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Abstract

Currently, some kinds of helicopters use pendulum absorbers in order to reduce vibra-

tions. Present pendulum absorbers are designed based on the antiresonance concept

used in the linear theory. However, since the vibration amplitudes of the pendulum are

not small, it is considered that the nonlinearity has influence on the vibration charac-

teristics. Therefore, the best suppression cannot be attained by using the linear theory.

In a helicopter, periodic forces act on the blades due to the influences of the air thrust.

These periodic forces act on the blades with the frequency which is the integer multiple

of the rotational speed of the rotor. Our previous study proposed a 2-degree-of-freedom

(2DOF) model composed of a rotor blade and a pendulum absorber. The blade was

considered as a rigid body and it was excited by giving a sinusoidal deflection at its

end. The present paper proposes a 3DOF model that is more similar to the real heli-

copter, since the freedom of the fuselage is added and the periodic forces are applied

to the blade by aerodynamic force. The vibration is analyzed considering the nonlinear

characteristics. The resonance curves of rotor blades with pendulum absorbers are ob-

tained analytically and experimentally. It is clarified that the most efficient condition

is obtained when the natural frequency of the pendulum is a little bit different from

the frequency of the external force. Various unique nonlinear characteristics, such as

bifurcations, are also shown.
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1. Introduction

Pendulum absorbers are widely used to suppress vibrations of helicopter blades(1), (2).

This utilizes antiresonance point of the vibration theory. Several works(3) – (7) analysed the

pendulum absorber based on the linear theory. However, since the pendulum oscillates with

large amplitude when the resonance of the blade is suppressed, it is necessary to clarify its

characteristics based on the nonlinear theory.

In the previous paper(8), the authors derived a 2DOF nonlinear model for a rotor-blade-

pendulum system with a base excitation, that is, the vertical deflection of the rotor was changed

sinusoidally. The effect of the pendulum absorber to the blade vibration was clarified by nu-

merical simulations and nonlinear theoretical analyses. Moreover, these results were verified

by experiments.

In the present paper, in order to model a real helicopter more precisely, the freedom
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Fig. 1 Model for a fuselage, a rotor blade and a pendulum absorber

of a fuselage is considered and the periodic excitation force is given by the aerodynamic

force. This 3DOF model has freedoms for a fuselage, a blade and a pendulum. The effects of

pendulum parameters to the vibration suppression are investigated by numerical simulations

and theoretical analyses. These results were verified by experiments.

2. Modeling and the Equations of Motion

Figure 1 shows a pendulum vibration absorber. This absorber is installed to suppress

vibrations of a fuselage, a main rotor and a blade. For simplicity, the blade is assumed as

a rigid beam and only its vertical displacement is considered. The helicopter is modeled as

a 3DOF system where the fuselage, the blade and the pendulum have freedoms. In order to

resemble the fuselage floating in the air, the mass M f is suspended vertically by a spring with

the very weak stiffness k f . The vertical deflection is denoted by z f . It is assumed that the

fuselage does not rotate. The blade is a thin beam with a rectangular cross section. Its one end

is connected to the rotor by a pin and a spring and the other end is free. Let the length of the

blade be L, the mass be M and the small angle from the horizontal direction be φ. A pendulum

with arm length l and mass m is installed at the position a from the center of the rotor. The

pendulum can rotate in a vertical plane including the rotating shaft and its deflection from the

equilibrium position is expressed by θ.

The diameter of the rotor is small enough to be neglected. The static rectangular coordi-

nate system O−xyz is prepared. Its x-axis is taken in the horizontal direction which coincides

with the blade at rest and its z-axis is taken in the vertical direction which coincides with the

rotor. The rotor and the blade rotate with the angular velocity Ω.

It is assumed that a periodic aerodynamic force works to the blade due to the periodic

change of the pitch angle of the blade.

The kinetic energies T f , Tb and Tp and the potential energies U f , Ub and Up of the

fuselage, the blade, and the pendulum, respectively, are given as follows.

T f =
1

2
M f ż f

2

Tb =
1

6
M
{

L2(Ω2 −Ω2φ2 + φ̇2) + 3ż f
2 + 3Lż f φ̇

}

Tp =
1

2
m
{

ż f
2 + a2φ̇2 + l2θ̇2 + Ω2(a + l sin θ)2 + 2aż f φ̇ + 2alφ̇θ̇ sin θ + 2lż f θ̇ sin θ

}
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where g is the acceleration of gravity. The dissipation function of the whole system is given

as

D =
1

2
c f ż f

2 +
1

2
cbφ̇

2 +
1

2
cpθ̇

2 (3)

where c f , cb and cp are the damping coefficients of the fuselage, the blade and the pendulum,

respectively.

It is assumed that the aerodynamic force distributing along the blade works periodically.

The aerodynamic force is proportional to the square of the velocity. Let the magnitude of the

aerodynamic load per unit length at the edge of the blade be Ω2Fb and its frequency be ω, the

vertical force Qb working to the fuselage, and the moment Mb around the hinge of the blade

are expressed as follows.

Qb =
1

3
LΩ2Fb cosωt

Mb =
1

4
L2Ω2Fb cosωt
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Putting P0 =
√

3k/ML2 and introducing h0 as a representative length, we use the follow-

ing dimensionless quantities.

z̄ f = z f /h0, m̄ = m/M, M̄ f = M f /M

c̄ f = c f /MP0, c̄b = cb/Mh2
0
P0, c̄p = cp/Mh2

0
P0

L̄ = L/h0, l̄ = l/h0, ā = a/h0

k̄ f = k f /MP2
0
, F̄b = Fb/M, ḡ = g/(h0P2

0
)

Ω̄ = Ω/P0, ω̄ = ω/P0, t̄ = p0t
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Using Lagrange’s equation, we obtain the following nonlinear equations expressed by

dimensionless quantities. For simplicity, the notation “ ¯ ” which represents a dimentionless

quantity is eliminated in the following.

(1 + m + M f )z̈ f +

(

1

2
L + ma

)

φ̈ + ml(θ̈ sin θ + θ̇2 cos θ)

+c f ż f + k f z f =
1

3
LΩ2Fb cosωt − (1 + m + M f )g

(
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2
L + ma

)

z̈ f +

(

1

3
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)

φ̈ + mal(θ̈ sin θ + θ̇2 cos θ)

+cbφ̇ +
1

3
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4
L2Ω2Fb cosωt −
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)

g

z̈ f sin θ + aφ̈ sin θ + lθ̈ +
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θ̇ −Ω2(a + l sin θ) cos θ + g sin θ = 0
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(6)

3. Tuning of a Pendulum

In a high rotational speed range, the centrifugal force becomes much larger than the

gravitational force. In such a case, the natural frequency of the pendulum is expressed as

pp ≃ Ω
√

1 + a/l approximately. Therefore, it is proportional to the rotational speed Ω. Since

the excitation frequency ω is n times the rotational speed Ω, the natural frequency of the

pendulum always tunes to the excitation frequency ω if we determine the pendulum to satisfy

the relationship n =
√

1 + a/l.

The present paper shows the case of n = 4. Results of numerical simulation are shown

in Fig. 2. This shows the natural frequencies p f , pb and pp of the fuselage, the blade and the

pendulum are the function of the rotational speedΩ. These p f , pb and pp are obtained from the

equation which is derived from Eq. (6) by eliminating the coupling terms and damping terms.

This indicates that the natural frequency pp of the pendulum satisfies the tuning condition ω =

4Ω except in the low rotational speed range Ω < 0.15. Therefore, the vibration suppression

effect in the wide range of the rotational speed Ω can be possible.
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4. Results of Numerical Simulation

The following results are obtained by

integrating Eq. (6) numarically.

4.1. Case of the Tuned Pendulum

Figure 3 shows the effects of the pen-

dulum to the amplitudes of the fuselage and

the blade. The cases with a pendulum and

those without a pendulum are compared.

The vibration of the blade and the fuselage

are well suppressed by the installation of the

pendulum absorber. Since the most effec-

tive results are obtained in the case that the

value
√

1 + a/l is shifted a little from the

value of 4 as explained later in Fig. 8(8),

the result for
√

1 + a/l = 3.90 is shown.

The following values are used for the other

parameters:M f = 50.0, m = 0.2, L = 600.0,

a = 200.0, k f = 0.1, c f = 0.05, cb = 15000,

cp = 5.0, Fb = 0.05, h0 = 0.001[m], P0 =

10.0 × 2π.

The amplitudes of the fuselage and the

blade increased a little due to the pendulum

installation in the higher rotational speed

range. As explained later, this occurs be-

cause this method utilizes the antiresonance

point and the most appropriate dimensions

of the pendulum differs a little depending

on the rotational speed.

4.2. Influence of the Excitation Force

Figure 4 shows the influence of the

magnitude of the excitation force on the

maximum amplitude of the fuselage vibra-

tion in the tuned condition.

The effect of the pendulum decreases

as the excitation force increases and the ef-

fect disappears above Fb = 0.17 due to the

rotation of the pendulum. This shows that

the pendulum has a limit of its effect due to

the nonlinearity of the pendulum restoring

force.

4.3. Influence of the Position of the

Pendulum

The effect of pendulum at the position

(2/3)L from the rotor is shown in Fig. 5.

From the comparison between Figs. 3

and Fig. 5, it becomes clear that the ef-

fect increases as the pendulum is attached at

far away place from the rotor. The limit of

the magnitude of the excitation force which

Fig. 2 Natural frequencies of the blade

and the pendulum (case of tuned

enough)

(a) fuselage

(b) blade

Fig. 3 Resonance curves

Fig. 4 Influence of the amplitude of

harmonic excitation

Fig. 5 Influence of the mounted posi-

tion a
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works effectively increases as the position

becomes far from the rotor. These changes

are due to the increase of the centrifugal

force depending on the position of the pen-

dulum.

4.4. Influence of the Pendulum Mass

Ratio

The influence of the mass ratio of the

blade and pendulum are shown in Fig. 6.

From the comparison of Figs. 3 and 6,

it is known that a larger mass is more effec-

tive. However, undesirable effect in the high

speed range increase.

4.5. Influence of the Damping

Figure 7 shows the influence of the

pendulum damping cp. This is the case that

the damping coefficient is two times that of

the case of Fig. 3 where cp = 5.0. As

the damping coefficient increases, the min-

imum amplitude at the antiresonance point

increases. As the result, since this pendu-

lum absorber utilizes this antiresonance, the

effect decreases. However, as will be ex-

plained in Fig. 10 later, a pendulum start

rotating at a smaller excitaion force when

the damping decreases.

4.6. Influence of the Tuning

As mentioned above, the natural fre-

quency of the pendulum is given by pp ≃
Ω
√

1 + a/l which is proportional to the ro-

tational speed Ω. Therefore, its coefficient

must be tuned to the excitation frequency.

When the position of the pendulum, a, is

constant, the natural frequency of the pen-

dulum is determined solely by the pendu-

lum arm length l. Namely, tuning is exe-

cuted by adjusting the length. Figure 8

shows the effect of the tuning when the ro-

tational speed is Ω = 0.26 which is the ma-

jor critical speed. This figure indicates us

that the most effective pendulum natural fre-

quency is not 4Ω but 3.90Ω. The reason

why the most appropriate tuning shifts from

4 is the same as that explained in the previ-

ous paper(8). Since the rated rotational

speed is different from each other in heli-

copters, the most appropriate dimensions of

the pendulum must be determined by using

such a diagram as Fig. 8.

(a) m = 0.1

(b) m = 0.3

Fig. 6 Influence of the pendulum mass

m

Fig. 7 Influence of the damping coeffi-

cient cp

Fig. 8 Influence of the pendulum tun-

ing
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Fig. 9 Analytical result

5. Theoretical Analysis

5.1. The Method of van der Pol

We analyse by the method of van der Pol. First, the term sin θ and cos θ in Eq. (6) is

replaced by the power series approximation up to the third order of θ. We assume the solution

as follows.

z f = Zs sinωt + Zc cosωt

φ = Φs sinωt + Φc cosωt

θ = Θs sinωt + Θc cosωt

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(7)

where it is assumed that Zs, Zc, Φs, Φc, Θs andΘc have magnitudes of O(ǫ0) when ǫ represents

a small parameter and O means the order. In addition, it is assumed that these quantities

change slowly as a function of time.

Substituting Eq. (7) into Eq. (6) and equating the coefficients of terms cosωt and sinωt in

both hands in the accuracy of O(ǫ), respectively, we obtain the first order differential equations

on Zs, Zc,Φs,Φc,Θs andΘc. The steady-state solutions are obtained from the equations which

are obtained by putting Żs = 0, Żc = 0, Φ̇s = 0, Φ̇c, Θ̇s = 0 and Θ̇c = 0. The stability of

these solutions are determined by investigating the change of a small deviation around the

stead-state solution.

The results of the theoretical analysis are shown in Fig. 9 together with the results of

numerical simulation. The full lines shows the results of theoretical analyses and the symbol

(a) fuselage

(b) blade

Fig. 10 Nonlinear branches (cp = 0.1)

(a) fuselage

(b) blade

Fig. 11 Nonlinear branches (m = 0.3)
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Fig. 12 Model of experimental set-up

© shows the results of numerical solution. Both results agree well.

5.2. Nonlinear Bifurcation Phenomena

Here, the bifurcation phenomena due to the nonlinearity is discussed. One parameter is

changed from the case of Fig. 9. The case that the damping coefficients cp = 0.1 is shown in

Fig. 10 and the case of the mass ratio m = 0.3 is shown in Fig. 11. The full lines represent

stable solutions and the broken lines represent unstable solutions. The theoretical curve forms

a loop in the neighborhood of Ω = 0.15 in Fig. 10 and that of Ω = 0.6 in Fig. 11 and unstable

solutions exist there. This is because that the effect of the nonlinearity becomes apparent when

the amplitude of the pendulum increases. As the shape and the stability of the resonance curve

change remarkably depending on the parameter values, there is a danger that large vibrations

may appear.

6. Experiments

6.1. Experimental Setup

Figure 12 shows the experimental setup of the study. The fuselage with mass M f = 5.38

kg is hung by a weak spring with the spring constant k f = 0.047 N/mm from the ceiling.

It is guided to move only in a vertical direction by linear guides. The rotor is supported by

self-aligning ball bearings at the upper and lower parts of the fuselage. The shaft is driven

by a motor via pulleys and a belt. A flange is attached at the upper end of the shaft and two

thin plate springs with the spring constant k = 0.0413 N·m/rad are mounted on this flange

symmetrically. Further, two rigid long plates which correspond to blades are attached to these

springs. This plate is made of aluminum with the mass density ρ = 2698 kg/m3 and has the

mass M = 60 g. Its dimensions are L = 300 mm in length, b = 50 mm in width and hb = 1.5

mm in thickness. Pendulums can be mounted at the position a=200 mm, 260 mm and 330 mm

on the blade. The arm lengths of the pendulums can be changed. The three kinds of masses

with m = 12 g, 24 g and 36 g are used. In order to measure the vertical displacement of the

blades in the case that two blades vibrate in the same direction, a bridge which is a very light

plate is connected to the blades via hinges. A periodic aerodynamic force with the frequency

4 times the rotational speed is applied by four fans.

Vertical deflections of the fuselage and blades are detected by laser deflection sensors

and the rotational speed is detected by a rotary encoder.

6.2. Experimental Results

Figure 13 shows resonance curves of the fuselage and the blade in cases without pendu-

lum and with pendulums at a = 200 mm. The data represent amplitudes of the component 4Ω

which is obtained from the time histories recorded in experiments.
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(a) fuselage

(b) blade

Fig. 13 Resonance curve (experiment)

(a) m = 12 g

(b) m = 24 g

Fig. 14 Influence of the pendulum mass m (experiment)

In the case without pendulum, the blades resonate and, as the result, the fuselage vibrates

with large amplitude. In the case with pendulums, vibrations of both the fuselage and the

blades are well suppressed.

Next, the effect of the pendulum mass is investigated. Figure 14 shows resonance curves

for m = 12 g and m = 24 g. In the case of Fig. 14(a) with m = 12 g, the effect is not clear

because the mass is too small to suppress vibrations. In the case of Fig. 14(b) with m = 24 g,

the amplitude in the resonance range Ω = 80 rpm to 95 rpm is well suppressed, however, it is

not suppressed Ω = 95 rpm to 100 rpm. These results shows that the mass is not enough in

these two cases. On the contrary, Fig. 13 with m = 36 g shows good suppression results.

These results confirm the results of numerical simulation shown in Fig. 6.

7. Conclusions

This study investigates the vibration suppression effects of pendulum vibration absorbers

to a helicopter using a 3DOF model composed with a fuselage, a blade and a pendulum. It is

assumed that an aerodynamic force with frequency of 4 times the rotational speed works to

the blade. The following can be made through the theoretical analysis, numerical simulations

and experiments.

i. When the natural frequency of the pendulum is tuned to the frequency of the excitation,

vibrations can be suppressed by the pendulum vibration absorber in a wide rotational speed

range.

ii. As the magnitude of the excitation force increases, the effect decreases and then stops

when the pendulum rotates.

iii. As the location of the pendulum separates from the shaft, the vibration suppression

effect increases.

iv. As the mass of the pendulum increases, the vibration suppresion effect increases.

v. As the damping of the pendulum increases, the effect decreases. However, as the

damping decreases, the pendulum starts to rotate at smaller excitation frequency and the effect

disappears.

vi. Better suppression effect is obtained if the pendulum frequency is tuned to a value

slightly smaller than the excitation frequency.

vii. The occurrence of bifurcation due to the pendulum is clarified.
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