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Vibrational properties of single-wall nanotubes and monolayers of hexagonal BN
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We report a detailed study of the vibrational properties of BN single-walled nanotubes and of the BN
monolayer. Our results have been obtained from a well-established tight-binding model complemented with an
electrostatic model to account for the long-range interactions arising from the polar nature of the material and
which are not included in the tight-binding model. Our study provides a wealth of data for the BN monolayer
and nanotubes, such as phonon band structure, vibrational density of states, elastic constants, etc. For the
nanotubes we obtain the behavior of the optically active modes as a function of the structural parameters, and
we compare their frequencies with those derived from a zone-folding treatment applied to the phonon frequen-
cies of the BN monolayer, finding general good agreement between the two.
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I. INTRODUCTION

The discovery of the fullerenes1 in the mid-1980s and
especially, that of carbon nanotubes2 in the early 1990s has
fueled a frenzy of research activity in the field of carb
nanostructures, doubly motivated by their large potential
practical applications, on the one hand, and because t
systems constitute a new open field for basic research a
nanoscale on the other. Nanotubes can be single walle
multiwalled, and are quasi-one-dimensional~quasi-1D!
structures having large aspect ratios~the quotient of length
over diameter!. Single-wall carbon nanotubes~SWNT’s! can
be either semiconducting or metallic, depending on th
structural parameters, and can be chiral or achiral. They h
large thermal conductivity and have the highest Youn
modulus ever measured.3–6 Nanotubes can be filled with
other elements, compounds or even fullerenes in their in
nal channel, forming structures similar to nanoscale coa
cables. All these properties confer on nanotubes a large
tential for technological applications, some of which ha
already been demonstrated. Nanotubes have been us
fabricate field emission devices,7 tips for scanning probe mi
croscopy instruments,8 constituents of nanoelectroni
devices,9 gas sensors,10 composite reinforcement,11 lubrica-
tion, etc. It is therefore not surprising that these systems h
been and continue to be the focus of considerable inte
the large number of review articles12 and monographs13 de-
voted to the different aspects of fullerenes and nanotube
recent years provides further proof of this interest.

One of the probes most frequently used to characte
carbon nanotube samples is vibrational spectroscopy
specifically, Raman spectroscopy.14 Raman spectroscopy of
fers experimentalists a rapid way of estimating the diame
distribution of tubes present in a sample, because the l
frequency radial breathing mode~RBM! of SWNT’s has a
frequency which is inversely proportional to the square
the nanotube diameter, independently of the nanotube s
ture, determined by the nanotube indices (n,m). Also, the
0163-1829/2002/66~23!/235415~12!/$20.00 66 2354
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high-frequencyG-band modes resulting from atomic vibra
tions in the nanotube shell can help to distinguish betw
metallic and semiconducting nanotubes in the sample.15 Jorio
and co-workers16 have recently demonstrated the ability
Raman spectroscopy to provide full structural determinati
of isolated carbon SWNT’s. The diverse aspects of phon
in carbon SWNT’s and the use of Raman spectroscopy
tool for their characterization have been recently reviewed
Dresselhaus and Eklund.14

Soon after the discovery of carbon nanotubes it w
speculated that other materials could possibly form sim
nanostructures, since there are several elements and m
compounds which form layered structures bearing some
semblance to graphite. The most obvious candidate was
agonal BN (h-BN!, which was predicted on the basis o
theoretical calculations17,18 to be capable of forming nano
tubes, a prediction which was later corroborated experim
tally by the synthesis of such nanotubes.19 Today we know
that many other structures can form nanotubes (Mo2 ,
WS2,20 Bi,21 . . . !; nevertheless, it is still the case that carb
nanotubes continue to attract a larger interest, but certa
these other structures are interesting in their own right
may be able to offer different possibilities for technologic
applications that carbon nanotubes cannot provide. B
multiwalled and single-walled22 BN nanotubes can now b
readily synthesized, and these tubes are uniformly insulat
tending to have a zigzag structure.

As other types of nanotubes become more common, m
of the characterization tools and techniques extensively u
in the case of carbon nanotubes will undoubtedly also fi
application in the study of these other structures. In parti
lar, vibrational spectroscopy, which has proved to be suc
useful tool in the case of carbon nanotubes, is likely to pro
useful also in these cases. In this context, it is interesting
consider the phonon properties of BN nanotubes from a
oretical point of view; their study will help to develop th
characterization potential of spectroscopic techniques w
they are applied to BN nanotubes. The aim of this paper i
©2002 The American Physical Society15-1
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D. SÁNCHEZ-PORTAL AND E. HERNÁNDEZ PHYSICAL REVIEW B 66, 235415 ~2002!
provide such a theoretical study. We report extensive th
retical calculations of the vibrational properties of ah-BN
layer and of a number of BN nanotubes having diameter
the range of 0.4–2 nm, including zigzag, armchair, and s
eral chiral nanotubes. From our results for the flat sheet
have performed a zone-folding analysis in order to pred
the vibrational properties of the tubular structures from th
of the flat layer, a technique which has been frequently u
in the case of carbon nanotubes. The direct calculation of
vibrational properties of tubular structures allows us to co
pare the predictions of zone folding with the actual resu
and thus gauge the applicability of the zone-folding appro
for BN nanotubes. Other authors have previously conside
the vibrational23 and elastic24 properties of isolatedh-BN
monolayers and of bulkh-BN.25,26 Some aspects of the ela
ticity of BN nanotubes have also been studied in Refs.
and 24. However, the study of the vibrational properties
the case of BN nanotubes has not, to our knowledge, b
addressed to date.

The structure of the paper is as follows. In Sec. II w
describe the model and calculation procedure used in
study; later in Sec. III we discuss our findings, starting w
a thorough description of the vibrational properties of
isolatedh-BN monolayer, followed by the results obtaine
for the nanotubes, establishing a comparison between
results obtained from the zone-folding analysis and th
obtained from direct calculation. Our summary and conc
sions are discussed in Sec. IV.

II. MODEL AND COMPUTATIONAL PROCEDURE

All calculations have been performed using the non
thogonal tight-binding28 ~TB! parametrization of Widany
et al.29 This is a parametrization following the scheme pr
posed by Porezag and co-workers.30 This model employs a
basis set consisting of oneSand threeP functions per atom,
to represent valence states, and the resulting Hamiltonian
overlap matrix elements extend up to a range of appro
mately 5 Å. The core-core repulsion is modeled by mean
a simple pair-repulsive potential. The original work
Porezaget al.30 described a non-self-consistent TB mod
although an extension of the methodology has been prop
which incorporates some degree of self-consistency,31 here
we only have used the model of Widanyet al.29 in its non-
self-consistent form. It is worth commenting that in spite
its simplicity this model has proved to be qui
successful.29,27

The equilibrium structures of the tubes were obtained
careful minimization of the total energy with respect to bo
the atomic coordinates and the lattice constant along the
axis. For the phonon calculations, we then computed
force-constant matrix in real space using a finite-differen
approach.32 We used atomic displacements of 0.02 Å, and
force constants were taken as the average of the results
tained with positive and negative displacements, in orde
eliminate anharmonic effects. Since all nitrogen and bo
atoms are equivalent by symmetry in the tubes, we only
culated the force constants for one nitrogen and one bo
atom in the supercell and generated the rest of the ma
23541
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using the symmetry operations.
The force constants have to be calculated between a g

atom and all the other atoms in the system. However, si
the interactions in our TB model decrease rapidly with d
tance, only the elements with atoms sufficiently close hav
be computed. To do so, we set up a supercell large eno
that a sufficient number of neighbors is included. It must
kept in mind that, in the supercell geometry, a given atom
displacement in the central cell is always accompanied
the same displacement of all image atoms. We need, th
fore, to use a supercell such that the effect of the ima
displacements is negligible. For this purpose we have u
supercells containing six unit cells in the case of (n,n) and
(n,0) tubes and two and one unitcells, respectively, in
case of the~10,5! and ~10,7! tubes. The supercells contai
hence a minimum of 144 atoms for the~6,0! and~6,6! tubes
and a maximum of 384 atoms in the case of the~16,0! tube.

The above-described TB model does not by itself inc
porate any long-range electrostatic interactions. Such in
actions are important when considering the vibrational pr
erties of polar materials, because they will make a long-ra
contribution to the force constants. Therefore we have op
for correcting this shortcoming in the TB model in a phys
cally sound but otherwise empirical way. The key obser
tion in order to introduce the effects of the electrostatic
teractions is that, when an atomi suffers a displacementu( i )
from its equilibrium position, a net electric dipole of magn
tude pi5(mZnm

i um
i appears associated with this atom

movement.33 HereZnm
i is the Born effective charge tensor33

of the atomi. As a consequence, if two atomsi and j are
simultaneously displaced from their positions, besides
interaction energy given by our TB model, it is necessary
include the long-range interaction between the two elec
dipoles generated. This gives rise to a new term in the for
constant matrix of the form33

Cnm
LR~r i j !5 f ~r i j ! (

n8m8

Znn8
i Zmm8

j

e S dn8m8

r i j
3

23
r i j n8r i j m8

r i j
5 D ,

~1!

where the superindexLR in Cnm
LR(r i j ) indicates that this is the

long-range contribution to the force constants;f (r i j ) is a
switching function~see below!, e is the dielectric constant
r i j is the vector going from atomi to atom j, and r i j is the
distance between these two atoms. The switching functio
designed to come into play at distances sufficiently large
as to not affect the TB model; it takes the form

f ~r !512e2(r /r c)3
. ~2!

Following the usual approach,33 it is also necessary to
modify the on-site elements of the force matrix in order
satisfy the acoustic sum rule. Therefore, we take

Cnm
LR~0i i !52(

j Þ i
Cnm

LR~r i j !. ~3!

The Born effective charge tensor has been taken from re
ab initio density functional calculations:26 Z'

B52Z'
N50.82
5-2
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VIBRATIONAL PROPERTIES OF SINGLE-WALL . . . PHYSICAL REVIEW B 66, 235415 ~2002!
for out-of-plane and Zi
B52Zi

N52.71 for in-plane
displacements.34 We have takene54 andr c52.6 Å, the dis-
tance of separation between second nearest neighbors i
h-BN layer. We have not attempted to fit these values
order to improve the agreement of our results with exp
mental measurements. Rather, our approach has been to
reasonable values for them in order to estimate the effec
the polar interactions on the vibrational properties of the
monolayer and in the nanotubes. Our chosen value fore is
close to the experimental one forh-BN ~4–5 depending on
the direction35,26!, and the value ofr c used in Eq.~2! is
motivated by the fact that force constants arising from
TB model alone decay very rapidly with distance, and th
are already very small at this value ofr c , as can be seen in
Fig. 1. By choosingr c equal to the second nearest-neighb
distance we ensure a smooth switching between the sh
range TB model and the long-range electrostatic one, w
minimum interference between them.

Once we have the force-constant matrix in real space,
can calculate the dynamical matrix in reciprocal space
diagonalize it to obtain the phonon modes and frequenc
In the case of bulk polar systems the computation of
dynamical matrix in reciprocal space has to be made w
some care. The reason is that, due to the long-range natu
the dipole-dipole interaction in Eq.~1!, a different limit for
the dynamical matrix is obtained, as the phonon wave ve
k approachesG, in the cases of longitudinal and transvers
vibrations. In our case however, due to the reduced dim
sionality of the systems considered~a monolayer and single
walled tubes!, the Fourier transform of the dynamical matr
can be performed without further complications by simp
adding up the elements of the real-space matrix with
appropriate phase factors. Given its simple analytical fo
we can include a large number of neighbors~we typically
take all neighbors within a radius of;200 Å) in the sum-
mation involving the dipole-dipole interactions and guara
tee a good convergence. The same limit is found for b

FIG. 1. Force constants derived from the TB model~symbols!
and the typical behavior of the electrostatic interactions@approxi-
mated in the plot byf (r )Zi

2/(er 3)] ~solid line!, as a function of
distance. The inset shows more clearly the behavior for large
tances.
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polarizations whenk→G, and there are no splittings be
tween in-plane longitudinal and transversal optical mode
G ~see the Appendix!.

III. RESULTS AND DISCUSSION

One of the aims of this work is to judge the validity of th
zone-folding approach for obtaining phonon information
tubular structures from the phonon band structure of the
sheet, a procedure which has been frequently used in the
of carbon nanotubes.14 To this end we have performed
phonon analysis of the flat sheet and of several nanotu
~armchair, zigzag, and chiral! so as to compare the zone
folding results with those obtained directly from the tubu
structures. In the following we will first present the resu
obtained for the flat sheet, followed by those for a selec
set of nanotubes. The comparison between these latter re
and the zone-folding predictions will be then presented.

A. Flat sheet

Using the TB model discussed in Sec. II, with and witho
the dipolar interactions, with a supercell containing 192
oms we have obtained the phonon dispersion curves and
brational density of states for a flat sheet ofh-BN, plotted in
Fig. 2. In order to check the convergence of the results w
respect to the supercell size, we performed a test wit
supercell containing 320 atoms; the results obtained with
smaller cell are indistinguishable from those of the larg
cell, and hence all subsequent analysis was performed
the 192-atom cell results. We also performed a more deta
analysis of the convergence of the phonon bands with res
to the lower threshold of the elements of the real-space fo
constant matrix included in the construction of the dynami
matrix. We focus first on the convergence with respect to
TB force constants. We found that including all the couplin
coming from the TB Hamiltonian with absolute value larg
than 1.231022 eV/Å2 was necessary to adequately conver
all bands. This threshold corresponds to a spatial cutof
6.7 Å, which includes all atoms within the tenth neare
neighbor shell. This large cutoff is required to correctly r
produce the quadratic behavior of the lowest acoustic b
~labeled ZA in Fig. 2! in the limit k→G, with a zero sound
velocity ~slope of the band! as k approachesG. This qua-
dratic behavior of the ZA band is a consequence of the
that, at least to the lowest order in its amplitude, the str
energy created by this vibration is solely associated with
curvature that this out-of-plane bending mode induces in
layer. Optical bands typically converge much faster~ca. in-
cluding interactions with neighbors within the third or four
nearest-neighbor shell!. It is worth mentioning in this respec
that in the earlier theoretical work of Miyamotoet al.23 a
supercell which only permitted the inclusion of seco
nearest-neighbor interactions was used due to computati
limitations ~Miyamoto and co-workers used first-principle
methods, which are significantly more costly, to evaluate
force-constant matrix!. Although inclusion of up to second
nearest-neighbor interactions is sufficient to adequately c
verge most bands, it fails to reproduce the overbending~see

s-
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D. SÁNCHEZ-PORTAL AND E. HERNÁNDEZ PHYSICAL REVIEW B 66, 235415 ~2002!
below! of the longitudinal-optical~LO! band, for which the
maximum occurs not atG but approximately halfway along
the symmetry linesG-M andG-K , and is insufficient to re-
produce the quadratic behavior of lowest acoustic b
aroundG.

Let us now comment briefly on the convergence with
spect to the long-range electrostatic interactions. As alre
commented in the previous section, due to its simple ana
cal form, we have used a large cutoff of 200 Å for the dipo
dipole interactions. However, we have checked that alre
with a cutoff of ;25 Å the results are well converged. Fu

FIG. 2. ~a! Phonon band structure of the BN hexagonal mon
layer ~right! and the corresponding density of vibrational sta
~left!; thick lines correspond to band structure and density of st
calculated with electrostatic interactions included, while thin lin
give results obtained only with the TB model.~b! Projected density
of states on the B atoms; the solid line represents the densit
states projected onto the plane of the monolayer, while the da
line gives the density of states projected perpendicular to the p
of the monolayer.~c! As in ~b! for the N atoms.
23541
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ther reducing the interaction range starts to have an ap
ciable effect. Not only the position of the optical branches
and close toG start to shift from their converged values, b
the finite slope atG that the LO mode must exhibit as
consequence of the long-range nature of the interactions
disappears~see the Appendix A!.

As can be appreciated in Fig. 2, due to the tw
dimensional character of the system, there is a separa
between in-plane and out-of-plane modes, the latter being
lower-frequency ones, with a maximum atG of 719 cm21

with dipolar interactions included~706 cm21 if these are not
included!. This frequency separation is to be expected, si
in-plane modes excite both bond stretchings~hard! and bond
bendings~soft!, while out-of-plane modes result mostly i
bond-bending motion and very little bond stretching. T
highest-frequency bands, the LO and the transversal-op
~TO!, have a frequency atG of 1446 cm21 when the dipolar
interactions are included~1479 cm21 without!. The maxi-
mum of the LO band occurs not atG, but at an intermediate
point away from the Brillouin zone edges, as pointed o
above. This is known as overbending, and the presenc
overbending in the flat sheet phonon band structure can h
interesting consequences for the phonon band structur
the nanotubes, as it may lead to the appearance of
modes atG having higher frequencies in the tubular stru
tures than in the flat sheet.36 Note that including the dipolar
interactions increases the overbending, which is mu
smaller when the electrostatics are not appropriately
counted for. Another noteworthy characteristic of the phon
band structure displayed in Fig. 2~a! is the splitting of ap-
proximately 250 cm21 existing between the ZO and ZA
bands alongM-K . In a homopolar hexagonal sheet such
graphene these two bands cross atK .37

From the slopes of the transversal-acoustic~TA! and
longitudinal-acoustic~LA ! bands in the limitk→G we de-
duce a sound velocity of 13 km/s and 21 km/s, respectiv
As already pointed out above, the ZA band exhibits ak2

behavior in this limit, as expected, and therefore the so
velocity associated with this band is zero. Fitting the fr
quencies below 250 cm21 to the expressionv52pn5dk2

1gk3, we can estimate a value ofd'1820660 cm21 Å2

55.560.231027 m2 s21. This parameter is interesting be
cause it allows us to estimate the energy necessary to ro
the BN sheet in order to form the nanotubes. Simple ar
ments show that the strain energy per atom can be appr
mated byEst5C/r 2 with C5d2(mN1mB)/4, mN and mB
being the masses of the nitrogen and boron atoms, res
tively, andr the tube radius. The value obtained forC in this
way is 1.91 eV Å2, which is in reasonable agreement wi
the magnitude obtained from total energy calculations p
formed using both a tight-binding Hamiltonian similar to th
one utilized here27 and first-principles density functiona
calculations.18,24 A similar estimation in the case o
graphene37 (d'631027 m2 s21) leads to a valueC
'2.3 eV Å2. Therefore, already looking at the phonon ba
structures it is possible to find an indication that the str
energy is smaller in the case of BN tubes than for carb
nanotubes, a result which is confirmed by more sophistica
calculations.18,27,24,38
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VIBRATIONAL PROPERTIES OF SINGLE-WALL . . . PHYSICAL REVIEW B 66, 235415 ~2002!
Using the calculated force-constants matrix we can
rectly obtain the elastic constants39 of the flat sheet, which
are given in Table I. In bulk three-dimensional systems i
customary to quote elastic constants in units of pressure,
to the inverse equilibrium cell volume factor that appears
the definition of the elastic constants.39,40 However, in two-
dimensional systems the definition of the cell volume is
bitrary, and it is therefore more appropriate to use cell are
the definition of the elastic constants;27 hence, we provide
our results in units of pressure times length. Comparing w
previous calculations in the literature, our result forCxxxx is
in reasonable agreement with the value of 0.271 TPa nm
tained for the in-plane stiffness41 by Kudin and co-workers
using density-functional theory and Gaussian-type orbital24

Our result is also in quite good agreement with the value
0.309 TPa nm that can be deduced from the plane-w
density-functional calculation of the elastic constants of b
h-BN reported by Ohbaet al. in Ref. 26 ~we use here the
calculated interlayer distance of 3.25 Å to translate the d
from the bulk to the monolayer geometry!. However, the
comparison is poorer for theCxyxy elastic constant, for which
the data of Ohba and co-workers translate into 0.055 TPa
for the monolayer~roughly half our value!. The origin of this
large discrepancy is unclear, although it might be related
the interactions with neighboring layers, which are n
present in our case.

For a hexagonal two-dimensional crystal only two elas
constants are required,42 and due to the underlying crysta
symmetry, we obtain the following rule:

Cxxxx5Cxxyy12Cxyxy. ~4!

This provides an internal consistency check for our resu
which as can be seen from the results in Table I, is satis
torily obeyed@the numerical value obtained forCxxxx using
Cxxyy and Cxyxy in Eq. ~4! is within 3% of its calculated
value, given in Table I#. A second consistency check is pr
vided by the comparison of these values of the elastic c
stants with those obtained from the sound velocities repo
above using the identities

vLA
2D5ACxxxx

r
, vTA

2D5ACxyxy

r
, ~5!

wherer is the surface mass density of the sheet. These
are also given in Table I. As can be seen there, the va

TABLE I. Elastic constants and Young modulusY, in units of
TPa nm, and Poisson ratios of the flat BN hexagonal sheet, a
calculated directly from the force-constant matrix given by o
model. The results obtained from the sound velocities of the TA
LA bands@see Eq.~5!# are shown in brackets.

Cxxxx[C11 0.343~0.322!
Cxxyy[C12 0.119
Cxyxy[C66 0.107~0.123!
Y 0.302
s 0.347
23541
i-

s
ue
n

-
in

h

b-

f
ve
k

ta

m

to
t

c

s,
c-

n-
d

ta
es

obtained in these different fashions are in rather good ag
ment. From the elastic constants we can also calculate42 the
Poisson ratio

s5
Cxxyy

Cxxxx
~6!

and Young’s modulus

Y5
Cxxxx

2 2Cxxyy
2

Cxxxx
. ~7!

The values obtained fors and Y are also given in Table I.
These values can be compared with those obtained pr
ously for BN nanotubes using the same TB model;27 the
value of s obtained here is a little bit larger than that o
tained for the nanotubes~0.263!, but the agreement with the
tube Young’s modulus~0.298–0.310 TPa nm depending o
the tube diameter! is nearly perfect. We also point out tha
the inclusion of the dipolar interactions does not affect
values of the sound velocities or elastic constants, as
pected from the fact that they only influence the hig
frequency optical phonon bands, but not the acoustic one
can be seen in Fig. 2.

At the zone edge the ZA band corresponds mostly
N-atom out-of-plane displacements, while the ZO mode c
responds to B displacements. This is most clearly seen
Figs. 2~b! and 2~c!, which show the partial vibrational den
sity of states~DOS! separated into its in-plane and out-o
plane atomic contributions.

The frequency of the Raman and infrared-active~IR!
modes in bulk h-BN has been investigated by sever
authors35,43–45obtaining similar results. The values reporte
for the high-energy Raman-activeE2g mode are 1366~Refs.
44 and 43!, 1367 ~Ref. 45!, and 1370~Ref. 35! cm21. For
the IR modes the values given in the literature are 1367~Ref.
35! and 138365 ~Ref. 45! cm21 for the E1u(TO) mode,
1610 ~Ref. 35! cm21 for the E1u(LO) mode, and 77063
~Ref. 45! and 783~Ref. 35! cm21 for theA2u(TO) mode. At
this point it is important to note that, since our calculatio
refer to a freestanding~isolated! flat sheet ofh-BN rather
than to the bulk material, the comparison with these exp
mental observations has to be made with some care. In a
ogy to the case of graphite and assuming relatively w
interlayer interactions, the frequencies of a single BN sh
should be closely related to those of the bulk. However, th
is an important exception related to the role of the long-ran
electrostatic interactions. In a strictly 2D system like the o
treated here~i.e., a sheet of monatomic thickness!, the elec-
trostatic interactions do not result in a macroscopic term aG
for in-plane modes, and hence we do not obtain any LO-
splitting in that limit ~see the Appendix A!. This striking
difference is quite notorious, for example, comparing o
phonon band structure in Fig. 2~a! with the calculations for
bulk h-BN diplayed in Fig. 3 of Ref. 25. The absence
LO-TO splitting for the systems of reduced dimensional
considered here turns out to be quite important when con
ering the applicability of the zone-folding approach to t
vibrational properties of BN nanotubes, a point to which w
will return below.

r
d
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Our results for the planar BN sheet have, therefore, to
compared with the TO frequencies of the bulk. We obtain
the highest modes atG a frequency of 1446 cm21, to be
compared against the empirical values of theE2g and
E1u(TO) modes, and 719 cm21 for the ZO mode, to com-
pare with the measurements for theA2u(TO). The discrep-
ancies are therefore smaller than 10%, which we regard
acceptable, given the simplicity of the TB model employ
in this work. It is noteworthy that the effect of the inclusio
of the long-range electrostatic interactions improves
comparison with experiment, correcting the underestima
of the ZO(G) frequency and the overestimation of the TO(G)
and LO(G) values, as well as giving a more realistic ove
bending of these modes alongG-M and K -G. We should
emphasize here that no empirical information on vibratio
or structural properties has been used in the construction
parametrization of the model.29 As pointed out above, it is
also important to take into account that at least some of
discrepancy may not be attributed to the model, but to
geometry used in the supercell calculation. The presenc
nearby sheets in the experiment is likely to soften somew
the in-plane LO and TO modes, while hardening the Z
mode, which could account for some of the discrepancy
tween our results and the experimental ones. Discrepan
of similar size also occur between the first-principles valu
of Miyamoto et al.23 and the experimental values. The ove
all topology of our phonon band structure is in good agr
ment with the results of Miyamotoet al.,although we canno
make a direct comparison due to the unusual shape of
h-BN supercell used in that work. Kernet al.25 have also
performed first-principles density-functional calculations
the phonon properties of both cubic andh-BN. Our phonon
band structure is in reasonable agreement with that obta
by them, bearing in mind the different methodologies a
geometries used in their work and ours.

Rokutaet al.46 have obtained the phonon spectra of a B
monolayer deposited over a series of metal surfaces~Ni, Pd,
and Pt! using high-resolution electron-energy-loss spectr
copy. Again, there is overall good agreement between
results reported by Rokuta and co-workers and our own.
terestingly, they find no splitting atG between the LO and
TO modes when the BN monolayer is placed over a Ni~111!
surface, but some splitting is seen when the other metals
used. This result was considered as quite surprising by th
authors, especially taking into account that Ni~111! was the
sole substrate on which BN formed well-ordered commen
rate monolayers, and it was suggested that this is becaus
can effectively screen the polarization field of the LO mod
while Pd and Pt cannot. However, we maintain that the
larization field only arises in 3D systems; in the 2D case
electrostatic interactions do not give rise to a macrosco
field for in-plane modes—i.e., the field has zero compon
at G—and hence there is no splitting of the TO and LO ban
in that limit. However, the electrostatic interactions do gi
rise to nonzero components of the field in regions of
Brillouin zone away fromG, and these result in a highe
overbending when the electrostatic interactions are includ
Another consequence of the inclusion of the electrostatic
23541
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teractions is the fact that the LO mode approachesG with a
finite slope, which does not occur when the electrostatics
not included@see Fig. 2~a!#.

Prompted by this experimental study, we have conside
the effect of the presence of an ideal metal surface in
proximity of the BN layer on the phonon properties of th
latter. The metal surface is simply considered as a med
which generates dipolar images of the BN monolayer. T
net result is to effectively shorten the range of the elect
static interactions: the finite slope of the LO mode atG is
lost, and although quadrupolar interactions persist in the B
metal surface system, the dipolar interactions are scree
out.

Interestingly, Rokutaet al.46 report a degeneracy of th
ZO and ZA modes atK . This is unexpected, because su
modes should display a splitting related to the differe
masses of B and N. The fact that no splitting is observed
the experiments is probably a result of a deviation from p
narity in the BN monolayer due to the presence of the me
surface. Another important point might be the quite differe
positions occupied by B and N atoms on the surface. In f
Rokuta and co-workers reported a buckling of the BN mon
layers on Ni~111!, where B atoms, which occupy fcc sites, l
0.2 Å below the N atoms, which are positioned directly
top of the Ni atoms in the surface.

B. Nanotubes

Let us now move on to discuss the results obtained
BN nanotubes. We have considered a series of (n,n) ~arm-
chair!, (n,0) ~zigzag!, and (n,m) (nÞmÞ0, chiral! nano-
tubes. For (n,0) nanotubes we have included all tubes withn
from 6 to 16, i.e., diameters from 5 to 14 Å, approximate
while for (n,n) tubes we considered specifically the~6,6!,
~10,10!, and~15,15! tubes, with diameters between 8 and
Å. Only two chiral nanotubes were considered, since th
structures usually have very large unit cells, namely,
~10,5! and ~10,7! tubes, with diameters of 10.6 and 11.9 Å
respectively.

In Fig. 3, for the~10,10! tube, and Fig. 4, for the~14,0!,
we compare the phonon dispersion curves calculated dire
from the tube structure and those obtained for the same tu
employing the zone-folding approach from the phonon ba
of the flat sheet discussed above. First, let us remark tha
zone-folding method cannot reproduce certain low-ene
modes; in particular, it cannot give rise to a breathing mo
which in the flat sheet corresponds to a zero-energy tran
tion perpendicular to the plane. However, the high-freque
modes are expected~and indeed are! to be reasonably wel
described. In spite of the limitation regarding low-frequen
modes, the zone-folding approach has been extensively
for the interpretation of experimental results of carbon na
tube vibrational modes,14,36 partly due to its simplicity and
also to the fact that the phonon modes of graphite can
determined with very high accuracy. One of the aims of
present paper is to study if the zone folding approximat
can also be useful in the case of the BN nanotubes.

Generally speaking, for experimentally relevant tube
ameters, the zone-folding method reproduces quite well
5-6
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VIBRATIONAL PROPERTIES OF SINGLE-WALL . . . PHYSICAL REVIEW B 66, 235415 ~2002!
overall phonon band structure. Deviations can be larger
the smaller nanotubes, where the effects of curvature
more noticeable. In particular, we shall see below how c
vature effects influence the breathing mode. Another dif
ence that can be appreciated between the tube dispe
bands and those determined from zone-folding is a gen
softening of frequencies for the explicit calculation, whe
curvature effects are taken into account. The downward s
is especially clear at high frequencies, but is also noticea
at intermediate ones. This shift is not homogeneous, an
has also a nontrivial dependence on the wave vector an
the nature of the mode~radial or tangential!.

Also shown in Fig. 4 is the vibrational DOS for the~14,0!
tube decomposed in the different directions of the atom
displacements. This curve resembles closely the result
tained for the BN monolayer. There is a clear energy se
ration between radial and tangential modes~parallel or per-
pendicular to the tube axis!, the radial modes correspondin
to frequencies below;700 cm21. This corresponds to the
already mentioned separation between out-of-plane and
plane modes in the case of the planar sheet, as coul
expected, since the radial modes are roughly derived f
the out-of-plane vibrations of the plane.

There are four acoustic bands for the tubes. They co
spond to a longitudinal mode~atomic displacements paralle
to the tube axis!, two degenerate transversal modes~atomic
displacements perpendicular to the tube axis!, and a torsion
of the tube around its axis~the so-calledtwistonband which,
in the limit of k50, generates a rigid rotation of the tub
around its axis!. This last mode is characteristic of a on
dimensional system like the nanotubes, and no analog ca
found for the bulk or the infinite planar sheet. According

FIG. 3. Comparison of the the phonon dispersion curves of
~10,10! tube ~40 atoms in the unit cell and a diameter of 13.9!
calculated directly from the tube structure and those obtained u
the zone-folding approach from the results for the flat sheet sh
in Fig. 2~a!.
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Saitoet al.47 and in contrast to the case of the flat sheet,
four bands would be required to approachG linearly. This
relates to the fact that none of the acoustic bands of
nanotubes is solely derived from the quadratic out-of-pla
acoustic band of the sheet: the transversal acoustic band
be regarded as a combination of the TA in-plane and
out-of-plane modes of the planar sheet. However, it is in
esting to point out here that the low-energy behavior of
transveral acoustic bands in the nanotubes is still the sub
of some controversy and some authors have recently
posed that these bands should exhibit a quadratic beha
for small values ofk.48,49The situation is more clear for th
other acoustic bands since it is possible to establish a o
to-one correspondence between the longitudinal and twis
bands of the tubes and the LA and TA bands of the pla
sheet, respectively. In fact, the sound velocities of the la
bands are, within the precision of the calculations
(;1 km/s), independent of the tube radius and chirality, a
almost identical~although somewhat smaller! to those of the
corresponding planar-sheet bands. Similar results have b
obtained for the case of the carbon nanotubes.47,50 This in-
sensitivity to the tube structure and radius confirms the p
dictions of a simple continuum elasticity model of th
tubes51 where the elastic constants are directly taken fr
the planar sheet, from which one obtainsvLA

tube5vLA
2D and

v twiston
tube 5vTA

2D . The independence of the mechanical prop
ties on the chirality of the tubes is here a simple conseque
of the isotropy of the underlying hexagonal structure of t
BN planes. We have used this model to estimate the so

velocity of the transversal band, obtainingvTA
tube5A1

2 vTA
2D

59km/s. In the TB calculations, however, the transvers
bands seem to be more sensitive to the numerical uncer

FIG. 4. Same as Fig. 3 for the~14,0! tube~56 atoms in the unit
cell and a diameter of 11.3 Å!. The vibrational density of state
decomposed in the different directions of the atomic displacem
is also shown. Solid lines for out-of-plane displacements a
dashed lines for in-plane displacements.
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ties than the other acoustic bands, being difficult to extrac
accurate slope. In fact, although the transversal bands ap
ently exhibit a linear dependence with the phonon wave v
tor ~see Figs. 3 and 4!, for very small values ofk, and con-
sequently for very small frequecencies, they seem to b
slightly. This would be roughly consistent with th
proposed48,49 quadratic behavior, although problems of n
merical accuracy cannot be ruled out. The clarification of t
point will be the subject of future work. Here we have d
cided to make an estimation of the sound velocity of
transversal modes from the slope of these bands in the re
where they still exhibit a clear linear behavior. In this w
we have found values ranging from 7 km/s, for the narrow
tubes, to 8 km/s, for those with larger diameters. This
again in reasonable agreement with the result that we
tained from continuum elasticity theory.

In Fig. 5 we have plotted the frequencies of the optica
active modes for the different tubes considered as a func
of the tube radius.52 The values plotted have been obtain
including the long-range electrostatic interactions, but
picture does not change significantly if they are n
included.53 We have classified the modes according to
corresponding symmetry point group,54 which for zigzag
(n,0) nanotubes isC2nv , for armchair (n,n) nanotubes is
C2nh , and for chiral (n,m) nanotubes isCN , where N
52(n21m21nm)/dR with dR being the greatest commo
divisor of 2n1m and 2m1n,54 i.e., N570 for the ~10,5!
nanotube andN5146 for the ~10,7! nanotube. The tota
number of Raman- and IR-active modes and their distri
tion over the frequency spectrum are very similar for bo
zigzag and chiral nanotubes. In the (n,0) nanotubes the ro
tationally invariant modes can be classified according to h

FIG. 5. Active modes for the (n,0), chiral and (n,n) BN nano-
tubes considered in this work. Symbols have the same meanin
(n,0) and chiral tubes, except that for chiral tubesA1 has to be read
as A ~see the text!. See Ref. 52 for the numerical values of th
frequencies.
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they transform under reflection through the symmetry pla
sv , namely,A1 andA2 modes; only the first are Raman an
IR active, theA2 being inactive. The chiral tubes do no
contain asv mirror plane, and therefore all sixA modes are
active. In total, the (n,0) nanotubes have eight modes wi
nonzero frequency which are both IR and Raman ac
~three belong to theA1 representation and five to theE1) and
six modes (E2) which are only Raman active, while for th
chiral tubes the count is nine IR and Raman modes~four A
and fiveE1) plus six (E2) Raman active modes.54 In the case
of the (n,n) nanotubes, due to the existence of inversi
symmetry in the point group, the active modes can only
either IR or Raman active, having a total of four IR-acti
~one Au and threeE1u) and nine Raman-active~threeAg ,
two E1g , and four E2g) modes. Comparing with carbo
nanotubes, the bigger difference appears in the case o
(n,0) nanotubes, where the number of active modes is ne
double for BN nanotubes than for carbon nanotubes.55

In Fig. 6~a! we have plotted the frequency of the breat
ing mode as a function of the tube radius. This mode is
importance in carbon nanotubes because it can be corre
with the tube radius and it is Raman active for all tu
chiralities. The same is true here. Although there are mi
deviations at small radii~below 4 Å!, the breathing mode
frequency follows very closely a dependence on the inve
of the tube radius:nBM(r )5A/r . This is corroborated in the
log-log plot shown in the inset of Fig. 6~a!, which fits very
well to a linear behavior with a slope20.9760.01 (21.09
60.03 including the tubes withr ,4 Å). Leaving out the
tubes with r ,4 Å, a fit to this expression givesA
51091 cm21 Å, with a standard deviation smaller than
cm21. This value is quite insensitive to the tube structure,
occurs also with carbon nanotubes.37,56 As can be seen in
Fig. 6~a!, the breathing mode exhibits a hardening for t
smaller structures (r ,4 Å) with respect to what would be
expected from ther 21 fit to the frequencies of the tubes wit
the larger diameters. If we include the frequencies of
smaller tubes, the quality of the fit decreases~mean deviation
of 16 cm21) and the value obtained forA increases to 1160
cm21Å, in accordance with the mentioned hardening. Int
estingly, this behavior is the oppositte to what was obser
for the carbon tubes,37 where there is a softening of th
breathing mode for increasing curvature. Therefore, this
fect must be related to a unique characteristic of the
tubes as compared to the carbon nanotubes: the buc
structure of its surface. For small- and moderate-radius
nanotubes, the B atoms lie somewhat closer to the nano
axis than the N atoms. This buckling is of the order of 0.1
for the smallest nanotubes, but decreases rapidly with
creasing radius.27 Figure 6~b! shows how the nanotube atom
are displaced in the breathing mode. The values plotted
the magnitude of the radial displacement of B atoms (dRB)
divided by that of the N atoms (dRN). For dRB /dRN51 the
displacements are of equal magnitude, and we would ha
pure breathing mode, just as in a carbon nanotube. The
served behavior is slightly different: for tubes withr ,4 Å
the displacement of the N~outer! atoms is larger than that o
the B ~inner! atoms. This can be explained in a simple mod

for
5-8
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VIBRATIONAL PROPERTIES OF SINGLE-WALL . . . PHYSICAL REVIEW B 66, 235415 ~2002!
as a consequence of the tendency to preserve in the patte
displacements of this vibrational mode the bond angles of
buckled surface.

As is well known,24,48,56the constantA can be estimated
from the elastic constants of the plane,

A'
1

2p
ACxxxx

r
5

1

2p
vLA

2D . ~8!

Using this equation we obtain the valueA51135 cm21 Å,
which is in reasonable agreement with the value found by
direct calculation.

Finally, let us discuss the ability of the zone-folding a
proach to predict the frequencies of the active modes of
nanotubes. In Figs. 7 and 8 we plot the frequencies obta

FIG. 6. ~a! Frequency of the radial breathing mode of BN nan
tubes as a function of tube radius. The inset presents a log-log
which clearly shows ther 21 behavior. Panel~b! shows the relative
radial displacement of the B atoms and the N atoms in the ra
breathing mode. The evolution of the buckling in the nanotu
structure is plotted in the inset as a function of the radius. T
meaning of the symbols is identical in all the panels and plots.
Ref. 52 for the numerical values of the frequencies.
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from zone folding side by side with those obtained direc
from the nanotubes, in both cases including the electrost
interactions. For clarity, this is done separately for interm
diate frequencies~around 700 cm21) and for high frequen-
cies ~above 1250 cm21) and separately for (n,0) and (n,n)
nanotubes. Overall, we can say that zone folding is capa
of rather accurate estimations of the actual frequencies,
ticularly for nanotubes with radii larger than 4 Å. In this ca
even the ordering of the modes is accurately reproduc
both for (n,0) and (n,n) tubes. The intermediate frequenc
modes are very well reproduced, but there is a slight ove

-
lot
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FIG. 7. Comparison between the optically active modes p
dicted by the zone-folding approximation and those obtained
rectly from the tubes geometry. Here we show the results for (n,0)
BN tubes withn running from 6 to 14. The modes have been cla
sified according to their symmetry~the meaning of the symbols i
the same in the four panels!. For clarity, intermediate frequencie
~around 700 cm21) and high frequencies~above 1250 cm21) are
shown separately. See Ref. 52 for the numerical values of the
quencies.

FIG. 8. Same as Fig. 7 but for (n,n) tubes, withn56, 10, and
15. See Ref. 52 for the numerical values of the frequencies.
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D. SÁNCHEZ-PORTAL AND E. HERNÁNDEZ PHYSICAL REVIEW B 66, 235415 ~2002!
timation of the high-frequency modes, of the order of a f
tens of wave numbers.

That the zone-folding approach is capable of provid
accurate estimates of the BN nanotube phonon frequen
rests in the absence of ak50 ~macroscopic! dipolar field in
the BN monolayer. The reduced dimensionality of the syst
prevents the buildup of ak50 component of the electrostat
field, which thus only has a finite range. Therefore, no sp
ting of modes is observed atG; the only effect of the elec-
trostatic interactions is to shift slightly the high-frequen
modes and to confer a finite slope to the LO mode in thk
→G limit, modifications which do not prevent zone foldin
from providing accurate estimates of the phonon modes
isolated nanotubes. A subtle point here is that the applica
ity of zone folding in the case of BN also depends on
degree of transferability of the dielectric constante and the
Born effective charges@see Eq.~1!# between the monolaye
and nanotube geometries. For small nanotube radii there
be noticeable changes in the dielectric constant, but thi
unlikely to affect the application of zone folding to all bu
the narrowest nanotubes.

IV. SUMMARY AND CONCLUSIONS

In this work we have presented a detailed analysis of
vibrational properties of a BN monolayer and of sing
walled BN nanotubes of different diameters, including (n,0),
(n,n) and two chiral nanotubes. Our calculations are ba
on a nonorthogonal TB model complemented with lon
range electrostatic interactions, not included in the
model. The incorporation of these electrostatic interacti
corrects to some extent the deficiencies of the TB mode
intermediate and high frequencies in the BN layer. Usin
simple model for a metal surface, we have analyzed the
fluence of placing a BN monolayer over such a surface
the phonon bands of the monolayer. The effect appears t
small and confined only to the high-frequency range, ab
1250 cm21. Generally, our calculated phonon frequenci
sound velocities, and elastic constants are in good agree
with previous experimental and theoretical results. Conce
ing the nanotubes, we have obtained phonon band struc
and have analyzed the optically active modes~IR and Ra-
man! as a function of the nanotube structure and radius.
have also performed a detailed comparison between the
dictions of the zone-folding approach and the actual frequ
cies of optically active modes obtained directly from t
nanotubes, finding rather good agreement between the
for all except the narrower tubes, having radii below 4
High-frequency mode frequencies are systematically ove
timated by about a few tens of wave numbers, but interm
diate mode frequencies are given with high accuracy. Th
fore, zone folding should also be useful in the context of B
nanotubes, as it has been in spectroscopic studies of ca
nanotubes. We also report on the behavior of the freque
and the pattern of atomic displacements of the radial bre
ing mode as a function of the tube radius.
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APPENDIX ABSENCE OF LO-TO SPLITTING FOR A BN
MONOLAYER

In this appendix we briefly discuss the role of long-ran
electrostatic interactions in a monolayer, comparing the
sults with those found for bulk systems. Let us conside
thin slab of polar material parallel to thexy plane. We focus
first on the in-plane optical modes, for which the atom
displacementsu are parallel to thexy plane. Associated with
this phonon there is an electric polarization fieldP5(1/A)
3(Zu) f (z)cos(k"r ) and a charge densityrP52¹"P, where
Z is the Born effective charge tensor within the unit cell,A is
the area of the unit cell, andf (z) is a function related to the
profile ~number of layers! of the slab which can be approx
mated byd(z) for a monolayer. We stress thatk, u, andP
are all parallel to the slab for pure in-plane modes. For
particular case of a system with hexagonal symmetry, l
our BN sheets, the in-plane properties are isotropic, anZ
can be regarded as a scalar. Although this is not crucial
our arguments, we will make this simplification in the fo
lowing. The charge densityrP is proportional to the produc
k"u, and no macroscopic charge accumulations appear du
the TO modes. However, a macroscopic electric fieldEmac
can appear associated with the LO modes. The correct l
whenk→0 is then calculated by solving Poisson’s equati
for r

P
. The components of the electric field in the directio

parallel to the slab are

Emac
i 5

4pZ

Ae

~k"u!

k
kiB~z,k!cos~k"r !, ~A1!

wherek is the modulus ofk andB(z,k) is given by

B~z,k!5E
2`

`

da
f̄ ~ak!e2 i (akz)

11a2
, ~A2!

f̄ (q) being the Fourier transform off (z). Once the electric
field has been calculated, the corresponding modification
the force-constant matrix can be obtained taken into acco
that the force acting on an atom is given byF5ZEmac.33 In
the case of the monolayer we takef (z)5d(z), then
B(z50,k)51/2, and the correction of the force-contant m
trix for the in-plane modes becomes

Ci j 5
2pZ2

Ae

kikj

k
. ~A3!

This correction goes to zero whenk→0 irrespective of the
polarization of the mode and, therefore, both LO and T
in-plane modes have the same frequency. This is in ag
ment with the results obtained for slabs of ionic materi
5-10
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VIBRATIONAL PROPERTIES OF SINGLE-WALL . . . PHYSICAL REVIEW B 66, 235415 ~2002!
using different models:57,58pure in-plane optical modes hav
frequencies close to those of the TO phonons in the b
The linear behavior of the LO mode as it approachesG can
also be noticed. We move now to analyze the bulk limit.
taking f (z)51/L, L being the distance between atomic la
ers, we can study the limit for bulk phonons withkz50 (kz
is the wave vector perpendicular to the atomic layers in
bulk!. B(z,k) becomes now 1/(Lk), and the term in the
force-constant matrix takes the usual form for bu
systems,33

Ci j 5
4pZ2

ALe

kikj

k2
, ~A4!

which has a different value for LO and TO modes. For t
intermediate case of a slab with finite thickness we find b
behavior for phonons with sufficiently largek, while the be-
havior of the monolayer is recovered whenk goes to zero.
The slope of the LO modes atG is proportional to the num-
ber of layers in the slab.
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along the normal to the slab~out-of-plane components within
the nomenclature used throughout this paper! things can be
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