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Vibration transmission characteristics of a cylindrical shell with a rectangular plate are discussed in this paper by the substructure
receptance method. The system is divided into two substructures: the plate and the shell. After finding the theoretical receptance
function of each substructure, the coupling equation of the combined system is solved by considering the continuity conditions at
the joint between the plate and the shell. The numerical results are compared with the experimental ones to show the validity of
the formulation. After that, effects of the plate’s parameters on vibration transmission characteristics are discussed. The parameter
study shows that it is important to avoid impedance matching for the plate and the shell in the design of suitable structures with
low vibration and noise radiation characteristics.

1. Introduction

Plates and shells are widely used as basic components in
many engineering structures, such as aircrafts [1] and under-
water structures [2]. Until now, their fundamental physical
mechanisms and phenomenons, such as free vibration [3],
wave propagation [4, 5], and power flow [6], have been
discussed intensely. Plates and shells are often utilized by
coupling together with welds, bolts, or dampers in practical
applications. Dynamic behaviors of these coupled structures
become relatively complicated due to vibration energy trans-
mission between the interior plate and the shell. Less
literature is available on these topics. However, as vibration
transferred from the plate to the shell would result in the
shell’s outward noise radiation; it is of great importance for
engineers to understand these combined structures’ vibra-
tion, especially the effects of parameters on the combina-
tions’ dynamic behaviors, which is helpful for designing
suitable structures with low vibration and noise radiation.
Forced vibration of one variant of these combined structures,
a partitioned cylindrical shell with a longitudinal, interior
rectangular plate, has been investigated in this paper to
simulate an aircraft fuselage with an interior floor.

Vibroacoustic characteristics of a cylindrical shell with
an interior rectangular plate have been studied in several

papers, which mainly focused on free vibration analysis. The
first analytical model was developed by Peterson and Boyd
[7] with applications of Rayleigh-Ritz technique. Effects of
structural parameters, including rigid joint, hinged joint,
thickness and position of the floor on natural frequencies
and mode shapes were analyzed. Irie et al. [8] studied free
vibration of noncircular cylindrical shells with longitudinal
interior partitions by using the transfer matrix. Langley
[9] studied free vibration of a simply supported stiffened
cylindrical shell with an internal plate by a dynamic stiffness
method, where three structural elements were used. Missaoui
et al. [10] investigated free and forced vibration of a
cylindrical shell with a floor partition based on a variation
formulation in which the structural coupling was simulated
with an artificial spring system. Missaoui and Cheng [11]
and Li et al. [12] presented findings on the structural
acoustic coupling characteristics of a cylindrical shell with
an internal floor partition. Missaoui also pointed out that
the receptance method might be difficult to exploit for a
shell partitioned by a longitudinal floor since no information
on forces distributing along the joint is priori available.
However, Lee et al. [13, 14] assumed the line forces and
moments applied along the joint as sinusoidal functions and
discussed the free vibration of an isotropic and homogeneous
shell with an interior rectangular plate, and a laminated
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composite cylindrical shell with a plate using the receptance
method. He proved that the receptance method is efficient
for free vibration of a shell/plate-combined system. Yet only
the transverse force and moment were considered, which
might be inaccurate. Wang et al. [15] studied power flows in
a coupled plate-cylindrical shell system by the substructure
method with consideration of in-plane forces, transverse
forces, and moments, where receptance functions of the plate
and the shell were also needed.

Descriptions above demonstrate that one of the most effi-
cient approaches for analyzing the vibration of the combined
structure is the receptance method, which has been reported
extensively in the literature. Vibration energy transmission
takes place even in simple structures between different parts
of the structure. The complexity is in our inability to define
the behavior of the structure with a single equation as in
the case of a shell or a plate or a beam, and so forth.
Moreover, the receptance method has been in use since as
early as 1960 when Bishop and Johnson [16] describe the
method. It was used by Azimi et al. [17] to find mode
shapes and natural frequencies for free vibration of coupled
rectangular plates. Huang and Soedel [18–20] utilized this
method to analyze both free and forced vibration of a simply
supported cylindrical shell coupled with annular plates. Tao
et al. [21] analyzed the force transmission from a rigid
body mounting system to a flexible foundation and used
the receptance matrix to derive the analytical expression.
Tursun and Eskinat [22] found that the receptance method
is efficient for the minimization of the unwanted vibration
in engineering. This method obtains interface coupling
forces by considering geometrical compatibility conditions
and force balance equations at the shell/plate joint. Global
vibration information of the combined structure can be
synthesized in terms of each substructure’s receptance func-
tions, which can be calculated by the modal expansion
method [23], separately. Thus, the receptance method is
simple and efficient and gives more physical insight than
the purely numerical ones. However, it has not been applied
for forced vibration analysis of a cylindrical shell with an
interior plate until now. This paper further developed the
receptance method to examine the forced vibration charac-
teristics of a simply supported cylindrical shell with an
interior rectangular plate.

Previous studies [7, 13, 14] have demonstrated that the
fundamental frequency of the combined plate/shell system
exhibits principally plate motion with one half wave in each
direction. The plate modes of the coupled system in the
lower range increase as the plate is located farther from
the center of the shell due to the increment of the plate
stiffness. Thus, the plate’s stiffness has great influence on
free vibration of the cylindrical shell with an interior rectan-
gular plate. Though some investigation on such plate/shell-
coupled system has been carried out, little attention seems
to have been focused on the plate’s influence on vibration
transmission between the floor and the shell, which is of great
importance in designing quiet aircraft as it plays a key point
in understanding the plate/shell coupled system’s vibration
behavior. Thus it is discussed here. First, the theory model of
a cylindrical shell coupled conservatively with a rectangular

plate is established by the receptance method. Then results
obtained by the receptance method are compared with
those of FEM model to validate the model. Last, numerical
examples are provided to illustrate the effect of the plate’s
parameters on vibration transmission characteristics of the
system.

2. Analytical Approach

The partitioned cylindrical shell with an interior plate is
illustrated in Figure 1. The plate is attached at θ∗1 and θ∗2
position of the shell based on the horizontal centerline. It
is assumed that shear diaphragm-shear diaphragm (SD-SD)
boundary conditions apply to the ends of the plate and the
shell. Both the plate and the cylindrical shell are assumed to
be free at their coupling edges. The coupled structure can
be divided into two substructures: the plate and the shell.
They are coupled together by the internal forces [Fcsi] =
[qsNi , qsQi , qsMi ]T (i = 1, 2), as shown in Figure 2, distributing
along the coupling edges of the shell and internal forces

[Fcpi] = [q
pN
i , q

pQ
i , q

pM
i ]T (i = 1, 2), as shown in Figure 3,

distributing along the coupling edges of the plate. Besides,
the plate is also excited by external forces [Fpe] while the shell
is excited by external forces [Fse].

2.1. Coupling Equations. A receptance is defined as the ratio
of a steady-state displacement or slope response at a certain
point to a harmonic line force or line moment input at
the same (direct receptance) or at a different point (cross-
receptance) [20]. It is employed here to formulate vibration
equations of each substructure.

As described above, the shell is excited by the internal
distributed forces [Fsci] (i = 1, 2) and the external point force
[Fse]. According to the receptance method, the shell’s motion
equation can be written as

[us] = [Ysc1][Fsc1] + [Ysc2][Fsc2] + [Yse][Fse], (1)

where [us] = [vs,ws,ψs]
T is the shell’s dynamic displacement

vector, and its direction is corresponding to that of the
internal forces [Fsci] in the shell’s local coordinate; [Ysci] (i =
1, 2) are the receptance matrices corresponding to [Fsci] (i =
1, 2); [Yse] is the receptance matrices corresponding to the
external force [Fse].

The plate is excited by the internal distributed forces
[Fpci] (i = 1, 2) and the external point force [Fpe]. Analo-
gously, its motion equation can be written as

[

up

]

=
[

Ypc1

][

Fpc1

]

+
[

Ypc2

][

Fpc2

]

+
[

Ype

][

Fpe

]

, (2)

where [up] = [vp,wp,ψp]T is the dynamic displacement vec-
tor of the plate, and its direction is the same with that of
the internal forces [Fpci]; [Ypci] (i = 1, 2) and [Ype] are the
related receptance matrices of the plate.

When a cylindrical shell is coupled with an interior rect-
angular plate rigidly, no energy would dissipate at their joint.
Thus, their coupling is conservative. Then the geometrical
compatibility conditions and force balance equations at the
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Figure 1: Shell-plate coupled structure.
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Figure 2: Forces applied on the shell.

shell/plate joints, in the global coordinate system, can be
demonstrates by equations as follows:

[

up

]
∣

∣

∣

li
− [Ti][us]|li = 0 (i = 1, 2), (3)

[

Fpci

]

+ [Ti][Fsci] = 0 (i = 1, 2), (4)

where [Ti] (i = 1, 2) represents the transformation matrices
from the shell’s local cylindrical coordinate system to the
plate’s local Cartesian coordinates system, defined at the two
coupling edges respectively; subscript li denotes coupling
edge i.

Substituting (1), (2), and (3) into (4), coupling forces of
the shell would be expressed as

[

Fsc1 Fsc2

]T
= −

(

[T][Ysc] +
[

Ypc

]

[T]
)−1

×
(

[T][Yse][Fse]−
[

Ype

][

Fpe

])

,

(5)

where

[T] = [T1 0; 0 T2], (6)

[Ysc] =
[

Ysc1|l1 Ysc2|l1 ; Ysc1|l2 Ysc2|l2
]

, (7)

[

Ypc

]

=
[

Ypc1

∣

∣

∣

l1
Ypc2

∣

∣

∣

l1
; Ypc1

∣

∣

∣

l2
Ypc2

∣

∣

∣

l2

]

, (8)
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Figure 3: Forces applied on the plate.

[Yse] =
[

Yse|l1 Yse|l2
]T

, (9)

[

Ype

]

=
[

Ype

∣

∣

∣

l1
Ype

∣

∣

∣

l2

]T
. (10)

It is possible to get the coupling forces [Fcsi] (i = 1, 2)
through (5) once receptance functions of the plate and the
shell have been derived, respectively. Then, internal forces
[Fcpi] (i = 1, 2), which are applied to the plate, can be
obtained through (4). After that, response of the shell/plate
coupled system can be determined by taking [Fcsi] (i = 1, 2)
and [Fcpi] (i = 1, 2) into (1) and (2).

In engineering, excitations for such coupled structures
are often applied at the plate. For the application here,
only an external harmonic external force [Fpe] is assumed
to act on the plate. Thus, the shell is only excited by the
internal forces [Fcsi] (i = 1, 2). Therefore, the time-averaged
input power Pin from this external force to the combined
structure can be obtained easily. According to the basic
definition of the power flow in a continuum [23], the time-
averaged transmitted power Ptrans at the coupling edges can
be acquired and expressed as

Ptrans =
1

2

∫ L

0
Re

{

[

Fcs1 Fcs2

][

u̇∗cs
∣

∣

l1
u̇∗cs
∣

∣

l2

]T
}

dx, (11)

where u̇
∗
csi (i = 1, 2) denotes differentiation with respect to

time and then takes the complex conjugate value; L is the
length of the cylindrical shell.

According to the theory of statistical energy analysis
(SEA), the spatial averaged surface velocity of the shell can be
determined by approximately equaling the rate of the energy
dissipation of the shell due to the internal loss factor. Thus
the shell’s spatial averaged acceleration as can be expressed as

|as| ≈
√

ωPtrans

ηsMs
, (12)

where ω is the annular frequency; ηs and Ms are the shell’s
loss factor and mass.

As the source plate is only connected to the shell, the
energy dissipation of the plate equals the subtraction of the
input power Pin and the transmitted power Ptrans. Therefore,
the plate’s spatial averaged acceleration ap can be expressed
as

∣

∣

∣ap
∣

∣

∣ ≈
√

√

√

ω(Pin − Ptrans)

ηpMp
, (13)

where ηp and Mp are the loss factor and the mass of the plate.
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2.2. Receptances of the Shell and the Plate

2.2.1. Steady Harmonic Response. To solve (5), it is essential
to get the plate’s and the shell’s related receptance matrices
[Ysci], [Yse], [Ypci], and [Ype]. Thus, it is prior to get
substructure’s steady-state harmonic response. As shown in
Figures 2 and 3, each substructure is treated as an idealized
system consisting of a single rectangular uniform plate
or an isotropic cylindrical shell. Their structural damping
properties are represented by a linear Voigt viscoelastic
model [24] with loss factor η, which is assumed to be the
same in all three principal directions to offer computational
advantages. Forces applied on substructures are assumed
to be independent of the motion of the shell, which is an
admissible approximation for most engineering cases.

For continuous substructures, the number of degrees
of freedom is infinite. Thus, displacements of the shell or
the plate subjected to dynamic loading can be expressed by
modal displacement and modal participation factor as an
infinite series as follows:

ui(α1,α2, t) =
∑

mn

λmn(t)Uimn(α1,α2), i = 1, 2, 3, (14)

where α1, α2 is the two-dimensional curvilinear surface
coordinates, for the shell α1 = x, α2 = θ and for the plate
α1 = x, α2 = y; Uimn (i = 1, 2, 3) denote the mode compo-
nents of the substructure in the three principal directions;
m, n represents the mode number. The modal participation
factor λmn(t) is the root of the following modal equation for
steady-state harmonic response of the structure:

λ̈mn + 2ξmnωmnλ̇mn + ω2
mnλmn = F∗mne

jωt, (15)

where

Nmn =
∫

α2

∫

α1

(

U2
1mn(α1,α2) + U2

3mn(α1,α2)

+U2
3mn(α1,α2)

)

A1A2dα1 dα2.

(16)

If qi is force,

F∗mn =
1

ρhNmn

∫

α2

∫

α1

q∗i (α1,α2, t)Uimn(α1,α2)A1A2dα1 dα2.

(17)

If qi is the distributed moment around the α1-axis direction,

F∗mn =
1

ρhNmn

∫

α2

∫

α1

∂q∗i (α1,α2, t)

∂α2
U3mn(α1,α2)A1dα1 dα2.

(18)

In (16), ξmn = η/(ρhωmn) is the equivalent viscous damping
factor, η is the loss factor, ρ and h denote mass density
and thickness of the related substructure; ωmn is natural
frequency; A1 and A2 are the fundamental form parameters
and A1 = A2 = 1 for the plate, A1 = 1, A2 = R for the
shell; R is the radius of the shell; j =

√
−1. The input forcing

functions q∗i (i = 1, 2, 3) are the forces applied in the three
principal directions.

At steady state, the dynamic response will also be har-
monic. Thus, the mode participation factor in (16) can be
obtained as

λmn(t) = F∗mne
jωt

ρhNmn
(

ω2
mn − ω2 + 2 jξmnωmnω

) . (19)

2.2.2. Shell Receptance. The cylindrical shell discussed here is
supposed to be thin and isotropic. According to Love shell
theory [22], under the influence of harmonic excitation and
modal analysis, the displacement functions which satisfy the
SD-SD boundary conditions at both ends are of the following
form:

us1(x, θ, t) =
3
∑

i=1

∞
∑

m=0

∞
∑

n=1

λsmni(t)U
s
1mni(x, θ)

=
3
∑

i=1

∞
∑

m=0

∞
∑

n=1

λsmni(t)
Amni

Cmni
cosm

(

θ − φ
)

cos(knx),

us2(x, θ, t) =
3
∑

i=1

∞
∑

m=0

∞
∑

n=1

λsmni(t)U
s
2mni(x, θ)

=
3
∑

i=1

∞
∑

m=0

∞
∑

n=1

λsmni(t)
Bmni

Cmni
sinm

(

θ − φ
)

sin(knx),

us3(x, θ, t) =
3
∑

i=1

∞
∑

m=0

∞
∑

n=1

λsmni(t)U
s
3mni(x, θ)

=
3
∑

i=1

∞
∑

m=0

∞
∑

n=1

λsmni(t) cosm
(

θ − φ
)

sin(knx),

(20)

where U s
1mn, U s

2mn and U s
3mn, are the cylindrical shell’s

natural vibration modes in x, θ, z directions, respectively;
kn = nπ/L and L is the length of the cylindrical shell; m
and n represent half wave numbers in the θ and x directions,
respectively; φ is the arbitrary angle. Expressions of Ai/Ci and
Bi/Ci can be found in [22].

Take (20) into (16), then

N s
mni

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[

(

Amni

Cmni

)2

+

(

Bmni

Cmni

)2

+ 1

]

πRL

2
, m /= 0, n /= 0,

[

(

Amni

Cmni

)2

+ 1

]

πRL, m = 0, n /= 0.

(21)

For the plate-shell-coupled system analyzed here, the
rectangular plate is joined to the shell at θ = θ1 and θ =
θ2. The line loads applied to the shell corresponding to
each plate-shell joint are the forces qsNk (x, θ, t) (k = 1, 2) in
circular direction, qsFk (x, θ, t) (k = 1, 2) in radial direction
and moments and qsMk (x, θ, t) (k = 1, 2) around the x-axis
direction. Assume that all the internal forces and moments
distribute sinusoidally along the coupling edges. Then the
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line loads exerted on the shell at the joint, as shown in
Figure 2, can be expressed as follows:

qsNk (x, θ, t) = N s
k sin(kn′x)δ(θ − θk)e jωt (k = 1, 2),

qsQk (x, θ, t) = Qs
k sin(kn′x)δ(θ − θk)e jωt (k = 1, 2),

qsMk (x, θ, t) =Ms
k sin(kn′x)δ(θ − θk)e jωt (k = 1, 2),

(22)

where N s
k and Qs

k are the amplitudes of forces per unit length,
and Ms

k is the amplitude of moment per unit length; δ(θ−θk)
is the Dirac delta function.

Following the procedure described in part A, the shell’s
steady harmonic response excited by internal coupling forces
represented by (22) can then be determined. Substituting
(22) into (17) or (18) separately, modal participation factor
λsmn can be obtained. Combining it with (20), the respective
dynamic displacements usi (i = 1, 2, 3) of the shell are
attained. The circumferential slope of the shell can be
obtained from us3(x, θ, t) by differentiation with respect to
the circumferential coordinate θ. With application of recept-
ance definition, all expressions of receptances in matric [Ysc]
in (7) can be achieved.

2.2.3. Plate Receptances. The rectangular plate discussed here
is supposed to be thin, uniform, and isotropic. Similar to
the process of the shell, one can consider the receptances
for a rectangular plate simply supported at all edges with
forces and moments exerted at two joints: (x, y1) and (x, y2).
According to the thin plate theory [25], under the influence
of harmonic excitation and modal analysis, the displacement
functions which satisfy all the boundary conditions are of the
following form:

u
p
1

(

x, y, t
)

=
∞
∑

m=1

∞
∑

n=1

λ
p
mn(t)U

p
1mn

(

x, y
)

=
∞
∑

m=1

∞
∑

n=1

λ
p
mn(t) cos(knx) cos

(

kmy
)

,

u
p
2

(

x, y, t
)

=
∞
∑

m=1

∞
∑

n=1

λ
p
mn(t)U

p
2mn

(

x, y
)

=
∞
∑

m=1

∞
∑

n=1

λ
p
mn(t) sin(knx) cos

(

kmy
)

,

u
p
3

(

x, y, t
)

=
∞
∑

m=1

∞
∑

n=1

λ
p
mn(t)U

p
2mn

(

x, y
)

=
∞
∑

m=1

∞
∑

n=1

λ
p
mn(t) sin(knx) sin

(

kmy
)

,

(23)

where U
p
1mn, U

p
2mn, and U

p
3mn are the rectangular plate’s nat-

ural vibration modes in x, y, and z directions, respectively;
km = mπ/b, b is the width of the plate, and km represent half
wave numbers in the y directions.

Substitute (23) into (16) and take consideration of isola-
tion of the plate’s transverse vibration and in-plane vibration,
then

N
p
mn =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

bL

4
, for transverse vibration,

bL

2
, for in-plane vibration.

(24)

For the plate-shell coupled system analyzed here, the
joint line is at (x, y1) and (x, y2) in the plate’s local co-
ordinate. The line loads applied to the plate at each plate-

shell joint are forces q
pN
k (x, y, t) (k = 1, 2) in x-axis direction

and q
pQ
k (x, y, t) (k = 1, 2) in y-axis direction and moments

q
pM
k (x, y, t) (k = 1, 2) around the x-axis. Similarly, all the

line loads exerted on the plate at joints, as shown in Figure 3,
can be expressed as follows:

q
pN
k

(

x, y, t
)

= N
p
k sin(kn′x)δ

(

y − yk
)

e jωt (k = 1, 2),

q
pQ
k

(

x, y, t
)

= Q
p
k sin(kn′x)δ

(

y − yk
)

e jωt (k = 1, 2),

q
pM
k

(

x, y, t
)

=M
p
k sin(kn′x)δ

(

y − yk
)

e jωt (k = 1, 2),

(25)

whereN
p
k andQ

p
k are the amplitudes of forces per unit length,

M
p
k is the amplitude of moment per unit length, δ(y − yk) is

the Dirac delta function, and yk (k = 1, 2) are the location of
the joint line.

As for the external force [Fpe], it is assumed that only
a point force fpe = F0δ(x − x0)δ(y − y0)e jωt is applied
transversely to the plate. To get the related receptances in
matric [Ype], it should be expressed in terms of a superpo-
sition of line forces of different order through fourier series
expansion. After enough times of fourier series expansion, it
can be expressed as follows:

fpe
(

x, y, t
)

= F0

L

∞
∑

n′=1

[

2

n′π
ε
(

n′

2

)

+ sin(kn′xe)
]

× sin(kn′x)δ
(

y − ye
)

e jωt,

(26)

where ε(n′/2) = 0 if n′ is odd, else ε(n′/2) = 1.
Substitute (25) and (26) into (18) separately to get the

related modal participation factor λsmn. Then expressions of
respective responses for the plate due to these forces can be
attained. According to the receptance definition, the plate’s
receptances matrix [Ypc] in (8) and [Ype] in (10) can be
obtained.

3. Numerical Studies

For illustrative purposes, the plate/shell-coupled system is
assumed to be defined by the following data set: density
7800 kg/m3, Poisson’s ratio 0.28, and Young modulus 2.16 ×
1011 N/m2. Thickness of the plate is 2 × 10−3 m, and the shell
is 3 × 10−3 m. The shell’s radius is R = 0.2 m, length is L =
1 m, and angles of the two coupling edges in the cylindrical
coordinate system are given as θ1 = π/6 while θ2 = 5π/6.
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3.1. Validation of the Theoretical Model. In order to validate
the proposed model established with receptance method,
comparisons between the present analysis and a well-
established finite element analysis (FEA) using Ansys are
performed. The FEA model was meshed with the shell
63 element, and its vibration response was obtained by
harmonic analysis in Ansys. The external force is acted at
(L/5, b/2) on the plate, and b is width of the plate. From the
node deflections of an element, the spatial averaged squared
surface acceleration was derived.

Figures 4 and 5 illustrate comparisons of both the plate’s
and the shell’s average acceleration levels (referenced with
aref = 10−6 m/s2) obtained by Ansys and theory method
separately. It is seen from Figures 4 and 5 that except for
small discrepancies in the natural frequency values only small
differences exist in the determination of the plate’s and the
shell’s acceleration level between the theoretical predictions
and those evaluated by the FEA approach, thus providing a
measure of confidence in the validity of the computations.
The reason for errors occurring in the natural frequencies
lies in the fact that different plate-shell theories are used
in the two calculations. That is, the influence of transverse
shear deformation and rotational inertia of a plate-shell
element is incorporated into the Ansys calculations, but they
are ignored in the theoretical model. In previous studies
[13, 14] related to free vibration of a cylindrical shell with
an interior plate, it was found that errors also occurred
in the prediction of natural frequencies for some modes
between the theoretical method and the FEA approach. As
shown in Figure 10, some errors are observed in the shell’s
acceleration level, because an approximation (i.e., (13)) is
used to calculate the shell’s acceleration.

3.2. Effect of the Plate’s Location. In all calculations reported
hereafter, the shell and the plate are both assumed to be
made up of steel, whose material property has been described
above. The structural parameters are as follows. For the shell,
the radius is R = 0.2 m, thickness is hs = 0.003 m, and length
is L = 1 m. The plate is excited by a unit harmonic force at
(L/5, b/2) in the plate’s local coordinate.

Effect of the plate’s location in the shell’s cylindrical co-
ordinate is discussed firstly. The plate’s thickness is hp =
0.002 m, and its location in the cylindrical co-ordinate
system, as shown in Figure 2, is changed. Figures 6 and
7 present the average acceleration levels of the combined
system with different locations of the interior plate, θ2−θ1 =
π/4, 2π/3 and π.

It can be seen from Figures 6 and 7 that the first peak of
both the shell and the plate’s acceleration level curve shift to
the lower frequency range when the plate is located closer
to the center of the shell. This phenomenon implies the
fundamental frequency of the combined shell decreases as
the plate is located near the center of the plate. This can be
attributed to the increase of the plate in the width as the
first mode of the combined structure only involves the plate’s
bending mode [13].

In Figures 6 and 7, the general trend of the shell and the
plate’s acceleration level curves varies complicatedly with the
changing of plate’s location. For the plate, its acceleration
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Figure 4: The plate’s acceleration level for Ansys and theoretical
results.
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Figure 5: The shell’s acceleration level for Ansys and theoretical
results.

level mainly drops as the plate becomes wider, except in
frequencies near 600 Hz. The shell’s acceleration level mainly,
reversely, increases as the plate is located closer to the
center of the shell, especially in the lower frequency range.
This may be induced by the impedance features. According
to the method described in Section 2.2, the driving-point
impedance for the shell’s and the plate’s bending vibration
can be obtained by application of a point force and expressed
as follows:

1

Zs
= jω

ρshs

M
∑

m=0

N
∑

n=1

sin2(knx)

Nmn
[

ω2
smn

(

1 + jηs
)

− ω2
] , (27)

1

Zp
= 4 jω

ρphpLb

∞
∑

m=1

∞
∑

n=1

sin2(knx)sin2
(

kmy
)

ω2
pmn

(

1 + jηp

)

− ω2
, (28)

where Zs is the driving-point impedance for the shell, and Zp

is the driving-point impedance for the plate.
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Figure 6: The plate’s average acceleration level for different loca-
tions of the plate.
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Figure 7: The shell’s average acceleration level for different loca-
tions of the plate.

Equation (28) demonstrates that when the plate gets
closer to the center of the shell, the width of the plate b grows,
and hence the plate’s impedance increases. Comparison of
the amplitudes of the shell and the plate’s impedance is
shown in Figure 8. It shows that f0 = 249 Hz is the first
natural frequency of the shell. Impedance of the plate is
smaller than that of the shell for the case here. As the plate’s
impedance increases when it becomes wider, impedances of
the combined two substructures are more close to each other,
which induces more vibration energy transmitting from the
source plate to the receiver shell. Thus, increase of the shell’s
acceleration level is caused by impedance matching when the
plate gets closer to the center of the shell.

3.3. Effect of the Plate’s Thickness. It also can be seen
from Figure 8 that, for the case discussed here, its largest
impedance, which can be achieved when it is located at the
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Figure 8: Comparison of the shell and the plate’s driving-point
impedance for different locations of the plate.
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Figure 9: Average acceleration level of the plate for different thick-
ness of the plate.

center of the shell, is still smaller than that of the shell.
Another important factor influencing the plate’s impedance
is its thickness. In engineering applications, the shell’s
thickness is usually fixed. Thus, to reduce the vibration
energy transmitted to the shell, it is useful to change the
thickness of the plate under the condition that it satisfies the
strength requirements. Figures 9 and 10 show how the plate
and the shell’s acceleration levels change with the variation of
the plate’s thickness, hp = 0.001 m, 0.002 m and 0.004 m.

From Figures 9 and 10, it can be seen that acceleration
level of the plate drops greatly when its thickness increases,
while the general trend of the shell after the first peak of
each curve grows, except at some peak frequencies. The
drop of the plate’s acceleration level can be attributed to
the increase of its impedance, which is easy to understand.
To check whether the increase of the shell’s acceleration
level is still due to the approach of the plate and the
shell’s impedance, the driving-point impedances of these two
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Figure 10: Average acceleration level of the shell for different
thickness of the plate.
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Figure 11: Comparison of the shell and the plate’s driving-point
impedance for different thickness of the plate.

substructures are compared again, as shown in Figure 11.
It demonstrates that impedance of the plate increases as it
becomes thicker. However, the plate’s largest impedance here,
when its thickness is 0.004 m, is still not more than that
of the shell. Therefore, the plate’s impedance gets closer to
that of the shell when its thickness increases. This validates
the assumption that impedance matching would cause the
increase of the shell’s acceleration level is true.

According to the discussion above, it is reasonable to
suppose that the acceleration level of the shell will drop
at first when the thickness of the shell increases after it
has passed that of the shell, and then it may tend to be
stable when the impedance of the plate is far larger than
the shell’s. To confirm this hypothesis, acceleration levels of
the plate and the shell with different thickness of the plate,
hp = 0.008 m, 0.016 m, and 0.032 m, are shown in Figures
12 and 13. It can be seen that both the plate and the shell’s
acceleration levels drop, especially at lower frequency range,
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Figure 12: Comparison of the plate’s average acceleration level.
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Figure 13: Comparison of the shell’s average acceleration level.

as the thickness of the plate increases. However, at higher
frequency range, the acceleration levels of the plate and the
shell do not change very much as the thickness of the plate
increases, after 800 Hz for this case. This might be caused by
the shift of natural frequency for the coupled structure. The
fundamental frequency of the coupled structure shifts to the
higher frequency when the thickness of the plate increases.
Thus, comparison of the acceleration levels is a little difficult
because the peak of one curve may meet the decline of the
other one at some frequencies. After all, the general trend of
the shell’s acceleration level decreases.

4. Conclusions

Vibration transmission characteristics of a cylindrical shell
with a floor partition are analyzed with a receptance method.
Utilizing the Love’s shell and classical plate theory, receptance
expressions of the plate and the shell are formulated. Then
the frequency equation of the shell/plate combined system
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is obtained through considering geometrical compatibility
conditions and force balance.

To validate the theoretical model, comparison of the
theoretical results and values by FEA method shows that the
theoretical model is effective to predict the vibration charac-
teristics of the plate-shell-combined system. This also proves
that the receptance method is practical for analysis of the
forced vibration of the shell/plate-combined system.

As effects of structure parameters, including position
and thickness of the plate, on vibration features of the
system are of great importance for engineers in the design
of suitable structures with low vibration and noise radiation
characteristics, they are discussed in this paper. It shows that
acceleration level of the plate decreases while that of the shell
increases when the plate is located closer to the center of the
shell due to the growth of the plate’s impedance. Besides,
when the impedance of the plate is smaller than that of the
shell, and acceleration level of the plate drops significantly
while that of the shell generally increases as the thickness of
the plate increases; when the impedance of the plate is larger
than that of the shell, acceleration levels of both the plate
and the shell decrease as the thickness of the plate increases.
Thus, it is important to avoid the impedance march of the
each substructure to reduce the vibration energy transmitted
from the source substructure to the receive substructure.
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