform. It is particularly efficient to utilize the (in-
verse) Fast Fourier Transform ((i)FFT) for this step
[10].

Remark Note that for standard (i)FFT subroutines, a

complete set of harmonics is usually required. For non-
trivial sets H, the remaining harmonics Un of the gen-

eralized coordinates are set to zero. Accordingly, from

the harmonics F c of the nonlinear forces obtained by

the FFT, only those associated with the set H are con-

sidered in the nonlinear equations (27)-(28).

Compared to the event-driven scheme, the AFT scheme
exhibits an inherent discretization error. The accuracy
and computational effort of the AFT scheme largely de-

pend on the number of time steps per period. To avoid

aliasing, the theoretical lower limit of this number is

given by 2nh+1. To accurately resolve the contact state
transitions, usually a much larger sampling frequency

is needed.

Treatment of hysteresis If the nonlinear forces describe

hysteretic effects, as in the case of dry friction, the force

f c cannot be expressed as an explicit function of the

generalized coordinates u and velocities u̇. Instead, the
force is usually governed by a differential law such as

the elastic Coulomb law defined in Eq. (11). Since pe-

riodic, steady-state vibrations are sought, one is only

interested in the steady-state hysteresis cycle. A com-

mon strategy to determine the steady-state hysteresis

cycle for given periodic input u(t), is to start from a

certain point on the initial loading curve and to let f c

evolve until reaching the steady-state hysteresis. For

the AFT scheme, this can be achieved by evaluating

Eq. (29) for several periods, and checking for periodic-

ity of the forces (and/or further internal variables); in

the case of elastic Coulomb friction, usually two periods

are sufficient. For the event-driven scheme, state tran-
sitions are successively determined until the sequence
of transitions starts to repeat itself.

3.3.6 Formulation of common contact formulations in

the frequency domain

As stated in Subsection 2.2, the most popular contact

formulations for bladed disks with mechanical joints are
based on the Coulomb law for the frictional behavior,
and the unilateral law for the normal contact. Specifi-

cally, two different formulations are commonly used:

(a) elastic formulation: Friction is modeled by the elas-
tic Coulomb law, normal contact is modeled by the

unilateral-elastic contact law.
(b) rigid formulation: Friction is modeled by the set-

valued Coulomb law, normal contact is modeled by

the set-valued unilateral contact law.

The contact laws are illustrated in Fig. 7. For a general

discussion on these two formulations, we refer to Sub-

section 2.2. In the present subsubsection, it is shown

how these formulations can be applied in the frequency

domain.

In the case of the elastic formulation (a), the relation

f c [u] is regular, such that the expression F c(U) in
Eqs. (27)-(28) can be ad hoc evaluated by means of the

general methods presented in the previous subsubsec-

tion. In contrast, the problem becomes a constrained

optimization problem due to the set-valued force laws

in case (b). Hence, a solution U is sought that satisfies

the dynamic force equilibrium given in Eqs. (27)-(28),

as well as the contact constraints. This generally calls

for specific algorithms well-suited for such problems. An

appropriate method is the Dynamic Lagrangian (DL)
method [110]. This method is similar in spirit as the

well-known augmented Lagrangian method, but is specif-

ically adapted to Fourier methods. An important differ-

ence to the augmented Lagrangian method is that the
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DL method is a primal method in the sense that the

contact forces can be expressed as a function only of

the primary displacement variables.

In the following, we present a unified formulation of

both the elastic and the (DL based) rigid contact for-

mulations. The difference between these formulations

manifests itself merely in the definition of the predicted

sticking force, which is the only input variable of the
force computation algorithm. In Tab. 2, this predicted

sticking force is defined in terms of its harmonic compo-

nents for the different contact formulations. The force is

given separately for the normal contact, Λst,n, and the

tangential contact,Λst,t. The indices n and t refer to the
restriction to the normal direction and the tangential

directions, respectively, of a specific contact point. The

fully three-dimensional case is considered here, where

the normal contact influences the frictional behavior,

and spatial friction is taken into account. Note that

special cases such as frictional contact with constant

normal load, frictionless unilateral contact, or frictional

contact with decoupled tangential directions can be de-

rived in a straight-forward manner.

Contact is formulated on the force level, as opposed to

the pressure level. Forces and pressures at contact point

k are related by the associated area ∆Ak, cf. Eq. (7). In

the case of the elastic formulation, two different cases
should be distinguished: (a) the coupling by a contin-

uous elastic elastic layer, and (b) the coupling by bulk
springs with stiffness values kn and kt. In case (a), the

area-specific stiffness of the elastic layer (measured in
N/m3) has to be weighted with ∆Ak to obtain the stiff-

ness values kn and kt used in this subsubsection. In case

(b), kn and kt are directly specified.
In the case of the DL formulation, penalty coefficients

ǫDL,n and ǫDL,t are introduced. These penalty coef-
ficients have a crucial influence on the mathematical

conditioning, and, thus, the convergence behavior, but

they do not have an immediate effect on the converged

results. This is the substantial difference between the

penalty coefficients needed in the DL formulation, com-

pared to the stiffness coefficients involved in the elastic

formulation, which generally has a distinct influence. In
[16], it is recommended to use a value in the order of
magnitude of the spectral radius of the Schur comple-

ment of the dynamic stiffness matrix.

The DL formulation utilizes the term Rlin, which rep-

resents the linear part of the residual of Eq. (27),

Rlin := SU − F ae . (30)

Therefore, the non-contact forces, i. e. , elastic, inertia,

damping and excitation forces, directly enter the con-

tact force computation in the case of the DL formula-

tion. Consider the case of fully sticking contact. Accord-

ing to the DL formulation, gn = 0 and gt = 0 in this

case. From this, it follows that Λst,n = −Rlin,n and
Λst,t = −Rlin,t, which could also have been obtained

by a direct elimination of the linear constraints. The

consideration of non-contact forces in the contact force

computation is an essential difference to the elastic for-

mulation, where only the contact deformation enters

the contact force computation. As the dynamic force

balance given in Eq. (27) must hold at the solution

point, the converged contact forces, of course, implic-

itly depend on the remaining forces, as in the case of

the elastic formulation.

For frictional contact, a velocity-based variant can be
used in the case of the DL formulation, as alternative to

the displacement-based one, see the third row of Tab. 2.
This has no counterpart in the elastic formulation. The
matrix ∇ in Tab. 2 takes care of the time differentia-

tion in the frequency domain; i. e. , ∇gt corresponds to

the harmonic components of the tangential velocity.

Table 2: Definition of the predicted sticking force for
different contact formulations

sticking force elastic Dynamic Lagrangian
Λst,n kngn −Rlin,n + ǫDL,ngn

Λst,t (displacement-based) ktgt −Rlin,t + ǫDL,tgt

Λst,t (velocity-based) - −Rlin,t + ǫDL,t∇gt

We exemplify the unified contact treatment in the frame-

work of the AFT scheme. We would like to empha-

size, however, that analogous formulations are possible

with event-driven schemes. To this end, the frequency-

domain quantities Λst,n, and Λst,t, are transformed into

the time domain via the iFFT. The resulting time sam-
ples at time instant i are denoted λst,n,i, λst,t,i. Based

on these time samples of the predicted sticking forces,

the actual contact forces are determined. This proce-

dure is presented in the following two paragraphs for

normal and tangential contact, respectively.

Normal contact For the normal contact, the (actual)

contact force λn,i reads,

λn,i =

{

0 if N0 + λst,n,i < 0 (separation)

λst,n,i if N0 + λst,n,i ≥ 0 (contact)
. (31)

Herein, N0 is the normal preload18 at the considered

contact point. The case of an initial clearance gn,0 is

18 Note that the normal preload is sometimes also referred
to as initial normal load, which emphasizes that the actual
normal load may change due to vibrations. In fact, even the
static component (or average value) of the normal load is
influenced by the dynamic contact interactions.



Vibration Prediction of Bladed Disks Coupled by Friction Joints 33

also captured in this formalism. In this case, negative

values N0 have to be used in accordance with either
N0 = −kngn,0 for the elastic formulation, or N0 =

−ǫDL,ngn,0 for the DL formulation. It can be verified

that a negative normal preload corresponds to an offset

of the normal contact gap by gn,0, cf. Tab. 2.

Tangential contact Once the normal force is known for

a specific contact point, the tangential contact force

can be computed. In the case of displacement-based

formulations (elastic or DL formulation), the following

applies,

λt,i =







λpre,t,i

︷ ︸︸ ︷

λt,i−1 + λst,t,i − λst,t,i−1 (I)

µ |λn,i| λpre,t,i

‖λpre,t,i‖
(II)

0 (III)

(I) if ‖λpre,t,i‖ < µ |N0 + λn,i| (sticking)

(II) if ‖λpre,t,i‖ ≥ µ |N0 + λn,i| (sliding)

(III) if N0 + λn,i = 0 (separation) . (32)

In contrast to the normal contact force, the tangential
contact force λt,i at time instant i depends on its value

at the previous time instant, λt,i−1, resulting in an it-

erative scheme. This reflects the hysteretic character of
the model. Eq. (32) has to be evaluated iteratively until
the steady-state hysteresis cycle is reached.
As alternative to the displacement-based formulation,

a velocity-based formulation can be used in the case of
the DL formulation,

λt,i =







λst,t,i (I)

µ |N0 + λn,i| λst,t,i

‖λst,t,i‖
(II)

0 (III)

(I) if ‖λst,t,i‖ < µ |N0 + λn,i| (sticking contact)

(II) if ‖λst,t,i‖ ≥ µ |N0 + λn,i| (slipping contact)

(III) if N0 + λn,i = 0 (liftoff) . (33)

The obvious advantage is that no iterative evaluation of

the force law is required in this case. According to [94],

however, this approach is not useful if the mean rela-

tive displacement of the contact interface is not known

in advance.

Once the (steady-state) time histories of the forces λn,i,

λt,i are known, the DFT is applied to determine the

required harmonic components of the contact forces.

Finally, the global nonlinear force vector F c can be as-

sembled considering all contact interfaces.

Remark In the case of the elastic formulation, it is com-

mon to formulate the contact laws in terms of the gaps
rather than using the predicted sticking force. Also, in
the case of the DL formulation, the contact force is usu-

ally split into a frequency-domain term accounting for

the dynamic force equilibrium and a time-domain term

penalizing the violation of the contact constraints. Only

the latter term is typically evaluated in the time do-
main. It can be verified that Eqs. (31)-(33) are indeed
fully equivalent to the common elastic and DL formula-
tions. The alternative formulation was presented here to

indicate the opportunity for the unified implementation

of both contact formulations (using the same subrou-

tine). Also, the notion of the predicted sticking force

is deemed helpful to gain further insight into the inter-

pretation of the Dynamic Lagrangian formulation and

its relation to the elastic formulation. Finally, it should

be noted that Eqs. (31) and (33) represent proximal

point operations with respect to the admissible set of

contact forces, applied to the predicted sticking force.

This highlights the resemblance with formulations used

in time integration schemes for the algebraic inclusion

problem associated with the non-smooth contact laws

[45,1].

3.4 Numerical solution of the nonlinear equations

The harmonic balance method gives rise to a set of
nonlinear algebraic equations (27)-(28). As described in

Subsection 3.2, such equations also arise in the general
case of spectral methods as well as the shooting method.
Hence, the problem of predicting periodic motions of

nonlinear dynamical systems often involves the solution

of nonlinear equations. In general, the set of equations

can be written as

R(X) = 0 , (34)

where X is the vector of unknowns and R is the resid-

ual vector function, which measures the error if X is

not the solution. The efficient solution of Eq. (34) in
the light of vibration problems is the purpose of the
present subsection.

Remark Many solution methods require real arithmetic,

at least for the vector of unknowns X. To this end, the
complex-valued unknowns U in Eqs. (27)-(28) can be

split into real and imaginary parts, and gathered in the

vector X. The same can be done for the residual, in

order to obtain a real-valued vector function R.

Exact solutions of the nonlinear equations are only pos-

sible in very special cases, and are not further discussed
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in this work. Numerical methods are commonly used to

compute approximate solutions. In general, a multitude

of solutions may exist for the same set of equations. The

numerical methods can be grouped into global meth-

ods, which are suited to compute all solutions, and local

methods, which are suited to compute a single solution
in the neighborhood of the initial guess. Most methods

used for the vibration prediction of nonlinear structures
are local methods, and we therefore focus on local meth-
ods in the following. Global methods will be only briefly

discussed in the context of isolated solution branches,

in Subsubsection 3.4.5.

For local methods, an initial guess X0 must be pro-
vided19. This initial guess is usually not a solution and

therefore produces an error R(X0) 6= 0. The method

then successively (and often successfully) minimizes this

error by adjusting the current guess. Certainly the most

popular family of methods in the field of structural

dynamics are variants of the Newton and the quasi-
Newton method, presented in the following subsubsec-

tion. An interesting alternative are the so-called pseudo-

time solvers. The idea of these methods is to re-formulate

the algebraic equations as an initial value problem, ∂X
∂t∗

+

R(X) = 0, by adding a term ∂X
∂t∗

, where t∗ is a pseudo

time variable. The steady solution of this initial value

problem is characterized by ∂X
∂t∗

, and thus identical to
the sought solution of the algebraic equations. The ini-

tial value problem is solved by means of numerical in-
tegration schemes, starting from the specified initial
guess. Pseudo-time solvers can exhibit superior perfor-

mance as compared with many other methods, in par-

ticular if a large number of unknowns is involved. These

methods are popular in the field of computational fluid

dynamics and fluid-structure interaction problems [106,

104], see [138] for an application to structural dynamics.

3.4.1 The Newton method and its related variants

A very popular local method for the solution of non-

linear algebraic equations is the Newton method20. An

iteration of the Newton method involves the solution of

a set of linear equations,

∂R

∂XT

∣
∣
∣
∣
X=Xk

(Xk+1 −Xk) = −R(Xk) . (35)

Herein, k denotes the current iteration number. Based

on the current guessXk, the solution of the subproblem
in Eq. (35) yields the next (and hopefully better) guess

19 The task of finding such an appropriate guess is addressed
in Subsubsection 3.4.4.
20 In the literature, the name ‘Newton-Raphson’ method is
also commonly used for the method described here.

Xk+1. Starting from an initial guess X0, successive it-

erations are computed until the norm of the residual,
‖R (Xk) ‖ < ǫ is smaller than a specified tolerance ǫ in

a suitable norm.

The Newton method utilizes the gradient ∂R
∂XT of the

residual vector with respect to the vector of unknowns,
the so-called Jacobian matrix. It can thus be character-

ized as a gradient-based method. Gradient-based meth-
ods are known for their great convergence behavior in
the neighborhood of the solution. Such methods are

therefore particularly well-suited if a good initial guess

is available. Disadvantages of the classical Newton method

are the fact that convergence is not always ensured, and

the relatively large computational effort associated with

the need to evaluate and to factorize the Jacobian in

each iteration. In the following paragraphs, several im-

provements addressing these drawbacks are discussed.

Several extensions and improvements of the classical

Newton method have been proposed. Jacobian-free-Newton-

Krylov methods combine a Newton-like procedure with

Krylov subspace methods for solving the correction equa-
tions Eq. (35) and are well-adapted to large nonlinear
problems [78]. Different improvements aim at ensuring
global convergence, e. g. by equipping the method with

a line-search or a trust-region algorithm. Such globally

convergent variants of the Newton method are available

in conventional computing toolboxes and libraries.

Quasi-Newton methods The idea of the so-called quasi-

Newton methods is to only approximate the Jacobian
or its inverse, as opposed to computing these quanti-
ties accurately in each iteration. A simple strategy is to
update the Jacobian not in every iteration. If only an

approximation is used, inferior convergence behavior is

expected. Thus, more iterations are typically required

to achieve acceptable accuracy. However, since the av-

erage computation time per iteration is decreased, the
total computation time of the method might be re-
duced. Another approach consists in approximating the

inverse of the Jacobian, which is actually required to de-

termine the next correction of the vector of unknowns

in Eq. (35). To this end, the current approximate of

the inverse Jacobian can be updated in each iteration,

based on the quantities readily available. It is thus nei-
ther necessary to evaluate nor to factorize the Jacobian
in each iteration. A common example is the Broyden-

Fletcher-Goldfarb-Shanno method, see e. g. [133].

Analytical gradients For gradient-based methods, the

solution process can be significantly accelerated by cal-

culating the Jacobian ∂R
∂XT analytically, simultaneously

to the evaluation of the residual R. This can greatly re-

duce the required computational cost compared to the
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common finite difference approximations of the Jaco-

bian.

The critical part is the derivation of the nonlinear forces

F c. In the framework of the AFT scheme, this can be

achieved by utilizing the linearity of the FFT and IFFT

operators in Eq. (29),

∂F c

∂x
= FFT

[
∂f c (u, u̇)

∂x
+

∂f c (u, u̇)

∂uT
· IFFT

[
∂U

∂x

]

+
∂f (u, u̇)

∂u̇T
· IFFT

[
∂∇U

∂x

] ]

. (36)

Herein, x is an arbitrary real-valued variable (not nec-

essarily x ∈ X). The first term in Eq. (36) accounts

for the case where f c depends explicitly on x, e. g. if x
is a friction coefficient or a normal preload. The sec-

ond and third term account for the case x ∈ ℜ{U} or
x ∈ ℑ{U}; i. e. , when x is an element of the real or the

imaginary part of the harmonic components U . More-

over, the third term also captures the case x = Ω, since

∇ depends on Ω (more specifically, is proportional to

Ω). As discussed in Subsubsection 3.3.6, it is interest-
ing to re-formulate the contact forces f c in terms of

the harmonics of the predicted contact sticking forces,
which, in turn, depend onX. In this case, the chain rule

must be applied accordingly. For detailed examples, we
refer to [3,150].

Exploiting the sparsity of the nonlinear terms Friction-

damped systems are characterized by localized nonlin-

earities; i. e. , the nonlinear forces are confined to certain

coupling interfaces at the joints. Provided that appro-

priate local coordinates are used for the description of

the nonlinear coupling interfaces, as discussed in Sub-
section 2.3, the nonlinear forces f c act and depend on

only a subset cg of the generalized coordinates u; i. e. ,

cg ⊂ u. As a consequence, the nonlinear terms Λ in

Eqs. (27)-(28) and the associated gradients are sparse.
This sparsity can be exploited by an exact condensation
procedure. The result is a reduced set of equations with

a smaller number of unknowns. This can greatly im-
prove the computational efficiency of the solution pro-
cess. The condensation procedure involves computing

(a large portion of) the dynamic compliance matrix,

and appropriate care must be taken to avoid an expen-

sive matrix inversion in every iteration. Details on this

procedure are given in E.

3.4.2 Continuation of solution branches

During the analysis and the design of nonlinearly-coupled

bladed disks, it is commonly relevant to determine the

vibration behavior in certain ranges of a parameter ρ,

R(X, ρ) = 0 , ρ ∈ [ρmin, ρmax] . (37)

Herein, ρmin and ρmax denote the lower and upper pa-

rameter limits, respectively, in between which the so-

lution X is of interest. In the following, we limit the
discussion to the case of scalar, real-valued parameters

ρ ∈ R. For example, in the case of forced response anal-

yses, a typical parameter is the oscillation frequency

ρ = Ω. A set of connected solutions X(ρ) is denoted so-
lution branch. Numerical (path) continuation methods

facilitate the iterative computation of solution branches
by accounting for already known solution points. A cen-
tral difficulty in solving Eq. (37) is the possible ex-

istence of multiple solutions for the same value of ρ,

as illustrated in the conceptual bifurcation diagram in

Fig. 13a. The singularities at turning points can be

overcome by means of continuation. In contrast, the
detection of branching points and the switching to an-
other branch require separate approaches. Finally, iso-
lated branches may be present which cannot be directly

found by means of local analysis. In the following, we

discuss two popular continuation methods and elabo-

rate on how to overcome the aforementioned difficulties

encountered during continuation. A good review of suit-
able methods for continuation and bifurcation analysis,
and related computational aspects is given in [148].

Fig. 15: Numerical continuation using a tangent predic-

tor step and an arc length constraint for the corrector

step

Predictor-corrector method The by far most common

continuation technique is the predictor-corrector method.
It is illustrated in Fig. 15. Starting from a given solu-
tion point, the next point is predicted by going a certain

distance ∆s ‘forward’ into the estimated direction of

the branch. For example, this direction can be the tan-

gent or the secant at the solution branch. The step size

taken in the predictor step can be adapted automat-

ically, in order to avoid spurious computational effort
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resulting from too small steps, and ensuring fast conver-

gence by choosing not tool large steps. The predicted

point is generally not located on the solution branch.

A correction step is therefore needed. To this end, the

methods described in Subsubsection 3.4.1 can be used.

In this step, the parameter ρ is generally considered as
unknown. This makes Eq. (37) under-determined. An

additional constraint equation is therefore introduced.
A popular constraint is to ensure that the next solu-
tion point has the specified distance ∆s (arc length)

from the current solution point21. Another popular con-

straint forces the solution to lie on the hyperplane through
the predicted point, orthogonal to the tangent. Yet an-
other constraint simply fixes one unknown to its pre-

dicted value (local parametrization). The different pre-

diction and correction strategies can be combined. A

very popular combination is the tangent predictor step

with the arc length parametrization.

Note that the sequential (or natural) continuation strat-

egy, where the problem in Eq. (34) is simply solved

for a sequence of parameter values, represents a special

case of the predictor-corrector method. In this case, the

previous solution point is used as prediction, and a lo-

cal parametrization with always the same variable ρ is

used. However, turning points with respect to the pa-

rameter ρ cannot be overcome with this strategy.

Asymptotic numerical method The tangent step in the

predictor-corrector method represents an evaluation of

the first-order Taylor series expansion around the cur-

rent solution point. The error of this prediction can be

generally reduced by increasing the order of the power

series expansion. This is the central idea of the asymp-

totic numerical method (ANM) [23]. In this method,

typical expansion orders are in the range of 20 to 40. To

formulate the expansions, derivatives of R with respect

to Y T =
[
XT ρ

]
of according orders are required. To

determine these derivatives, even for large orders, the

ANM makes use of the special properties of quadratic-

order multivariate polynomial equations. To this end,

the equations need to be expressed in quadratic form

R(Y ) = R0 +R1(Y ) +R2(Y ,Y ) , (38)

whereR0,R1 andR2 are constant, linear and quadratic

functions in Y , respectively. Based on Eq. (38), the

derivatives can be expressed analytically up to the de-

sired order involving a recursive formula. The path can

be expressed as a power series expansion in the arc

length s.

One advantage of the power series framework is that
error estimations can be easily made. It is thus pos-
sible to determine the radius of convergence in terms

21 This method is sometimes referred to as the Riks method.

of a given tolerance. Therefore, the step size can be

automatically adjusted in such a way that correction

steps are no longer necessary. Moreover, by analyzing

the power series, one can detect bifurcation points and

determine the tangents to the emerging branches [22].

The present limitation to quadratic order problems (38)

is the main caveat of the ANM. It impedes the ad hoc

application to systems involving dry friction and uni-
lateral contact nonlinearities. Indeed, it is necessary to
regularize such nonlinearities using analytic functions.

Many analytic functions can be recast into quadratic

forms, or defined as solutions of quadratic equations,

by introducing (several) auxiliary variables. Hence, the

method is not limited to rational polynomials, but also

trigonometric, exponential, non-integer power, and log-

arithm functions can be taken into account, see [66] for

examples of such recasts. In [109], the application to a

piecewise-linear vibro-impact system is demonstrated.

The introduction of auxiliary variables results in a (pos-

sibly much) larger number of unknowns, which is one

of the drawbacks of the method.

As discussed in Subsubsection 3.3.5, a crucial aspect of

the efficiency of the harmonic balance method in the

case of contact problems is the implicit treatment of

the strongly nonlinear, and possibly non-smooth con-

tact forces. The quadratic recast requires the explicit

treatment of these forces and associated auxiliary vari-

ables. To obtain reasonably accurate results, a (much)
larger number of harmonics is required to approximate
these quantities. This is a possible further downside of
the ANM. Lastly, it should be remarked that, to the

authors’ knowledge, that there is no publication on the

application of the ANM to frictional contact problems.

Its usefulness in this context thus remains to be seen.

3.4.3 Computation of the branching behavior

At the branching point, one or more new branches em-
anate from the underlying solution branch, as illus-
trated in Fig. 13a. Branching points represent one of
the main problems encountered during the continua-

tion of the solution in a given parameter interval. The

handling of branching points can be divided into de-

tecting that a branching point was passed, localization

of the branching point, and switching to the emanat-
ing branch(es). Appropriate methods for these tasks are
discussed in the following paragraphs. Once a first solu-
tion point on an emanating branch is found, numerical

continuation can be applied to trace the new branch.

Detection of a branching point A branching point is a

bifurcation point, and, hence, the stability of the com-
puted periodic motion changes at this point. A bifur-

cation detection function is commonly defined, which
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has a root and changes its sign at the bifurcation point.

Two different approaches are often used, one of them is

based on the Floquet multipliers, and the other on the

Jacobian matrix.

One detection approach is to monitor the Floquet mul-

tipliers. In the following, we focus on the case of a sim-

ple bifurcation point, where a single Floquet multiplier

leaves/enters the unit disk in the complex plane. De-
pending on the way, the Floquet multipliers crosses the
unit circle, the type of bifurcation can be inferred [160].

For instance, when a single Floquet multiplier crosses

the unit circle at +1, this indicates a saddle node bi-

furcation, which does not require special treatment.

Another detection approach is based on the Jacobian

matrix. At the bifurcation point, the Jacobian matrix

exhibits a rank deficiency of one (simple bifurcation

point). A rank loss of ∂R/∂X indicates a turning point,

whereas a rank loss of the extended Jacobian
[
∂R/∂XT ∂R/∂ρ

]
indicates a branching point.

Localization of a branching point The solution is typi-
cally highly sensitive in the neighborhood of a bifurca-

tion point. Thus, it is often useful to refine the solution

branch in the relevant parameter range by continuation

with a smaller step size. The location of the branch-

ing point can be approximated by interpolation based

on the bifurcation test function. More specifically, the

point is estimated at which this function actually has a

root.

A direct approach for the localization of bifurcation
points is to formulate and solve a so-called branching

system of equations, the solution of which is the bifur-

cation point. To this end, Eqs. (34) are augmented by

a constraint equation that enforces that the extended

Jacobian has a rank defect of unity. This rank defect is

associated with a null space spanned by a single vector,

which is considered an unknown of the branching sys-
tem. The resulting set of equations involves first-order
derivatives of the residual. If a gradient-based solver

is used, second-order derivatives are therefore required,

which are generally more difficult to obtain analytically.

Branch switching Once the location of the branching

point is known, the emanating branch(es) can be de-
termined. Two approaches are mentioned here, pertur-

bation and eigenanalysis of the Jacobian.
The perturbation approach takes advantage of the fact
that bifurcation points are often structurally unstable;

i. e. , even a slight perturbation of the problem will un-

fold the bifurcation and give rise to disconnected branches.

For instance, a small random vector can be added to

Eqs. (34) to order to perturb the problem. By using

the continuation methods described above, either of the

branches will be followed, depending on the perturba-

tion vector.
A more direct approach is based on the eigenanalysis
of the Jacobian at the bifurcation point [48,134]. The

eigenvector(s) associated with zero eigenvalue(s) repre-

sent the tangent(s) of the emanating branch(es). For

this approach, it is crucial to ensure a precise localiza-

tion of the bifurcation point, which can, for instance, be

accomplished by the solution of the branching system.

With these tangents, the above described predictor-

corrector scheme can be used to obtain a first point

on the emanating branch(es).

3.4.4 Strategies for finding a first solution point

To start the continuation procedure, a first solution

point must be determined. Local methods are com-

monly be used to compute the first solution point. To

start the iteration process of the local method, an initial
guess is required. The closer this guess is to the actual
solution, the more likely is the successful convergence of
the solver and the less iterations are required to achieve

convergence.

In some situations, the exact solution is known for a

certain value parameter ρ. In a frequency response anal-

ysis, for instance, the upper or lower frequency bound

might be located in the linear regime, i. e. , where the

contact is either sticking or separated; hence, an exact

solution can be obtained. In the case of flutter-induced

limit cycles, the situation is more complicated, since

self-excited limit cycles do not exist in the linear(ized)

system. Moreover, the static equilibrium solves the equa-

tions of motion in this case, even though this solution
is, of course, unstable. Therefore, a particularly good
initial guess is required. One approach is a preliminary

nonlinear modal analysis, see Subsubsection 3.5.4. This

method yields the effective modal damping of the sys-

tem as a function of the vibration level. By considering

the negative modal damping induced by flutter, a rea-

sonable approximation of the flutter-induced limit cycle
oscillations can be obtained. More generally, the homo-

topy method can be used. For this method, a scalar

parameter, the so-called homotopy parameter, is intro-
duced. When the homotopy parameter is continuously
varied, the original problem is ‘transformed’ to a prob-
lem with known solution, and vice-versa. For example,

a scaling parameter for the nonlinear forces can be in-
troduced. If this parameter is set to zero, one has a
linear problem with known solution; if it set to one,

one has the nonlinear problem of which the solution is

actually sought. By varying the parameter iteratively

from zero to one, and solving the resulting subprob-

lems, one successively obtains a first solution point of
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the original problem. Of course, the homotopy method

can be equipped with a continuation strategy, where

the homotopy parameter is considered as parameter ρ.

In [123], the homotopy method was utilized to deter-

mine an initial solution for flutter-induced limit cycles.

To this end, an artificial harmonic external forcing was

applied, which is scaled with the homotopy parame-

ter. The homotopy parameter is then successively de-
creased towards zero, while the forced resonant behav-
ior is computed by means of continuation. At the end of

this procedure, the solution of the autonomous system

is obtained, namely the flutter-induced limit cycle.

3.4.5 Strategies for finding isolated branches

Besides turning and branching points, isolated branches,

as illustrated in Fig. 13a, represent one of the main

problems encountered during the computation of the

solutions in a given parameter interval. Since the iso-
lated branch is not connected to the main solution branch,
it cannot be obtained by continuation and local branch

switching from the main branch. It should be noted

that once a first solution point on the isolated branch is

found, continuation can be used to determine the whole

branch. Hence, the main problem is to determine a first

point on the isolated branch. Methods that are qualified

for this task are referred to as global analysis methods

[141].

A simple approach is the multi-start strategy. For this

strategy, a number of initial guesses is generated, ran-

domly or in a regular fashion. Starting from every initial

guess, or a promising subset of them, a local method

is employed to compute the corresponding solutions.

The idea behind this approach is that if enough ini-

tial guesses are considered, the basins of attraction of

each possible solution should contain at least one guess.

Consequently, all solutions will be found. If the number

of unknowns is small, this is an interesting approach.

However, the number of guesses required to cover all

basins of attraction grows comparatively fast with the

number of unknowns, and can lead to prohibitive com-

putational effort.

For the specific class of polynomial nonlinearities, Eq. (26)

takes the form of a system of multi-variate polynomial

equation. By utilizing the so-called Groebner basis, it

is possible to simplify this problem to the problem of
sequentially finding all roots of univariate polynomial
equations [51]. For the latter problem, robust meth-

ods are available. However, the computation time of

this method grows exponentially with the number of

unknowns. According to Grolet and Thouverez [51], it

is quite certain that the method becomes practically

infeasible for a number of about 30 generalized coordi-

nates. In general, the requirement of polynomial nonlin-

earities makes the applicability to contact nonlinearities
questionable.
In general, the concept of homotopy can also be useful

to find isolated branches. Often, the detached branch

merges with the main branch if a certain parameter of

the problem, such as the excitation level or a contact

parameter, is varied. By continuing an appropriate so-

lution point with respect to this parameter, one should

eventually land on the detached branch. However, ho-

motopy techniques also suffer from the exponential in-

crease of computational effort with the number of un-

knowns. An advantage of these methods is that they can

be ad hoc parallelized, so that their total run-time can

be considerably decreased by implementing the method

on parallel computers.

3.4.6 Scaling of unknowns

In general, the different unknowns in Eqs. (34) may as-

sume numerical values of different order of magnitude.

This is very common if different physical quantities are

treated as unknown. For example, this is the case if

the frequency is considered as an unknown Ω ∈ X, in
addition to the generalized coordinates. This can have

a crucial influence on the convergence behavior of the

numerical solution procedure. A linear scaling can be

applied to the unknowns, so that they have approxi-

mately matching orders of magnitude. This can greatly

improve the convergence rate and overcome divergence

problems.

3.5 Advanced simulation techniques

The methods discussed in the previous subsections rep-
resent the general framework for the vibration predic-
tion of bladed disks coupled by mechanical joints. Sev-

eral interesting variants of these general methods have

been developed for specific purposes, some of which are

addressed in this subsection. In Subsubsection 3.5.1, the

direct computation of forced resonances is discussed. In

Subsubsection 3.5.2 and Subsubsection 3.5.3, methods
are presented that permit the consideration of param-
eter uncertainty and time-dependence of parameters,

respectively. Finally, the concept of nonlinear modes is

discussed in Subsubsection 3.5.4, which can be useful

for the characterization of the nonlinear vibration be-

havior and provides a means of model order reduction.

3.5.1 Direct computation of resonances

In the case of forced response analyses, the maximum

vibration response within a certain excitation frequency
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range (resonance) is typically of foremost importance

in the design process. Specifically, it is often relevant to

determine how the resonant response varies with cer-

tain parameters. A straight-forward approach for the

parametric analysis of resonances is to compute the fre-

quency response for a discrete set of parameter points,

and then extract the resonances from the results. How-

ever, this strategy leads to a relatively large computa-
tional overhead, since most of the determined frequency
response points are not further relevant. Furthermore,

the resonant behavior may exhibit a strongly nonlinear

dependence on the parameters, so that regions of com-

paratively low and high sensitivity may exist. As these

parameter regions are not a priori known, the appro-

priate sampling of the parameter points is not trivial

and a manual, iterative refinement procedure might be

necessary to obtain satisfying results.

A more sophisticated approach is the direct parametric

analysis of resonances. To this end, the set of equations
governing the forced vibrations (Eqs. (27)-(28) is aug-

mented by a constraint that ensures resonant behavior,

the so-called resonance criterion. Moreover, the excita-

tion frequency is no longer treated as a parameter, but

it becomes an unknown (resonance frequency). As res-

onance criterion, the horizontal tangent condition [120]

can be used, that enforces a vanishing derivative of a
properly defined amplitude with respect to the exci-

tation frequency, which is the necessary condition for
a maximum response. The resulting set of equations
can be solved with the methods described in the previ-
ous subsection. Compared to the crude computation of

frequency responses, the direct method only computes

the relevant resonance points, which can lead to consid-

erable computational savings. Furthermore, by means

of continuation, the discretization with regard to the
parameters can be automatically adjusted, such that
regions of low and high sensitivity are not a notable
problem for this method. Due to its local character,

however, the method is not capable of detecting addi-

tional maxima in the considered frequency range. This

is an important limitation, since the emergence of sec-

ondary maxima is a typical phenomenon in the pres-
ence of nonlinear modal interactions. Consequently, it
cannot be ensured that the traced point is actually the

global maximum in the considered frequency range22.

Therefore, the method is limited to the case of isolated

resonances [81].

22 In fact, in the case of the horizontal tangent condition, it
cannot even be ensured that the traced point is a maximum,
but a local minimum or a saddle node might be traced ‘by
mistake’.

3.5.2 Consideration of parameter uncertainty

Parameter uncertainty refers to the limited knowledge

of the exact value of the parameters used in the phys-

ical model. Uncertain parameters occur in every do-

main of the model. The properties of the underlying

structure can be uncertain, such as its local stiffness,

inertia and damping properties. The aeroelastic prop-

erties can be uncertain, such as the external force level

and distribution, and the aero-mechanical coupling. Fi-

nally, the contact parameters can be uncertain, such as

the friction coefficient, and the initial normal pressure
and clearance distribution.
To account for parameter uncertainty, a first step is usu-

ally a sensitivity analysis. This step is useful to estimate

the overall influence of the uncertain parameters on the

relevant output quantities (e. g. resonant response lev-

els, flutter stability boundaries, etc. ). Moreover, this is

helpful to determine which of the parameters are most
relevant, and which can be neglected in possible pro-
ceeding investigations. To determine the sensitivities of

output quantities in the neighborhood of a nominal set

of parameters, their derivative with respect to the pa-

rameter can be analyzed. The sensitivity of the solution

can be obtained analytically, if one has nothing better

to do, by means of implicit derivation of Eqs. (27)-(28)
[121,82]. The chain rule has to be applied accordingly,
as the output quantities are a function of the solution.

By using these sensitivities, the output quantities can

also expanded in a Taylor series, typically of first or

second order, depending on the order of available sensi-

tivities. In regimes of strongly nonlinear parameter de-

pendence, these low-order expansions are only useful in

a very small range. To determine the parameter depen-

dences in larger ranges, re-computations for a discrete

set of parameter points are generally required to obtain

reliable results.

It is common to describe uncertain character of pa-

rameter values in terms of probability density func-

tions. In this case, probabilistic methods can be used
to determine the stochastic characteristics of the output

quantities (expectation values, standard deviations and

higher-order moments). The Polynomial Chaos Expan-

sion represents a suitable framework for the uncertainty

quantification. The computation of the expansion coef-

ficients involves the evaluation of multi-dimensional in-
tegrals. These integrals can be approximated by means
of sampling (or collocation) techniques such as Monte

Carlo or sparse grid methods [128]. The advantage of

sampling techniques is that they are non-intrusive, in

the sense that they rely only on deterministic evalu-

ations such that the vibration prediction method does

not have to be modified [119,117]. Intrusive approaches
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have also been developed, which incorporate the proba-

bilistic integration into the simulation method, see [30]

for an application to the harmonic balance method.

3.5.3 Consideration of the time-dependence of

parameters

So far, we assumed the time invariance of the equa-

tions of motion. This is a limitation, since this does not

capture effects such as the variability of the operating

conditions, or the variability of the interior and exterior

mechanical properties of the structure due to wear and

tear. Fortunately, all these effects take place on time

scales that are typically much larger than the time scale

associated with the structural vibrations. This can be

exploited by separating the time scales using an averag-

ing formalism [111]. The evolution of the slow dynamics

(occurring on the longer time scale)can be described by

differential equations in the averaged vibrational quan-

tities. The time evolution on the longer time scale can

then be analyzed using numerical integration. The av-

eraged vibrational quantities are determined using the

vibration prediction methods described above, consid-

ering the slowly varying quantities as constant in each

time step. For example, Salles et al. [137,138] investi-
gated the effect of fretting wear in the root joints of
bladed disks on their vibration behavior. To this end,

the wear process was described by Archard’s differential

law, and computed by means of numerical integration.

It was assumed that only the wear depth changes, which

is reflected in the local clearances in the contact inter-

face. The vibration behavior was computed using the
harmonic balance method.

3.5.4 Nonlinear modes

Similar to its linear counterpart, the concept of non-

linear modes23 can be utilized to extract the essential
vibration characteristics of nonlinear systems, and to

develop means of model order reduction. For recent

overviews on the topic in general, we refer to [69,166].

23 In literature, the term Nonlinear Normal Mode (NNM)
is quite common. However, the term ‘normal’ may lead to
the wrong conclusion that nonlinear modes are orthogonal
to each other. Apparently this term goes back to Rosenberg
[136], who defined nonlinear modes as vibrations in unison,
i. e. where all material points cross their equilibrium points
and their extremum points simultaneously. For this type of
vibration, the motions take place on so-called modal lines
in the generalized displacement space which are normal to
the surface of maximum potential energy [166]. However, this
property is only valid for symmetric conservative systems,
whereas non-trivial phase lags among the oscillations of the
coordinates may exist in general. Hence the term ‘normal’ in
this context is avoided in this article.

In the field of bladed disks coupled by mechanical joints,

the concept is rather novel and far less established than

conventional forced response and flutter analyses. In

this subsubsection, we briefly introduce the fundamen-

tal notions of nonlinear modes and discuss how this

concept can be applied for the benefit of analysis and

design of friction-damped blade disks.

First of all, what are nonlinear modes? Like in the lin-
ear case, they describe the autonomous behavior of the
system, as opposed to the behavior under operating

conditions described by Eq. (2). Hence, the excitation

terms are not considered in the nonlinear modal anal-
ysis, by excluding the external forces and possibly the
self-excitation terms describing unstable aeroelastic ef-

fects. Nonlinear modes can then be defined as periodic

motions of this autonomous system. However, the au-

tonomous vibrations of nonconservative systems, such

as friction-damped bladed disks, are generally not pe-

riodic, but they decay with time. To account for their

time decay, Laxalde and Thouverez [92] proposed to

define nonlinear modes as pseudo-periodic motions, so-
called complex nonlinear modes. To compute them, the
ansatz of the harmonic balance method in Eq. (25) is
modified by introducing a real part in the exponen-

tial function in addition to the imaginary part related

to the oscillation. Here, it is assumed that the damp-

ing terms are frequency independent, rendering the ap-

proach inexact. Also, inaccuracy is introduced by the
approximate evaluation of the nonlinear forces based
on the underlying periodic forms. The concept of com-
plex nonlinear modes appears reasonable if the strictly

autonomous, decaying behavior is of interest. As dis-

cussed in Subsection 3.1, however, the dynamic regime

of foremost importance is still that of periodic vibra-

tions. Therefore, it was suggested by Krack [79] to de-
fine nonlinear modes of nonconservative systems as pe-
riodic motions, induced by a (usually) negative damp-

ing term that is just large enough to compensate the

inherent dissipation of the system (periodic motion con-

cept). The results obtained for both methods are sim-
ilar if damping is comparatively weak [79]. In general,

the definition as periodic, undamped motions is better
suited to reflect the vibration behavior in the presence
of a sustained excitation source (external forcing or neg-

ative damping). Moreover, this concept permits the use

of standard methods for the computation and stability

analysis of periodic motions, including the conventional

harmonic balance method and the shooting method.
This is an important benefit compared to complex non-
linear modes, which can only be computed by means of
the generalized Fourier method.

Using either of the above mentioned definitions, the
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nonlinear modal analysis is carried out. What are the

results and how can they be utilized?

(a) Modal properties as a function of the vibration level :

For the considered mode, the natural frequency,

the modal damping ratio, and the modal deflection

shape are obtained as a function of the vibration

level. In the case of flutter, possible limit cycles can

be determined as the points where the total damp-

ing equals zero. In the case of harmonic forcing,

the modal properties characterize the resonant be-

havior of the system according to the deformation-

at-resonance hypothesis. In particular, the modal
properties determine how the resonance frequency
shifts, how effectively the system is damped, and

if the vibration form changes or even localizes due

to nonlinear effects. It should be emphasized that

these results are central to the design of bladed

disks. In fact, the primary purpose of conventional

forced response analyses is often the resonance fre-
quency shift and to determine an effective damping
measure.

(b) Identification of nonlinear modal interactions: Non-

linear modal interactions refer to the energy ex-
change between two or more modes of vibration,
which is caused by nonlinear effects. Thus, a mode

that is not directly forced by an external source,
may be excited internally by the action of nonlinear
forces. In the presence of modal interactions, the

dynamic behavior is usually highly sensitive and

can considerably deviate from the behavior without

modal interactions. In the near-resonant steady-

state frequency response, modal interactions often

lead to the emergence of secondary maxima, and

appear to be associated with the occurrence of iso-

lated branches [86]. In the context of friction damp-

ing, numerical and experimental evidence of nonlin-

ear modal interactions was reported e. g. in [170,3,

19,18,83]. Modal interactions can introduce a con-

siderable higher harmonic vibration content, which

turns out to have a largely detrimental effect on the

effective damping [80]. Therefore, nonlinear modal

interactions are relevant to the design of bladed

disks coupled by mechanical joints. The nonlinear

modal analysis is well-suited to detect and charac-

terize such interactions with regard to the partici-

pating modes and frequencies. Moreover, it can be
inferred from the results in which regimes the vi-
bration behavior can be represented by an isolated

nonlinear mode.

(c) Modal reduction: As in the linear case, the nonlin-

ear modes can be utilized as a basis for the approxi-
mation of the (non-autonomous) vibration behavior

under operating conditions. Since the superposition

principle is not valid in nonlinear systems, the ap-

proaches are largely limited to single-modal approx-
imations. The range of validity of such approxima-
tions is the regime in which the vibration behavior

can be accurately represented by an isolated non-

linear mode (absence of nonlinear modal interac-

tions). In this case, the problem can be reduced to

a single-degree-of-freedom oscillator, whose prop-

erties are those of the considered nonlinear mode.

Note that since the vibrational deflection shape de-

pends on the vibration level, the contributions of

all considered linear modes are accounted for in a

single nonlinear mode. The computational effort re-

quired for the evaluation of this reduced problem

is almost negligible compared to the initial prob-

lem. This makes the approach interesting for com-

prehensive parameter studies, design optimizations

and uncertainty analysis. For applications to forced

response and flutter-induced limit cycle analyses of

bladed disks coupled by shroud joints and under-

platform dampers, see [83,85]. In the case of non-

linear modal interactions, it is generally possible
to consider multiple nonlinear modes and to uti-
lize a nonlinear projection method. To the authors’
knowledge, however, such an approach has not been

applied to jointed structures.

4 Summary and future work

In Fig. 16, an overview of the overall vibration pre-

diction procedure is illustrated. The different steps are

connected via signal flows indicating the exchanged phys-

ical and computational quantities.

The vibration prediction methods presented in this work

represent only the current state of the art of in the field

of bladed disks coupled by friction joints. This field is

and will most certainly still be a lively field of research

in the future, since the success and structural mechan-

ical integrity of next generation’s turbomachines de-

pends crucially on the quality of the vibration predic-

tion. Some of the possible topics of future research are

listed below.

– Experimental validations, in particular with regard
to the contact modeling approaches.

– Fluid-structure interactions are currently described
in a comparatively simplified way. It remains to be

seen, if and how nonlinear aeroelastic effects can

be accounted for in the vibration prediction of non-

linearly coupled bladed disks. The development of

fully-coupled approaches that take into account both

mechanical and aerodynamical nonlinearities, whether
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Fig. 16: Schematic illustration of the signal flow of the vibration prediction

in the time or in the frequency domain, is clearly a
long-term objective.

– Interaction between vibrations and damaging mech-

anisms are only rarely addressed. An important ex-

ample is the interplay between the nonlinear vibra-

tions of the bladed disk and fretting in the joints. An

interesting topic could be the initiation and propa-

gation of cracks of vibrating bladed disks with fric-

tion joints.

– Uncertainty of various system parameters, including

those associated with the contact formulation.

– Variability of operating conditions is an often ne-

glected aspect that could prove to be relevant in

the design of bladed disks.

– Multi-stage effects are known for their potentially
considerable effect on the vibration behavior; how-

ever, they are so far disregarded in nonlinear vibra-

tion analyses.

– More robust strategies for the continuation, stabil-

ity and bifurcation analysis are certainly desirable,

since the possible branching behavior of the solution

is commonly ignored and the stability is only rarely

analyzed.
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A The traveling wave coordinate system

In this appendix, we define the traveling wave coordinate sys-
tem and illustrate the notion of traveling waves. The traveling
wave coordinates are related to the physical coordinates by
the (inverse) discrete Fourier transform. The transformation

can be applied to any physical quantity (displacement, force,
etc. ). For the displacement, this transform reads

twuj(t) =
1

√
ns

ns−1
∑

n=0

e
−i 2πjn

ns
(n)
fe u(t) , j ∈ [0, ns − 1] , (39)

(n)
fe u(t) =

1
√
ns

ns−1
∑

j=0

e
i 2πjn

ns twuj(t) , n ∈ [0, ns − 1] , (40)

twu(t) =
(

WH
ns

⊗ Infe,s

)

feu(t) ⇔
feu(t) =

(

Wns
⊗ Infe,s

)

twu(t) . (41)

Herein, twuj denotes the displacement vector associated with
the (spatial) wave number24 j, and H denotes the Hermitian
transpose. A congruent discretization and ordering is here
assumed for each sector, such that the physical displacement

vector
(n)
fe u comprises the same number of degrees of freedom,

nfe,n = nfe,s for each sector n ∈ [0, ns − 1]. The vector twuj

has the same number of coordinates as the physical displace-

ment vector
(n)
fe u. The more compact notation in Eq. (41)

involves the Fourier matrix Wns
, defined in Eq. (47).

Remark At this point, it is important to note that both

feu(t) and twu(t) are complex-valued quantities in general.
The complex arithmetic is very convenient for the mathemat-
ical derivations. Of course, eventually we are interested only
in the physical part, that is, the real component.

To illustrate the traveling wave character of the coordinate
system, regard the k-th wave component, twqk, of a physical
quantity q (displacement, force, etc. ), and consider the case
of an oscillation with

twqk(t) =
√
nsQeiφ(t) . (42)

Herein, Q ∈ Cnfe,s is a complex-valued amplitude vector and
φ(t) is the phase, which is assumed to be strictly monotonous

in time with φ̇(t) > 0 in the considered time span, see Fig. 17b.

24 In the literature, this number is also referred to as ‘har-
monic index’. To avoid confusion with (temporal) harmon-
ics in the context of frequency domain methods, this terms
is avoided in this work. Moreover, the term ‘nodal diameter
number’ is also common for this number.
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.   .   .

Fig. 17: Illustration of the spatiotemporal nature of a traveling wave: (a) q as a function of the sector number and

the temporal phase similar to [113], (b) temporal phase as a bijective function of time

As a consequence, the relation between phase and time is bi-
jective. All other wave components are assumed to be zero,

twqj = 0 ∀j ∈ [0, ns − 1] \k. Taking into account the trans-
form defined in Eqs. (39)-(41), the response of sector n reads

(n)q (φ (t)) =
1

√
ns

e
i 2πkn

ns twqk (φ (t))

= Qe
i
(

φ(t)+ 2πkn

ns

)

= (0)q (φ(t) + nθk) . (43)

Herein, the abbreviation θk is used, with

θk =
2π

ns
k . (44)

θk is the phase lag between neighboring sectors and is hence
often referred to as inter-sector/-blade phase angle (IBPA).
Since the relation between phase and time is considered bi-
jective, Eq. (43) defines a unique time lag ∆t with (n)q(t) =
(0)q(t + ∆t). Moreover, q(t) is spatially periodic; i. e. ,
(n+ns)q(t) = (n)q(t), which can be easily verified from Eq. (43).
Hence, the spatiotemporal form of the quantity p(t) can be
identified as a traveling wave, discrete in space and a continu-
ous in time, as illustrated in Fig. 17a. Since φ̇ is allowed to be
time-dependent, the time lag ∆t generally varies with time t
and sector number n. This means that the wave does not have
to propagate with constant speed. However, the case of con-
stant wave speed is of particular interest, and it is coincides
with a harmonic oscillation of constant angular frequency Ω,
φ̇(t) = Ω. In this case, the constant wave speed is Ω/k (in
rad/s).
It should be noted that Eq. (43) defines a strict backward
traveling wave. However, the traveling wave nature is seen to
alias relative to ns, depending on the wave number k. The
ranges of k and θk that correspond to apparent forward and
backward traveling waves (FTW and BTW, respectively),
and the special cases of standing waves (SW), are given in
Tab. 3. Herein, s−ns

and s+ns
depend on ns, with

s−ns
=

{

ns

2
− 1 ns even

ns−1
2

ns odd
(45)

s+ns
=

{

ns

2
+ 1 ns even

ns+1
2

ns odd
(46)

Table 3: Correspondence between wave number k, IBPA

θk, nature of the apparent wave form and the short

name (FTW: forward traveling wave, BTW: backward

traveling wave, SW: standing wave, ND: nodal diame-

ter)

k θk wave form name
{0} {0} SW TW0

[

1, s−ns

]

]0, π[ BTW TW−

k

{ns

2
} for even ns {π} SW TW ns

2
[

s+ns
, ns − 1

]

]π, 2π[ FTW TW+
ns−k

In this sense, the columns of the Fourier matrix Wns
in

Eq. (41) can be interpreted as discrete unit traveling waves,
such that twuk corresponds to a wave form with wave num-
ber k and IBPA θk.

Remark It should be emphasized that wave numbers and
nodal diameter numbers are only illustrative expressions for
strictly mathematical concepts. The physical number of waves
or nodal diameters can deviate from the mathematical one.
Consider the example of a rotationally symmetric disk. We
can divide the disk into a finite number of ns sectors. The
highest possible wave number is then bounded by ns − 1 in
accordance with our definition. But, of course, the disk can
carry an infinite number of waves. The higher wave forms are
generally not lost by the dissection into a finite number of
sectors, but represent higher modes of vibration for a specific
mathematical wave number.

In the above considerations, the complex-valued amplitude
vector Q is assumed to be constant in time. If Q(t) depends
on time, the strict relation (n)q(t) = (0)q(t + ∆t) between
time and sector number is no longer satisfied. However, it
still holds that (n)q(t) = (0)q(t)einθk ; that is, there is a con-
stant phase lag between the individual sectors for a given
k. The corresponding motion for time-dependent Q(t) can
thus be interpreted as a pseudo-traveling wave. This notion
can be useful to describe vibration phenomena during run-up
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or run-down of a rotating machine. In this case, the oscilla-
tion frequency and the amplitudes vary with time, but excita-
tion and vibration response might still exhibit a characteristic
traveling wave form. For instance, in the case of constant ac-
celeration, the phase φ would be defined as φ̈(t) = α.
The discrete Fourier matrix Wns

for a number of ns sectors
(or samples in general) is defined as,

Wns
= [Wab] =

[

w1 · · · wns

]

, withWab = w(a−1)(b−1)
ns

.

(47)

where wns
= e

i 2π

ns is the ns-th root of unity.

B Traveling wave structural matrices

In this appendix, we describe how the structural matrices in
traveling wave coordinates twKk, twDk and twMk can be
obtained from the structural matrices of a reference sector.
Suppose that a finite element model of the reference sector is
given. The sector spans an angular region of 2π/ns, and can
be divided into an inner volume, and left and right bound-
ary25. Typically, the finite element model spans the whole sec-
tor, including left and right boundaries, making the descrip-
tion of the reference sector somewhat redundant. The sector’s
displacement vector in physical coordinates can be permuted
and partitioned as

[

uT
l ui u

T
r

]T
, where ul and ur are degrees

of freedom associated with left and right boundaries and ui

are the inner degrees of freedom. ul and ur shall have the
dimension nb and ui shall have the dimension ni. Because
of the redundancy, the total number of degrees of freedom of
the sector (without constraints on left and right boundaries)
is 2nb + ni and exceeds the number nfe,s = nfe/ns of de-
grees of freedom per sector (of the full model) by the number
of degrees of freedom of one boundary, nb. The accordingly
ordered structural matrices (in physical coordinates) with-
out any constraints on left and right boundaries are denoted
(0)
fe K,

(0)
fe D and

(0)
fe M , and they take the form

A =





All Ali 0

AT
li Aii AT

ri

0 Ari Arr



 , A ∈ {(0)fe K,
(0)
fe D,

(0)
fe M} , (48)

where All, Arr and Aii account for the coupling within each
boundary and inner volume, and the matrices Ali and Ari

account for the coupling between boundaries and inner vol-
ume. It is here assumed that left and right boundaries are
disjunct, so that no coupling exists between them.
The matrices twAk for each IBPA θk can be obtained as [5],

twAk = PH
k

(0)
fe AP k , A ∈ {K,D,M} , (49)

with the matrix P k

P k =





Inb
⊗ eiθk 0

0 Ini

Inb
0



 . (50)

The resulting matrices twAk then have the proper size nfe,s×
nfe,s.
It is assumed in the above formulations that left and right

25 Here, ‘left’ and ‘right’ is meant with respect to the rota-
tion axis (and, consequently, the numbering of the sectors)

boundary have matching nodes and the local coordinate sys-
tems are accordingly adjusted. If this is not the case, Eq. (50)
has to be adjusted in a straight-forward manner account-
ing for the coupling of non-conforming meshes and coordi-
nate transformation. Note that the formal relation twAk =
(

WH
ns

⊗ Infe,s

)

A
(

Wns
⊗ Infe,s

)

could also be utilized to ob-
tain these matrices. However, the method described in this
appendix is much more efficient, since it involves only a sin-
gle sector.

C Transformation to relative coordinates at the

contact interface

In this appendix, we describe how the transformation to rel-
ative coordinates discussed in Subsubsection 2.3.1 is applied.
To this end, the global displacement vector u is expressed in
terms of relative coordinates cg at the contact interface and
remaining coordinates urem,

u =
[
(

BT
)+

NBT

]

[

cg

urem

]

= Lu(b) . (51)

Herein, + denotes the pseudo-inverse, and NA = Null (A)
denotes the nullspace of matrix A26.
In general, the transformation matrix L could be expensive
to compute, since it involves the computation of the pseudo-
inverse and the null space of the comparatively large matrix
BT (dimension nd × 3nc, where nd could be nfe,s or nfe).
The computational cost can be considerably reduced by tak-
ing advantage of the local nature of the problem, i. e. , by
computing the sub-matrices of L separately for each inter-
face. For convenience, the coordinate vector u is rearranged
in such a way that the nodal DOFs associated with a partic-
ular interface are grouped together. The matrix B then takes
the form B = bdiag{B1, . . . ,Bnif

} where Bn is the local
coupling matrix of interface n and nif is the number of inter-
faces. The nint interior DOFs are not associated with any of
the interfaces and form the rear part of the re-ordered vector
u, where typically nint ≫ 3nc. The null space associated to
the interior DOFs is trivial and does not have to be computed
explicitly. The matrix L can then be assembled as

L =













(

BT
1

)+ · · · 0 NBT
1
· · · 0 0

...
. . .

...
...

. . .
...

...

0 · · ·
(

BT
nif

)+
0 · · · NBT

nif

0

0 · · · 0 0 · · · 0 Inint













. (52)

The coordinate transform is applied by substituting Eq. (51)
into the equations of motion and left-multiplication by LT.
It should be noted that the matrix L defined in Eq. (52) has
full rank, and, thus, Eq. (51) defines an invertible coordinate
transform.

Resulting structure of the contact force vector The struc-
ture of the contact force vector depends on the variant pur-
sued for the definition of the coupling DOFs. If the conven-
tional variant (a) is used, the contact force vector fc takes
the form,

f(a)
c [u] = Bλ

[

BTu
]

, (53)

26 Note that BTu =
[

BT
(

BT
)+

BTNBT

]

[

cg

urem

]

= cg, in

full accordance with Eq. (6).
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where λ represents the actual contact force law formulated in
terms of the contact gaps (and/or velocities). The gaps are
determined by means of the transform BTu, every time when
the contact force vector λ is evaluated, and a multiplication
by B is necessary to determine the force vector fc acting on
the global displacement vector u. In the case of variant (b),
this transformation is applied, once and for all, during the
dynamic substructuring procedure. The contact force vector
thus becomes

f(b)
c

[

u(b)
]

= LTf(a)
c [Lu]

= LTBλ
[

BTLu(b)
]

=

[

I3nc

0

]

λ
[

[

I3nc
0
]

u(b)
]

=

[

λ [ cg]
0

]

. (54)

Owing to the preliminary coordinate transformation, the global
contact vector depends and acts on only the first 3nc compo-
nents of the coordinate vector. Hence, no transformation is
necessary during the nonlinear dynamic analysis.

D Craig-Bampton and MacNeal-Rubin method

In this appendix, explicit expressions are given for the matrix
T of component modes for the well-known CB and MR meth-
ods, see e. g. [28]. Consider an initial model with a hermitian,
positive-definite stiffness matrix K = KH > 0 and a her-
mitian, positive-definite mass matrix. The associated vector
of coordinates u is of the form u =

[

uT
ret uT

del

]T
where uret

and udel denote the coordinates to be retained in the reduced
model and those that are (deleted and) only approximated in
terms of generalized coordinates, respectively.
In the case of the CB method, the reduction basis is spanned
by constraint modes and a set of fixed interface normal modes,

T cb =

[

Inret
0nret×ndel

Ψ Φfixed

]

. (55)

The first hyper-column represents the constraint modes, which
are static deformation shapes for a unit displacement applied
to one of the coupling DOFs, while the remaining coupling
DOFs are kept fixed,

Kdel,delΨ = −Kdel,ret , (56)

where Kdel,ret refers to the restriction of K to the rows as-
sociated with udel and the columns associated with uret and
so on. The fixed interface normal modes, assembled in the
matrix Φfixed in Eq. (55), are obtained from modal analysis
of the system with all coupling DOFs fixed,

Φfixed =
[

φfixed
1 · · · φfixed

nmod

]

,
(

Kdel,del − ωfixed
j

2
Mdel,del

)

φfixed
j = 0 ,

ωfixed
1 ≤ . . . ≤ ωfixed

nmod
. (57)

It should be emphasized that the coupling DOFs are either
the nodal or the relative DOFs at the interface, as explained
in Subsubsection 2.3.1.
The MR method is the complement of the CB method with
free interface normal modes. In the case of the MR method,

the reduction basis is, thus, spanned by the residual attach-
ment modes and a set of free interface normal mode shapes
Φfree,

Tmr =

[

Inret
0nret×ndel

∆ Φfree
del −∆Φfree

ret

]

. (58)

The residual attachment modes essentially represent the static
deformation shapes for a unit force applied to one of the cou-
pling DOFs, while the remaining DOFs are not loaded.

∆ = RdelR
−1
ret ,

[

Rret

Rdel

]

=

[
(

K−1
)

ret,ret
(

K−1
)

del,ret

]

−
nmod
∑

j=1

[

Φfree
ret

Φfree
del

]

Φfree
ret

H

ωfree
j

. (59)

Herein, R denotes the residual static flexibility associated
with loading of the retained coordinates. The presence of rigid
body modes requires special attention [28]; however, this case
is not further discussed in this work. The free interface normal
modes are defined as

Φfree =
[

φfree
1 · · · φfree

nmod

]

,
(

K − ωfixed
j

2
M

)

φfree
j = 0 , ωfree

1 ≤ . . . ≤ ωfree
nmod

. (60)

E Exact condensation procedure

In this appendix, an exact procedure is presented for the con-
densation of the harmonic balance equations, which takes ad-
vantage of the sparsity of the nonlinear terms. To this end,
it is convenient to arrange the equations of motion in such a
manner that the nonlinear force and generalized coordinates
vectors have the form

fc [u] =

[

λ [ cg]
0

]

, u =

[

cg

urem

]

. (61)

Herein, fc and u have the dimension nd, whereas λ and cg

have the dimension 3nc. We refer to cg as nonlinear coordi-
nates, and to urem as linear coordinates, since for given cg(t)
a linear ODE governs urem(t). The vector of nonlinear forces
is considered as sparse, if 3nc ≪ nd. This sparsity is inher-
ited by the harmonics Λ and the associated gradients. The
extent of this sparsity depends on the choice of the general-
ized coordinates. If the physical coordinates cg, that describe
the (relative) interface motions, are not retained, the sparsity
is generally lost. In the simplest case, cg represent the local
relative deformation at the contact points.
Taking advantage of this sparsity during the numerical so-
lution process is a common procedure in conjunction with
harmonic balance, see e. g. [75,52,3,18]. To this end, one con-
denses the set of nd nonlinear algebraic equations for each
harmonic to a set of 3nc equations. This can significantly re-
duce the number of explicit unknowns and thus reduce the
computational effort required for the iterative solution pro-
cess.
The procedure is exemplified for the balance of generalized
displacement given in Eq. (28), but a fully analogous proce-
dure is available for the balance of generalized forces given in
Eq. (27), see e. g. [132]. To this end, Eq. (28) is split into the
individual harmonics,

Un +Hn (Ω)F c,n (U0, . . . ,UH) = Uae,n ∀n ∈ H . (62)

The matrices Hk are also partitioned as in Eq. (61),

Hk =

[

H
nl,nl
k H

nl,l
k

H
l,nl
k H

l,l
k

]

. (63)
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With this, the first hyper-row of Eq. (62) reads

Gk +H
nl,nl
k (Ω)Λk (G0, . . . ,Gnh

) = 0 ∀n ∈ H , (64)

where H
nl,nl
k is a portion of the matrix Hk. Eq. (64) only de-

pends on the harmonic components G0, . . . ,Gnh
of the non-

linear coordinates, but not on U rem,k, the harmonic compo-
nents of the linear coordinates. It is thus sufficient to solve
Eq. (64), which is of much smaller dimension than Eq. (62) if
3nc ≪ nd. Upon solution of Eq. (64) for Gk, the remaining
portion of the generalized coordinates can be determined us-
ing the explicit formulation U rem,k = −H

l,nl
k Λk. It should

be noted that this dynamic condensation procedure is mathe-
matically exact, so that it does not suffer from poor accuracy
like, e. g. , the static (Guyan) condensation procedure.
Note that the dynamic compliance matrix is defined as the
inverse of the dynamic stiffness matrix. Computing Hn by
matrix inversion, however, would be time consuming. This is
particularly true since Hn depends on Ω and, thus, typically
has to be re-computed in every iteration. As long as the dy-
namic stiffness matrix can be expressed as a polynomial in Ω
with constant coefficient matrices, the matrix inversion can
be replaced by a small number of matrix multiplications and
the trivial inversion of a diagonal matrix, see e. g. [132,83].
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