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Abstract — Cantilever beams have an important role in day to 
day life in bridges, towers, buildings and aircraft wings, making 
active vibration suppression a highly researched field. The 
purpose of this paper is to detail the design of fractional order 
PID controllers for smart beams. A novel tuning procedure is 
proposed based on solving a set of nonlinear complex equations 
that directly aim at reducing the resonant peak. The control 
parameters are computed through optimization techniques, 
making sure that the best ones are chosen. The practical stand 
was realized using magnet-coil approach and not piezoelectric 
actuators. The experimentally obtained vibration results prove 
that fractional order PID controllers can be used in practice to 
significantly reduce the amplitude and settling time of the 
vibrating system. 
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I.  INTRODUCTION  

The most common current fixed aircraft wing design is the 
cantilever beam, pioneered by Hugo Junkers in 1915. All 
types of aircraft have the same basic wing construction made 
of metal. The wing of an airplane has to maintain its shape 
under extreme stress in order to hold the aerodynamic shape of 
the plane. Low frequency vibration is normal for all aircrafts, 
each plane having a unique signature vibration caused by 
engine operation, speed brakes, landing gear or normal airflow 
over the surfaces. This is normally perceived as background 
noise. Unwanted vibrations, with considerably larger 
magnitudes are caused by turbulences and cause passenger 
discomfort or even fatigue failure of the aircraft [1]. This 
justifies the need of advanced controller usage. The closed 
loop performance of smart structures depends considerably 
upon the choice of the control algorithm [2]. Previous research 
on active vibration suppression in smart beams include direct 
proportional feedback, constant gain velocity feedback and 
constant amplitude velocity feedback control, optimal control 
strategies [3], [4], [5], [6]. One of the major issues associated 
with these control strategies is that they are highly sensitive to 
modeling errors and require an exact mathematical model of 
the smart beam [2]. A better choice from this point of view 
consists in the robust control strategies due to their intrinsic 
ability of ensuring a robust closed loop behavior, despite 
modeling uncertainties and estimation errors [7]. 

Fractional order controllers, more accurately “non-integer-
order” controllers [8], are a design alternative for traditional 
controllers. The derivative and integral orders of a fractional 
controller are real numbers, usually between 0 and 1. The 
main advantages are better characterization of the system and 
increased flexibility. The fractional order PIλDµ is considered 
to enhance the closed loop performance, being able to meet 
more performance specifications, as well as increased 
robustness, as compared to the classical integer order PID [9], 
[10]. For implementation purposes, the fractional order 
controller has to be firstly approximated with an integer 
transfer function with the same behavior, within a specified 
frequency range, using approximation methods like continued 
fraction expansion (CFE), Matsuda, Oustaloup filter and 
Modified Oustaloup filter [8], [10], to name just a few. 

The practical stand used in [11] had a cantilever aluminum 
beam represented by a 6th order transfer function and 8 
piezoelectric patches acting both as a sensor and an actuator 
independently. In this study, the practical stand uses a 
spherical magnet - coil approach [12] instead of piezoelectric 
actuators. The system is characterized in open loop by second 
order transfer function.  

The present paper presents the tuning of a fractional order 
PIλDµ controller designed to suppress the vibrations that may 
occur in a smart beam. The controller is tuned using a novel 
tuning procedure based on lowering the resonant peak of the 
system using optimization techniques. The fractional order 
controller that is obtained is implemented and tested on the 
experimental unit.  

The System Identification, Optimization and FOMCON 
toolboxes are used for identification, optimization and 
fractional order transfer functions. The fractional order PIλDµ 
controller is approximated to integer order using the Modified 
Oustaloup Filter [13].The controller is discretized using 
bilinear transformation with sampling time Ts=10-3 seconds. 

II. VIBRATION ATTENUATION USING ACTIVE CONTROL 

There are a few research papers that deal with active 
vibration suppression using the theory of fractional calculus, 
but the tuning procedure adopted is not directly addressing the 
problem of suppressing the resonance peaks [14], [11]. In fact, 
in these previous research papers, the authors analyze the 
performance of fractional order PD controller using different 
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orders of Continued Fraction Expansion (CFE) 
approximations. 

In contrast to previous research regarding fractional order 
controllers, the present paper proposes a novel tuning 
procedure for these types of controllers for smart beam 
vibration suppression. This novel tuning approach is based on 
solving a set of nonlinear complex equations that directly aim 
at reducing the resonant peak, rather than the very simple 
tuning procedure used in [11], which is based on a trial and 
error method for selecting the optimal fractional order 
controller parameters. A similar approach to the one proposed 
in this paper has been used for the tuning of a fractional order 
PD controller [2]. In this paper, a fractional order PID 
controller is used instead. Additionally, the proposed fractional 
order PID controller is also tested experimentally, rather than 
considering solely Matlab simulations as in [2]. 

One of the main advantages of the proposed method is that 
the fractional-order controller can be tuned in a simple manner 
by analyzing the Bode diagram of the uncompensated system. 
Certain values for the magnitude of the system are imposed 
with the purpose of lowering the resonant peak and making the 
magnitude line smoother in the frequency range of interest. 

The frequency domain transfer function for the fractional 
order PIλDµ controller is: ܥிைି௉ூ஽ሺ݆߱ሻ ൌ ݇௣ ∙ ሾ1 ൅ ݇௜ ∙ 1ሺ݆߱ሻఒ ൅ ݇ௗ ∙ ሺ݆߱ሻఓሿ (1)

For 1=ߣ and ߤ ൌ 1 , Equation (1) describes the transfer 
function of the integer order PID controller, while for ߣ ∈ሺ0,1ሻ and ߤ ∈ ሺ0,1ሻ the equation describes the fractional order 
PID controller. On the Bode magnitude plot, an integrator 1/s 
introduces a fixed slope of -20 dB/decade while a differentiator 
s introduces a fixed slope of +20 dB/decade. On the other hand, 
a fractional order integrator 1/ݏఒ  and a fractional order 
differentiator ݏఓ  having ߣ, ߤ ∈ ሺ0,1ሻ   introduces a variable 
slope between (-20, 0) dB/decade, (0, +20) dB/decade 
respectively. This means that the fractional order controller has 
increased flexibility, honoring the imposed constraints more 
accurately.  

 
Fig. 1. Schematic diagram of the fractional order PID applied on the structure 

 

The closed loop system with the fractional order PID 
controller is given in Fig. 1. The measured structural 
displacement is given to the controller and it generates the 
control force for the actuator. Since the purpose of the 
controller is vibration attenuation, the reference position will be 
kept at 0. The controller will then treat any excitation as a 
disturbance and will try to reject it. 

Starting from the main purpose of the controller: lower the 
resonant peak, it is clear that a proportional effect is needed to 

lower the magnitude. By using a simple proportional controller, 
the resonant peak will be lowered, but the slope of the 
magnitude won’t be smoother, it will be the same. Also, 
knowing that the controller has to successfully reject 
disturbances, it is clear that the integral effect is absolutely 
necessary. From the Bode diagram point of view, a PI type 
controller increases the gain at low frequencies, without 
affecting the gain near and above the crossover frequency. This 
means that, a PI controller will help honor the constraints 
imposed for low frequencies, but it will only honor half of the 
constraints. In order to honor the other half, a derivative effect 
is needed since the differentiator increases the magnitude at 
higher frequencies.  

The transfer function of the controller CFO-PID in 
trigonometric form gives: ܥிைି௉ூ஽ሺ݆߱ሻ ൌ ݇௣ ∙ ൤1 ൅ ݇௜߱ିఒܿݏ݋ 2ߣߨ െ ݆݇௜߱ିఒ݊݅ݏ 2൅ߣߨ ݇ௗ߱ఓܿݏ݋ 2ߤߨ ൅ ݆݇ௗ߱ఓ݊݅ݏ 2ߤߨ ൨  

(2) 

and writing it as a sum of its real and imaginary parts we 
obtain: ܥிைି௉ூ஽ሺ݆߱ሻ ൌ ሺ߱ሻܣ ൅ ሺ߱ሻܣ ሺ߱ሻܤ݆ ൌ ݇௣ ൅ ݇௜߱ିఒܿݏ݋ 2ߣߨ ൅ ݇ௗ߱ఓܿݏ݋ 2ߤߨ  

ሺ߱ሻܤ ൌ ݇ௗ߱ఓ݊݅ݏ 2ߤߨ െ ݇௜߱ିఒ݊݅ݏ 2ߣߨ  

(3) 

Supposing that the vibration attenuation is done on a 
process described by a second order transfer function noted Hf: ܪ௙ሺ݆߱ሻ ൌ ݇ ൉ ߱௡ଶሺ݆߱ሻଶ ൅ ሺ݆߱ሻݏ௡߱ߦ2 ൅	߱௡ଶ (4) 

and expressing it in the same manner as the transfer function of 
the controller we obtain: ܪ௙ሺ݆߱ሻ ൌ ܴ݁ܲሺ߱ሻ ൅ ሺ߱ሻܴ݁ܲሺ߱ሻܲ݉ܫ݆ ൌ ݇ ∙ ߱௡ଶሺ߱௡ଶ െ	߱ଶሻሺ߱௡ଶ െ	߱ଶሻଶ ൅ ሺ2߱ߦ௡ ∙ ߱ሻଶ 

ሺ߱ሻܲ݉ܫ ൌ 2݇߱௡ଷ ∙ 	߱ሺ߱௡ଶ െ	߱ଶሻଶ ൅ ሺ2߱ߦ௡ ∙ ߱ሻଶ 

(5) 

The magnitude of the closed loop formula of the 
compensated system is: |ܪ௢ሺ݆߱ሻ| ൌ หܪ௙ሺ݆߱ሻ ∙ ிைି௉ூ஽ሺ݆߱ሻหห1ܥ ൅ ௙ሺ݆߱ሻܪ ∙  ிைି௉ூ஽ሺ݆߱ሻห (6)ܥ

Rewriting Equation (6) by taking into consideration Equations 
(3) and (5), the closed loop magnitude is obtained as: 

|௢ሺ݆߱ሻܪ| ൌ ඥሺܴ݁ܲଶ ൅ ଶܣ	ଶሻሺܲ݉ܫ ൅ ଶሻඥ1ܤ ൅ ሺܴ݁ܲଶ ൅ ଶܣ	ଶሻሺܲ݉ܫ ൅ ଶሻܤ ൅ ܴܲ݁ܣ2 െ  (7) ܲ݉ܫܤ2

In order to impose the constraints, a frequency range of 
interest that includes the resonant peak must be chosen. Noting 
the lower bound of the frequency range with a, the resonant 
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frequency with b and the upper bound with c the following 
constraints are obtained: 

 ൞ |௢ሺ݆߱ሻܪ| ൑ ,ܤ݀	ݔ 		߱ ൌ |௢ሺ݆߱௥ሻܪ|ݏ/݀ܽݎ	ܽ ൏ ,ܤ݀	ݕ 		߱௥ ൌ |௢ሺ݆߱ሻܪ|ݏ/݀ܽݎ	ܾ ൑ ,ܤ݀	ݖ 		߱ ൌ ݏ/݀ܽݎ	ܿ  (8) 

Equation (8) has three imposed constraints, but the 
fractional order PIλDµ has five parameters that need to be 
tuned: kp, ki, kd, ߣ and ߤ. As a result, two more constraints will 
be imposed in the optimization algorithm, both chosen close to 
the upper and lower bounds.  

 The optimization is realized replacing Equation (7) in 
Equation (8) and applying the fmincon optimization function in 
MatLAB. Also, the values of ߣ and ߤ should be restricted to be 
greater than 0 in order to obtain only PID controllers. Note that 
the results that yield ߣ, ߤ ൌ 1 represent an integer order PID, 
while in the case of ߣ, ߤ ∈ ሺ0,1ሻ is obtained a fractional order 
PID controller.  

III. CASE STUDY: SMART BEAM 

A. Description of the stand 

The stand is built from Plexiglas with the exception of the 
beam which is made of Polycarbonate, material less breakable 
than Plexiglas. The dimensions of the beam are 240 × 40 × 3 
mm. However, 40 mm from the length of the beam are used to 
secure it to the stand, leaving 200 mm to vibrate.  

Fig. 2. 3D model of the practical stand 
 

The stand has two magnets and two coils, but only Coil 1 
and Magnet 1 are used for vibration suppression. The two coils 
are identical 24V direct current solenoids with aluminum cores. 
The aluminum core is preferred in favor of the iron one for a 
smaller magnetic permeability because the vibration 
suppression is realized through permanent magnetic disks. An 
important remark is that the coils can receive between 0 and 
10V and only attract the magnet without having the ability to 
reject them. 

The magnets were hot - pressed 2mm into the beam in 
order to avoid glue which can easily fail under stress. The 
Neodymium – Iron – Boron permanent magnetic disks have 
10mm diameter, 5mm height, 30 grams weight and 1 kg 
strength. A 3D model of the stand can be seen in Fig. 2. 

By varying the current/voltage that enters the coil, the 
magnetic field generated by the solenoid is modified, thus the 
position of the magnetic disk under it also varies. The magnetic 
disk movement creates beam displacement. A vertical position 
sensor is used  to measure the  displacement, namely the 
Honeywell SS495A Miniature Ratiometric Linear (MRL) Hall 
Effect sensor.  

B. Experimental setup 

The experimental setup used to analyze and control the 
vibration was developed at the Technical University of Cluj-
Napoca and is depicted in Figures 3 and 4. The CompactRIOTM 

9014 controller manufactured by the National Instruments is 
used as the main control and acquisition unit. The IO module 
NI 9215 makes possible reading data from the sensors, while 
the NI 9263 is used to control the coils. The control is realized 
using LabVIEW TM.  

Fig. 3 – Laboratory vibration stand 
 

 
Fig. 4 - Experimental setup used to analyze and control 

C. Modeling the system 

The system identification of the smart beam was conducted 
experimentally. Three transfer functions were computed of 
order two (Fig. 5), six and ten (Fig. 6) using the system’s 
impulse response. Due to delays, in order to physically obtain 
the impulse effect, the coil is given a 10V step input for 35ms.  

For the sixth and tenth order transfer functions, MatLAB’s 
System Identification Toolbox is used. In the case of the 
second order transfer function, the toolbox doesn’t find any 
approximation. The second order system is approximated using 
the general second order form: ܪ௙ሺݏሻ ൌ ݇ ൉ ߱௡ଶݏଶ ൅ ݏ௡߱ߦ2 ൅	߱௡ଶ (9) 
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By giving a swept sine input with frequencies between 5 
and 60 Hz, the natural frequency was experimentally 
determined at 15 Hz. Transforming the obtained frequency into 
rad/s we obtain ߱௡ ൌ95. The damping factor, ξ, is determined 
using the logarithmic decrement formulas and the value 
obtained is 0.01. 

 
Fig. 5 - Second order transfer function plot compared to experimental data 

 
Fig. 6 – 6th and 10th order transfer functions plot compared to experimental 
data 

 
As it can be seen in Fig. 6, the 6th and 10th order transfer 

functions are almost a perfect match over the experimental 
data. Fig. 65 shows that the second order fit is less accurate 
than the 6th and 10th order ones, but still satisfactory. 
Furthermore, the second order transfer function is chosen to 
represent the plant because of its much simpler form and 
satisfactory fit: 

ሻݏሺ݂ܪ  ൌ 	െ0.2121ݏଶ ൅ ݏ1.9 ൅ 	9025 (10) 

The resonant peak has a magnitude of -56.8 dB at 
frequency 95 rad/s, as can be seen on the Bode magnitude plot 
of the second order transfer function given in Fig. 7. 

 
Fig. 7 – Bode magnitude plot of Hf 

IV. TUNING AND EXPERIMENTAL RESULTS 

The controllers were computed based on the frequency 
response magnitude of the transfer function. The resonant peak 
has a magnitude of -56.8 dB at frequency 95 rad/s. The 
controller is tuned with the purpose of lowering the resonant 
peak and making the magnitude line smoother between 10 and 
103 rad/s which is the frequency range of interest. 

The equations needed for optimization are deduced by 
imposing the closed loop (noted Ho) frequency response to 
have the value of the magnitude at frequency ߱௡ ൌ95 less than 
-56.8 dB, while keeping the actual or lowering the values at 
frequencies 10 and 103. The system is: 

۔ۖەۖ
ۓ |௢ሺ݆߱ሻܪ| ൑ െ92 ,ܤ݀ ߱ ൌ .݀ܽݎ	10 |௢ሺ݆߱ሻܪ|ݏ ൑ െ95 ,ܤ݀ ߱ ൌ |௢ሺ݆߱ሻܪ|ݏ/݀ܽݎ	34 ൏ െ80	݀ܤ, ߱௥ ൌ |௢ሺ݆߱ሻܪ|ݏ/݀ܽݎ	95 ൑ െ115 ,ܤ݀ ߱ ൌ |௢ሺ݆߱ሻܪ|ݏ/݀ܽݎ	294 ൑ െ133 ,ܤ݀ ߱ ൌ 10ଷ	ݏ/݀ܽݎ  (11) 

In order to reduce computation time and obtain better 
results it is strongly recommended to reduce the value of the 
resonant peak in the inequality constraint. A new resonant peak 
close to the actual one (-56.8 dB) is far from ideal since it 
wouldn’t bring a significant improvement. This is the reason 
the value of the resonant peak has been chosen at -80 dB. The 
ideal result consists in a value of the magnitude peak at the 
resonant frequency below the imposed value, which will result 
in less vibrations of the smart beam under active control.  

Using the constraints from Equation (11), the equation of 
the closed loop magnitude from Equation (7) and applying the 
fmincon function in MatLAB,  the following fractional order 
PID controller parameters were obtained: kp=0.0288;   
ki=1.66;   kd=0.0039;  λ=0.64; μ=0.59. The controller was then 
implemented on the experimental stand. The Bode magnitude 
diagram of the closed loop system with the fractional order PI 
controller can be seen in Fig. 8. 

 
Fig. 8 – Bode diagram of the smart beam (Hf) and of the closed loop system 
with the designed fractional order PID controller (CFO-PID)  

 
All tests were performed on impulse perturbations with 

maximum allowed amplitude by the construction of the stand. 
Because the input signal is not filtered, a simple filter is used 
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on the command signal consisting of a moving average of the 
last 30 values. This introduces a subtle delay in the command 
signal, but filters the command efficiently. 

In order to practically implement the fractional order 
controller, the fractional order integrator is approximated to an 
integer order transfer function using the Modified Oustaloup 
Filter and discretized using the bilinear transformation with 
the sampling time Ts=10-3 s. 

 
Fig. 9 – Experimental results of the impulse responses of the smart beam: free 
vibration and active fractional order PID control  

 
Fig. 10 – Zoomed impulse response of the smart beam: free vibration and 
active fractional order PID control 

 
As can be seen in Figures 9 and 10 the closed loop exhibits 

a settling time between 100 and 150ms (approx. 125ms). In 
terms of statistics, the controller stabilizes the system in 3% of 
the free vibration’s settling time (4120ms). In conclusion, the 
settling time is improved by 97%. 

In the experiment presented above, the amplitude of the 
impulse disturbance was the maximum amplitude allowed by 
the construction of the stand. Multiple tests were performed 
and the improvement remained the same. 

V. CONCLUSIONS 

The results obtained during the study prove experimentally 
the superiority of fractional order controllers and that 
optimization techniques can be efficiently used to compute 
controller parameters. 

The use of the second order transfer function to describe the 
plant significantly simplified calculus. If the 6th order transfer 
function, or even the 10th order one, had been chosen to 
describe the smart beam dynamics, the calculus volume would 
have increased exponentially.  

The study also shows that good results can be used in active 
vibration suppression without expensive equipment. Also, the 
cantilever beam can be accurately described by a second order 
transfer function. In addition, compared to the study realized by 
[11], [14] briefly presented in the introduction, the results 
obtained through second order transfer function approximation 
of the plant and one coil – magnet actuator are as good as 

results obtained by 6th order model of the plant and eight 
piezoelectric actuators.  

The obtained controllers can be successfully implemented 
in real-life applications where they could make a visible 
difference in increasing safety for the passengers of an 
airplane, construction workers on a bridge, spectators on a 
stadium, swimmers in a suspended pool or residents of a 
cantilever home during seismic activity and extreme windy 
conditions. 

As future research, the study can be easily improved by 
using piezoelectric sensors and actuators on the cantilever 
beam and comparing the results obtained on exactly the same 
stand, material and beam length. 

A control algorithm can be implemented on both coils 
simultaneously, making them work together to suppress 
vibration. Another future plan is to characterize the plant by 
fractional order transfer functions and to perform robustness 
tests by adding weight to the free end of the beam. 
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