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Vibrational energy flow analysis of corrected
flexural waves in Timoshenko beam — Part II:
Application to coupled Timoshenko beams
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Abstract. This paper presents the methodology for the energy flow analysis of coupled Timoshenko beam structures and various
numerical applications to verify the developed methodology. To extend the application of the energy flow model for corrected
flexural waves in the Timoshenko beam, which is developed in the other companion paper, to coupled structures, the wave
transmission analyses of general coupled Timoshenko beam systems are performed. First, power transmission and reflection
coefficients for all kinds of propagating waves in the general, coupled Timoshenko beam structures are derived by the wave
transmission approach. In numerical applications, the energy flow solutions using the derived coefficients agree well with the
classical solutions for various exciting frequencies, damping loss factors, and coupled Timoshenko beam structures. Additionally,
the numerical results for the Timoshenko beam are compared with those for the Euler-Bernoulli beam.

Keywords: Energy Flow Analysis (EFA), coupled Timoshenko beam structure, coupling relationships, wave transmission analysis,
power transmission coefficient, power reflection coefficient

1. Introduction

The Energy Flow Analysis (EFA) has been developed as a promising tool for predicting acoustic and vibrational
responses of built-up structures in the medium-to-high frequency ranges over recent decades, and has the advantage
in these frequency ranges over the traditional vibro-acoustic analytic tools such as the traditional finite element
method (FEM), boundary element method (BEM), and the statistical energy analysis (SEA) [1,2].

Until now, most researches on EFA have been restricted to the analysis of simple structures such as rod, Euler-
Bernoulli beams, membrane and Kirchhoff plates in structural elements [1,2,4-7]. Especially, the research on the
coupling relationships for EFA of the coupled Timoshenko beam or Mindlin plate structure has never been properly
performed. Though EFA is a more suitable method in the high than low frequency range, the traditional energy
flow models were not able to consider the effects of rotatory inertia and shear distortion, which are important at
high frequencies [3]. Therefore, to improve the EFA vibrational predictions of coupled beam structures at high
frequencies, the development of the energy flow model for the Timoshenko beam including these effects and the
researches on coupling relationships for the energy flow model are needed [9].

In this paper, first, to extend the application of the energy flow model, which is developed in the other companion
paper, into the coupled Timoshenko beam system, the wave transmission analyses for the general three-dimensional
joint of coupled Timoshenko beam structures are performed. Finally, to verify the accuracy and validity of the
developed energy flow model and coupling relationships, the energy flow solutions and classical solutions for the
coupled Timoshenko beam structures are compared for several different conditions, and the results of the Timoshenko
beam model are also compared with those of the Euler-Bernoulli beam model.
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Fig. 1. N semi-infinite undamped Timoshenko beams coupled in three-dimensional joint and the indication of angles among coordinates axes.
2. Wave transmission analysis of /N Timoshenko beams coupled in three-dimensional joint

Figure 1 shows N semi-infinite undamped Timoshenko beams coupled in a three-dimensional joint. In this case,
two types of flexural waves, one longitudinal wave, and one torsional wave exist in each beam. Two types of flexural
waves oscillate respectively in the y- and z-direction, which are orthogonal in the cross-section of beam. Each type
of flexural wave in the Timoshenko beam consists of two kinds of wave components, which are bending dominant
flexural wave (BDFW) and shear dominant flexural wave (SDFW), having different wavenumbers [9]. Therefore,
above the critical frequency, a total of six kinds of propagating waves can exist maximally in one Timoshenko beam.

The general solutions for the homogeneous undamped problem of corrected flexural motion in a Timoshenko
beam can be expressed by [9]

[ . 7jI€GAk‘1 —jkiz ]HGAkl jkix
{a} N (CH {pAw2 — kGAK? } ¢ + 0 pAw? — kG AK? ¢ 0
_.j"iGAkQ —jkox jKGAkQ jkox jwt
+Ca {pAw2 — RGARS } A L —rqaz (€ ) €

where v is the transverse displacement, « is the angle of rotation due to bending, A is the cross sectional area of the
beam, I is the second moment of area of the beam’s cross section, p is the density of the beam, C';; is the constant
coefficient, « is the shear factor, w is the angular excitation frequency, G and E are the shear and Young’s modulus
respectively,
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Fig. 2. The sign convention of the shear forces and moments of two Timoshenko beams coupled in three-dimensional joint.

By Eq. (1), the y-directional transverse displacement v; and the angle of rotation about z-axis due to bending
moment o, in the incident beam can be represented as

vr = [(—jr1GrArkyr) {Crre 7Fv® — Cypelkvre}

. . . 3
+ (*jli]G[A[ka]) {ngeijkzylx - C4]€jkzylx}] eIt and

azr = [(prAiw® — k1GrALkS, ) {Crre M1 4 Core?™ v} 4 (prAjw® — KiGrArk3,;)
{C3Ie*jk2y1w 4 C4Ie*jk2y1m }] eJ'Wt,

“)

where “I” in the subscript denotes the incident beam, and k1, and ko, ; are wavenumbers of y-directional transverse
displacement in the incident Timoshenko beam. Additionally, the z-directional transverse displacement w ; and the
angle of rotation about y-axis due to bending moment « ,,; in incident beam are represented as

wy = [(—jr1GrArkizr) {Cspe 7M=1" — Cgre?™=17}

' ' j 5
+ (—jr1GrArko.r) {Crre /721" — Cgre?™=17}] /" and

Ay = [(pIAI(,UQ _ KIGIAIk%Z[) {C5Ie—jk1zla; + Cﬁlejklzll‘} .
+ (pIAI(,UQ _ KIG[A[]C%Z[) {C7Ie—jk2z1x + Cg[ejh”x}] ejwt7

where k1.1 and ko1 are wavenumbers of the z-directional transverse displacement in the incident Timoshenko beam.
The longitudinal displacement «  in the incident beam can be represented as

up = (Nyre M1 4 Nypelhie) e/t (7)

where k;; is the longitudinal wavenumber of the incident beam (k;; = w+/pr/EJ).
Unlike the case of two-dimensional joint, this case has a torsional displacement 6 ;, which can be represented as

01 = (Mire MI% 4 Myre™i®) i, ®

where k7 is the torsional wavenumber in the incident beam and is expressed as k1 = w+/p;/Gy for the circular
section.

The two types of flexural waves, one longitudinal wave, and one torsional wave in beam ¢ coupled with the incident
beam at three-dimensional joint also are represented, respectively, as
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Fig. 3. Two semi-infinite Timoshenko beams joined at an arbitrary angle.
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where “¢” in the subscript denotes the beam <.
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When the excitation frequency is higher than the critical frequency of the incident beam, six kinds of propagating
waves can be maximally incident upon the joint. If the BDFW with wavenumber k1,7 in the incident beam is
incident upon the joint, the displacements in the incident beam are composed of only the wave components outgoing

from joint and can be expressed, respectively, as

vr = [(—jk1Gr Arkyyr) {Crre i — Core?™vi®} 4 (= jrGrArkayr) {—Care’™ 1%} ] e,

azr = [(prAw® — k1GrA[kT, ) {Crre/F1v1% 4 Cyre/tvr®}
+ (p1A1w2 — K[G]A]kigyl) {C4[€jk2y1x}] ej“)t,

wr = [(—jr1GrArkizr) {—Cere’™ ="} + (—jk1GrArks.r) {—Csre?™=17}] e+,
Oy = [(p1A1w2 — K[G]A]k‘%z]) {Cﬁ[@jIﬂZIx} + (p1A1w2 — K[G]A]k‘%zl) {Cg[@jk%lx}} ej“t,
uy = (NQ]@jk”x) ed“t and

0 = (ngejk”x) elvt,

15)

(16)

A7)
(18)
19)

(20)

Because the incident waves do not exist in beam i, the two types of flexural waves, one longitudinal wave, and

one torsional wave, which are traveling in the 4z ;-direction, can be rewritten, respectively, as
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Fig. 4. The power transmission and reflection coefficients of two semi-infinite Timoshenko beams with the same material and geometrical

properties joined at 45°: (a) Case of the incident BDFW with wavenumber k&, (b) Case of the incident SDFW with wavenumber Az, (c) Case of
the incident longitudinal wave.

vi = [(—jriGiAikry:) { Crie ™} 4 (= ki Gy Aikay:) { Caie /M0 1] €7, @21
Ay = [(p1A1w2 - KszAzk%yz) {Clie_jklyix} + (p¢A¢W2 - ’iszAlkgyz) {C3ie_jk2yix}} ejwt’ (22)

w; = [(—jriGiAik1zi) {Csie %1%} 4+ (= jikiGiAikasi) { Crie 7217} 19t (23)
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Fig. 4, continued. The power transmission and reflection coefficients of two semi-infinite Timoshenko beams with the same material and
geometrical properties joined at 45°: (a) Case of the incident BDFW with wavenumber ki, (b) Case of the incident SDFW with wavenumber
k2, (c) Case of the incident longitudinal wave.

ayi = [(piAiw® = KiGiAikt.;) {Csie 7527} + (piAiw? — RiGiAik3.;) {Crie™ 7P} ] &1, (24)
u; = (Nue*jk“m) elwt , and (25)
ei — (Mlie—jkt,,x) ejwt. (26)

When one kind of propagating wave is incident upon the three-dimensional joint in the incident beam, six unknown
coefficients exist in the incident beam. The same unknown coefficients are in each of the others beams. Therefore,
when the number of NV beams including the incident beam are coupled at a three-dimensional joint, a total of 6 N
unknown coefficients exist, and the same equilibrium conditions are required to solve these unknown coefficients. In
this case, the 6N equilibrium conditions consist of three moment equilibrium and three force equilibrium conditions,
the 3 (N — 1) continuities of displacement, and the 3 (N — 1) continuities of slope.

The three moment equilibrium conditions about the three orthogonal directions in the incident beam can be
represented, respectively, as

N-—-1
My — Z (Mtz Cos 69393[1’ + Myyz Cos 693y[i + M. cos ﬂzzlz) = 07 (27)

i=1

N-1
Myyr — Z (My; cos Byari + Myyi cos Byyri + M.; cos By.1:) = 0, and (28)

i=1

N-1
M..r — Z (Mtz' cos Bzari + Myyi COs ﬁzyli + M ; cos ﬁzz[i) =0, (29)
i=1
where My;, My,;, and M, ; are the torsional moment (M;; = T (df;/dxz;)), moment about y-axis (My,; =
E;I.; (daj/dx;)), and moment about z-axis (M,,; = E;Iy; (doy;/dx;)) in the local coordinates of beam j,



Y.-H. Park and S.-Y. Hong / Vibrational energy flow analysis of corrected flexural waves in Timoshenko beam 173

Incident Flexural Wave WTA

L) S —— - e e e
0.8+
n
[ =4
2
o L
£ 06 --- RAN
(§ THf2
= -== THI2
g : — Total Sum
a 04
e ey e o o e o e L e e e e
0.2
i’\
aY
i W
a ‘h"'“u‘"::.'.- f s
1] 1 2 3 4 5 6
Frequency(Hz) . 105
(@)
Incident Longitudinal Wave WTA
1
08
B ) e i
2 -
o - —
o
£ 06 ” RITF
g i --= RIH
(s} i « Tnf2
5 ! —=- THI2
§ I — Total Sum |
o pay
1}
nl\'
p
1}
o.2n
A}
A}
A}
Ay
\“_‘
o R I T o N bt =
0 1 2 3 4 5 ]
Frequency(Hz) - 105

(b)

Fig. 5. The power transmission and reflection coefficients of two semi-infinite Euler-Bernoulli beams with the same material and geometrical
properties joined at 45°: (a) Case of the incident flexural wave, (b) Case of the incident longitudinal wave.

respectively. The sign convention of the moments in each beam is shown in Fig. 2. 3 pgm» denotes the angle between
the p-axis of beam m and the g-axis of beam n, shown in Fig. 1.

The three force equilibrium conditions about three orthogonal directions in the incident beam are also represented,
respectively, as

N—-1

FCDI - Z (F:m COS ﬂzz]i + Vyz COS ﬂzyli + VZrL CcOs ﬂzzh) = 0, (30)
=1
N—-1

Vyr = Y (Faicos Byari + Vyi €08 Byyri + Vei cos Byzri) = 0, and 31)

i=1
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Fig. 6. The power transmission and reflection coefficients of two semi-infinite Timoshenko beams with the same material and geometrical
properties joined at 90°: (a) Case of the incident BDFW with wavenumber k;, (b) Case of the incident SDFW with wavenumber A, (c) Case of
the incident longitudinal wave.

N—-1
Vi — Z (Fm cos Bzeri + Vyz COSs ﬁzyIi + Vi cos ﬁzzli) =0, (32)

i=1

where Fy,;, V,,;, and V; are the axial force in the x-direction (F;; = E;A; (Ou;/dx;)), shear force in the y-direction
(Vy; = k;GjA;(0v;/0x; — d.;)), and shear force in the z-direction (V; = r;G;A;(0w;/0x; — dy;)) in the local
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Fig. 6, continued. The power transmission and reflection coefficients of two semi-infinite Timoshenko beams with the same material and
geometrical properties joined at 90°: (a) Case of the incident BDFW with wavenumber ki, (b) Case of the incident SDFW with wavenumber
k2, (c) Case of the incident longitudinal wave.

coordinates of beam j, respectively. The sign convention of the forces in each beam is shown in Fig. 2.
The 3 (N — 1) continuities of displacement must be enforced in the x-, y-, and z-direction in the local coordinates
of the incident beam, respectively;

ur — (u; €08 Brari + Vi €OS Bayri + wicos fuori) =0 (1=1,2,--- N —1), (33)
vr — (u; €08 Bygri + Vi €08 Byyri + w; €os Py.1i) =0 (i=1,2,---,N —1), and (34)
wr — (43 €08 Bapri + v oS Bayri +wicos Boori) =0 (i=1,2,--- N —1), (35)

where u;, v;, and w; are the local x-, y-, and z-directional displacements in beam j, respectively.
The 3 (N — 1) continuities of slope must be also enforced about the x-, y-, and z-axes in the local coordinates of
incident beam, respectively;

01 — (O1i €OS Brari + Qtzi €OS Bayri + Qi €08 Brzri) =0 (i =1,2,--- N —1), (36)
az1 — (04 €08 Byari + Qzi €OS Byyri + Qyi €08 By-ri) =0 (i=1,2,---,N —1), and (37)
ayr — (0 €08 Bawri + 0z €08 Boyri + ayicos Baori) =0 (1=1,2,--- N —1), (38)

where 0y, o5, and o ; are the torsional displacement, and the angles of rotation about the y- and z-axis due to
bending moment, respectively.

When all 6V conditions at the joint are applied, the 6.V unknown coefficients can be solved numerically. Using the
coefficients solved, the time-averaged far-field flexural powers in the incident beam can be expressed, respectively,
as [9]

<P“’L>fy = {E]I[wkly] (P[A[WQ — RIG]A]k%yI)Q +wk1y1 (p[AIWQ) (RIG]AI)Q} (|C’1[|2) . (39)

|~

<P1[>;y = [E[I[wkly[ (p[AIw2 _ HIGIAIk%yI)Q +wk1y[ (p]A]w2) (H]G[AI)Q} (|CQI|2) ’ 40)

|~
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Fig. 7. The power transmission and reflection coefficients of two semi-infinite Timoshenko beams with different material and geometrical
properties joined at 90°: (a) Case of the incident BDFW with wavenumber k&, (b) Case of the incident SDFW with wavenumber Az, (c) Case of
the incident longitudinal wave.

(Par)y, = [EIIIWkaI (prajw® — KIGIAzk’%y[)Q + whkayr (prArw?) (H1G1A1)2] (|C41|2) ; (41)

N = N

<P1[>]7z [E[I]wklz[ (p1A1w2 — H]G[A[k%zI)2 -+ wklzj (p[A[wz) (K[G]A[)ﬂ (|CGI|2> 9 (42)
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Fig. 7, continued. The power transmission and reflection coefficients of two semi-infinite Timoshenko beams with different material and
geometrical properties joined at 90°: (a) Case of the incident BDFW with wavenumber ki, (b) Case of the incident SDFW with wavenumber
k2, (c) Case of the incident longitudinal wave.

_ 1
(Par) s, = 5 [EIIIWkQZI (prAw® — HIGIAIngj)Q + whka.1 (prArw?) (HIGIAI)Q} (|CSI|2) ; (43)

where (P;;) ir denote the time-averaged far-field power of the r-direction flexural wave propagating with wavenumber
kir in the = ; direction in beam j.

The time-averaged far-field longitudinal and torsional powers in the incident beam can be represented, respectively,
as [7]

_ 1 0 0 * 1

<PI>l = §R€ |:_E[A[ (%) (%) :| = §E1AI|N2[|2(UI€[[7 and (44)
_ 1 o7} 00r\ ™ 1

Pz = gre |10 (G7) () | = s s e “3)

where T is the torsional stiffness, & is the wavenumber of the torsional wave, and (Pz-)li and (Pl>ti are the time-
averaged far-field powers of the longitudinal and torsional waves propagating in the £x ; directions in beam ¢,
respectively.

The time-averaged far-field flexural, longitudinal, and torsional powers in beam ¢, as in the incident beam, can be
represented, respectively, as

1
<P1i>}i_y = 3 {Eifiwklyi (piAiw2 — KiGiAik;%yi)Q + wk‘lyi (piAiWQ) (mGiAi)Q} (|01i|2> , (46)
1
(Pm‘)}ry =5 {EiIiWkai (piAiw® — "‘@iGiAik/’gyif + whayi (piAiw?) (“iGiAi)Q} (|03i|2> ; 47)
<P1i>}i_z = % {Eiliw}flzi (piAiWQ — KzGlAlk’%m)Q + wkzlzi (piAiw2) ("‘@szAz)ﬂ (|C5i|2) ) (48)
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1
(Pa)}, = 2 [E"'["wk% (pidiw” - KiGiAik%zi)Q + whazi (piAiw®) (KiGiAi)Q} (|C7i|2) ; (49)
1
<Pz>l+ = §E1Az |N1i|2 w klia and (50)
+ 1 2

From the powers calculated above, all the power transmission and reflection coefficients can be expressed,
respectively, as

+ + + +
_ (Pri) ¢, . (Pai) g, T (Pri) ¢, . (Pai) g,
fyll,fyli = 75~ > Tfyll,fy2i = s Tfyll fz1i = s Tfyll fz2i = )
e <Pm>fy e <Pi">fy ! <Pm>fy ! <Pi">fy
+ +
e (P,
fyll,li <P'Ln>fy, fyll,ti <]Din>fy, )
_(Pu)y, _A(Par)yy Py, _(Pan)y,
Yfyll, fyll = <Pzn>fy’ Yfyll, fy2l = <P¢'n fyv Yfyll, fz1I = <P¢'n>fy’ Vfyll, fz2I = <Pzn>fy’
(Pr), — (Pr),
VfylI il = , and VfylItl = 75 v >
Y (Pin) 4, Y (Pin) 4,

where 7 and  are the power transmission and reflection coefficients, respectively, and the subscript in 7 py17, 224
means the power transmission coefficient of the transmitted z-directional SDFW with wavenumber k 5, in beam i due
to the incident BDFW with wavenumber k1, in incident beam. All power coefficients in Eq. (52) can be summed
according to the principle of conservation of energy;

VFyll fyll + Vfyll, fy2l + Yiyll, f210 + Viyll, f221 + Yyl ir + Yyl el 53
N-1 (53)
+ Z (TFyil, fyti & Tryll, fy2i + TFylL,f21i + TFyll,f22i + Tyl + Tryiei) = 1.
i=1
If other waves are incident upon at the joint in addition to the BDFW with wavenumber & 1, in the incident beam,
the power transmission and reflection coefficients can be obtained by the same procedure.

3. Numerical examples
3.1. Wave transmission analysis of two Timoshenko beams joined at an arbitrary angle

For a numerical example for the wave transmission analysis of the coupled semi-infinite Timoshenko beam
structure, as shown in Fig. 3, a simple structure of two semi-infinite Timoshenko beams joined at an arbitrary angle
is applied. For the energy flow analysis of this coupled Timoshenko beam structure, the power transmission and
reflection coefficients among all propagating waves in each semi-infinite Timoshenko beam are required and can be
calculated by the procedure of Section 2.

In the first case, two coupled semi-infinite Timoshenko beams of the same material and geometric properties are
joined at various coupling angles. The material properties of both beams are those of steel and the dimensions of
the cross-sections of both rectangular beams are B x H = 0.01 m x 0.01 m. The critical frequencies of both beams
are about 158.73 kHz. Figure 4 shows the power transmission and reflection coefficients for the case in which the
BDFW with wavenumber k1, the SDFW with wavenumber k5, and the longitudinal wave are incident upon the joint
of 45°. In all sub-figures of Fig. 4, the sum of all power coefficients is one, regardless of the excitation frequency
by the principle of conservation of energy. The power transmission and reflection coefficients change severely near
the critical frequency. Because SDFW components with wavenumber ko are near-field terms below the critical
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Fig. 8. Three semi-infinite Timoshenko beam structure coupled at three-dimensional joint.

frequency, the power transmission and reflection coefficients, such as 711, 22,7721, f12, and so forth, related to the
SDFW with wavenumber k- in each beam, are zero in the Fig. 4. In Figs 4(a) and 4(b), when a kind of flexural
wave (BDFW or SDFW) is incident upon the joint in beam 1, the power transmission coefficient, for instance
Tri1,f12, between flexural waves having the same kind of wavenumber is much larger than the power transmission
coefficient, for instance 7711, r22, between flexural waves having a different kind of wavenumber. In Fig. 4(c),
when the longitudinal wave is incident upon the joint, the incident longitudinal wave is principally transmitted to
the BDFW with wavenumber &, out of two kinds of flexural waves, and transmitted to the wave of the same type,
which is a longitudinal wave, in beam 2. Additionally, though the BDFW with wavenumber k ; and the longitudinal
wave are well transformed mutually through the joint as shown in Figs 4(a) and 4(c), the incident SDFW with
wavenumber k4 is principally transmitted to only the wave of the same kind, which is the SDFW with wavenumber
ks, in Fig. 4(b). Figure 5 shows the power transmission and coefficients in the structure of two coupled semi-infinite
Euler-Bernoulli beams having the same material and geometrical properties as those of the first case shown in Fig. 4.
In Fig. 5, because the critical frequency does not exist, the transition region of the power coefficients shown in Fig. 4
does not appear. In Figs 5(a) and 5(b), the incident flexural and longitudinal waves are well converted to transmitted
longitudinal and flexural waves, respectively, due to the 45 ° joint, as shown in Figs 4(a) and 4(c). Below the critical
frequency of Fig. 4, because only the BDFW with wavenumber k; is a far-field term, the power transmission and
reflection coefficients of Timoshenko beams in Figs 4(a) and 4(c) have the similar values of distribution and level
with those of Euler-Bernoulli beams in Figs 5(a) and 5(b), respectively. However, above the critical frequency,
because two kinds of flexural waves are far-field terms, the power coefficients of Timoshenko beams shown in Fig. 4
are very different from those of Euler-Bernoulli beams shown in Fig. 5.

Figure 6 shows the power transmission and reflection coefficients for all propagating waves if the BDFW with
wavenumber k1, the SDFW with wavenumber k2, and the longitudinal wave are incident upon the joint of 90 °. The
sum of all power coefficient values is one, regardless of the excitation frequency, by the principle of conservation of
energy as shown in Fig. 6. As expected, because two beams are joined at 90 °, the incident BDFW with wavenumber
k1 and longitudinal wave in beam 1 are principally transmitted to the longitudinal wave and BDFW with wavenumber
k1 in Figs 6(a) and 6(c), respectively. However, if the SDFW with wavenumber k 5 is incident, though the joint angle
is normal, the power transmission coefficient 7 o1, ro2 of the transmitted SDFW having the same kind of wavenumber
as the incident flexural wave is larger than 79y ;2 of the transmitted longitudinal wave in Fig. 6(b). Therefore,
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Fig. 9. The power transmission and reflection coefficients of three semi-infinite Timoshenko beams with the same material and geometrical
properties joined at 90°: (a) Case of the incident y-directional flexural wave with wavenumber A, (b) Case of the incident y-directional flexural
wave with wavenumber k2, (c) Case of the incident z-directional flexural wave with wavenumber A -, (d) Case of the incident z-directional
flexural wave with wavenumber ko, (e) Case of the incident longitudinal wave, (f) Case of the incident torsional wave.

as shown in Figs 4 and 6, the bending and longitudinal motions are well transformed each other as the geometric
characteristics of the structure but the shear motion is principally generated by the same shear motion.

In the second case, two coupled semi-infinite Timoshenko beams of different material and geometry properties
are examined at 90° coupling angle. The material properties of beam 1 and beam 2 are those of steel and aluminum,
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Fig. 9, continued. The power transmission and reflection coefficients of three semi-infinite Timoshenko beams with the same material and
geometrical properties joined at 90°: (a) Case of the incident y-directional flexural wave with wavenumber A, (b) Case of the incident
y-directional flexural wave with wavenumber kp,, (c) Case of the incident z-directional flexural wave with wavenumber A ., (d) Case of the
incident z-directional flexural wave with wavenumber k., (e) Case of the incident longitudinal wave, (f) Case of the incident torsional wave.

respectively. The dimensions of the cross-sections of two rectangular beams are B x H = 0.01 m x 0.01 m and
B x H = 0.02 m x 0.02 m, respectively. The critical frequencies of beam 1 and beam 2 are about 158.73 kHz
and 82.174 kHz, respectively. The sum of all power coefficient values is one, regardless of the excitation frequency
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Fig. 9, continued. The power transmission and reflection coefficients of three semi-infinite Timoshenko beams with the same material and
geometrical properties joined at 90°: (a) Case of the incident y-directional flexural wave with wavenumber A, (b) Case of the incident
y-directional flexural wave with wavenumber kp,, (c) Case of the incident z-directional flexural wave with wavenumber A ., (d) Case of the
incident z-directional flexural wave with wavenumber k., (e) Case of the incident longitudinal wave, (f) Case of the incident torsional wave.

by the principle of conservation of energy in Fig. 7.

In Fig. 7(a), because the critical frequencies of the two

beams are different, the two transition regions of the power coefficients exist. Additionally, because the SDFW
with wavenumber k5 in each beam is a near-field term below the critical frequency, the power transmission and
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Fig. 10. The coupled finite Timoshenko beam structure joined at an arbitrary angle for EFA.

coefficients related to this wave are zero in this frequency region of each beam in Fig. 7. In Fig. 7, the power
reflection coefficients due to each incident wave roughly become larger than those of the first case because the two
coupled semi-infinite Timoshenko beams are heterogeneous and have widely different impedances at the joint.

When the flexural and longitudinal waves in beam 2 are incident upon the joint, all the power transmission and
reflection coefficients can be obtained by the same procedure.

3.2. Wave transmission analysis of a three-dimensional joint

For the second numerical example of the wave transmission analysis, three semi-infinite Timoshenko beams
coupled at a three-dimensional joint as shown in Fig. 8 are applied. As mentioned in the previous section, two types
of flexural waves, one longitudinal and one torsional wave exist in each semi-infinite Timoshenko beam coupled
at the three-dimensional joint. For the energy flow analysis of this Timoshenko beam structure coupled at three-
dimensional joint, the power transmission and reflection coefficients for all propagating waves in each semi-infinite
Timoshenko beam are required and can be calculated by the procedure of Section 2.

In the coupled Timoshenko beam structure shown in Fig. 8, three semi-infinite Timoshenko beams are joined at
right angles each other. The material properties of all beams are those of steel and the dimensions of cross-sections
of all rectangular beams are B x H = 0.01 m x 0.01 m. The critical frequencies of all beams are about 158.73 kHz.
Above the critical frequencies of all beams, a total of eighteen propagating waves exist. Therefore, whenever one
propagating wave is incident upon the joint, eighteen power transmission and reflection coefficients can be obtained.
Figure 9 shows the power transmission and reflection coefficients when each propagating wave is incident upon the
joint. Because the cross-sections of all beams are square, the y- and z-direction wavenumbers in each beam are
identical. In Figs 9(a) and 9(c), the incident y- and z-directional BDFWs with wavenumber £ ; in beam 1 are well
transmitted to the longitudinal wave of beams 2 and 3, respectively, like the first example. Additionally, the incident
longitudinal wave in beam 1 is principally transmitted to the y- directional BDFWs with wavenumber k ; in beams
2 and 3, and the power transmission coefficients, 7,1, r412 and 771, 7413, are the same as shown in Fig. 9(e). However,
the incident y- and z-directional SDFWs with wavenumber ko are principally transmitted to not the SDFWs with
the same kind of wavenumber ko, but the torsional waves, as shown in Figs 9(b) and 9(d). When the torsional wave
is incident upon the joint in beam 1, the incident torsional wave is mostly reflected to the torsional wave in beam 1
below the critical frequency at which the propagating SDFWs with wavenumber ko do not exist, but is principally
transmitted to the SDFWs with wavenumber k2 in beams 2 and 3 above the critical frequency as shown Fig. 9(f).
Generally, the BDFW with wavenumber k7 and the longitudinal wave are well transformed mutually through the
joint, and the SDFW with wavenumber k5 is well transformed into the torsional wave.

3.3. Energy flow analysis of two finite Timoshenko beams joined at an arbitrary angle

To verify the power transmission and reflection coefficients derived for the energy flow analysis of a coupled
Timoshenko beam structure, numerical analyses are performed for the two finite Timoshenko beams which are joined
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Fig. 11. The comparison of the time- and locally space-averaged energy and power levels of two Timoshenko beam with two Euler-Bernoulli
beam structures coupled with § = 45° when f = 1 kHz, 7 = 0.01. The reference energy density is 1 x 107127 /m and the reference power is
1 x 1012 W; (a) Flexural energy, (b) Longitudinal energy, (c) Flexural power, (d) Longitudinal power.

at an arbitrary angle, simply supported at both ends and excited by a transverse harmonic point force as shown in
Fig. 10. The dimensions of both beams are B x H x L = 0.01 m x 0.01 m x 1 m. The material properties are those
of steel (£ = 19.5 x 10 Pa, p = 7800 kg/m3). The external force is located at ¢ = L;/2 and its magnitude is
100 N.

The energy flow model for the flexural wave in the Timoshenko beam in all frequency ranges can be expressed as
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Fig. 11, contibued. The comparison of the time- and locally space-averaged energy and power levels of two Timoshenko beam with two

Euler-Bernoulli beam structures coupled with @ = 45° when f = 1 kHz, = 0.01. The reference energy density is 1 x 10712 /m and the
reference power is 1 x 10~ 12 W; (a) Flexural energy, (b) Longitudinal energy, (c) Flexural power, (d) Longitudinal power.

two kinds of energetics as mentioned [9];
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Fig. 12. The comparison of the time- and locally space-averaged energy and power levels of two Timoshenko beam with two Euler-Bernoulli
beam structures coupled with = 45° when f = 250 kHz, = 0.01. The reference energy density is 1 x 10~12.J/m and the reference power
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is 1 x 10~12 W; (a) Flexural energy, (b) Longitudinal energy, (c) Flexural power, (d) Longitudinal power.

_Gpd @y
dx?

where cyr1 and cqro are the group velocities of BDFW and SDFW with wavenumbers k1 and k3, respectively, and

2w (@) o = Mpzn(w > we),

1114 and I1¢3 4, are the input powers of two kinds of flexural components.
The energy flow model for the longitudinal wave in the Timoshenko beam can be represented as [7]
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(56)

where ¢, is the group velocity of the longitudinal wave in the beam and represented as ¢ gy = \/E/p , and II; ;, is
the input power of the longitudinal component.
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To obtain the accurate energy flow solution of the coupled Timoshenko beam structure, the time-averaged input
power by the external force shown in Fig. 10 must be calculated as well as the power transmission and reflection
coefficients of all propagating waves. In Eqgs (54) and (55), though a point force is applied to the structure, the
time-averaged total input power is separated into powers by two kinds of flexural waves unlike the energy flow model
of the Euler-Bernoulli beam. When w > w,, the propagating transverse displacement by Eq. (1) can be expressed
as,

v(z,t) = {(A e Ik 4 Bejklcx) +(C e k2T 4 Dejkzcm)} et (57)

where A, B, C, and D are complex coefficients, k1. and ko, are the complex wavenumbers of BDFW and SDFW
including the hysteretic damping 7 respectively.
By separating the flexural waves into the BDFW and SDFW, Eq. (57) can be rewritten as,

U(:C, t) = Ul(xvt) + UQ(xvt)a (58)

where v; (:C, t) = (A e~ Jkier 1 B ejkmx) eIwt and vy (:C, t) — (C e~ JkicT 1 D ejkux) edwt
Therefore, the time-averaged input powers in Eqs (54) and (55), 11 71 4, and I1 45 ;,,, can be calculated, respectively,
as follows:

1 : 8’01 (SC(), t) * 1 i 81}2 (l‘(), t) :
o Jwt A0 R Jwt AN
i = 2Re{(Fe ) x ( o ) } Tf2.in 2Re{(Fe ) ( o . (59.60)

The time-averaged total input power can be express as the summation of the input powers by the two kinds of
flexural waves:

1 , *
Wiotarin = M1 + 1o i = §Re {(Fejwt) % (5(1)1 (xo,t)a:- Vg (moﬂf))) } . 61)

The time- and locally space-averaged far-field energy density and power for the flexural wave in the homogeneous
region ¢ of each Timoshenko beam can be expressed, respectively, as

(At 4 Buetnin) 4 (Crem ¢ b Dt (0> )
<el>f = {Ai€¢fliz + Bi6¢flim (W < wci) (Z = 1; 273) and (62)
_Cori MEi) g1 Chpai ) g (W > wei)
— . . T C1 .
<Qi>f = 67 lfi d<gf>lf1 e o (Z = 17 2) 3) (63)
s on (w < wei)

where A;, B;, C;, and D; are the coefficients determined by the boundary conditions of the homogeneous region
i, (€i);, and (€;), are the time- and locally space-averaged far-field energy densities of flexural waves with
wavenumbers k1 and ko, respectively, and w.; is the critical frequency of each beam (w.; = \/k:G; A/ pi ;).

The time- and locally space-averaged far-field energy density and power when w > w,; can be rewritten,
respectively, as

<éi>f = <éi>f1 + <éi>f2 , and <qi>f = <qi>f1 + <(ji>f2 . (64.,65)

The ¢f1; and ¢ r9; in Eq. (62) are defined, respectively, as

i W W
br1i =~ and oy = -, (66,67)
Cgfii Cqf2i

where 7); is hysteretic damping loss factor, cq4r1; and cgp2; are the group velocities of the BDFW and SDFW
respectively, in region ¢ of each Timoshenko beam.
The energy flow solutions for the longitudinal waves in the homogeneous region ¢ of each Timoshenko beam
similar to those of each Euler-Bernoulli beam, can be expressed as [2]

(&), = Mie= 1%  Nje® ™ (i =1,2,3), and (68)
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Fig. 13. The comparison of the time- and locally space-averaged energy and power levels of two Timoshenko beam with two Euler-Bernoulli
beam structures coupled with @ = 45° when f = 1 kHz, 7 = 0.1. The reference energy density is 1 x 10712 /m and the reference power is

1 x 1012 W; (a) Flexural energy, (b) Longitudinal energy, (c) Flexural power, (d) Longitudinal power.

_ Cqu d (&),

where ¢y; is defined as ¢y; = n;w/cqu;.

(1=1,2,3),

(69)

To determine the unknowns in Eqgs (62) and (68), the energy and power boundary conditions are required. Since

the energy outflows are zero at the simply supported edges, the following equations are obtained;

<61>f1 2120 = 07 <ql>f2 = 07

(@

>l|11:0 =0,
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Fig. 13, continued. The comparison of the time- and locally space-averaged energy and power levels of two Timoshenko beam with two
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reference power is 1 x 10~ 2 W; (a) Flexural energy, (b) Longitudinal energy, (c) Flexural power, (d) Longitudinal power.

(70-75)

l $3=L2 -

(@3) 11 =0, (@)

xr3 :Lz

= 0; and <(j3>

0.

xr3 :Lz

From the conservation of power and the continuity of energy density between regions 1 and 2, the following
relations are obtained;
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Fig. 14. The comparison of the time- and locally space-averaged energy and power levels of two Timoshenko beam with two Euler-Bernoulli
beam structures coupled with § = 45° when f = 50 kHz, = 0.1. The reference energy density is 1 x 107127 /m and the reference power is
1 x 10~ 12 W; (a) Flexural energy, (b) Longitudinal energy, (c) Flexural power, (d) Longitudinal power.
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Fig. 14, continued. The comparison of the time- and locally space-averaged energy and power levels of two Timoshenko beam with two
Euler-Bernoulli beam structures coupled with @ = 45° when f = 50 kHz, n = 0.1. The reference energy density is 1 x 10712 /m and the
reference power is 1 x 10~ 12 W; (a) Flexural energy, (b) Longitudinal energy, (c) Flexural power, (d) Longitudinal power.

<Q2>l|:02:7(L17930) - <ql>l|11:d70 = O’and <é2>l|12:7(L17I0) = <é1>l|m1::bo .

At the joint of the two beams, the various incident waves are converted to other types of waves. From the wave
transmission analysis discussed in previous sections, the relations among the powers of waves existing in the beams
are expressed in terms of the power transmission and reflection coefficients,

<§3>}r1 = Tf12f13 (@2)?1 + Tf22,713 <62>}r2 +7£13,£13 (@3) 51+ Vr23,513 (T3) fo
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beam structures coupled with § = 90° when f = 50 kHz, = 0.1. The reference energy density is 1 x 10712 /m and the reference power is
1 x 10~ 12 W; (a) Flexural energy, (b) Longitudinal energy, (c) Flexural power, (d) Longitudinal power.

+712, 113 (@), + V3,13 (B
(@) fo = Tri2.523 (@2) j1 + Traz.p23 (@) fo + Vr13.528 (@) 1 + Vr2s.r28 (@) 1o

+712, 23 <‘j2>z+ + Vi3, 523 (@3);



194 Y.-H. Park and S.-Y. Hong / Vibrational energy flow analysis of corrected flexural waves in Timoshenko beam

Flexural Power Level

150
100}
= o
2
=
E
o
o
=,
g
| —— Classical-Euler
| EFA-Euler
- - - Classical-Timoshenko
! --- EFA-Timoshenko

0% 02 04 o068 08 1 12 14 16 18 2
Length(m)
(©
Longitudinal Power Level
100¢
40+
20
0.

Power(dB) re=10""2 W

—— Classical-Euler
EFA-Euler
-~-- Classical-Timoshenko
| === EFA-Timoshenko

1] 02 0.4 06 08 1 12 14 16 18 2
Length(m)

(d)
Fig. 15, continued. The comparison of the time- and locally space-averaged energy and power levels of two Timoshenko beam with two
Euler-Bernoulli beam structures coupled with @ = 90° when f = 50 kHz, n = 0.1. The reference energy density is 1 x 10712.J/m and the
reference power is 1 x 10~12 W; (a) Flexural energy, (b) Longitudinal energy, (c) Flexural power, (d) Longitudinal power.
_ = A\t o+ = =
(@2) 1 =Vr12.512(@2) 1 + Vr22, 112 (@2) 52 + Tr13, 712 (@3) 51 + Tr2s,£12 (@3) o (52-87)
4+ = -
+vi2,512 (@2); + T3, 512 (@3);
_\— _\+ _\+ _ - _\—
(@) po = V112,522 (@2) 1 + V22,522 (@2) po + Tr13,22 (@3) 11 + Tr23, 522 (@3) fo
_\+ Jp—
2,522 (@2); + 13,522 (q@3),
(@) = A\ A\ - - _\+ - d
43), =Tf12,3 <q2>f1 + Tf22,13 <QQ>f2 + Yr13,i3 <Q3>f1 + V23,13 <Q3>f2 + 712,43 (G2); + Vi343 (@3); , an

G2); =7r12,2 (@2) 1+ Vre22 (@2) po + Tr13,02 (@3) 1 + Tresa2 (@3) o + V2,02 (G2); + 713,02 (@3); >
(%) (@)} + (@)}, + (@)1 + (@3) 2 + (@) + (a3)

where 722 13 means the power transmission coefficient of the transmitted BDFW in beam 3 due to the incident
SDFW in beam 2, the superscripts (+) and (—) represent wave propagation in the +z and —z directions, respectively,
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and the power can be expressed as <q>i = ¢4 (é}i in terms of the energy density. Using the upper boundary
conditions, the unknowns in Eqs (62) and (68) are calculated and the time- and locally space-averaged far-field
energy densities and powers of each wave are obtained by Eqgs (62), (63), (68), and (69). The classical solutions for
this model can be obtained by the similar procedure which is described in the other companion paper.

In the first example, when the joint angle is § = 45°, and the hysteretic damping is = 0.01, the energy flow
solutions and classical solutions of the Timoshenko beam model are compared with those of the Euler-Bernoulli
beam model at various excitation frequencies. Figure 11 shows the results for the case of f = 1 kHz. In all
sub-figures of Fig. 11, the energy flow solutions of the Timoshenko beam and the Euler-Bernoulli beam models
represent well the global variation of the classical solutions of respective models. Because the critical frequencies
of both beams in this example are about f. = 159 kHz, the excitation frequency is much lower than the critical
frequency of each beam. As expected, the time- and locally space-averaged far-field energy densities and powers
between the Timoshenko beam model and the Euler-Bernoulli beam model are not greatly different, as shown in
Fig. 11. However, as the excitation frequency increases, because the effects of shear distortion and rotatory inertia
become dominant, the energy density and power of the Timoshenko beam model become significantly different from
those of the Euler-Bernoulli beam model. In Fig. 12, the excitation frequency is set to 250 kHz, which is higher than
the critical frequency. The energy flow solutions of the two beam models show better approximation of the classical
solutions of respective beam models than the corresponding results obtained for f = 1 kHz. The flexural energy
density and power of the Timoshenko beam model show different distributions from those of the Euler-Bernoulli
beam model in Figs 12(a) and 12(c). Additionally, because the energetics of longitudinal waves used in the two
beam models are the same, the longitudinal energy densities and powers of the two beam models show the same
distributions due to the same group velocities in Figs 12(b) and 12(d). However, the levels of the longitudinal energy
densities and powers of the two beam models are not same because the flexural energy, and the power transmission
and reflection coefficients of the two beam models have different values.

In the second example, the hysteretic damping loss factor is changed into n = 0.1. Figures 13 and 14 show the
results for f = 1 kHz and f = 50 kHz, respectively. In Figs 13 and 14, the energy flow solutions and classical
solutions of each model show very good agreement with the corresponding results obtained for n = 0.01, regardless
of frequency. The energy flow solutions of the Timoshenko beam model agree well with the classical solutions
as the damping loss factor increases, like the Euler-Bernoulli beam model [7]. In Figs 13(a) and 13(c), because
the excitation frequency is much lower than the critical frequency, the flexural energy density and power of the
Timoshenko beam model have the almost same distribution and level of those of the Euler-Bernoulli beam model.
However, the levels of the longitudinal energy density and power of each model are only slightly different, as shown
in Figs 12(b) and 12(d). In Fig. 14, though the excitation frequency is lower than the critical frequency, the results of
the Timoshenko beam model are considerably different from those of the Euler-Bernoulli beam model because the
structural damping term of the Timoshenko beam model, which can be expressed as nw/c 47, is larger than that of
the Euler-Bernoulli beam model. Based on these results, generally, as the excitation frequency increases in the high
frequency ranges, the peak flexural energy density level of the Timoshenko beam model becomes higher than that of
the Euler-Bernoulli beam model, but the flexural energy density and power decrease rapidly due to large structural
damping loss as the distance from the excitation point grows longer.

In the final example, the joint angle and hysteretic damping are set to § = 90° and n = 0.1 respectively. As
expected, in all sub-figures of Fig. 15, the energy densities and powers at the joint change more than those in the
Fig. 14 of § = 45°. In Fig. 15(a), the flexural energy density is nearly zero decibel at the end of the coupled
Timoshenko beam because of the large damping loss of beam and attenuation in the joint.

4. Conclusion

For the improved vibrational energy flow analysis of coupled Timoshenko beam structures, the wave transmission
analysis on the general three-dimensional joints in the Timoshenko beam was performed. The derived power
transmission and reflection coefficients of all propagating waves in the Timoshenko beam model were compared
with those of all waves in the Euler-Bernoulli beam model and were verified for the various conditions.
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To verify the developed energy flow model and coupling relationships, numerical analyses for various examples
were performed. In the coupled Timoshenko beam structure, energy flow analyses were successfully performed
for the various coupled Timoshenko beam structures by using the derived power transfer coefficients and energy
governing equations of each kind of propagating wave. The energy flow solutions and classical solutions for coupled
Timoshenko beam structures show a good agreement at various frequencies and damping loss factors. Generally,
as the excitation frequency and damping loss factor increase, the results from the energy flow models between the
Timoshenko beam and Euler-Bernoulli beam were remarkably different.

The developed energy flow model for the finite coupled Timoshenko beam can be used as the advanced tool for
the prediction of vibrational energy density and power distributions of built-up structures composed of beams in the
high frequency ranges.
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