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In this paper different topologies of populations of FitzHugh–Nagumo neurons have been introduce

to investigate the effect of high-frequency driving on the response of neuron populations to a

subthreshold low-frequency signal. We show that optimal amplitude of high-frequency driving

enhances the response of neuron populations to a subthreshold low-frequency input and the optimal

amplitude dependences on the connection among the neurons. By analyzing several kinds of topol-

ogy �i.e., random and small world� different behaviors have been observed. Several topologies

behave in an optimal way with respect to the range of low-frequency amplitude leading to an

improvement in the stimulus response coherence, while others with respect to the maximum values

of the performance index. However, the best results in terms of both the suitable amplitude of

high-frequency driving and high stimulus response coherence have been obtained when the neurons

have been connected in a small-world topology. © 2010 American Institute of Physics.

�doi:10.1063/1.3324700�

In bistable systems, it has been shown that the role of

noise in improving the quality of signal detection can be

played by other types of driving, such as a chaotic signal

or a high-frequency periodic force. In the latter case,

known as vibrational resonance (VR), the system is under

the action of a two frequency signal. Such bichromatic

signals are pervasive in different fields, including brain

dynamics, where, for instance, bursting neurons may ex-

hibit two widely different time scales, and telecommuni-

cations, where information carriers are usually high-

frequency waves modulated by a low-frequency signal

that encodes the data. The dynamics of neurons is often

modeled by using differential models. Networks of many

neurons can be studied by connecting many of these mod-

els and studying the global behavior of the system. The

importance of these studies is related to a deep under-

standing of the neural mechanisms underlying neural

systems. This paper focuses on several topological struc-

tures of networks of these models and studies the dy-

namical response of coupled neurons to bichromatic sig-

nal with two very different frequencies from the

viewpoint of VR.

I. INTRODUCTION

The external influence can considerably affect the signal

detection by nonlinear system. Stochastic resonance �SR�,
where the response of a nonlinear system to a weak deter-

ministic signal is enhanced by external random

fluctuation,
1–3

is the most relevant example of this fact. Re-

cently, Ullner et al. gave a detailed description of several

new noise-induced phenomena in the FitzHugh–Nagumo

�FHN� neuron in Ref. 4. They have investigated the Canard-

enhanced SR,
5

the effect of noise-induced signal processing

in systems with complex attractors,
6

and a new noise-induce

phase transition from a self-sustained oscillatory regime to

an excitable behavior.
7

They also showed that optimal am-

plitude of high-frequency driving enhances the response of

an excitable system to a low-frequency subthreshold signal.
8

In the latter case, known as VR, the system is under the

action of two frequency signal.
9–11

Such bichromatic signals

are pervasive in many different fields, including brain

dynamics,
12

where, for instance, bursting neurons may ex-

hibit two widely different time scales.

However, most of the relevant studies only considered

the single neuron.
5,7,8

Recently, Ref. 13 has investigated SR

on excitable small-world networks so the focus of this paper

is on the investigation of the role of topology in neuron

networks in the presence of high-frequency driving. We will

refer to the enhancement in the stimulus response due to the

presence of high-frequency driving as a generalized VR ef-

fect. Several network topologies have been investigated fo-

cusing on the positive effects of connections in networks of

nonlinear FHN neurons affected by high-frequency driving.

Structures, such as chains or fully connected graphs, random

graphs, and small-world networks,
14

have been simulated by

connecting FHN neurons excited by subthreshold low-

frequency signal. The Fourier coefficients have been evalu-

ated to point out the VR features of extended neuron popu-

lations versus the topology configuration. The phenomenon

studied in this paper is also related to noise-enhanced SR in

coupled oscillation.
15,16

The contents of this paper are arranged as follows. In

Sec. II, VR in single FHN neuron is introduced briefly. The

analysis of the VR in different models of neuron population

is given in Sec. III. Finally, conclusions and discussions are

made in Sec. IV.

II. VIBRATIONAL RESONANCE IN SINGLE
FHN MODEL

In the presence of two harmonic signals, the FHN

model
17

is defined by the equations

�
dx

dt
= x −

x3

3
− y , �1�
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dy

dt
= x + a + A cos��t� + B cos��t� , �2�

where x�t� represents the membrane potential of neuron and

y�t� is related to the conductivity of the potassium channels

existing in the neuron membrane. The value of the time scale

ratio �=0.01 is chosen so that the activator x�t� evolves

much faster than the inhibitor y�t�. The terms A cos��t� and

B��t� stand for the low- and high-frequency components of

the external signal, respectively. In what follows we will

choose A=0.01, so that the system is below the excitation

threshold, and ���, in particular, �=5 and �=0.1. In Eq.

�2� we have considered no phase shift between the two driv-

ing signals, but it can be checked that the existence of an

arbitrary phase shift does not alter the results that follow. The

parameter a determines the behavior of the system. For a

�1.0 the FHN model is excitable, and for a�1.0 it shows an

oscillatory behavior. At the bifurcation a=1.0 the stability of

the only fix point will be changed.
18

Between these two cases

an intermediate behavior can appear. For values of the pa-

rameter a slightly beyond the bifurcation point, small oscil-

lations near the unstable fix point exist instead of large spike

and these are the so-called canard oscillations.
19

An impor-

tant fact of the treatment of canard oscillation is that a very

small change in the parameter a leads to a large different in

the trajectories. This change in the parameter a can be caused

by some instantaneous influence of noise as investigated in

Refs. 5 and 18 or external high-frequency driving as inves-

tigated in Ref. 8. In this paper, the parameter of a is fixed to

be 1.05. We fix the amplitude of the low-frequency signal

component and increase the high-frequency amplitude. In

FIG. 1. Firing of a single FHN neuron subjected to a subthreshold low-frequency signal for increasing the amplitude of high-frequency driving: �a�
subthreshold low-frequency signal; �b� x�t� for weak high-frequency driving �no spikes are emitted�; �c� x�t� for optimal high-frequency driving; �d� x�t� for

too strong high-frequency driving. �e� The ratio of the time duration of spikes and subthreshold oscillation vs the amplitude of high-frequency driving.
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Fig. 1 the behavior of the system with respect to increasing

the amplitude of high-frequency driving is reported. The in-

put is a periodic, underthreshold signal, as shown in Fig.

1�a�. As can be noticed when the amplitude of high-

frequency driving is low �Fig. 1�b��, the FHN neuron does

not fire, but when the amplitude is too high �Fig. 1�d��, the

firing is not coherence with the input. The optimal case is

represented by Fig. 1�c�. As the information is carried

through neuron spikes, for a sinusoidal input signal, the more

the ratio of the time duration of spikes and subthreshold

oscillation is close to 1, the better the information is carried

through spike trains. From Fig. 1�e�, it can be seen that while

the amplitude of high-frequency driving is about 0.06, the

information will be carried best.

To evaluate the amplitude of the input frequency in the

output signal, we calculate the Fourier coefficient Q for the

input frequency �. We use the Q parameter instead of the

power spectrum because we are interested in the transport of

the information encoded in the frequency �. For this task the

Q parameter is a much more compact tool than the power

spectrum
1,20

Qsin =
�

2n�
�

0

2�n/�

2x�t�sin��t�dt ,

Qcos =
�

2n�
�

0

2�n/�

2x�t�cos��t�dt ,

Q = �Qsin
2 + Qcos

2 ,

where n is the number of period 2� /� covered by the inte-

gration time. The maximum of Q shows the best phase syn-

chronization between input signal and output firing. It is to

be noted that in the case of phase synchronization one could

expect a response of the Q measure but not vice versa, and

the phase synchronization between the input signal and the

output of neuron can be seen from the following figures of

time series. Also, as information in neuron system is carried

through large spikes instead of subthreshold oscillations, we

are more interested in the frequency of spikes. So following

Ref. 6, we set the threshold Vs=0 in the calculation of Q. If

V�Vs, V is replaced by the value of the fixed point V f �here

V f =−1�; otherwise, V remains the same.

Figure 2 shows VR in the single FHN neuron with value

of parameter a=1.05. The dependence of neuron’s response

on the amplitude of the high-frequency driving displays a

resonant form with clearly defined maxima at the optimal

values of B, similar to what happens in SR. The staircase

form of this dependence is caused by the abrupt discrete

appearance of new spikes in the spike train as the forcing

amplitude changes.

III. VIBRATIONAL RESONANCE IN NEURON
POPULATIONS

Now we consider the coupled FHN neuron populations

subject to series of high-frequency driving with the common

amplitude and frequency but different phases described by

�
dxi

dt
= xi −

xi
3

3
− yi − Ii

syn, �3�

dyi

dt
= xi + a + Ai cos��t� + B cos��t + �i� , �4�

where i=1,2 , . . . ,N index of the neurons. Without loss of

generality, let �i be uniformly distributed in �0 ��. �=0.01,

Ai=0.01, �=0.1 and �=5 as used in Sec. II. Ai cos��t� and

B cos��t+�i� are low- and high-frequency driving, respec-

tively. Ii
syn is the synaptic current through neuron i.

For the electrical coupling,

Ii
syn = �

j=i−r

j=i+r

gsyn�xi − x j� , �5�

where gsyn is the conductance of synaptic channel. gsyn

=0.01, which is large enough to synchronize the coupled

neurons. r is the radius of the neighborhood and the value of

it will be given in each case followed. By varying r the

network architecture changes from local connection to all-to-

all global coupling.

In neural systems with a large amount of neurons, it is

unnecessary and impossible to add external signals to all

involved individuals. Only weak and local input is reason-

able and guarantees the low energy consumption in large

neural networks, so in all cases in this paper, the same low-

frequency signal has been applied to a fraction f �0� f �1�
of elements in the neuron populations, whereas high-

frequency driving with different phases for each neuron has

been taken into account. The response of the entire network

has been monitored by considering the average of each mem-

brane variable xi, namely, V�t�= �1 /N��xi�t�.

FIG. 2. Response Q of the FHN neuron at the low frequency � vs the

amplitude B of the high-frequency input signal.
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A. Random connections

First of all, the case in which the neurons are random

coupled has been investigated. The random networks are

characterized by asymmetric structures and capture in an ide-

alized way the features of many real systems. These net-

works have a short average path length which drives from

the fact that, starting from each node, any other node of the

network can be reached in a small number of links.
14

Starting

from a population of N FHN neurons the random network

has been built by using the following rule. Given a probabil-

ity p of connections, each pair of neurons is connected by a

link with probability p so the topology structure of a random

network is determined by the probability, as shown in Fig. 3.

First, we fix f =50% and p=0.5 which means that half of

the neurons are subjected to the low-frequency signal and

each pair of neurons is connected by a link with probability

0.5. The effects of high-frequency driving in a random net-

work of FHN have been characterized with respect to differ-

ent values of the number of FHN units. The result is shown

in Fig. 4�a�, where it is evident that increasing the number of

FHN units, the response dependence is shifted to the right.

The larger the neuron population is, the more energy is

needed for the emergence of VR in a randomly coupled neu-

ron network, and while the neuron population is large

enough the corresponding high-frequency driving amplitude

BVR of VR will not increase notably with the size of the

neuron network, as shown in Fig. 4�b�.

For an Erdös–Rényi �Ref. 21� random graph with N

nodes, if the connection probability p is greater than a certain

threshold pt��ln N� /N, then almost every random graph is

connected, so for a randomly coupled neuron network with

50 FHN units, if connection probability is less than

ln�50� /50	0.08, there may be some isolated neurons in the

network and the value of Q increases with the increase in p,

as shown in Fig. 5�a�. If p is greater than 0.08, almost every

graph is connected, so the value of Q will not increase with

the increase in p, as shown in Fig. 5�b�. If p is greater than

0.08, the optimal amplitude of high-frequency driving BVR

will increase with the increase in p, as shown in Fig. 5�d�.
We suspect that it may be because that while almost every

random graph is connected the additional links will lead to

more energy cost needed for VR in a randomly coupled neu-

ron population. If p is less than 0.08, BVR will not increase

with the increase in p, as shown in Fig. 5�c�.

B. Small-world networks

Many real networks have a short average path length,

but at the same time show a high clustering degree due to the

presence of both short-range and long-range links. In order

to model these systems Strogatz and Watts introduced the

concept of small-world networks that successfully captures

the essential features of the neuronal systems of the C.

elegans.
14

Small-world networks can be built starting from a

network of locally coupled neurons, i.e., each neuron is

FIG. 3. Example of considered random network topologies. Given 50 iso-

lated nodes, one connects every pair of nodes with probability �a� 0.01,

�b� 0.1.

FIG. 4. Effect of the size of neuron network on the VR in a randomly

coupled neuron network. �a� Response Q of three randomly coupled neuron

networks with different amounts of elements vs the amplitude B of high-

frequency driving. �b� The corresponding high-frequency driving amplitude

BVR vs the amount of neuron population. The parameters are p=0.5, f

=50%. This figure is the average result of ten trials.
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linked to its K nearest neighbors, and replacing some links

with new random ones with probability p. By increasing the

probability p the architecture of the neuron population is

tuned between the two extremes, regular and random net-

works. Small-world networks are characterized by low val-

ues of the probability p, as shown in Fig. 6.

The effect of the number of nearest neighbors on the VR

in the neuron population is investigated first. In Fig. 7 three

cases are reported: K=2, K=4, and K=6. It is shown that the

optimal amplitude of high-frequency driving BVR will in-

crease and the range of suitable high-frequency driving lev-

els will reduce with the increase in K. It means that more

local links will lead to more energy cost needed for VR in a

small-world network of neuron population.

The effects of high-frequency driving in a small-world

network of FHN have been characterized with respect to dif-

ferent values of the number of FHN units. The result is

shown in Fig. 8�a�, where it is evident that increasing the

number of FHN units, the suitable high-frequency driving

levels will be reduced. But the size of the neuron network

has a little effect on the optimal amplitude of high-frequency

driving, as shown in Fig. 8�b�.
To increase the rewire probability will introduce more

long-range edges in the small-world network, but it only

changes the suitable high-frequency driving levels and does

not affect the optimal amplitude of high-frequency driving,

as shown in Figs. 9�a� and 9�b�, respectively.

C. Mechanism of VR in different neuropopulations

In the absence of driving, Eqs. �3� and �4� can be cast in

the form

�
dxi

dt
= xi −

xi
3

3
− yi − Ii

syn, �6�

dyi

dt
= xi + a . �7�

Then the so-called asymmetric double-well potential

function
1

in the rest state of Eqs. �6� and �7� can be given as

V�x� =
x2

2
−

x4

12
− �a3

/3 − a + Isyn�x . �8�

The sketch of V�x� is shown in Fig. 10, from which we can

see that Vth, the height of the potential barrier separating the

two minima, determines the optimal strength of high-

frequency driving of VR, and the synaptic current can

change the value of Vth so as to affect VR in network with

various topologies.

As the synaptic current can change the value of Vth, the

optimal strength of high-frequency driving of VR is affected

by the topology of network. For a random coupled network,

the value of Vth will increase with the population of network,

and if the connection probability is greater than a certain

FIG. 5. Effect of the probability of connections on the VR in a randomly coupled neuron network. Response Q of three randomly coupled neuron networks

with different probability of connections vs the amplitude B of high-frequency driving: �a� p�0.08; �b� p�0.08. The corresponding high-frequency driving

amplitude BVR vs the amount of neuron population: �c� p�0.08; �d� p�0.08. The parameters are N=50, f =50%. This figure is the average result of ten

trials.
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threshold, the value of Vth will increase with the connection

probability so the optimal strength of high-frequency driving

of VR will increase the population of network and the con-

nection probability. For a network with small-world proper-

ties, the value of Vth will not increase with the population of

network and the reconnection probability, so we can obtain

the results in Sec. III B.

FIG. 9. Effect of the rewire probability on the VR in a small-world neuron

network. �a� Response Q of three small-world neuron networks with differ-

ent rewire probabilities vs the amplitude B of high-frequency driving. �b�
The corresponding high-frequency driving amplitude BVR vs rewire prob-

ability. The parameters are K=4, N=50, f =10%. This figure is the aver-

age result of ten trials.

FIG. 6. Example of considered small-world network topologies. Given 20

isolated nodes. �a� Regular ring characterized by p=0. Each node is con-

nected to its K=4 nearest neighbors. �b� Realization of small-world topol-

ogy via random rewiring of a certain fraction p=0.1 of links.

FIG. 7. Effect of the number of nearest neighbors on the VR in the neuron

population of small-world network. The parameters are N=100, p

=0.1, f =10%. This figure is the average result of ten trials.

FIG. 8. Effect of the size of neuron network on the VR in a small-world

neuron network. �a� Response Q of three small-world neuron networks with

different amounts of elements vs the amplitude B of high-frequency driving.

�b� The corresponding high-frequency driving amplitude BVR vs the amount

of neuron population. The parameters are K=4, p=0.1, f =10%. This fig-

ure is the average result of ten trials.
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IV. CONCLUSIONS

In conclusion, we have studied the dynamical response

of coupled neurons to bichromatic signal with two very dif-

ferent frequencies from the viewpoint of VR. Several topolo-

gies from random connected to small-world networks have

been investigated. These systems behave in a very different

way. For example, in the local input case, the larger the neu-

ron population is, the more energy is needed for the emer-

gence of VR in a randomly coupled neuron network, but the

size of the small-world neuron network almost does not af-

fect the optimal amplitude of high-frequency driving. It is

because that although the connection will improve the per-

formance of the system by increasing the information ex-

change among the neurons, the subthreshold oscillation of

neurons will also transform among the network through elec-

trical coupling, and the coupled neurons will respond to the

input signal collectively only after the synchronization of

subthreshold oscillation among the network. The ability to

achieve synchronization in small-world network is much bet-

ter than in random network, so the simulation results pre-

sented will be obtained. It is also noted that for a chain

coupled neuron network the VR is enhanced evidently, and

this is in accord with the results in Ref. 16.

We suspect that while almost every unit is connected the

additional links will lead to more energy cost needed for VR

in a neural network. So for a randomly coupled neuron popu-

lation, if the connection probability is greater than a certain

threshold, the optimal amplitude of high-frequency driving

will increase with its increase, and for a small-world net-

work, the optimal amplitude of high-frequency driving will

increase and the range of suitable high-frequency driving

levels will reduce with the increase in the number of nearest

neighbors. We also find that the addition of long-range edges

in a small-world network only changes the suitable high-

frequency driving levels and does not affect the optimal am-

plitude of high-frequency driving.

We expect our findings will be relevant for different

fields in neuroscience including deep brain stimulation,

where also high-frequency signal is used. Given the ubiquity

of two-frequency signals in neuron assemblies and an opti-

mal strength of high-frequency driving may enhance the

transmission of information.
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