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General theoretical expressions for the dephasing and energy relaxation times of a stiff 
oscillator in simple fluids are derived from the GLE and a critical discussion of the dynamic 
processes in these systems is given. In addition new methodological aspects of stochastic 
and full molecular dynamics simulations are discussed. The new reversible integrator based on 
the Trotter factorization of the classical propagator is used to directly simulate the 
vibrational energy and phase relaxation of a stiff classical oscillator dissolved in a Lennard- 
Jones bath. We compare the “real” relaxation from full MD simulations with that 
predicted by Kubo theory and by the generalized Langevin equation (GLE) with memory 
friction determined from the full molecular dynamics. It is found that the GLE gives 
very good agreement with MD for the vibrational energy relaxation, even for nonlinear 
oscillators far from equilibrium. The dephasing relaxation is also well approximated 
by the GLE. 

I. VIBRATIONAL DEPHASING TIMES IN LIQUIDS 

The modeling of vibrational energy transfer in fluids is 
an important problem in chemical physics that is germane 
to barrier crossing dynamics in the energy diffusion regime, 
dissociation kinetics, and vibrational relaxation. In a recent 
study indirect solvent coupling effects have been consid- 
ered,’ while other recent work has focused on non- 
Markovian effects where the vibrational displacement is 
described by the generalized Langevin equation (GLE) ,2P3 

aw(x) t 
-_ M=- ax s 

dr iT(t-r)i(r) +~(t), (1.1) c 

where x and 1 are, respectively, the position and velocity of 
the degree of freedom of interest, W(x) is the potential of 
mean force on this coordinate, F(t) is the random force, 
and c(t) is the memory friction. The second fluctuation- 
dissipation theorem4 gives a relationship between the fric- 
tion kernel and the autocorrelation function of the random 
force, 

!3t) =Pvw~(~)), (1.2) 

where p= (kT)-‘. The GLE has played a very important 
role in the theory of liquids. Recently we have devised a 
method for extracting c(t) from molecular dynamics sim- 
ulations and have used this method to determine the fiic- 
tion kernel on vibrational coordinates.5-7 The explicit dy- 
namic friction kernels so obtained can be used in stochastic 
simulations based on Eq. ( 1.1) . In such simulations it is 
usually assumed that the random force is a Gaussian ran- 
dom process. Stochastic simulations consist of the follow- 
ing parts: 

*)In partial fulfillment of the Ph.D. in the Department of Physics, Co- 
lumbia University. 

(a) Full molecular dynamics is used to find both the 
dynamic friction kernel and the potential of mean force on 
the reaction coordinate. 

(b) The random force, assumed to be a Gaussian pro- 
cess, is sampled such that the second fluctuation- 
dissipation theorem is obeyed. 

(c) The stochastic integrodifferential equation Eq. 
(1.1),819 is numerically integrated. 

We are now in a position to test the accuracy of the 
GLE on a model system consisting of one homonuclear 
diatomic molecule with a harmonic or anharmonic inter- 
atomic potential interacting with a Lennard-Jones (12-6) 
fluid through the same site-site Lennard-Jones ( 12-6) po- 
tential, i.e., the LJ parameters (E,(T) are chosen to be the 
same for the solvent-solvent and for the molecule site- 
solvent atom interactions. 

Theoretical treatments often show that the dephasing 
time T2 and the energy relaxation time T, are related by 

$&+$ 
2 %’ 

(1.3) 

where Tf is the pure dephasing time. If one can measure 
the pure dephasing time Tf and the energy relaxation time 
T,, then the full dephasing time T2 can be calculated from 
Eq. ( 1;3). Conversely, T1 can be calculated given measure- 
ments of T2 and Tz. 

Molecular vibrations often have higher frequencies 
than the frequencies characterizing the solvent motion. Di- 
rect simulation of vibrational relaxation of systems with 
high and low frequency motion involves one of the most 
pervasive problems in the molecular dynamics literature, 
the problem of treating systems with a wide separation of 
time scales. A very small time step would be required for 
stable integration of the bonded vibrational motion and a 
very large number of integration time steps would be re- 
quired to follow the nonbonded interactions. One way to 
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bypass the direct simulation of the vibrational dynamics is 
to invoke the Kubo theory of dephasing.““’ Accordingly, 
the pure dephasing time T$f is given by 

1 
-- 
T;- J- 

O” dT(&(O)&(t)), (1.4) 
0 

where SW ( t) = w ( t) - W is the fluctuation of the vibrational 
frequency from the average vibrational frequency. It is im- 
portant to recognize that the above theory is only approx- 
imate. In addition, this theory does not give T, nor does it 
give the contribution of energy relaxation to the dephasing 
time Tf [i.e., does not give a vibrational relaxation time in 
the form of Eq. ( 1.3)]. Simulations based on this approach 
are used to compute the autocorrelation function of the 
frequency. Oxtoby et al. 12*13 and Levine and Pollak2 have 
shown using this approach that if 6w (t) is expanded in a 
power series involving spatial derivatives of the potential 
coupling the vibrational coordinate to the solvent it is an 
easy matter to determine the frequency fluctuation auto- 
correlation function from molecular dynamics. In this way 
they were able to study how molecular anharmonicity con- 
tributes to TF. 

Recently we have devised simple new integrators to 
treat systems with multiple time scales or disparate fre- 
quencies numerically. 1446 Our new integrators allow us to 
use molecular dynamics to simulate vibrational phase and 
energy relaxation directly, even when the molecular vibra- 
tional frequency is very high compared to the frequencies 
in the spectral density of the solvent. Moreover, these same 
algorithms allow us to extract the dynamic friction on the 
harmonic bond. Thus it is now possible to determine the 
vibrational dephasing and energy relaxation of molecules 
in the liquid state without making any of approximations 
inherent in the Kubo theory.“?t’ Thus we can compare the 
relaxation dynamics from MD to what would be predicted 
from the simulation of the GLE with dynamic friction and 
potential of mean force determined from the MD simula- 
tion. This comparison is self consistent and any deviations 
from the predictions of the GLE will directly reflect on its 
accuracy and validity. This is especially important for an- 
harmonic bonds for which case, the GLE can only be de- 
rived for very special cases. It is, therefore, important to 
study how well the GLE predicts the behavior of nonlinear 
systems. This can be done using an extension of the mul- 

tiple time scale method for the GLE. 
In this paper we study vibrational relaxation of the 

diatomic molecule as a function of vibrational frequency 
and anharmonicity. We use full multiple time scale molec- 
ular dynamics (NAPA or RESPA) to determine the full 
vibrational dynamics including T, and T2 and c(t). We 
then perform multiple time scale GLE simulations using 
c(t) to determine the same properties. This allows com- 
parison of MD, GLE, and theoretical predictions. 

In Sec. II A we present the GLE theory. This section 
contains the derivation of an analytical expression for the 
GLE theory of energy rehaxation-a new result as far as we 
can tell. In Sec. II B we derive dephasing times from the 
GLE for harmonic and cubic anharmonic diatomics. We 
show that Eq. ( 1.3) can be derived from a perturbation 
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solution of the GLE, and the resulting expression for l/T: 
agrees with that derived by Oxtoby from quantum me- 
chanical perturbation theory12,‘3 and by Pollak from the 
harmonic bath Hamiltonian. In Sec. III, we review the 
reversible NAPA and RESPA methods for MD and GLE 
simulations. In Sec. IV we compare the GLE, MD, and 
analytical results for both equilibrium and nonequilibrium 
simulations of the harmonic and anharmonic oscillator. 
Results are summarized in Sec. V. 

Our purposes are twofold. First, we wish to test how 
well the generalized Langevin equation (GLE) predicts 
the true dynamics. Second, we wish to understand the role 
of molecular anharmonicity in vibrational relaxation. As a 
byproduct we will also investigate the accuracy of the 
Kubo theory. 

II. PREDICTIONS OF THE GENERALIZED LANGEVIN 
EQUATION 

The purpose of this part of the paper is to examine the 
predictions of the GLE for energy and vibrational relax- 
ation times. 

A. Energy autocorrelation function from the GLE 

The generalized Langevin equation (GLE) for the 
bond stretch coordinate of a harmonic oscillator of reduced 
mass p and vibrational frequency w is 

r 
t x= -@2X- dr y(T)i(t--7) +R(t), (2.1) 

where the dynamic friction on the bond is py( t) EC(~) is 
related to the random force R(t) rF( t)/p through Eq. 
(1.2), which for y(t) and R(t) becomes 

Jo 

‘$=(R(O)R(t)). 

The time correlation matrix is 

[ 
Gx(t) G,W 

c(t)= C,,(t) C”,(t) ’ I 

(2.2) 

(2.3) 

where C&(t) = (a(O>b(t>)/(a2) are time correlation func- 
tions and the dynamic variables a and b are either x or v. 
The correlation functions are connected by the relations. 

k,(t) =Cxv(t) = 402C,,(t). (2.4) 

The random force R (t) is often assumed to be a Gauss- 
ian random variable, from which it follows from Eq. 
(2.10) that x(t) and v(t) are also Gaussian random vari- 
ables. For Gaussian stochastic processes 

=(a(tl>b(t2>)(c(t3)d(t4))+(a(tl)c(t3)) 

X WddW) + (a(tN(td) (b(tdc(t3)), (2.5) 

where again a, b, c, d can each be either x or v. Such 
factorizations spring from the property of Gaussians that 
all the higher moments are determined by the first and 
second moments. This factorization can be used to com- 
pute (e(O)4 t) ), the autocorrelation function of the har- 
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manic energy e=~uv2/2+~uo2x2/2. This correlation func- 
tion is a linear combination of four time correlation 
functions of the form (a’( O>b2( t) ) each of which can be 
simplified using Eq. (2.5). For example, 

=(x2w)+2; (x(0)x(t)). (2.6) 

Substituting these into (e(O)e( t) ) together with the equi- 
librium moments, ( v4) = 3 (/CT/~) ‘, (x4) = 3 (kT/po’> ‘, 
and (x2u2) = (/CT/PO)’ and the second fluctuation dissipa- 
tion theorem, Eq. (2.2), allows us to recover a very simple 
expression for the decay of the energy fluctuations, an ex- 
pression that involves the correlation functions directly 
calculated in MD and GLE simulations 

c (t) = ewm(O) 1 
EC? 62(O)) 

=z C”W +f en(t) +-$ &(t), 

where SE(~)EE(~):-kT. 

(2.7) 

Equation (2.7) can also be derived for the case when 
R(t) is not a Gaussian random process as we now show. It 
is a simple matter to determine equations for the time cor- 
relation functions by sequentially multiplying the GLE by 
either x(0) or v(O) and averaging over a canonical distri: 
bution function. For example, the Laplace transform of the 
correlation function matrix is then 

1 s+7(s) --ii? 
m=m 1 ( 1 s ’ (2.8) 

where 

A(s) =?+@(s> +G? (2.9) 

and we have used (v(O)R(t)) and (x(O)R(t))=O. In ad- 
dition, one can derive solutions of the GLE for x(t) and 
v(t), in terms of these correlation functions 

x(t) =x(O)C,W +uwC”&) + d~-R(t+-)Cux(d, 

u(t) =GwLJ,w +x(O)C&) + d~R(t--)C,,(T). 

(2.10) 

Equation (2.7) can therefore be obtained by substitut- 
ing the squares of Eq. (2.10) into the energy correlation 
function, (&(O)&(t) ) together with the second fluctua- 
tion dissipation theorem and some very simply derived 
identities such as 

I ?? dT1 Y(7i--71)Cuu(~l)=i7xr(72) -e”J,,(T2) (2.11) 
0 

and 

s “h y(7-2-71)c”x(71) 
0 

1 
=-- 

I 
” 4 ~(72--71)CxJ~J =c,(T~) -c,,(T~) 

m2 0 
(2.12) 

and additionally that correlation functions like 
(u 3(0)R (t) ) vanish. The details of this derivation are 
given in Appendix A. 

By a similar analysis, it is straightforward to show that 
the decay of the energy (Se(t) ). from some initial state to 
its equipartition value of kT is given by 

(SE(t))Cx(0),~(O))=SEK(O)~,(t) +&4wL(t) 
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where SE,(O) =$pu2(0) -kT], S+(O) =&.L~~~(O> 
-kT], and Se(O) =SeK(0) +SeP(0). Note that our treat- 
ment here is exact. If the initial states are sampled from a 
microcanonical distribution for the oscillator for given 

E(O), then it is easy to show that (&(t)>,,,, 
=Se(O)C,,( t). In the next section, we will see how the 
high-frequency limit leads directly to the relation expressed 
in Eq. (1.3). 

Thus we see that the explicit form of the energy cor- 
relation function given by Eq. (2.7) can be derived from 
the GLE under two different sets of assumptions: 

(a)Either R (t) is a Gaussian stochastic process; 
(b) or (#(O)R(t))=O; 
(cl and (R(~~)u~(O>R(~Z))=(U~(~))(R(~~)R(~Z)). 

Nevertheless, both derivations of the energy correla- 
tion function are based on a restrictive set of assumptions 
about the random force R(t). As we shall see later the 
GLE predicts an energy decay which is slightly different 
from molecular dynamics. Any deviation must be due to 
the breakdown of either of these sets of assumptions. 

B. Dephasing times from the GLE 

In this section, we examine the predictions of dephas- 
ing times from the GLE. This is a nontrivial calculation, 
and as far as we know our derivation of this quantity di- 
rectly from the GLE has never been reported before. 

1. Harmonic molecule 

First we consider the simple case of the purely har- 
monic potential of mean force. From Eq. (2.8) the expres- 
sion for the Laplace-transforms of the velocity autocorre- 
lation function is, C&Y) ~s/A(s) and the displacement 
autocorrelation function, C,(S) = [s+ y(s)]/A (s), where 
A(s) is given by Eq. (2.9). Laplace inversion of these cor- 
relation functions requires an explicit form for the friction 
kernel. However, ifZ>y’y( 0) (that is, if the frequency of the 
oscillator in solution is much larger than the static damp- 
ing coefficient) perturbation solution of the dispersion 
equation 

A(s) =?+>+s~((s> =0 (2.14) 

to first order in T(Sj)/?Z is possible, giving the roots 

s*= *i[G+$ y”(W)] -f y’(0) = *ii-l-; y’(O), 
(2.15) 

where y’ (Z 3) and y” (i3 ) are the real and imaginary parts of 

the Fourier-Laplace transform of the damping function 
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jq 6) = I m dt e-‘i”fr(t) q’(W) -if’(W). (2.16) 
0 

2(t) +F F(t) 

Using Eq. (2.15)) Laplace inversion of &s) and 
c,(s) is easily accomplished giving 

=e-Y’(3)t’2[ f’(W)cos(fit)+f”(W)sin(Slt)] (2.24) 

and hence, that the convolution integral of F( t) with y(t) 
is given approximately by C,,(t) = exp[ -*(W)t] cos(W) -$ sin(U)] 

(2.17) 

and 

C,(t)= exp[-&(Z)t] 
I 
cos(W)+~sin(fLt)]. 

(2.18) 

From the foregoing it follows that these correlation func- 
tions decay with an exponential envelope. The vibrational 
dephasing time for a stiff harmonic oscillator embedded in 
a fluid is easily seen from Eqs. (2.17) and (2.18) to be 
related to the real part of the frequency dependent damp- 
ing function evaluated at the solvent shifted vibrational 
frequency. 

-=- j2 MY’. (2.19) 

As expected, the smaller the spectral density of the fluid at 
the solvent shifted vibrational frequency, the smaller will 
be l/T,. 

Since the velocity and position autocorrelation func- 
tions have exponential decay envelopes in the high fre- 
quency limit, it is clear from Eq. (2.7) that the energy 
decay will be approximated by a pure exponential function. 
This can be seen by substitution of Eqs. (2.17) and (2.18) 
into Eq. (2.7). The exponential decay rate then defines the 
energy relaxation time T1 to be 

This is equivalent [cf. Eqs. (1.3) and ( 1.4)] to the well 
known result for purely harmonic systems that the dephas- 
ing rate contribution from energy relaxation is 

1 1 
-=- 
T2 2T1 

(2.21) 

a result that cannot be derived from Kubo theory. 
Before proceeding, it is useful to derive an approximate 

formula for convolution integrals involving the friction 
kernel. Consider any function F(t) whose Laplace trans- 
form takes the form 

Y(s) 
F(s) =a(s) . (2.22) 

Therefore, 

(2.23) 

where C is the usual Bromwich contour used for Laplace 
inversion. ” Using the two roots in Eq. (2.15 ) , it is a simple 
matter to show, by inverse Laplace transformation, that 

s 

t 

dr y(T)F(t--7) = * eq(s)F(s) 
0 !f c 25-i 

q’(W) [ 1zg]f(t) 

r”(G) df 
-wTz 
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(2.25) 

This relation will be accurate in the stiff oscillator limit for 
which the roots in Eq. (2.15) are a good approximation. 
This formula will be very useful when analyzing the GLE 
for an anharmonic molecule, which we consider next. 

2. Anharmonic molecule 

The results in Sec. II A apply only to the pure har- 
monic oscillator. There is no pure dephasing contribution 
because the vibrational frequency is constant. The situation 
changes dramatically when one treats an anharmonic os- 
cillator. In this case the vibrational frequency is coupled to 
the bath fluctuations and the frequency shifts due to the 
bath motion leads to frequency shifts and to dephasing 
according to the Kubo theory [cf. Eq. (1.4)]. The Kubo 
theory, however, ignores the contribution of the energy 
relaxation to dephasing. When the anharmonicity is weak 
it follows that the vibrational relaxation rate will be a su- 
perposition of that due to energy relaxation and that due to 
real dephasing. Our aim is to show that this assertion about 
the full vibrational relaxation time follows directly from 
the GLE. 

The case we will consider is a potential that contains a 
cubic anharmonicity’2~‘3 

U(x) =&m2x2+~ fx3, (2.26) 

where f gives the strength of the cubic anharmonicity. 
Using Kubo theory,‘O*” Oxtoby,12*13 and later Pollak’ 
showed that if the spectral density of the fluid is very small 
at the vibrational frequency the dephasing time is domi- 
nated by the anharmonicity; furthermore, if the anharmo- 
nicity can be considered a small perturbation to the har- 
monic force, then it can be shown that 

(2.27) 

where y(s=O) is the static damping rate. This dephasing 
rate will dominate over Eq. (2.19) only if ( f2/4p3a6fl) 
X T(s=O) %. y’ (W)/2. Then the dephasing rate depends on 
the static friction instead of the frequency component of 
the friction. This raises an important issue when trying to 
simulate such systems. Harris has recently implemented a 
very rapid scheme for simulating the GLE. This scheme is 
based on a autoregression analysis which approximates the 
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true dynamic friction coefficient. Since the static friction 
requires knowledge of the full time dependence of the fric- 
tion [y(s) =Jg~(t)dt], any error in the long time depen- 
dence can lead to serious errors in predicting the dephasing 
time. Unfortunately, this autoregression technique slows 
down considerably for such cases where accuracy is de- 
manded for the static friction and becomes comparable to 
the methods used in this paper. 

We now show how to derive the dephasing time of an 
anharmonic oscillator as given by Eq. (1.3) directly from 
the GLE. Consider a particle moving on a-cubic potential 
of mean force surface [W(x) =,ugx2/2+ fx3/6] for which 
the GLE reads 

dTi(T)y(t--7) +R(t), 

(2.28) 
- 

where Z and f are the solvent shifted values of w and f in_ 
Eq. (2.26). Note that the solvent shifted cubic coupling f 
cannot be obtained from the harmonic bath Hamiltonian, 
but derives from the true expression for the potential of 
mean force 

W(x) = -kT lng(x), (2.29) 

where g(x) is the pair distribution function in x. Let us 
write the GLE in the following form: 

dTR(T)Y(t--7), (2.30) 
computed from the solutions (2.37) by multiplying by 
x(O) and averaging. Consider the contribution to C,(t) 
coming from x(+) (t) 

where 

W(x,t> = W(x) -,uR (t)x. (2.31) 

By completing the square, and changing variables to y=x 
-R (t)/o, the potential becomes 

, 

where w(t) zG+yR(t)/2@ 3~W+h(t). If we use this 
effective potential to establish a perturbation scheme for 
the GLE, then the lowest order expression is a linear equa- 
tion which (expressed once more in terms of x) becomes 

(2.32) 

s 

t 
jt= -02(t)x- dTcZ(T)Y(t--7)+R(t). (2.33) 

0 

Since we are interested in the high frequency limit as in the 
harmonic case, we may use Eq. (2.25) to approximate the 
convolution integral which appears in Eq. (2.33). The use 
of this relation assumes that the velocity i in the convolu- 
tion integral assumes the form of Eq. (2.22) which, of 
course, is only true within the framework of perturbation 
theory. When this is done, Eq. (2.33) becomes 

-@2(t)X-y’(~) [ 1 -F ]*tR(t). 
(2.34) 

Dividing by the coefficient off, and dropping terms which 
go like g/Z and higher, gives an approximate ordinary 
differential equation 

i= --412(t)x--y’(W)zi+R(t), (2.35) 
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where l-l(t)=w+y”(w)/2+fR(t)/2p&R+Sw(t). 
Since we will be interested only in the position and velocity 
autocorrelation functions, on which the inhomogeneous 
term R(t) has no effect, we need only consider solutions of 
the simpler homogeneous equation 

R= -nZ(t)x-y’(iG)l. (2.36) 

Note that &V&J- l/r, where rc is the correlation 
time for the fluid and characterizes the decay of the friction 
kernel. Since the time scale for fluid motion is slow com- 
pared to the internal vibrations of the diatomic, it follows 
that &%/SW&. Therefore, in constructing the solutions to 
Eq. (2.36), to a good approximation, we may take a linear 
combination of 

,(+)(t) ,x~+)(t)e’~~~~(t’)~t’, 

(2.37) 
X(-)(t)=X~-)(t)e--il~~~(t')d" , 

where x6*‘(t) is a solution to Eq. (2.36) for 6w=O cor- 
responding to exp( *ifit) oscillatory dependence. By di- 
rect substitution into Eq. (2.36), it is straightforward to 
show that the two solutions in Eq. (2.37) satisfy the dif- 
ferential equation to order Scj/lnSo, a negligible contribu- 
tion in the high frequency limit. 

The position autocorrelation function C,(t) is easily 

d,+‘(t)=(x(o)x~+‘(t)ej~~~~(t’)~t’). (2.38) 

The average in the above expression can be separated into 
the product of two averages, one over the phase space of 
the oscillator, and the other over all possible realizations of 
SW(~). The separation is possible because xi” (t) does not 
depend on Sw( t). Thus, Eq. (2.38) becomes 

c’+‘(t) =c(o+) 
.xX xx (t) (&wf’w’), (2.39) 

where Cs+) (t) is the contribution to the position correla- 
tion function for the harmonic oscillator with Sw=O com- 
ing from xi+‘(t) as in Eq. (2.18). Assuming that R(t) 
[hence SW(~)] is a Gaussian random variable makes it pos- 
sible to use the cumulant theorem 

(&So(t’)dt’) =,-l~d7(t--7)(SW(O)SW(7)). (2.40) 

The correlation function which appears in the exponent is 
just 

-2 
@dO)Wl-I)=& (R(O)R(7))= 

(2.41) 

where we have used Eq. (2.2). Substituting back into the 
expression for the position autocorrelation function gives 

c(+)(t)=c(o+) 
xx x+ (tlexp[ -( 4sLB) J:ddt--7MTl]. 

(2.42) 
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Finally, extracting the long time decay of Eq. (2.42), and 
using the fact that Cg) (t) decays exponentially as exp 
[--y’(Z) t/2], we arrive at the expression for the decay 
time 

III. MOLECULAR AND STOCHASTIC DYNAMICS 
SIMULATIONS WITH MULTIPLE TIME SCALES 

1 y’(W) 72 
-=y+4p3Jjfi m. 
T2 

(2.43) 

We have used the fact that T(O) = J;~(t’)dt’. The same 
result would have been obtained if we had used C&‘(t) 
instead, and therefore, Eq. (2.43) is the overall decay rate 
of the position autocorrelation function. A similar analysis 
can be used to show that the velocity autocorrelation func- 
tion C’,(t) decays in the same way so that one may study 
either of these correlation functions. Given that Eq. (2.43) 
is derived from perturbation theory, it can be expected to 
fail if f is chosen too large. 

It is no surprise that the result is consistent with Eq. 
( 1.3). The pure harmonic oscillator gives rise to the energy 
part of the vibrational relaxation time, while the lowest 
order contribution from the cubic anharmonicity is the 
dephasing time derived from Kubo theory starting from 
the harmonic bath Hamiltonian and applying perturbation 
theory. The harmonic bath Hamiltonian which takes the 
fom’W’ 

In order to test the limits of Kubo theory and pertur- 
bation theory of the GLE, it is necessary to consider ex- 
tremely high frequency oscillators in relatively low fre- 
quency baths. In the systems considered here, a frequency 
ratio between oscillator and bath as high as 15 was consid- 
ered. Even for moderate frequencies, there can be a sub- 
stantial separation of time scales between the oscillator and 
the surrounding solvent atoms. Recently, we have devel- 
oped algorithms (NAPA and RESPA), based on the 
choice of a reference system, to handle the separation of 
time scales in both the molecular dynamics and the sto- 
chastic dynamics simulations. In the case of the molecular 
dynamics, the reversible version of these algorithms as de- 
scribed in Ref. 21 have improved their performance con- 
siderably, and even though the GLE simulations are not 
reversible, the use of reversible RESPA methods have im- 
proved the performance in the GLE as well. We review the 
methods below. 

H=$+(i(x)+~ &+z 1 ’ ’ -ad(ya-~~)2]9 
(2.44) 

The reversible NAPA and RESPA methods are based 
on the Trotter expansion of the classical Liouville propa- 
gator, exp (iLAt), for a single time step At where the Liou- 
ville operator is IL={* - -, H). H is the system Hamil- 
tonian. Let x represent the relative coordinate of the 
oscillator, and let y represent all the solvent degrees of 
freedom and the center of mass motion of the diatomic. 
Then the Liouville operator for this system can be written 
in the form 

where U(x) is given by Eq. (2.26), is completely equiva- 
lent to the GLE when the identification 

iL=& a+Fr(x) a+ f (x,y) “+2 $+FJx,y) 
P ax ap, ah y 

5‘(t) = ; & cos w,t, 
(2.45) 

R(r)=; ha 
& 

x,(O) -- 
cl 

m @2 4(O) axi %t 
a a 1 

PCZ 
+- 

mawa 
sin oat 

I 

is made. Clearly the c(t) and R(t) in Eq. (2.45) mani- 
festly satisfy the second fluctuation dissipation theorem Eq. 
( 1.2). The equivalence of the harmonic bath Hamiltonian 
to the GLE means that one could just as well have started 
with this Hamiltonian and arrived at the expression Eq. 
(2.43) following the same perturbation scheme described 
above. It is worth noting, however, that the expression for 
the decay time does depend on the vanishing of 
(u( 0) R(t) ) as would be true for a Gaussian random pro- 
cess. The harmonic bath Hamiltonian Eq. (2.44) has been 
studied by Georgievskii and StuchebrukhovzO to determine 
line shape spectra for a cubic anharmonic diatomic. In 
their treatment, based on thermodynamic Green’s func- 
tions, the coupling between the bath and the system coor- 
dinate x was treated to all orders, however, the cubic cou- 
pling was still treated as a small perturbation. 

where f (x,y) is the force on x due to the solvent. We 
choose a reference system for which the Liouville operator 
is iL,= (p,/iu>a/ax+F,(x)a/ap,. Then iL=iL,+iL, 
where iL,, contains all other terms in Eq. (3.1). The clas- 
sical propagator is factorized according to the Trotter ex- 
pansion 

eiLAt=,iL,&/2,iL~teiL,&/2 + &? (A$). (3.2) 

The derivatives in Eqs. (3.1) and (3.2) act on the initial 
conditions. The operator eiLYAuz is further factorized such 
that the operator on the left of the reference system is 
written as 

ew(iL,,g)= exp[ $F,,(x,y) $1 

X exp 
I 

Ff(x,y) $]exp( gP$), 

(3.3) 

and the transpose of this is used for the operator on the 
right of the reference system. The resulting propagator is 
still reversible. When Eq. (3.3) and its transpose are sub- 
stituted into Eq. (3.2), and the resulting operator is ap- 
plied to an initial state {x(O),~(O),y(O),~(O)), the follow- 
ing integration scheme emerges: 
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At;x(o),i(o) +$(o) , 
I 

i(AQ =ir A~x(O),i(O) +; f(o) +$(At), 
1 I 

(3.4) 

u(At) =Y(O) +&HO) +~Fy(o), 
Y 
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I 1 
At a 

exp( iLAt) = exp ~FyAx,y) A exp T~I(X,Y) - 
aP, ap, 1 

Xexp(iL,At)exp 1 
At a 

X exp yFyAx,~> ap, 9 1 (3.8) 

where iL, contains all the short range forces as well as the 
oscillator reference system. The operator eiLsA’ is further 
broken up according to 

eiL&- _ [ eW “1 n’, 

exp(iL&‘) 

NW =JWN +$ F’,(O) +F,W I, 

where x, and 1, represent the evolution of the position and 
velocity under the action of exp( iL,At) . A detailed discus- 
sion of the Liouville operator formalism is given in Ref. 2 1. 
This scheme has the nice feature that the solvent is inte- 
grated with pure velocity Verlet. Note that the velocity 
initial condition to the reference system is a(O) + (At/ 
2,u)f(O) rather than i(O). When F,(x) is a Hooke’s law 
force F,(x) = -,uu2x, the analytical solution (the NAPA 
method) is readily obtained 

eiL@x(O> =x(O)cos wAri- sin aAt, 

(3.5) 
eiL&(0) =k(O)cos oat--wx(O)sin wht. (3.9) 

Note that cos(wAt) and sin(oAt) only need to be com- 
puted once at the beginning of the simulation. 

In the case that the potential contains a harmonic as 
well as cubic term F,(x) = -,uw2x- fx2/2, an analytical 
solution is also available in terms of Jacobi elliptic func- 
tions. The details of the analytical solution are given in 
Appendix B. Although an analytical integration of the ref- 
erence system is fast, the use of special functions can be 
cumbersome, in which case, a numerical integration 
scheme may be used (the RESPA method). This is imple- 
mented by defining a small time step &=At/n and writing 
exp(iL&) as 

and finally, the operator eiLrGt’ is written as [eiLfi 1” where 
now, St’ = At/n’ and St=St’/n. Putting this back into Eq. 
(3.9), and substituting Eq. (3.9) into Eq. (3.8), and acting 
with the resulting operator on an initial state gives the 
double RESPA integration scheme 

x(W =X,[At;x,(t),~,(t),y(O) I, 

iCAt) =~~,CAt;X,(t),~,(t),y(O) 1 +$YAt), 
(3.10) 

exp(iLJt) = exp 
1 1 

IF, &]exp(&$g ) 

St a fi 
X exp y&(x) ap, II 

44&P(O) +&FyDW(r) , I 
&y(OWOl +& Fyl(0),x,(t) 1 +; Fyl(At), 

(3.6) where y, and Ji, refer to the position and velocity of the 
solvent due to the action of the short range force and are 
generated by carrying out n’ steps of velocity verlet with 
the short range forces starting with the initial conditions 
cv(O),~j(O) + (At/2m)Fyl(0)) and using the numerical or 
analytical solution for the diatomic reference system. Sim- 
ilarly, x, and & are generated by carrying out n’ steps of 
the RESPA scheme 

which, as has been shown by Tuckerman et al., l6 yields n 
steps of velocity Verlet. Although there is a little more 
overhead in the numerical reference system, it is still an 
extremely efficient method. 

Another possibility for factorizing the propagator ex- 
ists which is useful when the solvent-solvent and solvent- 
solute forces contain long and short range components. By 
writing 

F,(x,Y) =F,,(x,Y) +F,l(x,~), 
(3.7) 

f(XtY) =fskY) +fikYL 

where the s and I subscripts refer to the short and long 
range components, respectively, the propagator can be fac- 

torized as 

x(W) =xr St’;x(O),~(O) +g f,(O) , 
1 1 

(3.11) 

3St’) =& St’;x(O),i(O> +&0) +g&(St’), 
1 1 

where x, and i, refer to the position and velocity of x due 
to the bond potential which can either be integrated ana- 

lytically, or using n little time steps of size St. 
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The application of NAPA and RESPA to the GLE has 
been discussed in Ref. 16. We now modify that discussion 
to include the reversible scheme discussed above. The GLE 
reads 

pz=f(x)- t 
s 

dr 5‘(+(t--7) $-F(t), (3.12) 
0 

where f(x) = --a W/ax. We take the reference force F,(x) 
= f (x), and the remaining part 

I 

t 
AF(1) = - dr c(+?(t-T) +F(t) (3.13) 

0 

which when written in discrete form becomes 

AF,=-At i w$~&+,&Fn 
ILO 

and 

(3.14) 

n+l 

AF n+l= -At c ‘4&&‘&+1-k+~Fn+~~ 
k=O 

(3.15) 

The wk)s are Newton-Cotes weights in the numerical inte- 
gration method (e.g., wo= wn= 1/2,wi = *. * = w,- 1 = 1 for 
the trapezoid rule). Velocity Verlet requires AFnfl in or- 
der to determine 1,, 1 and AF,, i involves & *. We there- 
fore separate this term out of AF,+i by writing 

AF n+1- -WI,1 --~os‘ds,+1~ (3.16) 

The force is used to derive a RESPA scheme for the GLE 
based on the Trotter expansion. When, we solve for 3in+i, 
the following algorithm emerges: 

[ 

At 
X ,,+~=xr At;x,,i,+- AF,, , 

2ru 1 
(3.17) 

%+I= 
iJAw,&+ (At/2p)hF,l+ (At/2p)AF;+, 

I+ (At3~04,4d 
, 

where, as usual x, and 5 refer to the reference system 
position and velocity evolved using exp( iL&) . The refer- 
ence system can be evaluated analytically or numerically as 
before. In both the MD and GLE simulations, At may be 
chosen according to the time scale of the solvent motion 
without loss of accuracy. 

IV. RESULTS 

The system studied consisted of 64 Lennard-Jones par- 
ticles at reduced temperature T = 2.5 and reduced density 
pu?‘= 1.05 in which is imbedded a single diatomic with 
either a harmonic or cubic bond potential. Some of the 
cases considered here were run using 500 particles to check 
system size dependence, and these were found to agree 
with the small system results. The diatomic is kept at a 
fixed spatial orientation along a body diagonal of the cubic 
cell so that rotational anharmonicities are not present. Us- 
ing the integrator of Eq. (3.4), simulations were run for 
2 X lo6 or more steps using a big time step of 2 X 10m3 in all 
cases. Each run required approximately 5.5 h of CPU time 
per lo6 steps on an IBM 3090 vector processor. The energy 
conservation was measured by the following formula: 

0.05 I I I I I 

0.00 L 
0 25 50 75 100 125 150 

W 

FIG. 1. The spectral density of a pure Leonard-Jones fluid at ?=2.5 and 
pd= 1.05 as computed from the Fourier transform of the single particle 
velocity autocorrelation function. 

(4.1) 

where E. is the initial energy of the system. In allAsimula- 
tions, this time step gave energy conservation AE- 10B3 
measured in this manner independent of frequency or cubic 
coupling. 

A. Harmonic diatomic imbedded in Lennard-Jones 
fluid 

The first set of studies were carried on a harmonic 
diatomic U(x) =pa2x2/2, with frequency choices of 
w=60, 90, 120, and 150. For the harmonic potential, we 
use an analytic reference system solution with the revers- 
ible NAPA scheme in Eq. (3.4). To see how the time 
scales of the oscillator compare with that of the surround- 
ing fluid, we plot the spectral density of the neat fluid in 
Fig. 1. The peak of the spectral density is around o = 20, 
and it can be seen that a=60 and 90 are well within the 
significant part of the spectral density, whereas 120 and 
150 are not, so that there is a sharp separation of time 
scales between the solvent and the vibrational motion of 
the diatomic at the two higher frequencies. The manifesta- 
tion of this time scale separation can be seen in Fig. 2 in 
which we plot the decay envelopes of the velocity autocor- 
relation functions of the oscillator at the four frequencies. 
There is a drastic increase in the decay time between w = 90 
and w = 120. This is also manifest in the decay time of the 
energy autocorrelation functions plotted in Fig. 3. The en- 
ergy of the bond is taken to be 

E=f pt2+ U(x) (4.2) 

which does not include the interaction with the surround- 
ing solvent atoms. 

To test the predictions based on the GLE, it is neces- 
sary to carry out simulations in which the GLE is inte- 
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FIG. 2. Decay envelopes of the velocity autocorrelation functions from 
MD (solid line) and GLE (dashed line) simulations for a harmonic 
oscillator in Lennard-Jones fluid for w=60, 90, 120, and 150. 
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FIG. 3. Full energy autocorrelation functions from MD (solid line) and 
GLE (dashed line) simulations of a harmonic oscillator in Lennard-Jones 
fluid for w=60, 90, 120, and 150. 

grated numerically. The inputs to the GLE are a friction 
kernel c(t), and a random force R ( t) such that the second 
fluctuation dissipation theorem Eq. (2.2) is satisfied. One 
way to obtain the friction kernel from molecular dynamics 
is the method of Straub and Beme.’ If we multiply the 
GLE for the harmonic oscillator on both sides by i and 
average over a canonical ensemble, we obtain a memory 
function equation of the Volterra type for the velocity au- 
tocorrelation function 

I 

t 
e”“(t) = - ~~w---)C,“(~), (4.3) 

0 

where the kernel K(t) =$+7(t). Using the velocity au- 
tocorrelation function from the molecular dynamics simu- 
lations, it is a simple matter to invert the memory function 
equation to obtain the friction kernel. It should be noted, 
however, that the inversion process is stable only at low 
frequency, and in this case works well only for the cases 
w=60 and 90. Stability in this procedure can be improved 
if one calculates the correlation functions C,(t), C,,(t), 

and C”,(t) directly from MD and uses these in Eq. (4.3). 

To tind the friction for the case of an extremely high fre- 
quency diatomic, the friction on the bond may be approx- 
imated by the friction on a rigid bond.7 It is shown in Ref. 
7 that in the infinite frequency limit, the true friction and 
the friction on the rigid bond are equal. In Fig. 4(a), we 
show the friction kernels as a function of time for the case 
w= 60 and for the rigid bond, and in Fig. 4(b), we show 
the corresponding Fourier transforms. 

The random force can be obtained in a simple way if it 
is assumed that R(t) is a Gaussian random process. Then 
the method of Rice can be used.22-24 The random force is 
expanded in a Fourier series 

P 

R(t)= c [aksin~~+bkcos~,$], 
k=l 

(4.4) 

where ak=2rk/PAt and P is the number of points in each 
trajectory. The Fourier coefficients ak and bk are sampled 
independently from a Gaussian distribution 

1 
e- (a;+b;)/Zcr; 

, (4.5) 
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FIG. 4. The friction kernel used in the GLE simulations as computed 
using the method of Straub and Beme (Ref. 5) based on Eq. (4.3) (solid 
line) and using the method of Beme ei al. from the velocity autocorre- 
lation function on a rigid bond (dashed line). The upper curve shows the 
time dependent friction kernel, and the lower curve shows the frequency 
dependence from the Fourier cosine transform. 

where a”k is related to the Fourier transform of the friction 
kernel 

+; .i gjAt)c2+k’P 
J--o 

(4.6) 

which is easily accomplished by fast Fourier transforms. 
To carry out the simulation, one samples an ensemble of 
initial conditions from a canonical distribution and evolves 
each according to the GLE using the friction and random 
force scheme above along with an integrator like that of 
Eq. (3.17). Observable quantities are calculated by aver- 
aging over each trajectory and over the ensemble of trajec- 
tories. 

GLE simulations were carried out on the diatomic for 
the four frequencies discussed above using an analytic ref- 
erence system. The GLE requires not the bare frequency w 
but the renormalized frequency Z from the potential of 
mean force. The potential of mean force surface for this 
problem has been fit by Straub et al.,25 and we use the 
renormalized frequencies from this fit which are for bare 
frequency values 0=60, 90, 120, and 150, iii=59.447, 
89.632, 119.724, and 149.780, respectively. The decay en- 
velopes of the velocity autocorrelation functions calculated 
from the GLE are plotted along with the MD results in 
Fig. 2. We see that the agreement between molecular dy- 
namics and the GLE is very good in these cases, and hence 
the predictions of l/T, should be in good agreement. In 
Table I, we show the values of l/T2 for each value of o as 

TABLE I. Vibrational relaxation rates for harmonic oscillator from MD, 

GLE, and Eq. (2.19). 

cd 

Y’(o”) 

GLE 2 

60 2.71 2.70 2.97 

90 0.74 0.73 0.78 

120 0.19 0.18 0.18 

: 150 0.08 0.08 0.08 -. 

predicted by MD, by the GLE, and by perturbation theory 
on the GLE [cf. Eq. (2.19)]. We see that as the frequency 
increases, the GLE simulation results and the GLE pertur- 
bation theory results come into closer agreement as ex- 
pected, since the perturbation theory assumed high fre- 
quency. The MD and GLE agree well at all frequencies. In 
Fig. 3, we show the energy autocorrelation functions from 
the GLE together with the MD. The GLE energy autocor- 
relation functions can be computed directly from the sim- 
ulation or using the formula Eq. (2.7). These results serve 
as a test of the assumption of a Gaussian random force. It 
is interesting to note that the GLE autocorrelation func- 
tions consistently decay faster than those from the MD 
although the discrepancy is small. In Table II, we show the 
values of l/T, for each value of w for the MD, GLE, and 
GLE perturbation theory. Again, we see a consistently 
small discrepancy between the GLE and MD results. In 
Fig. 5, we show that the solvent force is not well described 
by Gaussian statistics by plotting the autocorrelation func- 
tion of the square of the random force computed in the 
MD simulations using the formula 

s 

t 
R(t) =pZ+pii?x2+ dr &t-+?(T). (4.7) 

0 

If R(t) is a Gaussian random process, then, since (R(t) ) 
=0, the autocorrelation function of the square of the ran- 
dom force should be given by 

(R2(0)R2(t))=(R2(0))2+2(R(O)R(t))2. (4.8) 

The solid line in Fig. 5 shows the autocorrelation function 
of the square of R ( t) and the dashed line shows the plot of 
the factorization based on Eq. (4.8). The top curve is for a 
diatomic with frequency w = 60 and the bottom curve is for 
a frequency of o= 150. We see that the higher the fre- 
quency, the more dramatic the departure of the random 
force statistics from that those of a Gaussian random pro- 

TABLE II. Energy relaxation rates for harmonic oscillator from MD, 
GLE, and Eq. (2.20). 

w GLE Y’G) 

60 5.10 5.56 5.94 

90 1.36 1.45 1.56 

120 0.34 0.36 0.36 

150 0.14 0.15 0.15 
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FIG. 5. The autocorrelation function of the square of the random force as 
computed from MD using Eq. (4.7) (solid line) and the Gaussian ap- 
proximation to this correlation function from Eq. (4.8) (dashed line) for 
0=60 (upper curve) and o= 150 (lower curve). 

cess. It is also interesting to note that the initial value 
(R4(0)) is consistently larger than the prediction 
3(R2(0))2 of Eq. (4.8). This fact suggests that for short 
times, the statistics of the solvent force (which will be 
determined by strong collisions coming from the short 
range part of the force) are non-Gaussian and we conjec- 
ture that these should be treated as a Poisson process. 

A possible explanation for the small discrepancy be- 
tween the GLE and molecular dynamics is the following. 
In the real fluid the vibrational displacement suffers infre- 
quent strong collisions and frequent soft collisions. Strong 
collisions occur when energetic solvent atoms approach 
either of the atomic sites on the molecule very closely. 
These are binary collisions and should be described by 
statistics that are more like Poisson statistics. The soft col- 
lisions are due to the superposition of longer range forces 
from many solvent atoms and thus, according to the cen- 
tral limit theorem, should be described by the statistics of 
Gaussian random variables. We find, consistently, that 
Gaussian statistics gives rise to faster energy relaxation 
than what is observed from the MD simulations. It is a 
straightforward but tedious matter to expand the differ- 
ence, Ai4) (t) , between the normalized energy autocorrela- 
tion function and its Gaussian approximate Eq. (2.7) to 
order d (P) (see Appendix C for details), 

Ac4) (t) +=&([$qg)]2) 
2 a2u 

+Tqi t 
-gg wp~x2- 11 

> 

+& (g-J)-g (gix), (4.9) 

puo2x& fx2 (4.12) 

which is verified in the MD simulations. Another way to 
check this is to compute the frequency as a function of 
energy E for a given value of f. The period, defined to be 
twice the time required to go from one turning point to the 
other is given by 

T(e)=2 ; 0 
X+(E) 
X.-(E) + 
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(iw 
Ac4’(t) --) - E 24kT 

(4.10) 

This inequality holds unless soft modes and barrier cross- 
ing are dominant. Thus for a stiff oscillator, we expect, for 
short times at least, that the energy decay predicted by the 
GLE will be faster than for the real system. 

It should be possible to develop a model which in- 
cludes both Gaussian and Poissonian collisions in the GLE 
in such a way that Eq. (2.2) is satisfied. This would de- 
scribe the situation envisioned here where the molecule 
suffers frequent soft collisions punctuated infrequently by 
strong collisions. This has the flavor of the old Rice- 
Allnatt theory of liquids,26,27 and similar effects were dis- 
cussed by Berne et a1.28 It should be noted that such mod- 
els could be important when strong infrequent pair 
interactions contribute to the energy relaxation. We expect 
that the stiffer the oscillator, and the lower the solvent 
density, the more important such effects might be. 

B. Anharmonic diatomic imbedded in Lennard-Jones 
fluid 

The second set of studies were carried out on an an- 
harmonic diatomic molecule with bond potential U(x) 
=po2x2/2+ fx3/6 imbedded in the same Lennard-Jones 
fluid. Each simulation requires a value for w and f. The 
parameters chosen were f = 10 000 for w =60, f = 30 000 
for w=90, f=90000 for w=120, f=1.8X105 for 
w = 150, and f = 1.0 X lo6 for w=300. It is worth examin- 
ing in what sense these values for f are perturbations on 
the harmonic potential. The cubic potential has its maxi- 
mum at x,= -2,uw2/f, and the height of the maximum is 

The heights of the maximum are Vc=15.5kT, 19.68kT, 
12.29kT, 11.72kT, and 24.3kT corresponding to w=60, 
90, 120, 150, and 300, respectively with kT=2.5. There- 
fore, for energies around kT, the effect of the anharmonic- 
ity is small. For o = 120 and 150 two other f values 40 000 
and 60 000, respectively were also chosen. These f values 
give 62.2kT and 105kT for V,, respectively. That the an- 
harmonicity is small can be seen as well from the forces. 
Since the particle is near the bottom of a deep well, we 
expect that 
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TABLE III. Dependence of frequency on energy as computed from Eq. (4.13) for a cubic oscillator with 

the shown (o,f) parameters. 

e/kT 60, IO4 90, 3 x lo4 120,4x 104 120,9x104 150,6x lo4 150, 1.8~ 10’ 300,106 

1 59.45 89.35 119.73 118.60 149.80 148.16 298.26 

2 58.87 88.68 119.46 117.09 149.60 146.18 296.45 

3 58.25 87.97 119.18 115.47 149.40 144.03 294.58 

4 57.60 87.23 118.90 113.70 149.20 141.67 292.64 

5 56.90 86.45 118.62 111.75 148.99 139.06 290.63 

6 56.14 85.62 118.33 109.58 148.79 136.12 288.53 

7 55.32 84.75 118.03 107.11 148.58 132.75 286.33 

8 54.41 83.82 117.73 104.26 148.37 128.75 284.04 

9 53.41 82.83 117.44 100.08 148.16 123.79 281.63 

10 52.28 81.76 117.13 96.34 147.95 117.09 279.09 

=4 J 3P 
f[X+(E)--X-(E)] K(a)y 

(4.13) 

where 

x+ (El --x- (El 

a=X+(E> --X,(E) ’ 
(4.14) 

with x+, x-, and x, the roots of the polynomial 
E- U(x) =0 such that x, <x- <x+ and K(o) is the com- 
plete elliptic integral of the first hind. Then, using O(E) 
=2?r/T( E), we display how the frequency varies with en- 
ergy in Table III. We see that for energies near kT, the 
frequency is changed very little from its harmonic value. 
This is further evidence that cubic term is a small pertur- 
bation on the harmonic potential, although for w= 120 and 
150 at the higher f values, the frequency is perturbed con- 
siderably. 

In Fig. 6, we plot the decay envelopes of the velocity 
autocorrelation functions computed from the molecular 
dynamics simulations for the five frequencies. It is inter- 
esting to note that even though the cubic anharmonicity is 
a small perturbation on the harmonic potential, the high 
frequency dephasing times are dramatically different from 
the harmonic results. The GLE results are also plotted in 
this figure. The solvent shifted values of f are obtained 
from the potential of mean force fit by Straub et al.25 We 
see that even for the cubic diatomic, the GLE results are in 
good agreement with MD, at least in the prediction of 
l/T,. This is a particularly interesting result, since the 
GLE cannot be generally derived for the case that both the 
bath and the bond potential are anharmonic. In the case of 
an anharmonic bond potential, the GLE can be derived 
from the harmonic bath Hamiltonian Eq. (2.44).lg7” The 
agreement of the GLE with MD for the cubic potential 
suggests that there may be an underlying effective har- 
monic bath (i.e., a particular choice of the g,‘s and aa’s) 
which reproduces the effects of the Lennard-Jones poten- 
tial at the chosen temperature and density. The GLE de- 
rived in this manner is valid even for processes far from 
equilibrium. For a general bath, the GLE can be derived in 
linear response theory, in which case, it will appear to have 

an effective harmonic potential. In the next section, we 
shall study a system in which the GLE remains valid for 
the anharmonic oscillator even for highly nonequilibrium 
states, a fact which strongly suggests the notion of an un- 
derlying effective harmonic bath. 

The predictions of l/T, for given w and fare summa- 
rized in Table IV, where we show that measured values 

c(t) ,;I 

0.0 0.6 1.0 1.6 2.0 

t 

c(t) 

0.0 0.6 1.0 1.6 2.0 

t 

c.(t) 

0.0 0.6 1.0 1.6 2.0 

t 

c, 6) 

0.0 0.6 1.0 1.6 2.0 

t 

C@) -ii 

0 1 2 3 4 

FIG. 6. Decay envelopes of the velocity autocorrelation functions from 
MD (solid line) and GLE (dashed line) simulations for a cubic oscillator 
[cf. Eq. (2.26)] in Lennard-Jones fluid for w=6O, 90, 120, 150, and 300 
with cubic couplings shown. 
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TABLE IV. Dephasing rates for cubic oscillator from MD, GLE, F!q. 
(2.42), Kubo theory, and modified Kubo theory. 

OLE Fq. (2.43) Kubo Mod. Kubo 

60 IO4 3.03 3.05 3.41 0.85 3.04 

90 3x104 1.42 1.41 1.30 0.70 1.33 

120 4x104 0.53 0.52 0.44 0.31 0.52 

120 9x104 1.71 1.64 0.91 0.84 1.02 

150 6~10~ 0.28 0.27 0.22 0.21 0.25 

150 1.8x10' 2.00 2.01 0.85 0.79 0.86 

300 106 0.36 0.36 0.35 0.35 0.35 

from MD, GLE, Eq. (2.43)) Kubo theory and a modified 
Kubo theory. The Kubo theory prediction is obtained by 
computing the fluctuating frequency and then evaluating 
l/T; from Eq. (1.4). For a derivation of the fluctuating 
frequency, see Appendix D. We see that the agreement is 
extremely poor except for the case of 0=300. In light of 
this finding, we propose that the Kubo theory be modified 
to include energy relaxation according to Eq. ( 1.3). This 
modification is ad hoc and cannot be derived with the 
framework of classical Kubo theory. However, we see Ta- 
ble IV that including energy relaxation in the Kubo theory 
gives agreement with the Eq. (2.43) as expected. These 
results suggest that the contribution of F,(t) in 6w( t) [cf. 
Eq. (D7)] is relatively unimportant. The failure of Kubo 
theory at low frequency suggests that energy relaxation is 
an important contribution to the decay of the velocity au- 
tocorrelation function, whereas at extremely high fre- 
quency, there is almost no energy relaxation over the time 
needed for this function to decay so that the decay is due 
entirely to dephasing. The table also indicates that Eq. 
(2.43) fails for w= 120 and 150 at the higher f values. 
This must be due to the fact that the cubic perturbation is 
too strong to be treated by perturbation theory, since for 
the lower values of f Eq. (2.43) predicts the relaxation 
rate accurately. The Kubo theory with energy relaxation is 
worked out to the same order in f, hence it will fail where 
the GLE perturbation theory fails. 

C. Nonequilibrium energy decay 

The GLE accurately predicts vibrational dephasing 
times for anharmonic diatomics in the liquid in the linear 
response regime. Studies of equilibrium energy relaxation 
for both harmonic and anharmonic diatomics show good 
agreement between MD and the GLE. A stringent test of 
the GLE, however, is its prediction of energy relaxation of 
anharmonic diatomics from highly nonequilibrium initial 
states, in which there is no a priori reason to believe the 
GLE will be valid. If an initial state is chosen not too far 
from equilibrium, then the energy relaxation should be 
well described by linear response theory 

F(t) -q 03) 

Z(O)-q co) 
=G(th (4.15) 

where S(t) is the average over a nonequilibrium ensemble, 
and C,,(t) is the equilibrium energy autocorrelation func- 

U(x) = Do( 1 -e-“)2, (4.16) 

where the parameters Do and a are chosen so that har- 
monic and cubic terms in the Taylor expansion of this 
potential match the cubic potential of Eq. -( 2.26), i.e., 

9p3d 
Do= 2f2 2 

.f 
a==. 

(4. 17) 

For w = 120 and f=90 000, the parameters are DO 

= 207.36 and a = 4.167. Initial conditions for the oscillator 
are chosen such that x( 0) =0 so that all the energy initially 
is kinetic. The initial velocity is chosen so as to cause the 
relative separation of the atoms to increase. For the MD 
simulations, an ensemble of initial conditions must be pre- 
pared. This is done by placing a rigid diatomic with the 
bond length fixed at the equilibrium separation and allow- 
ing the fluid to equilibrate around it. In order to insure that 
the initial conditions of the bath are distributed canonically 
the system is run with the newly developed No&Hoover 
chain dynamics.2g Once the fluid has equilibrated around 
the rigid diatomic, configurations are written out every 300 
steps until 100 total initial states are accumulated. The 
300-step time interval is long enough to avoid correlations 
in time between initial states. This procedure should also 
correspond directly to the canonical sampling of realiza- 
tions of the random force which is done for the GLE sim- 
ulations. Finally, to simulate the energy relaxation, the 
Nose-Hoover chains are removed, and trajectories at con- 
stant total energy are run starting from each of the 100 
sampled initial fluid states. The initial conditions of the 
diatomic are the same for all trajectories, as described 
above. For very high energy initial states, the giving off of 
energy by the diatomic to the fluid can cause the fluid to 
heat up, thus changing the spectral density. To minimize 
this effect, the fluid must contain a large number of atoms, 
a fact which makes the computations extremely intensive. 
In order to increase the efficiency of the simulations, the 
double RESPA scheme of Sec. III with long and short 
range force breakup is used [cf. Eqs. (3.10) and (3.1 l)]. 
This gives an overall factor of 32 in the time step over 
velocity Verlet, and an overall saving in CPU time of 16 
over velocity Verlet. 

tion. Clearly, Z( CO > = (E) = kT, which provides a criterion 
for knowing when the energy has relaxed. As long as the 
linear response theory is valid, it is expected that the GLE 
will agree with MD simulations of energy relaxation from 
the nonequilibrium state. However, it is not clear that the 
GLE will be able to predict energy relaxation from initial 
states which are not in the linear response regime. This 
question is examined by comparing the relaxation pre- 
dicted by MD and the GLE for a diatomic with an internal 
Morse potential in the Lennard-Jones liquid. The Morse 
potential is used here instead of the cubic potential as it 
allows the oscillator to start at much higher energies with- 
out dissociating as would happen with the cubic potential. 

The Morse potential is of the form 
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FIG. 7. Nonequilibrium energy decay from the left side of Eq. (4.15) for 
a Morse oscillator in a Lennard-Jones fluid as computed from the GLE 
(dashed line) and MD (double dashed line) using 500 particles for initial 
conditions corresponding to energies of 20kT (upper curve) and 40kT 
(lower curve). Also shown in each figure, with a solid line, is the equi- 
librium energy autocorrelation function (i.e., linear response theory) 
from full GLE simulations. 

MD simulations using 500 fluid atoms and a single 
diatomic were run for initial oscillator energies of 20kT, 
and 40kT as well as GLE simulations. GLE simulations 
were also run for a variety of low energies to determine 
how high the energy of the diatomic must be in order to be 
outside the linear response regime. It was found that the 
linear response theory Eq. (4.15) is valid up to energies 
around 1OkT for this system so that energies of 20 and 
40kT are well outside this regime. In Fig. 7, we show the 
comparison of the MD and GLE simulations of the non- 
equilibrium energy decay [i.e., the left side of Eq. (4.15)]. 
Also shown in the figure is the equilibrium energy auto- 
correlation function for the Morse potential determined 
from the full GLE simulations of Sec. IV B. We see that 
even up to energies of 20kT and 40kT, the GLE predicts 
very accurately, the nonequilibrium relaxation rate, even 
though these are not well described by linear response the- 
ory. In addition, MD and GLE simulations were also run 
for a harmonic diatomic far from equilibrium for initial 
bond energies up to 90kT, and all were found to be well 
described by linear response theory. 

In all cases studied, the nonlinear GLE predicts that 
the energy relaxes faster than or is bounded from above by 
what would be predicted by the GLE in the linear response 
regime. This is expected since, for the nonlinear oscillator, 
the vibrational period is an increasing function of the vi- 
brational energy. (The vibrational frequency is therefore a 
decreasing function of energy-cf. Table III.) Hence, a 
highly excited oscillator will have a vibrational frequency 
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lying closer to the accepting modes of the bath and will 
thus exchange energy with the bath more readily. As the 
oscillator relaxes, its vibrational frequency gets larger and 
detunes away from the bath modes with the result that the 
vibrational energy transfer slows down and eventually 
overlaps what is observed in the linear response regime. 
This is similar to what was observed in the relaxation of I, 
and Br, in argon.30,3* 

To understand these results, consider that when the 
bond potential and the bath are both anharmonic, then the 
GLE cannot be shown to be a valid description of the 
system. However, if the bath can be well described by an 
equivalent effective harmonic bath, then the GLE should 
be valid for any bond potential even far from equilibrium. 
These results suggest, then, that there should be an eKec- 
tive harmonic bath underlying the true LennardJones 
fluid used for these studies. The notion of an underlying 
effective harmonic bath for this system is not altogether 
surprising when one considers that the reduced density 
pa 3=1.05 isjust below the crystal density for reduced 
temperature T=2.5 Although the fluid is a hot, dense 
fluid, it is not far from the solid phase. It is expected that 
if the density were lowered, the notion of an underlying 
effective harmonic bath would break down as strong im- 
pulsive collisions would become increasingly important. In 
this case, the GLE with a Gaussian random force would 
probably not be a good description of the nonequilibrium 
energy decay. However, as discussed in Sec. IV A, if im- 
pulsive, Poissonian type collisions could be built into it, the 
GLE might serve as a good description for the general 
bath. 

V. CONCLUSION 

In this paper full molecular dynamics simulations of 
vibrational relaxation in simple fluids show that the gener- 
alized Langevin equation is an excellent quantitative 
model. We have derived expressions for the velocity, posi- 
tion, and energy autocorrelation functions from the GLE 
for a harmonic potential of mean force and extracted the 
relaxation time T2 and T, from these. We have also used 
perturbation theory to derive the vibrational relaxation 
time T2 from the GLE with cubic anharmonicity. These 
results have been compared to full molecular dynamics 
simulations of a single oscillator at high frequency and a 
range of cubic couplings in a Lennard-Jones fluid. In order 
to solve the multiple time scale problem, the reversible 
version of RESPA presented in Sec. III and a new multiple 
time scale algorithm for the GLE based on the reversible 
version of RESPA were used. The friction kernel for the 
GLE was calculated using the method of Straub and 
Berne5 or that of Ref. 7 from the force autocorrelation 
function on a rigid diatomic. The GLE and MD were 
found to be in good agreement for both predictions of T1 
and T, for the harmonic diatomic. At high frequency, a 
small discrepancy was found between the GLE and MD 
for T,. We attribute this to the fact that the GLE misses 
the rare impulsive collisions which occur in real systems by 
assuming the random force is a Gaussian random process. 
Therefore, this discrepancy is expected to grow as the fre- 
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quency increases, and could become important at low fre- 
quencies for less dense systems. We derived an expression 
for the deviation in the energy autocorrelation function in 
the Gaussian random force approximation and the true 
energy autocorrelation function for short times and found 
the predicted discrepancy consistent with our observations 
from the GLE-MD comparison. 

The predictions of vibrational relaxation times of an 
anharmonic diatomic with cubic anharmonicity from MD 
and the GLE were also compared. These were found to be 
in good agreement at all frequencies and cubic couplings. 
The perturbation theory result Eq. (2.43) was found to 
break down for w= 120 and 150, when f was too large. 
When the perturbation was made smaller, the agreement 
was better. The MD and GLE results were also compared 
to Kubo theory, which was found to be in poor agreement 
with the simulation results for all except the highest fre- 
quency (0=300). We conjecture that the breakdown of 
Kubo theory is due to the fact that energy relaxation can 
contribute significantly to the vibrational relaxation of an 
anharmonic oscillator at low frequencies, and Kubo theory 
leaves this contribution out. By modifying Kubo theory to 
include the energy relaxation, the modified predictions 
were found to be in much better agreement with the sim- 
ulation results. Since the GLE cannot be shown to be valid 
for an anharmonic diatomic interacting with an anhar- 
manic bath, except in linear response, the agreement of the 
GLE with MD for all frequencies and cubic couplings is 
somewhat surprising. The GLE can be derived from the 
harmonic bath Hamiltonian, however, a fact which sug- 
gests that the Lennard-Jones bath at ?=2.5 and pd 
= 1.05 may be well described by an underlying effective 
harmonic bath. 

To test the validity of the GLE for nonlinear oscilla- 
tors and the notion that the bath may be well described 
well by an underlying effective harmonic bath, the energy 
relaxation from nonequilibrium states for a diatomic with 
an internal Morse potential was studied. The parameters of 
the Morse potential were chosen to agree with the cubic 
potential for o= 120 and f=90 000 by expanding the 
Morse potential and equating the harmonic and cubic 
terms. It was found that, even when the nonequilibrium 
decay was poorly described by linear response theory, the 
simulation of the nonlinear GLE predicted the same relax- 
ation rate as MD. Whitnell et al.32 have numerically sim- 
ulated the vibrational energy relaxation of aqueous CH3Cl 

treated like a diatomic for several different sets of charges 
on CH,Cl and report that even for high excitation energies, 
linear response theory and the Landau-Teller theory [cf. 
Eq. ( 1) of Ref. 321 accurately predicts the simulation re- 
sults. Their system differs from ours in several important 
respects. Because the molecular vibration is not far off res- 
onance with the water librational modes, the relaxation is 
very fast and dominated by long range interactions. When 
the charges are turned off, the decay is too slow for anal- 
ysis. By contrast, our system is short ranged and off reso- 
nance. Hence, a different physical response is not surpris- 
ing. RESPA allows study of such previously inaccessible 
decays as are encountered, for example, in the diatomic 
potentials studied here. As expected, the nonequilibrium 
relaxation of a harmonic diatomic, a linear system, was 
found to agree with linear response theory for all initial 
states up to 90kT. The fact that the GLE predicts the same 
relaxation rate as MD even for highly nonequilibrium 
states supports the notion that the fluid can be well de- 
scribed by an effective bath. It is expected that for lower 
densities, in which impulsive collisions will be more fre- 
quent and more important, the GLE would begin to break 
down for highly nonequilibrium initial states. However, if 
the GLE could be supplemented to include #the impulsive 
Poissonian type collisions along with the Gaussian random 
force in a way which preserved the second fluctuations 
dissipation theorem, then the range of validity would, most 
likely, be increased to include low density, high tempera- 
ture situations. 
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APPENDIX A: DERIVATION OF EQ. (2.7) 

In this Appendix we show how Eq. (2.7) can be de- 
rived starting from the formal solutions Eq. (2.10) of the 
GLE. The energy of the oscillator is E=,LLv~/~ +pw2x2/2 so 
that, using these solutions, the quantity ( E( 0) e(t) ) can be 
expressed as 

(dO)EW=$ (v4> [CJt> +W2&(t)l +T 69 [oq&) +c$,(t) l+$ (22) [C,(t) ++c$(t) +oq”(t) 

+~2C2,(~)l +; ((v2)+02(x2)) J-4 J~d72[cuu(TI)cu”(T2)+w2c”x(TL)cux(T2)l 

X (R(t-q)R(t--,r2)). 
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From the second fluctuation dissipation theorem, we have 

(~~f-T1uw-72~) =F Y(72-71)et72-71L (AZ) 

where 0(t) is the Heavyside step function. Using Eq. 
(A2), the relation CX,(t) =--~~c,,(t), and the expres- 
sions in Set II A for the equilibrium moments, Eq. (Al) 
becomes 

(dOkW) = M-j2 &t) +Cf&(t> +; &t, ] 

+W)’ fdT s s Q 

2 02c dqy(72-71) 

x[C”“(7.1)C”v(~2)+~2C”~(~*)C”~(~22)l. 
(A3) 

Using the identities Eqs. (2.11) and (2.12), it follows that 

s 

t 
d72 c,,(72) T2 dT1 cuu(T1)y(T~--T1) 

0 s 0 

= I 0 t dT2 c,,(T2) 1 -f 2 c,,(T2) -612 s 0 72 
dT1 cw(T1) 1 

1 

s 

t 
=-- 

2 0 
dT2 f c,(72) -a2 

2 s 

t 

d% cd’%) &(9-d 
0 

=-- : [~"(t)--l]--02SfdTc"U(T)c"~(T) (A4) 
0 

and similarly that 

aI2 t 
s 

dT2 cux(Td 
0 I 

72 dT1 C”X(T&‘(‘-~-T.~) 
0 

=- & e,(t) +02 JotdT c,(T)cn(T). 

Furthermore, we see that 

(A5) 

s t 0 

d~cux(~)c&)=-~ 
s 

t &- c,(T) ; c,.(T) 
0 

=-gz wL(+ll L46) 

and 

dT cvx(T)c,,(T> = s ’ dT cm(T) & c&T) 
0 

=; CQt). (A7) 

When Eqs.(A6) and (A7) are substituted into Eqs.(A4) 
and (A5) and the results are then substituted into Eq. 
(A3), we find, after subtracting off the equilibrium value 
and normalizing, that we recover Eq. (2.7) 

C&) =; c”(t) +; cQt> +-$ [c&)12. (A8) 

APPENDIX B: ANALYTICAL SOLUTION OF THE 
CUBIC OSCILLATOR REFERENCE SYSTEM 

In Sec. III, we discussed the use of an analytical ref- 
erence system for the harmonic diatomic and mentioned 
that an analytical solution for the cubic oscillator can be 
expressed in terms of Jacobi elliptic functions. The refer- 
ence system equation of motion will be of the form 

1 f 
bpn)=-02x--xZ* 

2P 
(Bl) 

The time evolution of the initial state {x(O) ,1(O) 3 for a 
time step At under the action of the reference system prop- 
agator exp (i&At) is then given by 

eWtx(o) =x+ - (x+-X- > 

(J 1 f (x+ -GJ 
xsn2 z 

3P 

where sn(x) is the Jacobi elliptic function, v is the incom- 
plete elliptic integral 

(J33) 

Also 

034) 

and 

X+ -X- 
a=- 

x+ -%n 

The quantities x,, x+, and x- are the roots of the poly- 
nomial (x, <x- <x+) 

E-$pu2x2-i fx3z0. VW 

with the energy E determined from the initial conditions. 
The velocity can either be obtained by direct differentiation 
of by use of the formula 

pit= 2p(E-&CLo2g-$ fx3). (B7) 

Since the solutions are complicated functions of the initial 
conditions, the Jacobi elliptic function and incomplete el- 
liptic integral must be evaluated at every time step. How- 
ever, given fast codes for these functions, such as are found 
in Numerical Recipes,33 using the analytical solution can 
still be a significant savings over a numerical one. 

APPENDIX c: DERIVATION OF EQ(4.9) 

The derivation of Eq. (4.9) requires that we compute 
the difference between the true energy autocorrelation 
function and the Gaussian approximation Eq. (2.7) to 
d ( t4). To obtain the expansion Eq. (2.7)) we note that the 
velocity autocorrelation function has an expansion of the 
form 

1 &c 
c,,(t)=l+~ d3 1dzc”(o)p+24-g(o)t~+... (Cl) 
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etc.]. Furthermore, if the bond potential is taken to have 
both harmonic and cubic terms, then the total potential 
involving x is 

and similarly for C,. t) because the odd derivatives vanish 
at t=O. Since C,,(t)-(v(O)exp(iLt)v(O)), it is easily 
seen that d2C,,(0)/d$- (ti2) and d4C,,(0)/dt4- (ii”!, etc. 
Substituting the expansions of CJt), C,(t), and C,(t) 
into Eq. (2.7), and using the facts that (v2) =w2(x2) and 
(a2) = - (a’)/& where a is the acceleration and a’ is the 
derivative of the acceleration with respect to position gives 
the expansion of the Gaussian approximation to the energy 
autocorrelation function 

C’(f) =I+: [(a’) +02]t2+ [ & (ar2) +f (a’)2 

((3) 

The expansion of the true energy autocorrelation func- 
tion takes the same form as Eq. (Cl) with the coefficients 
of 8 and P being given by the averages (&) and (Z), re- 
spectively. With e=pv2/2+pw2x2/2, it is clear that there 
will be a large number of terms. All these terms can be 
simplified using a general identity 

u+ v= Vo+Fl(t)X+F2(t)X2+~ClW2X2+afX3. CD21 

We are interested in the high frequency limit in which the 
coupling to the bath is weak and may be considered a small 
perturbation to the bond potential. By completing the 
square, we may write the total potential as 

u+ v= Vo(t) +&02 +Fdt)x2+;fx3, 

(D3) 

where Vo( t) = vo-FT( t)/2pa2. We now introduce a 
change of variables 

F,(t) 
Y=X+Z (D4) 

CL@ 

(fCx,ab)=--& (-$f(x,a)) 

=-&((:+:a’)), 

in terms of which the potential becomes 

FlW 2 
u+v=v,(t)+&~~$+F,(t) y-- 1 1 

(D5) 

(C3) 
By working to first order in F, and F2, we find the poten- 
tial becomes which can be derived by noting that 

(f(x,a)a) N s dx f(x,a) & & empucx) (C4) 

and integrating by parts. Using the identity Eq. (C3), the 
expansion of the true energy autocorrelation function can 
be shown to be 

G(O=l+~ [(a’>+w2]t2+ i (at2)+$04+~ (aa’) 
[ 

PPW4 -24 (x2at> +c (a’) +$ (xa”)]P. (C5) 

Computing the difference AL”) (t) = C,,(t) -CL,“) (t) and 
using the identity Eq. (C3) a few more times, it is straight- 
forward to derive Eq. (4.9). 

APPENDIX D: CLASSICAL DERIVATION OF THE 
FLUCTUATING FREQUENCY 

In this Appendix, we give a classical derivation of the 
fluctuating frequency used to calculate l/T2 in the Kubo 
theory. If V(x,{r)) represents the coupling potential be- 
tween the relative coordinate x of the diatomic and the 
bath coordinates {r), then following Oxtoby,‘2F’3 we may 
expand the potential in a power series in x 

V(x,-Cr3) = Vo+Fl(t)x+F2(t)x2+..., Pl) 

where the time-dependent coefficients depend on the mo- 
tion of the bath degrees of freedom [i.e., Fi (t) =F1 ({r};f), 

u+ v= Vo(t) +;, 
2F2 P’,(t) 

w2+7-- 
Pm 1 y2+; fv3 (D6) 

from which we see that the fluctuating frequency is given 

by 

(D7) 

Oxtoby obtained the same result using quantum mechani- 
cal perturbation theory. 

Expressions for F1 (t) and F2( t) can be easily com- 
puted from the potential. The terms in the potential energy 
involving the coordinates of the diatomic take the form 

u= c [md+~(x2)1, P8) 
i 

where V is the sitesite potential, and 

with R the center of mass, r the relative coordinate, u the 
unit vector along the bond, and rj the position of the j the 
solvent atom. The necessary derivatives are 

au irav 

I 

an 
-=- -_- 
ar 2 6kl aX2 

a2u i a2v a2v -=- - - 
a? 4 axlxl+ax2x2 * 'uue 1 1 

(D10) 
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The dyads in the above expression are simply 

aV dVxi 
-=-- 
ki dP P ’ 

a2V d2VXiXi 1 dV 
CD111 

ax,x,=J-&y+-- 1-q , 
( 1 PdP P 

where p- lxil, and V(p) is just the functional form of the 
site-site potential. 

Note that the coupling to the bath is a second order 
effect in the fluctuating frequency in the sense that if f =0, 
w(t) only involves F2 ( t) . The presence of an anharmonic- 
ity is required to bring in the first order coupling to the 
bath. It is evident, furthermore, that in a perturbation the- 
ory scheme, a lowest order linear system based on w(t) will 
be a better approximation to the linear system than one 
based simply on w since w(t) takes into account some 

effect of the anharmonicity. 
By defining So(t) =w (t) -15, we have an expression 

for the fluctuations in the frequency which can be easily 
computed in a molecular dynamics calculation and auto- 
correlated to give the dephasing contribution to l/T2 ac- 
cording to Eq. ( 1.4). 
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