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ABSTRACT:

Poly(L-lysine) is a polypeptide having a bulky hydrophobic side chain. A systematic study of the full vibrationat

dynamics, including phonon dispersion, lot the x-helical form of this biopolymer has heen reported using Wilson’s GF matrix
method as modified by Higgs for an infinite polymeric chain. The calculated frequencies explain well the IR and Raman
spectra. A comparison of the amide modes with other z-helical polypeptides is reported here. Spectral frequencics have been
obtained (or the N-deuterated species 10 check the validity of force field and correctness of assignments. Heal capacily huas
also heen calculated from dispersion curves via density-of-states using Debye relation in the temperature range 50 500 K.
The calculated values are found to be in close agreement with the recent experimental data of Roles er af. [ Biopolymers, 33,

753 (1593)].
KEY WORDS

Proteins are considered linear polymers of amino acids
with a polypeptide backbone and occasional disulfide
cross-linking. Synthetic linear polyamino acids are there-
fore used as model compounds for the study of more
complex proteins. Poly(L-lysine) (Plys) is a very attractive
model for studying the protein conformations because it
can form exlensively any ol the three most common
sccondary structures, namely a-helix, antiparallel ff-sheet
and the so called random coil, depending on pH and
temperature of the medium and the relative humidity of
the atmosphere. Ln the solid state, it is mainly in x-helical
form.! Plys in aqueous solution, below pH 10.5 in which
NH, group is in a protonaled state, exists in random
coil conformation. Above this pH the NH, group gets
deprotonated and acquires z-helical conformation below
30°C whereas at higher temperature S-sheet conforma-
tion is preferred over a-helix. %3 The n-helix conformation
is present at relative humidity of 76% and up while the
fi-sheet conformation is observed between 33% and 76%
relative humidity. Crystals in a-helical conformation are
assumed to be hexagonally packed while in f-sheet they
form an orthorhombic unit cell.*

The frce energy difference between the o-helix and
fi-sheet conformations is very small.’ The addition of
solvents like methanol to neutral solutions of Plys favors
helix formation.® Tn the presence of specific ions like
ClO,, SCN™ etc., Plys with protonated side chains
acquires the u-helical conformation.” ~® Carrier er af.!°
have studied pressure induced changes in the secondary
structure of Plys and concluded that in solution both the
f-sheet and unordered polypeptide underge a reversible,
pressure induced conformational change to x-helix. The
conversion occurs at a much higher pressure from the
unordered conformer (9 kbar) than from the f-sheets
(2 kbar), An increase of polylysine concentration at high
pH slows down these conformational transformations.

Various techniques such as X-ray diffraction, Raman
and infra red (IR) spectroscopy are used to determine
the structure of a polymer. The Raman spectra in solid
state as well as in aqueous solution have been reported

' To whom all correspondence should be addressed.
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by Koenig and Sutton® and by Yu et al.? Painter and
Koenig® have also reported both the infra red and Raman
spectra. Wc have rccorded the IR spectra of Plys (sohd
state) in the range 4000 450 cm ™ ! on Perkin-Elmer 1800
spectrophotometer. The study of dispersion curves is
necessary to appreciate the origin of both symmetry
dependent and symmetry independent spectral features.
Dispersion curves provide information on the extent of
coupling along the chain together with an understanding
of the dependence of the frequency of a given mode upon
the sequence length of the ordered conformation. The
regions of high density-of-states, which appear in all these
techniques and play important roles in thermodynamical
behavior, are also dependent on the profile of dispersion
curves, Thus, study of dispersion curves is very important
to understand fully the conformation of a polymer at
the microscopic level. To the best of our knowledge no
work has been reported so far on the normal mode
analysis and phonon dispersion of Plys. We report here
a complete normal mode analysis, phonon dispersion,
density-of-states and heal capacity in the temperature
range 50—500 K. The calculated values are compared
with the recent experimental data reported by Roles et
al.'! and the agreement between the two is found o
be reasonably good.

Our calculations are supported by the expected shift
obtained in the amide modes of Plys on N-deuteration
of the sample. This also confirms the correctness ol
assignments and validity of the force field {Urey—Brad-
ley) used in our calculations.

THEORY

Caleulation of Normal Mode Frequencies

The calculation of normal mode frequencics has been
carried out according to Wilson’s GF matrix method*?
as modified by Higgs'? for an infinite chain. The Wilson’s
GF matrix method consists of writing the inverse kinetic
cnergy matrix & and potential energy matrix £ in inter-
nal coordinates R. In the case of infinite isolated hel-
ical polymer, there is an infinite number of internal
coordinates which lead to & and F matrices of infinite
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order. Due to the screw symmetry of the polymer a
transformation similar to that given by Born and Ven
Karman can be performed which reduces the infinite
problem to finite dimensions. The transformation con-
sists of defining a set of symmetry coordinates

S(B= Y R"exp(isd)
where 4 is the vibrational phase difference between the
corresponding modes of the adjacent residue units.

The elements of the G(8) and F{6) matrices have the
form:

[is

Gik(‘s) = Z

y= =51

& eXp(isd)

Fy(d)= Z Fj, explisd)

The vibrational secular equation which gives normal
mode frequencies and dispersion as a function of phase
angle has the form:

[GE)FS— A ]=0 0<d<n

The vibrational frequencies v(8) (in cm ') are related
to eigen values A(8) by the following relation:

A(8) =41 33 ()

For any given phase difference é (other than 0 or x),
the G(&) and F(3) matrices are complex. To avoid the
difficulties involved in handling complex numbers,
methods have been devised to transform the complex
matrices into equivalent real matrices by constructing
suitable lincar combinations of coordinates. One method
of transforming a complex matrix to its real matrix
equivalent is through a similarity transformation. It can
be shown that any complex matrix =M+ iN can be
replaced by real ones:

M N
N M

In the present case, we wrile G(8)= G ~(8) +iG'(6) and
F(8) = FR(8)+iF'(8), where GR(3), FR(5), G'(8), F(8) arc
the real and imaginary parts of G(8) and F(d). The
product H{3)= G(5}F(4) becomes:

6RO —G'0) F}3) —F'(5)

H(d)z‘cf(a) G*@) | | Fi9)  FR()

HY3) —HYd)
H(§) HRS)

where
HY3) =GR FR)— G F' ()
HI(8) =GO F(S)+ G (5)FR(D)

The matrix H(5) now has the dimensions 2N x 2N. The
eigenvalues, thercfore, occur in pairs of equal values,
The difficulty of dealing with complex numbers is thus
avoided.

Polym. J., Vol. 29, No. 11, 1997

Force Constant Evaluation

The force constants have been obtained by the least
square fitting. To obtain the *best fit’ with the observed
frequencies the following procedure was adopted. Tni-
tially approximate force constants are transferred from
poly(L-leucine)'* and other hydrocarbons having similar
groups. Thus starting with the approximate F matrix
£, and the observed frequencies A, (related through
a constant), one can solve the secular matrix equation

GFoLo=Loko (n

Let Adi= i, — i, in the above equation. It can be
shown that in the first order approximation

AL=JAF

where J is computed from L. We wish to compute the
corrections to F, so that the errors A are minimized.
We use the theory of least squares and calculate

J PAL=(J'PNAF

where P is a weighting matrix and J is the transpose of
J. The solution to this equation is obtained by inverting
{(J'PJ) to give

AF=(J'PN)"1J'PAA

If the number of frequencies 1s greater than the number
of ¥ malrix elements, the matrix J'PJ should be non
singular and we obtain the corrections AF which will
minimize the sum of the weighted squares of the residuals.
If the correcltions AF are fairly large, the linear relation
belween force constant and frequency term in the matrix
cquation | breaks down. In such a situation, lurther
refinement using higher order terms in the Taylor’s series
expansion of AJ; is needed. This procedure has been
developed by King and others.'?

Calculation of Specific Heat

Dispersion curves, depicting the microscopic behavi-
or of the system, can be used to calculate macroscopic
parameters of the system such as specific heal. The state
density distribution function g(v), giving the number of
energy states in a unil interval ol energy, for onc di-
mensional system is given by

glv)= Z (a"'j_-"lﬁé)_ ! 1‘-}-(6;:\-

t

The summalion is over all branches (/) of normal
modes. Considering the system as an assembly of
harmonic oscillators, the distribution function g{v) is
equivalenl to a partition function. The heat capacity at
constunl volume is then given by Debye’s relation

. Cvont (e ez SXpU KT
C\-_g‘g(}_f)]\}\A(h‘ﬂ;‘T) [cxp(hvﬁ-’kT}—l]z (2)

with
2 gv)dvy=1
i)
The constant volume heat capacity C,, given by eq 2

is converted into constant pressure hcal capacity C, using
the Nernst-Lindemann approximation'®:
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Cp - Cv =3RA O(Cp2 7KI(:V\-' Tm!))

wherc Ay 15 a constant of universal valuc (3.9 x 107 *K
molJ™!) and 7,.° is the estimated equilibrium melting
temperature taken 1o be 573 K.

RESULTS AND DISCUSSION

Plys has 21 atoms per residue unit (as shown in Figure
1) which give rise to 63 dispersion curves. The geometry
of the main chain and side chain was obtained by
molecular modelling techniques and minimization of
conformational energy. The vibrational frequencies are
calculated for the values of 6 varying from 0 to # in steps
of 0.057. The modes corresponding to §=0 and d=4¢
are both Raman and IR active while the modes cor-
responding to =2 are only Raman active. The helix
angle i is the angle of rotation about the helix axis which
separates the adjacent units in the chain. For «-helical
Plys helix angle is 57/9. The structural parameters used
are given in Table 1. Initially the force constants are
transferred from poly(L-leucine)'* and the calculated
frequencies at =0 and 4 =5n/9 are compared with the
observed ones. The force constants which gave the best
fit to the experimental data are given in Table II. Since
the spectra in the low frequency region are not avail-
able, exact fitting of the force constants related to this

region could not be carricd out. However, in the near
infrared region, the calculated frequencies depend on
both bonded as well as non-bonded interactions and il
they gencrate the “best™ values in this region then in the
low frequency region also, where non-bonded interac-
tions play a dominant role, the calculated frequencies
should be reasonably close to the observed ones. There-
fore, the force constants related with the low frequency
vibrational modes arc assumed as given in Table T1, al-
though no datu necessary for checking the reasonable-
ness can be obtained now. Since the modes above 1345

Table 1. Structural parameters of g-poly({L-lysine)*

Bond length

All C H bonds 1.08A

All N-H bonds 1.00 A

Aliphatic C-C bonds (except C,-C~1.53 A) 1.54 A

C==0 bond 1.24A

C, N bend 1474

C==N bond 1324
Bond angles

All £ C.s (except Cp-C,-N=111" and 109.47°

N C,-H,=102.16%)

All £ Cys, £C5, £Cs, £Cs8 109.47°

FH-N=C, /s C=N-(, 1237

L O C=N 125¢

{0=C-C, 121°

L CC-N 114"
Dihedral angles®

¢ = —60", = — 60", co=180"

F1rF2r K ¥a = 180, 25, =59.95° and y,,=180°

“8See Figure L.
formational encrgy caleulations.

"Oblained from molecular modelling and con-

Table II. Internal coordinates and Urey—RBradley
force constants (md A~ 1)
wC=0) 7.900 GIC=N-C,) 0.530 (0.35)
wC=N) 6.500 HC=N-H) 0.300 (0.65)
vN-H) 5.306 P(H-N-C ) 0.300 (0.60)
v(N-C) 2.700 (N -C, H) 0.313 ((.80)
w(C, 11,) 4320 MN-C, C) 0.130 (0.50)
W C,~Cp) 2.500 o(H,—C,—C) 0.407 (0.20)
wWC,—C) 2.900 HIN-C,-Cp) (.450 (0.50)
WC—Hyg) 4.225 P(H,~C,-C,) 1417 (0.21)
wCy C,) 2.750 e C, Cp) 0.520 (0.18)
vC, ) 4.225 C Cy Ty 0.370 (0.20)
WC,-Cj) 2.650¢ WCCC,) 0.550 (0.18)
WCyHyy) 4.220 MHp~Cy-C)) 0.360 {0.20)
w(Cy-Hy) 4.235 HHp-Cp Hy,) 0.410 (0.32)
wWC—C,) 3.230 $(C—C.—H,5) 0.348 (0.20}
wC—H,) 4.255 PCC.-Cy) 0.560 (0.18})
W, -Ny) 2.100 ¢H, C, H,p (.405 (0.32)
w(N—Hp) 5.900 MLy C-Cy 0.348 ((.20)
PC,Cy g 0.380 (0.20)
m{N-H) 0.120 (C,~C;—C) 0.550 {0.18)
o(0=C) 0.360 G(HpCH,y,) 0.402 (0.32)
alHz—Ng 0.017 @(Hz-C—C) 0.335 (0.20)
MC~C—Hy) 0.350 (0.20)
(N-C,) 0.010 MC; C, N 0.105 (0.39
o Ci—Cp) 0.010 #{H,, C, H,) 0.403 (0.25)
wWCy C)) 0.025 P(H,;~C,-N) 0.280 (0.80)
uC, Cy) 0.0185  C-N-H,) 0.615 (0.60)
CsC,) 00185 H(H,, N-Hy,) 0.285 {0.26)
{C—Ng) 0.010 G(C—C=N) 0.290 {0.60)
t(C,~C) 0.025 H(C,~C=0) 0.250 (0.60)
{C=N) 0.045 HO=C=N)

0.900 (0.90)

Figure 1. Chemical repeat unit of poly(L-lysine).
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Figure 2.
916

F.T.LR. spectra of poly(L-lysine) (4000—450cm ~1).

*v, ¢, @, T denote streteh, angle bend, wag, and torsion, respectively.
Stretching force-constants belween the nonbonded atoms in each
angular triplet (gem configuration) are given in parentheses.
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Figure 3. (a) Dispersion curves of poly(L-lysine) (1420—1120cm ).
{b) Density-of-stales g(v) (1420—1120¢cm ).
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Figure 4. (a) Dispersion curves of poly(L-lysinc} (1100—800cm ™).
(b) Density-of-states g(v} (1100—800cm ).

cm ™! (except amide I and amide II) are nondispersive,
only the modes below this are shown in Figures 3a, 4a,
Sa, and 6a. The two lowest lying branches (6=0 and
d=>5m/9, v=0) are the four acoustic modes correspond-
ing to rotation about helix axis and three translations,
onc parallel and two perpendicular to the helix axis.

The assignment of modes is based not only on the
potential energy distribution but also on the line intensity,
line profile, second derivative spectra and presencef
absenee of modes in molecules having atoms placed in
the same environment. No calculation of the absolute
intensity or profile of the spectral lines has been done.
However, the relative intensity and profiles of absorption
bands have been used in the assignment of modes, in
particular for the amide and skeleton modes. The modes
are discussed under three separate heads namely back
hone modes, side chain modes, and mix modes.

Polym. 1., Vol. 29, No. 11, 1997
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Figure 5. (a)Dispersion curves of poly(L-lysine} (800—300¢m ™). (b)
Density-ol-states g(v) (8300—300cm ™).
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Figure 6. (a) Dispersion curves of poly(L-lysine) (230—00cm ). (b)
Density-of-states g(v) (250—00cm ™).

Back Bone Modes
The modes involving the motion of the atoms of main

chain (-—lC C,—N-) are called as back bone modes. These

modes along with their assignments at both =0 and
d=>5n/9 arc given in Table 111. Most of these modes are
the amide modes. A comparison of amide modes of Plys
with other a-helical polypeptides is shown in Table IV,
It is clear that the frequencies of all these modes (except
amide TV and amide V1) agree well with other #-helical
polypeptides.

The amide A mode due to N-H stretching vibration
is assigned at 3293cm™ ' and is the same as thal of
g-poly(L-valing)!” and -poly(r-alanine).® The amide 1
mode which has dominantly C= O stretch contribution
is calculated at 1653 cm™ ! at 5 =0. At §=>57/9 this mode
goes to 1679cm ! thereby showing a dispersion of 26
wavenumbers. On increasing the § values the percentage

a7
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Table 1I. Back-bone modes?
Freq./fem ™! Freq./jem ™!
—— Assigments (% P.L.D. at §=0.00} Assignments (% P.E.D. at d=0.56m)
Cacld Obsd Caled Obsd
3293 3293 [N-H] (100) (Amide A) 3293 3293 [N H]100)
2069 2068 [ C, H_|(99) 2964 2968  v[C,~H_1(99)
1633 1651 W[C=0]i53) +v[C=NJ(34) {Amide 1) 1679 1666 v[C=0] (46) + [ C==N](43)
1549 1540 o[ N-C_J(30)~¢[C=N-H](30)+ 1543 1540 $[C=N H]3D+d[H-N-CJ2N+
y[C=N]21)+ | C, TN v[C= NI+ v[C,-CJ(B) +v[C=0|(8)
641 647 w[N H}32) 4 eof O=C1 7+ 620 6l4 @ N-H](42)+7[C=N] 20} + @[ O=C](11)
¢[N-C,-CI(13)+ [C=N](10)
515 569*  [C=NJ(1T+$(C, C=NYI0)+ 398 660 H[O=C=N]20)+o[0=C](16)+

diH, C Cl6)+¢[N-C,Cl(6)

Y[C,~CI{15)+ [ C, C=N](5)

* Frequeneies also observed in Raman spectra.

Table 1V, Comparision of amide modes ol a-Plys with other x-helical polypeptides”

a-Plys 2-PLG
Modes - —_ —
d=1 d=>5n/9 d=10 o—5x/9

Amide A 3293 3293 3301 331
Amide [ 1653 1666 1652 1652
Amide 11 1549 1540 1510 1550
Amide 111 1313 1367 1283 1283
Amide 1V S08 600 B &70
Amide V 569 614 596 618
Amide VI 647 — — —

Amide VII 251 236 240 1015

x-PLV #-PLA z-PLL
40 o=5m9 6—0 o—5m9 o—10 & — S5m0
3293 3293 3293 3293 3313 3313
1655 16350 1659 1659 1657 1657
1535 1520 1515 1540 1546 1578
1246 1253 1270 1274 1299 1318
578 530 525 440 SRT 633
622 612 505 610 587 617
691 691 685 656 656 533
125 130 238 190 216 —

* All frequencies arc in cm . Plys=poly(1-lysine): PLG = poly(L-glumatic acid).; PLV = poly{L-valinc); PLA = poly(L-alanine); PLL = poly({L-

leucine).

contribution of C=Q streich decreases from 53% to
46% while that of C=N strcich increases from 34% to
43%. The amide II mode (N-H in plane bend and C=N
stretch) also disperses from 1549cm ' to 1543em ™.
This mode is assigned 1o observed peak at 1540cm .
For §>0.7x the contribution [rom C=0 stretch also
starts mixing in this mode.

The observed peak at 647cm™! corresponds 1o cal-
culated trequency 641 cm ™! which has the contribution
of N-H out-of-plane bend (amide V) and C=0O out-
of-planc bend (amide VI). With increase in & the energy
of this mode and contribution of C=0Q out-of-plane
bend decreases. At helix angle it becomes 620cm™? (as-
signed 1o obscrved peak at 614¢m™1) with dominant
contribution of amide V. The trequency of this mode
compares well with that obtained in other a«-helical
polypeptides (Table TV). At zone centre the mode calcu-
lated at 575cm ™! {mixturc of amide V and amide TV)
is assigned to peaks at 569cm ! and 564cm™! in IR
and Raman spectra respectively. At the helix angle this
mode becomes a mixture of amide TV and amide V1 vi-
brations and is calculated al 598cm™! where it is as-
signed to observed peak at 600cm ™', The C-H stretch-
ing mode calculated at 2969cm™! is very close to that
ol z-poly(r-leucine)'* (2963cm™1) and poly(L-aspartic
acid)'® where it is calculated at 2979 cm 1. The mode is
assigned to observed frequency of 2068 cm ™1,

Shifting of Modes on N-deuteration

The N-deutcration of Plys results in a shift of all these
modes which involve the motion of the N-atom of
backbone. The frequencies compare well with the Laser

QI8

Raman spectra of deuterio derivative reported by Painter
and Koenig.® The frequencies of modes before and after
N-deuteration are given in Table V. The amide T mode
calculated at 1648cm ™! is very close lo obscrved
frequency 1646cm ', The amide T mode is calculated
at 1447em ™! resulting in a shift of 102 wavenumbers.
This mode is assigned to observed peak at 1459c¢m™ 1.
The amide III is calculated at 1104cm ™! and is assign-
ed to 1129cm™'. The observed peak at 982cm™!
corresponds to the mode calculated at 967cm ' which
has a dominant contribution of side chain C-C streteh,
A small centribution of C- N-D bending also appears in
this modc. Painter and Koenig® proposc that this is a
new band in Raman spectra of deuterated analogue and
is absent in the spectra ol undeuterated sample.

Side Chain Modes

The side chain of Plys consists ol [our CH, groups
attached to a NH, group. The modes involving the
motion of these atoms are termed as side chain modes
and are given in Table VI. Sincc all these modes are
nondispersive, the assignments are given only al §=0.
The NH, antisymmetric and symmetric stretching modes
calculated at 3421em™"' and 3362cm ™! are assigned to
observed peaks at 3420cm ™' and 3362cm !, respec-
tively.

The scissoring moedes of methylene groups at §, 3, and
& positions are calculated at 1468, 1452, and 1461 cm !
and are assigned Lo observed peaks at 1470, 1454, and
1463cm ™!, respectively. The calculated frequency
1460cm ™! (assigned to observed peak at 1463cm™')
involves the scissoring motion of CH,, group at ¢ position.

Polym. I., Vol. 29, No. 11, 1997
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Table V. Modes shifting on ¥-deuteration

Freg.jem ™!

Caled Ohsd

Assignments (% PLE.D. atd —0.00) on N-Deuleration

2402 —  v[N=D] (98)

1648 1646 v[C=0O]{51)+ v[C=N](38)

1447 1459 v|C=N]31)+¥{CmCI20) +3[C=07(13)+
FLO=C=N](10)+ ¢[C=N-D] 91+
HD N-C &)

1342 —  $IN-C, HJ65)~¢|H, C, C,Jt13)+v[C,mCp1(5)

1104 1129 WN-CJ(19+¢[C, C, H,1(16) +v[C, CI16)+
$ HpyCyC,1(12) + ¢[D-N-C, T (8) +
$[C=N-DJT) +¢[H,; C, C,1(5)

1036 1008 @[ D-N-C,](21)+d[Hg,-Cp- C (13 +
$LC=N DJ(12)+¢LC, Cp Hyp M D+
#[H, C, €N

967 982 [C,~CN40)+ $[C,-CpT1,,1(6) +
PLC=N-D](6} +v[ C,-C 0} + [ C,-C,1(5) +
B[H, C, C;)t3)

909 904 [C=20R)+v[C=NIE) +¢[Cy C, HygJ(T) 4
W CpC,1(7) + $[0== C=NI(6) + v[N-C_](6) ~
v[C T+ gLC=N C J(5) -
$[H,~Cy~C,1(5)+ ¢[Hp-CpC,1(5)

725 w[O=C](58) + w[N-D](11)

604 G[N C, ClI8)+w[N DI+
GLO==C= NI(10) + [ C,~CT(10Y -+
PLCAC=N]O) + ¢[HC-CI(D

S04 —  P[C, C=ONIB) +G[C,-C=N(14)+
BIN C, CIIN+¢[Cy C, C,IU2) +
PLCC NI+ ¢[C.-CI(6)
481 @[N-DJ(50) ~ t[C=N}21)
238 O[N C, CJ(14)+1[C, CHIN+[C=N12)+

BLC €, ColI 41N C IO +31C, CHT+
PLC=N-C,](6)

The frequency range agrees well with the scissoring
modes of poly(L-leucinc) {1449 cm ™ 1),'* poly(1.-glutamic
acid) (1451cm ""),2° and poly(L-phenylalanine) {1461
cm™").2' The CH, wagging mode which has also a
contribution of (H,, C, N;) bending is calculated at
1192em ™! and assigned to observed peak at 1185¢cm ™1,
The range of this mode agrees well with that of
poly(L-leucine) (1172cm 1) and poly(y-benzyl L-gluta-
mate) (1183 cm 1),

The observed peaks at 94%cm ™" in Raman spectra
rcported by Koenig and Sutton' and 891cm™! of IR
are assigned to stretches of C,~C,and C,~C; bonds of side
chain respectively. The frequency of (C;,—C,) stretch is
higher than that of (C,-C,) probably because the C,
atom is attached to the N, atom which is an electron
donor and hence is capable of augmenting the binding
strength. This is clear from the force constants of these
bonds which are 3.23md A~ " and 2.65md A~ !, respec-
tively. The rocking modcs of CH, are at 742 and 735
em™* and very close to the obscrved peak at 738cm ™ 1.
The range of these modes is same as that of other
polypeptides having CH, groups in their side chains,

Mix-Modes

In most modes below 1345¢cm™" there is a strong
coupling of back bone and side chain vibrations. Such
modes are termed mix-modes and are given in Table VII
along with their assignments at =0 and § =0.56x. The
observed peak at 1306 cm ™! in the IR spectra is assigned
to the amide I1I mode calculated at 1313cm ™! (6=0).
The observed Raman frequencies 1323cm ! by Koenig

1
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Table V1. Side chain modes

Freg.fem !

_ Assigments (% P.E.D. at §=0,00)

Caled Obsd

3421 3420 v[N-H (100

3362 3362 ¥[N.-HJ(100)

2997 2996 ¢[C.-HJ9%

2965 2968 v[C-H (100

2930 2927 v[C,-H, 145y +v[Cy- IIM](”U) +[Cy Hy, 208~
¥ Cs By l016)

2926 2927 o[Cy Hgg 050 +3[Cy Hy 126} +v[C-H;,1(22)

2921 2927 \-‘[C,,.—Il_r.ﬂ'l(Sli)+u[('1;,-- Hp, 129) + v Cy—Hy I 10)
v[Cy—H;51(8)

2868 2862 v[C-H g1(46)+v[Cy Hy 123 ++[Cy Hg WD+
vLCs HyJ015)

2866 2862 v CpT1g 1(50) +v[CH,,1(26) +v[C—H,, 1(23)

2863 2862 v[C, H pl(53) +v[CpH gl (27) + v[Cy-Hy [(10) +
WG, H,,J(9)

1621 1618 @[CNt;1(53)+@[Hy N, H,)43)

(468 [470°  [H,—CpHe, 1(51)+ ¢[H,,—C,—H. 23 +
P[Hyp Cy HyJ{T) 4+ [ CorCpHy 1(5) ~
$[HCoC,1(5)

1461 1463* [ Hz—Cy—H,, 1036) + ¢ [Hyy~Cir 11, 1122 +
$LH,; C, H, |(12)~$[H, C, H,J(7)

1460 1454*  ¢[H,,~C,~H, ](60) + $[11~C.-NJ(17) +
$[H, C, H,1(6)

1452 1454 $[H,, C, H,, [(40)+ ¢ H;y—C,-H,, 1(34)

1400 1403 $[C,-NH, 1(39)+ ¢ H,; C, NJ20)+
v[CmC (B + ¢[C-C-H,, 1(6)

1279 1276 »[C—CJ(12) +v[CC 110y +v[C-C 9 +
¢lHgp Cp CURYHHLC, Cp Hypl(8)4
S C, CIN+¢[C, C, H )N+
SLCNALLN6) + 6Ty, CyC,1(5) ~ C,-C,1(5)

(192 1185 @[H ,~CN.J(26)+ ¢[C,—C,-H,;1(22) +
PLCNH,J(10) = $[C,-C,~H, )81 +
${Hys C5 C1(6)

1042 1047 ¢[C ~Cy-TL]020) + p[Hy, Cp C 118+
1 H,~C~C 1T+ ¢[C—C ATL 1 16) +
HLC,~C—Hy1(13) + 9[H,~C,~CA(10)

1016 1017 ¢[C, \J_](68)+q5|_( —C—N.]i6)

972 949" [Cy C 2T +v[C, ColI8) + [T, C,l(14) 4
#LC-C-NJ(6)

895 BII v, Cl23)+ PLCs €, HyJ(13)4
P, C,—CJ(10) + ¢[C,—C,-11,;,1(10) +
W[ Cp CA+9LCy C, Hypl(D+41Cp CI5 +
$[H,, C, CI(9)

823 B8 @[Hy N, HJ16)+¢[C, N Hy(15)+
#[C —C,g HM](IS)+a’)|:l-lmf,—CJ[= -C. (1) =
GLH, - C Gl 1)+ [ €y -C HL‘.,J(?)-‘—
w[Hg, I\](S)

791 796 @[C; —NV—II (19 + LN 11, ](18) +
PLC—C—H,x1{12)+ ¢[H;;~CC 1N +
PLC, Cp Hyy [{T +¢[Hyy C, N(T 4wl Hy N|(6)

378 1[C, N.J(75)

181 — tf[CC I3+ [CCl1) + [ Cp-C I+
t[C~C,1(6)

68 1[C, CAN+C, €128 +[C; CI017)

*Frequencies are found in Raman spectra also.

and Sutton' and 1311cm ™! by Chen and Lord?? are
close to the corresponding IR frequencies. This mode
lies well in the range of amide III for «-helical poly-
peptides (Table IV). At the hclix angle (6 =0.567) am-
ide [T modc is calculated at 1372cm ™! and assigned
to observed peak of 1367cm ™2,

The modec calculated at 751em™' at 6=0 has the

- dominant contribution of wagging of C=0 and N H

groups und is assigned to the peak at 751 ¢m ™' observed

in both IR and Raman spectra. This is a characteristic
mode of the z-helix and obtained in the same range as
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Assigments (% P.E.D. at §—0.00)

Assignments (% P.E.D. at é=0.56x)

.¢[N-Cq H,Jlﬁ‘*.l;@bLH, C,Gl(12)

W[C=N(20) +v[C=0](19) + ¥[C, CH16)+
SLH-N- C,}(15)+ {O= C==N](10) +
$[C=N-H](%)

¢[H,~C,~CJ(15) ++[C, -Cy)(13)+

¢ Hy C-NI12)+ [H.-C-C/19 +

PLCCH  J(BY+ v CC 1 (60)

@[Hp €, N16) + p[H-C.—CpJ(15)+
HIHAC.-CI14)+ p[C,-CpHy, I1(8) +

d[CC, H,y1(7)+v[C, CH6) + ¢l Hy CpC,NO)+
¥, C,1(6)

¢(11,,-C,~NJ(40) + $[C,~C, H,,1(10)+
#LCCpHy )T+ $LC~CHyy (N +
$LH,~C=C, 1(6) + $[Hyy Cy-C.1(6)

GLC, €, H, 0020+ $[H,,-C ~C,123) +

P CC I 1)+ P[C.~Cy—H ;5 1() +[N-C, 1(9)

WIN-C,129) + $[C, C, Hy)(16)+

¢ H - CsC,J(15) +¥[C,-CI10) + $[I1,-C,-CHT) +
¢[H,-C.~Cg1(5) + HLH, ;~C ,~C;51(5)
¢[HM—C#—C}.](I8)-L-v|_N—Cq_!(IH)+

¢[C, Cp Hyad(17)4 qb[(_“.r Cy HM][14J+
SLIL,~C,~C,1(9) + ST ,;~C,—C,1(6) +¥[C,~CI(5)
$LCyC,-H,yJB0 + [ Hyp Cy C 12304

#[H,; C, Cl2D+e[C, C; Hyl(15)
WC,~C1(29) +v[C,~C,1(10) +v[C, N +
$TH,~C,~C,)(6) = [C,~Cy-H,, 1(6)

¥[CC, J(18) + v[C,~CT(11) +v[C~C,1(9) +

B[O C=N](®) +[C=0)(T) +

I Hyy=CyC TN+ €= N(5)

v[CC,1(24) +v[C,~C,)(T) +v[N-C,1(6) +
VLC N (6) -+ v[CeC 1(5)

$[C,~C AL (1T +[C, CI(16)+¥[Cy C,1(12)+
PLC,CyHypl(8) + ¢[CpC - H,, 1(8) +

$[Hyy C, CA®)

@[0=CI(23) + ¢[Cy~C,—H, J(16) +eo| N-H](16) +
BTH,-Cr C;1(10) + TC,CH,,J6) +

BLHy, Cp C105)

wlO=CJ(15)+¢[C; C, H,J(17+
¢[H,~C,—C;1(12) + [ N-H](9) +[C;~C, 1N +
DL, C, Hyl®)+1(C, C,J()+ @LHyy CyC,J(8) +
P[H,,~C—C.1(6)

O[H,Cs~CA(25) + ¢l C—CH, 1(13) +
P[C,~Cy-Hy 11+ [0=C](12) +

H[H - CC TN+ [ Cs €16+ o N-H[(5)
G[C,~C=0](20)+ ¢[C,C=N]I(14)+

BIN-C,-C, J(14) + ¢LC, C, CI(12)+
MC,-CITHIN G5

$[CC-N](42) + ¢[C,~Cp—C,1(7) + [ C,-N](6)

$IC-C~C,1(18) + [ C,C,CU13) +

$[Cy €. NJ(1D+1[C-NIO)+ p[C=N-C,1(8) +
H[O=C=N](5) + [ O=C)(5)

¢[C,~CCI23)+ H[C =011} +

PIN-C~C,1(8)

AIN-C,~CI(19 +t[C, CHIN+C=N](11)+
PLC-C,-Cy 8 + 7 [N-C,1(8) + p[C= N C.1(6)

PLC,CyC, [(17) + G[N-C,~C,J(14) +
1[C=C,J(12)+ $p[ 0= C==N(10) +
P[C-C,-CpX(M

Freq.jem ™!
Calc-(i “ Ob\d
_“l 45 e
1313 1306°
1256 1248
1237 1231
1218 1218
1138 1137
1092 1092
1078 10792
1069 163"
G987 983
932 928
96 912
890 889
751 751*
742 738
735 738
513 508
463 462
367 3700
341
251
216 —
920

W[C~CU26) + p[H-N-C](15) +v[C= O [} +
WC=NJ10)+ ¢ C==N HI|8)+
$IN-C,-H_1(6) + $[O= C=N](6)

¢ N-C;~H,1(63) + ¢[H,-C~C,115) +

¢[H,y C,-NJ(18)+[C,-C—H,,1(11) +
v[C—C 1(10) + @[ Hpy—Cp-C. [{ 10} +

PLCy Cy Hyg ] +v[Cp C XD +v[CCXS)
¢[H,y C, NJ(31)+¢[H,-CCK14)+
qbl:IIx_C:_cﬁ:l(l l)+ d)l_cri 'CR H:ﬂ'_!(s)

#[Hyy C-NJ(21) + ¢ [H-C,-CJ(14) +
$[H,-C.~Cp](14) +P[C.~CpHyp J(8) +
OLCCH,pJ(T) + dLHg, €y C,106)
PH[CC,-H J26)+$[H,, T, C;J(25)+
[ HyyCs-C I + ¢[C,-CoE J(9) +
$[C, Cy-H,,1(6)+ v[N-C,](6)
¢[C.~CpHy,y1(31) + $[H,—C,-C,1(26) +
¢LC, Cy HyJ(1 1) + ¢[H,p €, CsI(8)+

@ HyyCp-C1022) + [ Cp-C, 1L 119+
$[C,~CHg, J{19) +v[N-C (1 T3+ ¢[H,,-C,~C,1(1 1}

V[N CH(33)+ ¢[H,;-C, C;l(12)+$[CC,~H,,1(10)
WC,-C 1T ++C, NJ(14)+¢[H, C, CI(T)+

v[Cp-C,1(33) + ¢ [Hzp—CirC, UM +v[C,-C 18 +
CANID +4(C, -C1(6)

VICCIN+CC8) + [ CCH, I (T +
VCACA(T) + ¢[Hy~CpC,1(8) + 9 [H-CC1(6) +

$[C, C, Hy 122+ ¢[C, C; Hygl9) +
V[CACT(8) + o [HypCp C 1M+ [ CrC 11, 105) +

@] O==C](33) + [ N-H](20) + ¢[ C,-C,~H,, J(T)

$LC, C, Hygl(26) + $[H,, C, C1(19) +
$[H5-Cy-C,I(15) +[C, C,1(14)+[C,- C,1i¥)

B[ HyCCA3D+¢[C,-CyHyg I +
$LC~C.~H,1J(16)+ 1[C5C,1(8) + ¢[H,4 C, C1(5)

BlCs C, NJ(30)+4(Cy C, Col(14)+
¢[C~CoC1(7) + ¢[C.C=0](6)

GlC; €, NJ(16)+[C,-C=ONT)+
GIN-C,~Cy 1T ¢[C- C=NJ(T)+ v N C,J{6) +

PLC-CrC JIN+o[Cy- C, NJ(13) +

$LC C, Col(9)+ I N-C,~CI(T) + ¢[C,~Cs-C,1(6)+
[C-NI6 + ¢[C=N C,](5)
¢[C.-CCI16) + ¢[Cp-C G112} +

$[C, C=01(11)+ d[N-C,~C,1(11)+

SIN-C,~CI8) + pLO=C==N](8) +

#1C, C; C,)(20) + pIN-C,~C,1(18) +
$LC,-C=N]1(7)+ $[O=C=N]N+

o C=N(6) + [N-C,—CI(5)

[Cy CICL+1C, CI10)+[C-C-CLA8) +
PIN-C,-CB) + [N -C,I7) +:[C.~C,1T)

Tahle VII. Mix modes
Freq.jem™!
Caled Ohbsd
1372 1367
1344 1355
v[C, Cyll6)
1251 1248
1224 1231
1213 1218
1136 1137
1086 1092
¥[N-CJ(®)
1070 1063
1066 1063
100} 989
¥[N-C, 17
926 928
209 912
v[C, Cul()
R&6 %91
‘J[J[Hs,u—cs"'Ni](_s)
769 762°
744 738
735 738
484 482
449 4142
#[H.-C-CI(6)
371 —
347 —
#[C=N-C](5)
236 —
212 —
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Table VII. (Continued)
Freq./em™! Freg.jcm !
Assigments (% P.E.D. at § —0.00) - Assignments (% P.E.D. at §=0.56n)
Calcd Obsd Culed  Obsd
169 — T[C-C1018)+ ¢[CpC,—C(13) + ¢[C~CpC 17 + 170 — $ICC G20+ gL C=N C J(1 1)+
LU= N-C,](6) G[CCp-C I +[C, C AN +1[C; C, NI(5)
131 HLC, Cs CIIT+ 1 Cp C, CJUT) + 149 — ¢[C,—C—C J(16) + 1 [CCI(16) +[C,~C,;J(1 1)+
[C, C51(14) +¢[C- C, Cpl(5) + ¢ C4-C-NLI(5) PLCAC=N]BY+ GLC-C-Cal(6) +
dIN C, Cpl6)
95 — 1[C,-C,;1020) + 1 [CC.J(10) + o[ CC=NJ(10) + 109 — [C G120 + o [C-C-CpI(18) + pfN-C,CHN +

HLC-Crr Cpl(9) + L C,~Cp-C,1(8)
90 1C, CIAT +TUN C 07+ ¢IN C, CH9I
SH[C=N C,}(6)

2 — 0 CI0RN+[CC9 + [CCD +
S[C~CyC1(6)+ PLC-C,-C,1(5)
27— GN-CpCul(26)+ $LCy €,y T U1+

SLC=N-C(12) + ¢[C,-C,-Col(9) +1[C~C(5)

T CmCHB + P C==N-C,]{6)
90 7LC, CHI8) +TLC, Cl(12) 4+ o N-C (1 1)
$[C, C, C16)+[C=N](6) +1[C, C,}(6)
70 —  CC 29 +1[C,-Cyl(24) +1[C4-C,1(29)
3 — GGG Cl6) + IN-C-CyJ(13) +
T[CAC(I D + o[ CpC G101 1) + 7 [C-CTN +
$LC=N-C,](6)

* Frequencies also observed in Raman spectra.

in other x-helical polypeptides. As J§ increases the
contribution of both C=0Q wag and N-H wag increases
while that of side chain C—C-H bending decreases. At
&=0.567 the mode appears at 769 cm ™! and is assigned
to 762cm ™! which is observed both in IR and Raman
spectra.

At =0 the observed frequencigs 1063¢cm™' and
983 cm ™! are assigned to those calculated at 1069 ¢m ™}
and 987 cm ™. These modes involve the bending of side
chain CH, groups. At the other end (6 =0.567) these are
calculated at 1066em ™! and 1001 cm ™ !. The amide VII
mode calculated at 251cm ™! involves the backbone
torsions and is a pure backbone mode at §=0. AL
d=0.567 the contribution of bending motion of side
chain atoms also appears in this mode and the mode is

calculated at 236cm™ L.

Characteristic Features of Dispersion Curves

One interesting feature of dispersion curves is the
repulsion between various modes and their property of
coming closer at a particular ¢ valuc. This repulsion is
seen between pairs of modes of [requency (1345cm ™!
and 1313¢em 1), (1079cm ! and 1063cm ™ 1), (641 cm ™ L,
575em™ Y, (251ecm™! and 216em™ 1), (95¢cm”™! and
90cem™ 1), and (32em ™! and 27 cm ™). Caleulations show
that these modes approach each other, potential energy
distributions (PED)s of the two modes start mixing, at
a particular value of é they exchange character and
diverge after repulsion.

The PED of 1345 and 1313 cm ™! modes starts mixing
at 6=0.25z. At 045z they exchange their PEDs and
afterwards the lower one becomes constant while the
upper starts increasing. Such cxchange of PEDs and
repulsion shows that these modes belong to the same
symmetry species. In the modes of frequency 107% and
1063 ¢cm ™! the mixing of PEDs starts at 6=0.45m and
the exchange of PEDs takes place at 6=0.55n. The
former one decreases till § =0.50m and for higher 6 values
it becomes constant. For §>0.50% the contribution of
N-C, stretch slarts mixing in 1063 cm ™! mode and goes
on in¢reasing. The frequency of this mode decreases for
4 values greater than 0.40xn,

The modes 641 and 575cm ™! come closer near helix

Polym. 1., Vol. 29, No. 11, 1997

angle and diverge afterwards. In the upper mode the
coniribution of N-H and C=0Q wags increases till
0=10.50z and decreases for higher é values while in the
lower mode the contribution of C=N torsion decreases
till 6=0.507 and increases afterwards. The frequency
95cm ! has dominant contribution of side chain C-C
torsion. The contribution slowly decreases till 5=0.30xn
and afterwards increases rapidly. A reverse trend is seen
in the 90 cm ™! mode. Here the contribution of backbone
C—C torsion increases slowly till §=0.257 and decreases
rapidly afterwards. Similar behavior is seen for other
pairs of modes.

Heat Capacity

Recently Roles et al.,!! Roles and Wunderlich,??
Wunderlich and Bu,'® and Bu er al?* reported ex-
perimental and theoretical heat capacities of synthetic
as well as biological polypeptides. Their approach ba-
sically involves separation of vibrational spectra into
group and skeletal vibrations. This approach has limi-
tations specially when the PEDs of backbone and side

" chain modes are mixed up. This is very true in case of
poly(L-lysine) below 1345cm 1.

The frequency distribution function {density-of-states)
obtained from dispersion curves are shown in Figures
3b, 4b, 5b, and 6b. The peaks correspond to the regions
of high density-of-states. From this, the heat capacity of
Plys has been calculated in the temperature range
50—500 K. The modes which are purely skeletal, purely
side chain and a mixture of these two are given in Tables
T, VI, and VTI, respectively. Their respective contribu-
tions to heat capacity are shown as curves A, B, and C
in Figure 7. The total heat capacity (i.e., the sum of these
three contributions) is represented as curve D in Figure
7 and the experimental data of Roles er al'' arc
represented by triangles. Specific heat at low tempera-
tures is sensitive to g(v) in the low frequency region
because the low frequency modes are much more sensitive
to actual conformation of chain and side groups and
there is strong coupling between them. The experimen-
tally measured data agree well with the calculated data
in the higher temperature range except for a scaling factor
of 1.10. This scaling factor takes into account the con-
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Heat capacity €, (J/mol K)
8

Temperature (K)

Figure 7. Variation of heat capacity €|, with temperature. [A .
B———— C—— and D —— indicate backbone contribution, side-chain
confribution, mix-mode contribution, and total heat capacily, re-
spectively. The experimental points are shown by &7

stant separation between the experimental and theo-
retical curves which may arise due to possible error in
experimental measurements and theory. It is clear from
Figure 7 that the main contribution to the heat capaciry
comes from the coupling of backbone and side chain
modes.

The contribution from the lattice modes, which arisc
due to the intramolecular interactions, is bound to make
appreciable diflerence in heat capacity because of its
sensitivity to these modes in the low frequency region.
To take into account this contribution we have to
calculate the dispersion curves for g three dimensional
unit cell. In principle the evaluation of dispersion curves
for a three dimensional system is possible but in practice
it involves formulation and solution of the secular
equation for the contents of a unit cell. This not only
increases the dimensionality of the problem many fold
but also brings in a large number of nonbonded interac-
tion parameters difficult to visualize and quantify. To
date, apart from polyglycine, polyalanine, and poly-
cthylene, few problems have been solved for three
dimensional structures, The intrachain interactions are
generally of the same order of magnitude as the weaker
interchain interactions. They affect the force constants
and lead to crystal ficld splittings at the zone centre and
zone boundary but the dominanl assignments are not
disturbed. Thus, in spite of several limitalions, the present
work using isolated chain model provides a good starting
point for further basic studies on the thermodynamic
behavior of polypeptides and protcins.
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