DTP 11 Onv

OFFICE OF NAVAL RESEARCH Contract N0014-87-K-0495

R&T Code No. 400x026 Technical Report No. 4

Vibrationally Resolved Photoelectron Spectra of Si3 and Si4

by

T. N. Kitsopoulos, C. J. Chick, A. Weaver, and D. M. Neumark

Submitted to the Journal of Chemical Physics

AD-A225 383

University of California Department of Chemistry Berkeley, CA 94720

August 1, 1990

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited

()

INCLASSIFIED	م مور م			• • .		
SECURITY CLASSIFICATION OF THIS PAGE						
	REPORT DOCUM					
10 REPORT SECURITY CLASSIFICATION		10. RESTRICTIVE MARKINGS				
Unclassified 26 SECURITY CLASSIFICATION AUTHORITY		N/A				
N/A		Approved for public release; distribution				
20. DECLASSIFICATION/DOWNGRADING SCHEDULE		unlimited				
N/A						
4. PERFORMING ORGANIZATION REPORT NUMB	ER(S)	5. MONITORING OF	GANIZATION R	EPORT NUMBER	\$)	
Technical Report No. 4						
64 NAME OF PERFORMING ORGANIZATION 60. OFFICE SYMBOL		78. NAME OF MONITORING ORGANIZATION				
University of California, (11 epplucable)						
Berkeley		Office of Naval Research				
6c ADDRESS (Cuy. Stole and ZIP Code) Chemistry Department			75. ADDRESS (City, State and ZIP Code)			
University of California		800 N. Quincy St.				
Berkeley, CA 94720		Arlington, VA 22217				
L. NAME OF FUNDING/SPONSORING	B. OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT IC	ENTIFICATION N	UMBER	
ORGANIZATION ((1 applicable) Office of Naval Research		N0014-87-K-0495				
Ac. ADDRESS (City, State and ZIP Code)		10 SOURCE OF FUNDING NOS.				
800 N. Quincy St.		PROGRAM	PROJECT	TASK	WORK UNIT	
Arlington, VA 22217		ELEMENT NO.	NO.	NO.	NO.	
				1		
11. TITLE (Include Security Classification) Vibrat photoelectron spectra of Si3 ⁻ a	ionally resolve nd Si/ (Uncl	d ssified)			}	
12. PERSONAL AUTHOR(S)	······································		· · · · · · · · · · · · · · · · · · ·	1		
T. N. Kitsopoulos, C. J. Chick,					·	
13a TYPE OF REPORT13a TIME COVERED14. DATE OF REPORT (Yr., Mo., Day)15. PAGE COUNTInterim TechnicalFROM Jan 90To July 9090-7-3115					COUNT	
Prepared for publication in	the Journal of	Chemical Phys	sics			
	·····					
	IDSUBJECT TERMS !!	Continue on restrict of the		ITy by block numbe	7)	
FIELD GROUP SUB GR Clusters, semiconductors, negative ions, photodetachment						
					() () () () () () () () () () () () () (
19. WESTRACT (Continue on reverse if necessary and i	dentify by block numbe	r)				
Photoelectron spectra of the	Sig and Sig	cluster anions	have been	obtained at	355 nm	
Photoelectron spectra of the Si_{3-} and Si_{4-} cluster anions have been obtained at 355 nm and 266 nm. The spectra show transitions to the ground and low-lying excited electronic						
states of the neutral clusters. Several of the electronic bands show resolved vibrational						
structure. The electronic state energies and vibrational frequencies are compared to recent ab initio calculations. The Si 2π spectrum is consistent with the prediction of a						
planar, symmetric rhombus for the ground state of Si_4 .						
	0	4				
-						
•						
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT		21. ABSTRACT SECURITY CLASSIFICATION				
UNCLASSIFIED/UNLIMITED 🛛 SAME AS RPT. 🖾 DTIC USERS 🗖		Unclassified				
224. NAME OF RESPONSIBLE INDIVIDUAL		225 TELEPHONE N Include Ame Co		226. OFFICE SY	HOL	
Dr. David L. Nelson		(202) 696-441	-	[
DD FORM 1473, 83 APR	EDITION OF 1 JAN 73			ASSIFIED		

•

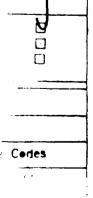
.

10

SECURITY CLASSIFICATION OF THE PAGE

Vibrationally resolved photoelectron spectra of Si₃ and Si₄

T. N. Kitsopoulos, C. J. Chick^{a)}, A. Weaver, and D. M. Neumark^{b)} Department of Chemistry, University of California, Berkeley, CA 94720


Abstract

Photoelectron spectra of the Si_3 and Si_4 cluster anions have been obtained at 355 nm and 266 nm. The spectra show transitions to the ground and low-lying excited electronic states of the neutral clusters. Several of the electronic bands show resolved vibrational structure. The electronic state energies and vibrational frequencies are compared to recent *ab initio* calculations. The Si_4 spectrum is consistent with the prediction of a planar, symmetric rhombus for the ground state of Si_4 .

Introduction

The study of elemental clusters has received a great deal of experimental attention in recent years. A major goal of this effort is to understand how the structure and properties of a cluster depend on its size. However, little is known about the spectroscopy of clusters with three or more atoms. For example, spectra showing resolved vibrational features

(INSLATION CONTRACTOR

^{a)} NSF Predoctoral Fellow.

^{b)} NSF Presidential Young Investigator and Alfred P. Sloan Fellow.

have been observed for only a handful of such clusters in the gas phase.^{1,2,3,4,5,6,7} The measurement of vibrational frequencies is an important first step towards understanding the nature of chemical bonding in a cluster.

Negative ion photoelectron spectroscopy offers a promising experimental technique for the study of size-selected elemental clusters. In a typical experiment, a mass-selected beam of negative cluster ions is photodetached and the resulting electron kinetic energy distribution is analyzed, thereby probing the electronic and vibrational states of the neutral cluster formed by photodetachment. This technique offers the considerable advantage of eliminating any ambiguity concerning the size of the cluster under investigation, and has been used by Lineberger,^{5,8} Smalley,^{9,10,11} Bowen,¹² Meiwes-Bröer,¹³ and their co-workers to study polyatomic metal and semiconductor clusters. However, the resolution of a photoelectron spectrometer is, at best, 50 - 100 cm⁻¹, and only Lineberger's spectra⁶ of Pd₃⁻ and Pt₃⁻ have shown resolved vibrational structure.

In this Communication, we present photoelectron spectra of Si_3 and Si_4 which show resolved vibrational progressions in several electronic states of the neutral clusters. The photoelectron spectra of these anions were first reported by Smalley,⁹ but the resolution of his spectra was around 1200 cm⁻¹. Our spectra are obtained at considerably higher resolution, thereby enabling

the observation of vibrational structure. The interpretation of these spectra is aided by the *ab initio* calculations on small neutral Si clusters which have been performed by several investigators,^{14,15,16,17,18,19,20,21} and by recent calculations on Si cluster anions by Raghavachari and Rohlfing.²² Experimental

The instrument used in these studies is a modified version of our negative ion time-of-flight photoelectron spectrometer described in detail elsewhere.²³ The instrument is similar to that first described by Johnson and co-workers.²⁴ A beam of cold anions is mass-selected using a time-of-flight mass spectrometer, and the mass-selected anions are photodetached with a pulsed laser. A small fraction (10⁻⁴) of the ejected photoelectrons is energy-analyzed by time-of-flight. The electron energy resolution is 8 meV (64 cm⁻¹) for electrons with 0.65 eV of kinetic energy and degrades as (KE)^{3/2}. The spectra below were obtained with third and fourth harmonics of a Nd:YAG laser (20 Hz repetition rate) at 355 nm (3.49 eV) and 266 nm (4.66 eV), respectively, and each was signal-averaged for 250,000 labor shots. The laser polarization was set at the 'magic angle' ($\theta = 54.7^{\circ}$) with respect to the direction of electron angular distribution.

The silicon cluster anions are generated with a laser-vaporization/ pulsed molecular beam source.²⁵ In this source, the output of a XeCl

excimer laser (308 nm, 5-15 mJ/pulse) is focused onto the surface of a rotating and translating silicon rod. The resulting plasma is entrained in a gas pulse of He from a pulsed beam valve and passes through a 0.25 cm diameter, 1.25 cm long channel before expansion into the vacuum chamber. The He backing pressure behind the pulsed valve (0.05 cm diameter orifice) is typically 100 psig. This source configuration produces Si_n^{-1} clusters with n ≤ 15 .

Results and Discussion

The photoelectron spectra of Si₃[•] obtained at 355 nm and 266 nm are shown in Figures 1a and 1b. The 355 nm spectrum shows two distinct bands, labelled X and B. The X band shows a resolved vibrational progression of nine peaks with an average spacing of 360 ± 40 cm⁻¹, while the B band consists of a single sharp (20 meV FWHM) peak. In the 266 nm spectrum, a band between the X and B bands becomes apparent. This band, labelled A, consists of five peaks with an average spacing of 480 ± 40 cm⁻¹. In addition, two more bands labelled C and D appear at the higher photon energy. The C band shows extended, irregular vibrational structure, while the D band consists of two peaks separated by 480 cm⁻¹. We expect the cluster anions to be sufficiently cold that the peak spacings in each band correspond to vibrational frequencies in the neutral cluster, rather than to anion frequencies due to 'hot band' transitions.

Assuming these transitions originate from the ground electronic state of Si₃, each band corresponds to a different electronic state of Si₃, with the X band corresponding to the ground state. The estimated origin of each band is indicated by an arrow. From the X band origin in Figure 1a, we obtain 2.33 eV for the electron affinity of Si₃. This assumes that the weak signal at electron energies > 1.16 eV is due to transitions from vibrationally excited Si₃. The energies of the excited Si₃ electronic states relative to the ground state are then A(0.45 eV), B(0.89 eV), C(1.10 eV), and D(1.67 eV).

The photoelectron spectra of Si_4 obtained at 355 nm and 266nm are shown in Figures 2a and 2b. We observe four bands $corres_{p}$ onding to transitions to various electronic states of the neutral tetramer. The electron affinity of the Si₄ ground state, labelled X, is 2.15 eV, and the three excited states A, B, and C lie 0.81 eV, 1.45 eV, and 2.01 eV, respectively, above the ground state. In the 355 nm spectrum, the X band is considerably narrower than the A band. The X band exhibits a partially resolved vibrational progression of three peaks with frequency $360 \pm 25 \text{ cm}^{-1}$, and the A band shows a well-resolved progression of 10 peaks with frequency $300 \pm 25 \text{ cm}^{-1}$. In the 266 nm spectrum, the B band shows irregular vibrational structure, while a four peak progression with frequency $450 \pm 65 \text{ cm}^{-1}$ is observed in the C band.

In order to interpret our spectra, we consider the previous *ab initio*

calculations of electronic energies and vibrational frequencies in neutral Si₃ and Si₄,^{15,16,18,19} as well as the recently calculated ground state geometries for Si₃⁻ and Si₄.²² Although we cannot be certain which vibrational modes are responsible for the observed progressions, photoelectron spectra are usually dominated by progressions in totally symmetric modes, with the length of the progressions determined by the geometry change between the anion and neutral.

We first consider the silicon tetramer. A planar rhombus geometry with D_{2h} symmetry is predicted for both the anion ${}^{2}B_{2g}$ and neutral ${}^{1}A_{g}$ ground states. The bond lengths differ by only 0.02 Å.^{16,22} The relatively short progression we observe in the X band is consistent with this small geometry change. In addition, the experimental frequency (360 cm⁻¹) is close to the calculated frequency¹⁶ of 380 cm⁻¹ for one of the totally symmetric modes of the neutral ${}^{1}A_{g}$ ground state. Thus, our spectra are qualitatively consistent with the calculated anion and neutral ground states.

Raghavachari¹⁶ calculates the first excited state of Si₄ to be a nonplanar D_{2d} species (³A₂ term symbol) 1.1 eV above the ground state. This lies between the observed A-X and B-X spacings of 0.81 and 1.45 eV, respectively. Photodetachment to this state from a D_{2h} anion should yield extended vibrational progressions, and both the A and B bands are considerably more extended than the ground state progression. Thus, either

the A or B state could correspond to the predicted ${}^{3}A_{2}$ state. The calculated frequencies for the two totally symmetric modes of the ${}^{3}A_{2}$ state are 166 cm⁻¹ and 425 cm⁻¹. These disagree with the experimental A state frequency of 300 cm⁻¹, but excitation of both modes could lead to a congested spectrum such as the B band. In another calculation, Balasubramanian¹⁹ finds a square excited state of Si₄ 1.41 eV above the ground state. This agrees with the experimental B-X splitting. However, Raghavachari finds that this state is not a local minimum and undergoes out-of-plane distortion to the D_{2d} state.

The interpretation of the Si₃ spectrum is more complicated. Si₃ is predicted²² to have a ²A₁ ground state with C_{2v} symmetry and a bond angle of 66°. The calculations on Si₃ predict a ¹A₁ C_{2v} ground state with a bond angle near 78° and a low-lying ³A₂' D_{3h} excited state which lies between 0.03 eV¹⁶ and 0.16 eV¹⁹ above the ground state. This suggests that the X band consists of two overlapping electronic states, a definite possibility considering the irregular appearance of the band. However, the X band vibrational frequency of 360 cm⁻¹ disagrees with the calculated frequencies, 206 cm⁻¹ and 582 cm⁻¹,¹⁶ for the totally symmetric modes of the ¹A₁ ground state, and with the calculated value¹⁵ of 528 cm⁻¹ for the totally symmetric mode in the ³A₂' state.

Balasubramanian¹⁹ calculates the ${}^{1}B_{2}$ and ${}^{3}B_{1}$ excited states of Si₃ to lie 0.41 eV and 0.89 eV, respectively, above the ground state. These values are

very close to the experimental A-X and B-X spacings. This agreement may be fortuitous, however, since the excited states were constrained to a D_{3h} geometry in the calculation; the extended progression for the A band and the single peak for the B band indicate that the A and B states have different geometries. The B state must have a geometry similar to that of the anion.

In summary, the Si₄ photoelectron spectrum is qualitatively consistent with the predicted D_{2h} ground state geometries for Si₄ and Si₄. The correspondence between experiment and theory is not as clear for the trimer or the excited states of the tetramer. We hope that the results presented here stimulate further *ab initio* studies of these species. On the experimental side, we plan to investigate these clusters at higher resolution (3-5 cm⁻¹) using our negative ion threshold photodetachment spectrometer.²⁶ This should provide considerably more information on the vibrational frequencies and low-lying electronic states of small silicon clusters.

This research is supported by the Office of Naval Research Chemistry Division and Young Investigator Program under Grant No. N0014-87-0485. We thank Krishnan Raghavachari and Celeste Rohlfing for communicating their results on Si cluster anions prior to publication.

REFERENCES

1. A. Herrmann, M. Hofmann, S. Leutwyler, E. Schumacher, and L. Wöste, Chem. Phys. Lett. **62**, 216 (1979); G. Delacrétaz, E. R. Grant, R. L. Whetten, L. Wöste, and J. W. Zwanziger, Phys. Rev. Lett. **56**, 2598 (1986).

2. M. D. Morse, J. B. Hopkins, P. R. R. Langridge-Smith, and R. E. Smalley, J. Chem. Phys. **79**, 5316 (1983); W. H. Crumley, J. S. Hayden, and J. L. Gole, J. Chem. Phys. **84**, 5250 (1986); E. A. Rohlfing and J. J. Valentini, Chem. Phys. Lett. **126**, 113 (1986).

3. P. Y. Cheng and M. A. Duncan, Chem. Phys. Lett. 152, 341 (1988).

4. Z. Fu, G. W. Lemire, Y. M. Hamrick, S. Taylor, J.-C. Shui, and M. D. Morse, J. Chem. Phys. 88, 3524 (1988).

5. K. M. Ervin, J. Ho, and W. C. Lineberger, J. Chem. Phys. 89, 4514 (1988).

6. M. F. Jarrold and K. M. Creegan, Chem. Phys. Lett. 166, 116 (1990).

7. P. F. Bernath, K. H. Kinkle, and J. J. Keady, Science **244**, 562 (1989); J. R. Heath, A. L. Cooksy, M. H. W. Gruebele, C. A. Schmuttenmaer, and R. J. Saykally, Science **244**, 564 (1989); N. Moazzen-Ahmadi, A. R. W. McKellar, and T. Amano, J. Chem. Phys. **91**, 2140 (1989).

8. D. G. Leopold, J. Ho, and W. C. Lineberger, J. Chem. Phys. 86, 1715 (1987).

9. O. Cheshnovsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, Y. Liu, and R. E. Smalley, Chem. Phys. Lett. **138**, 119 (1987).

10. S. H. Yang, C. L. Pettiette, J. Conceicao, O. Cheshnovsky, and R. E. Smalley, Chem. Phys. Lett. **139**, 233 (1987); S. Yang, K. J. Taylor, M. J. Craycraft, J. Conceicao, C. L. Pettiette, O. Cheshnovsky, and R. E. Smalley, Chem. Phys. Lett. **144**, 431 (1988).

11. K. J. Taylor, C. L. Pettiette, M. J. Craycraft, O. Cheshnovsky, and R. E. Smalley, Chem. Phys. Lett. 152, 347 (1988).

12. K. M. McHugh, J. G. Eaton, G. H. Lee, H. W. Sarkas, L. H. Kidder, J. T. Snodgrass, M. R. Manaa, and K. H. Bowen, J. Chem. Phys. **91**, 3702 (1989).

13. G. Gantefor, M. Gausa, K. H. Meiwes-Bröer, and H. O. Lutz, Z. Phys. D 9, 253 (1988); Faraday Discuss. Chem. Soc. 86, 197 (1988). 14. G. H. F. Diercksen, N. E. Gruner, J. Oddershede, and J. R. Sabin, Chem. Phys. Lett. 117, 29 (1985).

15. R. S. Grev and H.F. Schaefer, Chem. Phys. Lett. 119, 111 (1985).

16. K. Raghavachari, J. Chem. Phys. 83, 3520 (1985); J. Chem. Phys. 84, 5672 (1986).

17. D. Tomanek and M. A. Schluter, Phys. Rev. Lett. 56, 1055 (1986).

18. G. Pacchioni and J. Koutecky, J. Chem. Phys. 84, 3301 (1986).

19. K. Balasubramanian, Chem. Phys. Lett. 125, 400 (1986); 135, 283 (1987).

20. P. Ballone, W. Andreoni, R. Car, and M. Parrinello, Phys. Rev. Lett. 60, 271 (1988).

21. K. Raghavachari and C. M. Rohlfing, J. Chem. Phys. 89, 2219 (1988).

22. K. Raghavachari and C. M. Rohlfing, private communication.

23. R. B. Metz, A. Weaver, S. E. Bradforth, T. N. Kitsopoulos, and D. M. Neumark, J. Phys. Chem. 94, 1377 (1990).

24. L. A. Posey, M. J. DeLuca, and M. A. Johnson, Chem. Phys. Lett. 131, 170 (1986).

25. T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, J. Chem. Phys. 74, 6511 (1981); V. E. Bondebey and J. H. English, J. Chem. Phys. 74, 6978 (1981).

26. T. N. Kitsopoulos, I. M. Waller, J. G. Loeser, and D. M. Neumark, Chem. Phys. Lett. **159**, 300 (1989).

FIGURE CAPTIONS

Figure 1: Photoelectron spectra of Si_3^- at (a) 355 nm and (b) 266 nm. Estimated band origins are indicated with arrows. The inset in (a) shows the X and A bands magnified in intensity by a factor of 10. The A band origin is obtained from the 255 nm spectrum.

Figure 2: Photoelectron spectra of Si_4^- at (a) 355 nm and (b) 266 nm. Estimated band origins are indicated with arrows.

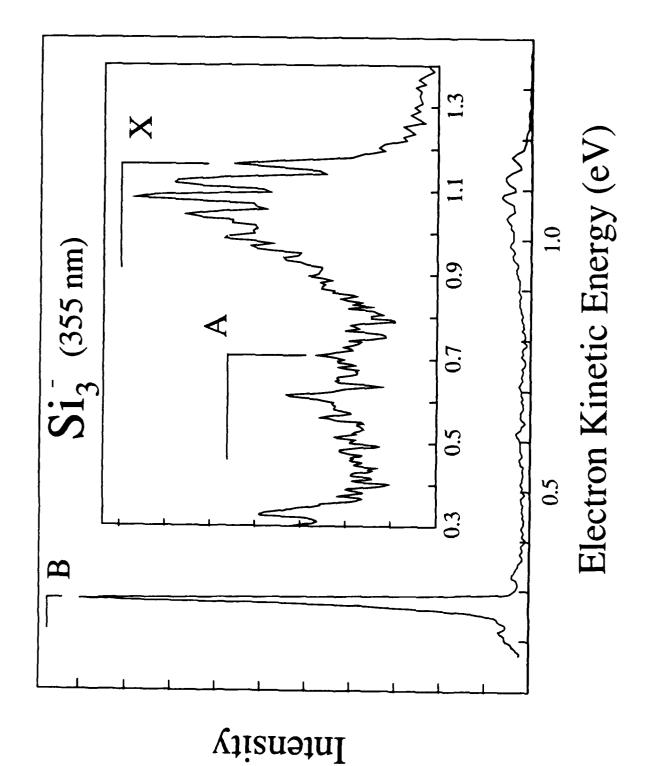
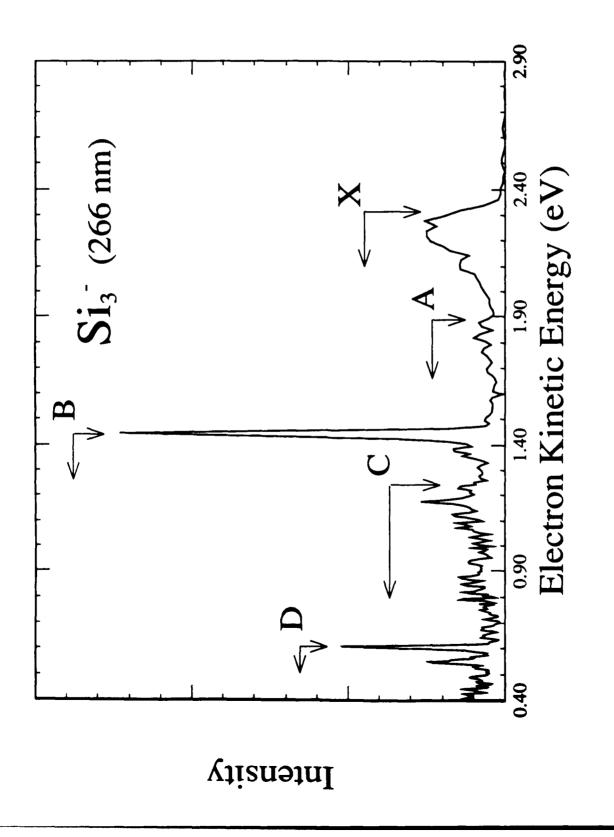



Fig. la

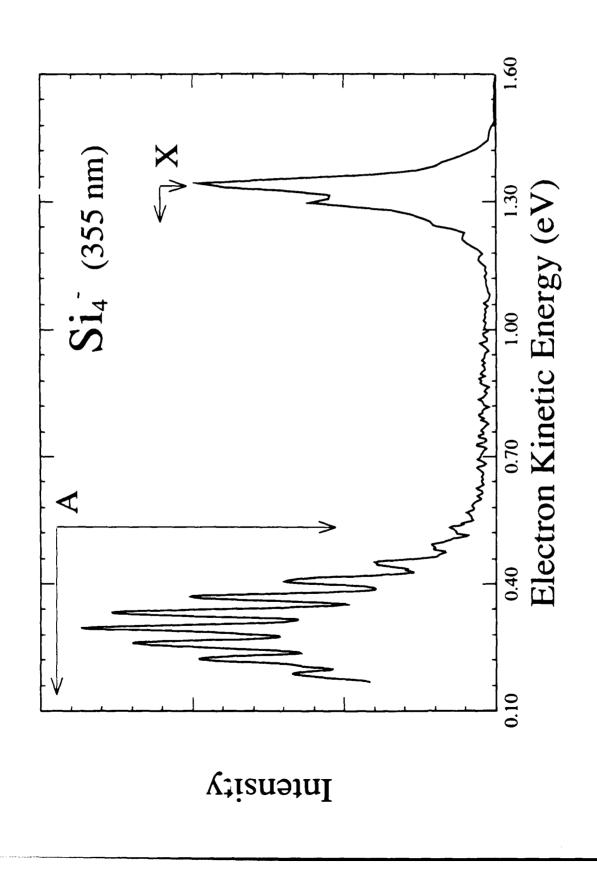


Fig. 29

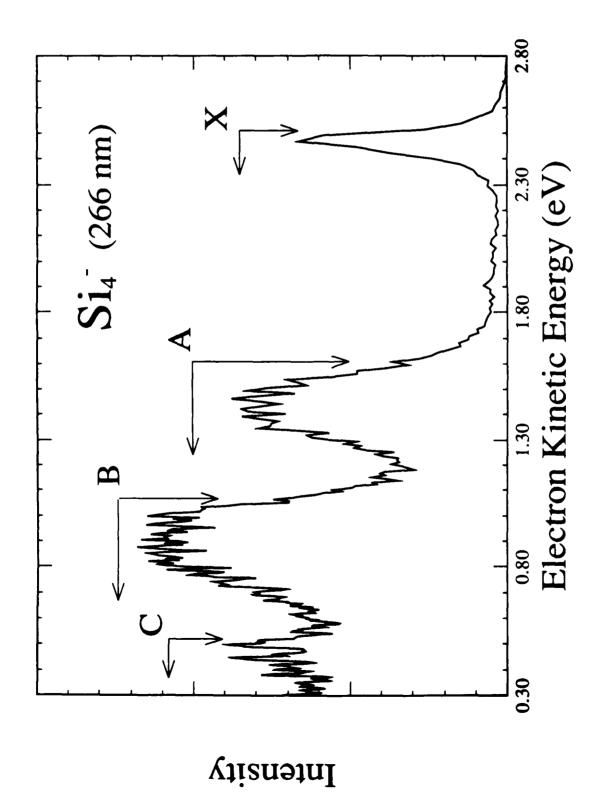


Fig. ib