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.is study investigates how to obtain the natural frequency of functionally graded porous beams simply supported on an elastic
substrate in thermal surroundings by the theory of third-order shear deformation. Temperature constantly changes in the beam
thickness direction and step with the distribution of volume fraction power law of the ingredient has been affected on the material
attributes. .e distribution of uniform porosity at the pass phase is examined. To achieve the equations of governing, Hamilton’s
principle was carried out. To discretize these equations, the generalized differential quadrature method has been used. First, the
approach’s convergence is shown. Comparison with the results of other articles was performed for validation. Here, the impacts of
numerous factors like index of power law, heat field type, temperature difference, slenderness ratio, and porosity coefficient and
elastic substrate factors of a functionally graded porous beam on the natural frequencies were studied for simple boundary
conditions. In addition to displaying these parameters’ impact on the beam’s thermomechanical evaluation, the conclusions also
confirm the accuracy of the numerical technique used.

1. Introduction

Laminated composites are widely utilized in diverse
equipment and structure, especially thermomechanical
loads, due to their mechanical and thermal suitability. Due
to the discontinuity of the material and many changes in the
location of the layers, the stress concentration is created in
this region, which will eventually lead to the separation of
the layers from each other. In addition, many changes in the
plastic in the boundary layer cause cracks and growth in the
material [1]. Here, functionally graded (FG) materials are a
suitable alternative to these materials. .e development and
expansion of FG materials in recent years have attracted the
attention of engineers and researchers. .ese materials are
used due to their multiple applications in the aerospace
industry, aerospace engineering, and heat shields; therefore,

it is necessary to have a detailed analysis of the dynamic
behavior of FG materials. .is need led to research on FG
graded structures and beams and their free vibrations using
various beam theories.

Several researchers like Alshorbagy et al. [2], Pradhan
and Chakraverty [3], and Jin and Wang [4] have utilized the
classical beam theory for FG beams with a large slenderness
ratio. For FG beams with a medium slenderness ratio, this
theory considers the deformation to be less than the actual
value and ignores the transverse shear deformation effects
and estimates the natural frequencies to be larger than the
actual value. Timoshenko’s theory overcomes this classical
theory limitation in research by researchers, for example, Li
[5], Wu et al. [6], and Katili et al. [7]. A correction parameter
is required in this theory because of the zero shear stress
violation at the top and bottom of the beam.
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.e high-order shear deformation theory is applied for
better predicting the behavior of the beam and other
structures. As mentioned before, this research was directed
towards the analysis of the vibrations of FG beams using
these theories. Wen and Zeng analyzed the vibrations of the
beams utilizing the high-order finite element [8]. Şimşek
evaluated the principle frequencies of FG beams making use
of the theories of various high-order and different boundary
conditions [9]. Kazemzadeh-Parsi et al. investigated free
vibration of FG plates applying the theory of high-order
shear deformation [10].

In engineering issues and applications, beams are usually
supported along their length on a substrate and interact with
that substrate. Studies about the impact of elastic substrate
parameters on the free vibrations of isotropic beams were
carried out by Chen [11] and Malekzadeh and Karami [12].
Additionally, several studies have been conducted by
Aghazadeh et al. [13], Akbaş [14], and Mohseni and Sha-
kouri [15] on the bending and free vibration of FG beams
depending on one- and two-parametric elastic substrates
and based on different theories and solution methods.

As we can see, there are few studies on the FG beams in
thermal surroundings. Several studies were done with the
thermal behavior approach for showing the advantages of
FG materials. Vibrations of an FG beam located in a thermal
surrounding were considered by Mahi et al. utilizing high-
order shear deformation theory and analytical method [16].
An analytical technique was used by Trinh et al. for in-
vestigating the behaviors of buckling and vibration FG
beams under thermal loads [17]. .om and Kien studied the
free vibrations of two-directional FG beams in thermal
surroundings [18].

With rapid progression in structure technology, the
latest achievements in the field of FG materials can be the
porosity of these materials..erefore, the effect of porosity is
of special importance. .ese porous structures have inter-
esting mechanical attributes like excessive rigidity related to
very low determined weight. So far, some studies have been
done about the vibrational behavior of this porous structure.
Linear and nonlinear studies on vibrations of FG permeable
beams depending on an elastic substrate were investigated
by Wattanasakulpong and Ungbhakorn [19]. Ebrahimi and
Jafari studied the temperature impact on vibrations of FG
beams with two porosity types and Timoshenko’s theory
[20]. Ait Atmane et al. checked out the thickness and
permeable effect on FG beam’s mechanical responses on
elastic substrates [21]. Heshmati and Daneshmand inves-
tigated the vibration analysis of nonuniform porous beams
with porosity distribution in FG state [22]. Akbaş et al.
presented a dynamic analysis of thick beams with porous
layers in FG and viscoelastic support [23].

Often, numerical approximation methods have to be
sought to solve vibration problems due to the complexity of
the problems. Classical techniques such as finite element and
finite differencemethods are well developed and well known.
.ese methods can provide very accurate results by using a
large number of grid points; thus, they are computationally
expensive. In a large number of cases, only a limited number
of frequencies and mode shapes or a dynamic response at

only a limited number of points needs to be found. Also, due
to the difficulties with the shear deformation theory of third
order, to solve the equations of governing, powerful tech-
niques are required; therefore, the differential quadrature
method (DQM) was used in this research. .e DQM dis-
cretizes any derivative at a point by a weighted linear sum of
functional values at its neighboring points. In the general-
ized differential quadrature method (GDQM), by consid-
ering the cosine division function, the number of nodes at
the border increases, the calculations decrease, and the speed
of convergence to the answers increases. For the free vi-
bration analysis of FG panels, shells, plates, and beams, this
method was applied by Bert and Malik [24], Farid et al. [25],
Malekzadeh and Heydarpour [26], Ersoy et al. [27], Wang
et al. [28], Wang et al. [29], Wang et al. [30], Al-Furjan et al.
[31], Al-Furjan et al. [32], Shariati et al. [33], Huang et al.
[34], Al-Furjan et al. [35], Huang et al. [34], and Al-Furjan
et al. [36]. Zahedinejad investigated the free vibrations of FG
beams depending on a two-parameter elastic foundation in a
temperature-rise environment with DQM [37].

.e novelty of this paper is the simultaneous FG porous
beam analysis using the theory of third-order shear de-
formation on the elastic substrate in the temperature-de-
pendent environment by GDQM. .e motivation of this
research is a thermomechanical analysis of thick FG porous
structures under different thermal loads and also to eval-
uate the accuracy of GDQM. For example, hot section
blades of gas turbine and plasma-facing components in
divertor of a nuclear reactor are exposed to thermal loads.
In this research, analysis of the free vibration FG porous
beams with uniform porosity distribution is studied
according to the theory of third-order shear deformation.
.e porosity distribution is considered through the beam
thickness direction. Additionally, the effect of thermal
loads and elastic substrate impact was considered on the
frequency parameters. Hamilton’s principle is used to
obtain boundary conditions and equations of motion, and
the GDQMwas used to solve them..e materials attributes
are a function of temperature and differ over the beam
thickness direction with the distribution of power law. .e
behavioral convergence method was applied and the ac-
curacy of the consequences was investigated with other
solutions due to the articles. .is research considered the
geometric parameters impact, various temperature distri-
butions and elastic substrate stiffness coefficients, and
porosity volume fraction, according to FG porous beam
natural frequencies.

2. Kinematics

Figure 1 showed uniform porosity of FG porous beam, width
b, length L, and height h depending on an elastic substrate.
.e displacement field is selected through the beam theories
of third-order shear deformation with the following as-
sumptions: (1) Shear components and bending are com-
ponents of the transverse and axial displacements. (2) .e
bending component of the classical beam theory and the
axial displacement in this theory are similar. (3) Shear axial
displacement and the third-degree variation of shear strain
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in the beam depth direction are different and the shear stress
in upper and lower beam planes is zero.

According to these assumptions [38], the field of the
displacement is

u1(x, z, t) � u(x, t) − z
zwb

zx
− f(z)

zws

zx
,

u2(x, z, t) � 0,

u3(x, z, t) � wb(x, t) + ws(x, t),

(1)

where ui(i � 1, 2, 3), ws, and wb represent the axial dis-
placement, shear, and bending components of horizontal
displacement on the beammidpoint..e shear stress and the
horizontal shear strain distribution at the beam depth satisfy
the boundary conditions of stress-free up and low beam
planes represented by the shape function f(z). According to
Reddy’s shear deformation theory [39], this function can be
shown as

f(z) �
4z

3

3h
2.

(2)

.e present field of displacement and Reddy’s theory are
different from each other. Two components of the horizontal
displacement are the displacements due to bending and
shear. Strains can be defined as

εxx �
zu

zx
− z

z
2
wb

zx
2 − f(z)

z
2
ws

zx
2 ,

cxz � 1 −
df(z)

dz
 

zws

zx
≡ g(z)

zws

zx
.

(3)

3. FG Porous Materials Properties

.e beammaterial composition changes from the metal-rich
lowest surface (z � − h/2) to the ceramic-rich upper surface
(z � h/2), following a simple power law relating to the
volume fractions of the constituents; that is,

Vc �
1
2

+
z

h
 

p

,

Vm � 1 − Vc,

(4)

where − h/2≤ z≤ h/2 and p is the material index of power
law, which is greater than or equal to zero. .e case where p

is equal to zero shows a completely ceramic beam, while the
approaching infinity shows an almost fully metallic beam.
Parameters Vm and Vc denote the fractions of the metal and
ceramic volume. .e main attributes Peff, such as Poisson’s
ratio υ, Young’s modulus E, and thermal expansion coef-
ficient, are specified as

Pasternak layer

Winkler layer

x

y

z

b

h

L

Figure 1: FG porous beam schematic depending on an elastic substrate.
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Peff(z, T) � Pc(T) − Pm(T)( Vc + Pm(T) − Pc(T) + Pm(T)( 
a

2
, (5)

where a is the porosity coefficient.
FG materials are often applied in high-temperature

surroundings with unavoidable changes in material at-
tributes. Here position and temperature are important
factors in the FG beam material attributes, so accurately
predicting the structural response should be considered in
accordance with the temperature. Material properties are
stated as environmental nonlinear function at tempera-
ture T(K) as

P(T) � P0 P− 1T
− 1

+ 1 + P1T + P2T
2

+ P3T
3

 , (6)

whereas T(z) � T0 + ΔT(z), T0 � 300K, and P0, P− 1, P1, P2,
and P3 are unique temperature-dependent coefficients for
the materials of constituent. It is assumed that, in the
thickness direction, the temperature varies with upper and
lower surfaces temperatures being known. Due to this case,
to calculate the temperature function along the thickness
direction, the following steady-state heat transfer equation
can be solved:

−
d

dz
k

dT

dz
  � 0. (7)

Imposing the boundary conditions solved this equation:
T � Tc in z � h/2 and T � Tm in z � − h/2.

.e equation solution in [40] is as follows:

T(z) � Tc −
Tc − Tm


h/2
− h/2 dz/k(z, T)


z

− h/2

dz

k(z, T)
, (8)

where k(z,T) is thermal conductivity.

4. Equations of Governing

Hamilton’s principle is determined for the FG beam
equations of the motion.


t2

t1

δK − δU − δVef dt � 0, (9)

where t, t1, and t2, respectively, are the time and the initial
and end times; δK, δU, and δVef are the kinetic and the total
strain energy variations and the potential energy of the
elastic substrate variations. .e total beam strain energy can
be shown as

U � Ud + UT, (10)

where Ud and UT are, respectively, the strain energy because
of mechanical stresses and the initial stresses of the strain
energy as a result of temperature rise. .ese strains are
represented by the following equations [41]:

Ud �
1
2


L

0


A
σxxεxx + σxzcxz( dAdx,

σxx � E(z, T)εxx,

σxz �
E(z, T)

2(1 + υ(z, T))
,

(11)

UT �
1
2


L

0


A
σT

xxdxx dAdx, (12)

dxx �
zu1

zx
 

2

+
zu3

zx
 

2

. (13)

.e thermal stress in (12) is presented by

σT
xx � −

E(z, T)α(z, T)

1 − υ(z, T)
ΔT(z). (14)

.e potential energy and the kinetic energy in the elastic
substrate can be given by

K �
1
2


L

0


A
ρ(z) _u

2
1 + _u

2
3 dAdx, (15)

Vef �
1
2


L

0


b

0
kwu

2
3 + kp

zu3

zx
 

2
⎡⎣ ⎤⎦|z�0dy dx, (16)

where the Winkler and shearing-layer elastic coefficients of
the substrate are kw and kp depending on the soil and
underlayer properties, like elastic modulus, Poisson’s soil
ratio, and the soil length. By replacing equations (10)–(16) in
(9) and integrating by components according to space and
time, the motion equations of FG beam are considered as

δu: I0€u − I1
z€wb

zx
− J1

z€ws

zx
�

zN

zx
+

zN
T

zx
, (17)

δwb: I0 €wb + €ws(  + I1
z€u

zx
− I2

z
2
€wb

zx
2 − J2

z
2
€ws

zx
2 �

z
2
Mb

zx
2

+
z
2
M

T
b

zx
2 + A

T
+ kp 

z
2
wb

zx
2 +

z
2
ws

zx
2  − kw wb + ws( ,

(18)

δws: I0 €wb + €ws(  + J1
z€u

zx
− J2

z
2
€wb

zx
2 − K2

z
2
€ws

zx
2 �

z
2
Ms

zx
2

+
z
2
M

T
s

zx
2 + A

T
+ kp 

z
2
wb

zx
2 +

z
2
ws

zx
2  +

zQ

zx
− kw wb + ws( ,

(19)

Where N, NT،Mb،MT
b ،Ms،MT

s , and Q parameters are
defined as
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N � A
zu

zx
− B

z
2
wb

zx
2 − Bs

z
2
ws

zx
2 , (20)

N
T

� A
Tzu

zx
− B

Tz
2
wb

zx
2 − B

T
s

z
2
ws

zx
2 , (21)

Mb � B
zu

zx
− D

z
2
wb

zx
2 − Ds

z
2
ws

zx
2 , (22)

M
T
b � B

Tzu

zx
− D

Tz
2
wb

zx
2 − D

T
s

z
2
ws

zx
2

(23)

Ms � Bs

zu

zx
− Ds

z
2
wb

zx
2 − Hs

z
2
ws

zx
2 , (24)

M
T
s � B

T
s

zu

zx
− D

T
s

z
2
wb

zx
2 − H

T
s

z
2
ws

zx
2 , (25)

Q � As

zws

zx
. (26)

.e estimations of coefficients are as follows:

I0, I1, J1, I2, J2, K2(  � 
A
ρ(z) 1, z, f(z), z

2
, zf(z), f

2
(z) dA,

A, B, Bs, D, Ds, Hs(  � 
A

E(z, T) 1, z, f(z), z
2
, zf(z), f

2
(z) dA,

As � 
A

E(z, T)

2(1 + υ(z, T))
g
2
(z)dA,

A
T

, B
T
, B

T
s , D

T
, D

T
s , H

T
s  � 

A
σT

xx 1, z, f(z), z
2
, zf(z), f

2
(z) dA.

(27)

.e motion equations of the substation parts are esti-
mated by replacing relations (20)–(26) with (17)–(19) as
follows:

δu: I0€u − I1
z€wb

zx
− J1

z€ws

zx
� A + A

T
 

z
2
u

zx
2 − B + B

T
 

z
3
wb

zx
3 − Bs + B

T
s 

z
3
ws

zx
3 . (28)

δwb: I0 €wb + €ws(  + I1
z€u

zx
− I2

z
2
€wb

zx
2 − J2

z
2
€ws

zx
2 � B + B

T
 

z
3
u

zx
3 − D + D

T
 

z
4
wb

zx
4 − Ds + D

T
s 

z
4
ws

zx
4 + A

T
+ kp 

z
2
wb

zx
2 +

z
2
ws

zx
2 

− kw wb + ws( ,

(29)
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δws: I0 €wb + €ws(  + J1
z€u

zx
− J2

z
2
€wb

zx
2 − K2

z
2
€ws

zx
2 � Bs + B

T
s 

z
3
u

zx
3 − Ds + D

T
s 

z
4
wb

zx
4 − Hs + H

T
s 

z
4
ws

zx
4

+ A
T

+ kp 
z
2
wb

zx
2 +

z
2
ws

zx
2  + As

z
2
ws

zx
2 − kw wb + ws( .

(30)

5. Conditions of Boundary

.ese parameters are determined due to the FG beam
conditions of the boundary:

N + N
T

  � 0 or u � 0, (31)

Qb ≡
zMb

zx
+

zM
T
b

zx
+ A

T zwb

zx
+

zws

zx
  − I1€u + I2

z€wb

zx

+ J2
z€ws

zx
� 0 orwb

� 0,

(32)

Qs ≡
zMs

zx
+

zM
T
s

zx
+ A

T zwb

zx
+

zws

zx
  + Q − J1€u + J2

z€wb

zx

+ K2
z€ws

zx
� 0 orws

� 0,

(33)

Mb + M
T
b  � 0 or

zwb

zx

� 0,

(34)

Ms + M
T
s  � 0 or

zws

zx

� 0.

(35)

x � 0 and x � L are different conditions which can be
obtained by combining the conditions in (30)–(35). .e
simple soft support conditions of boundary in this research
are examined as follows:
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A + A
T

 
zu

zx
− B + B

T
 

z
2
wb

zx
2 − Bs + B

T
s 

z
2
ws

zx
2 � 0 or N + N

T
  � 0,

B + B
T

 
zu

zx
− D + D

T
 

z
2
wb

zx
2 − Ds + D

T
s 

z
2
ws

zx
2 � 0 or Mb + M

T
b  � 0,

Bs + B
T
s 

zu

zx
− Ds + D

T
s 

z
2
wb

zx
2 − Hs + H

T
s 

z
2
ws

zx
2 � 0 or Ms + M

T
s  � 0,

wb � 0, ws � 0.

(36)

For substitution components, these answers apply to
analyze free vibrations:

u(x, t) � u(x)e
Iωt

,

wb(x, t) � wb(x)e
Iωt

,

ws(x, t) � ws(x)e
Iωt

,

(37)

where I �
���
− 1

√
and ω is natural frequency.

6. Differential Quadrature Separation

.e DQ separation rules based on Gauss-Lobatto-Cheby-
shev sampling points known as Generalized Differential
Quadrature (GDQ) are attained to transfer the constitutive
equations and related boundary conditions into algebraic
equations [24].

xi �
1
2

1 − cos
i − 1

Nx − 1
 π , i � 1, 2, . . . , Nx − 1 . (38)

.e nth-order partial derivative of f(x) with respect to x
at the discrete point xi is

f
(n)
x xi(  � 

Nx

i�1
C

(n)
ij f xi( , (39)

where Nx is the number of the differential quadrature
separation items in the direction of length. C

(n)
ij are

weighting coefficients associated with the nth-order partial
derivative of f(x) with respect to x at the discrete point xi..e
first one is

C
1
ij �

M xi( 

xi − xj M xj 
, (40)

where

M xi(  � 

Nx

j�1 j≠ i

xi − xj . (41)

.e weighting coefficients of higher-order derivatives
can be obtained through the following recurrence relation:

C
(n)
ij � n C

(n− 1)
ij C

1
ij −

C
(n− 1)
ij

xi − xj 
⎛⎝ ⎞⎠ i, j � 1, 2, . . . Nx,

C
(n)
ij � − 

Nx

j�1j≠ i

C
n
ij n � 1, 2, . . . Nx − 1.

(42)

Based on this method, the partial derivatives of a
function can be given as

zf(x, t)

zx
|x�xi

� 

Nx

j�1
Aijf xj, t i � 1, 2, ..., Nx,

z2f(x, t)

zx2 |x�xi
� 

Nx

j�1
Bijf xj, t ,

z3f(x, t)

zx3 |x�xi
� 

Nx

j�1
Cijf xj, t ,

z4f(x, t)

zx4 |x�xi
� 

Nx

j�1
Dijf xj, t ,

(43)

where Aij, Bij, Cij, and Dij are the first-, second-, third-,
and fourth-order weighting coefficients of the DQM,
respectively.

.e conditions of boundary and the motion equations
are converted to DQM as the equations related algebra. .e
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differential equations of governing and conditions of
boundary are considered as separation use for derivatives
(24) and relations (28)–(30) and (36) and DQM as follows:

A + A
T

  

Nx

j�1
Bijuj − B + B

T
  

Nx

j�1
Cijwbj − Bs + B

T
s  

Nx

j�1
Cijwsj + ω2

I0ui − I1 

Nx

j�1
Aijwbj − J1 

Nx

j�1
Aijwsj

⎛⎝ ⎞⎠ � 0,

B + B
T

  

Nx

j�1
Cijuj − D + D

T
  

Nx

j�1
Dijwbj − Ds + D

T
s  

Nx

j�1
Dijwsj + A

T
+ kg  

Nx

j�1
Bij wbj + wsj ⎛⎝ ⎞⎠ − kw wbi + wsi( 

+ ω2
I0 wbi + wsi(  + I1 

Nx

j�1
Aijuj − I2 

Nx

j�1
Bijwbj − J2 

Nx

j�1
Bijwsj

⎛⎝ ⎞⎠ � 0,

Bs + B
T
s  

Nx

j�1
Cijuj − Ds + D

T
s  

Nx

j�1
Dijwbj − Hs + H

T
s  

Nx

j�1
Dijwsj + A

T
+ kg  

Nx

j�1
Bij wbj + wsj ⎛⎝ ⎞⎠ − kw wbi + wsi( 

+ As 

Nx

j�1
Bijwsj + ω2

I0 wbi + wsi(  + J1 

Nx

j�1
Aijuj − J2 

Nx

j�1
Bijwbj − K2 

Nx

j�1
Bijwsj

⎛⎝ ⎞⎠ � 0,

(44)

A + A
T

  

Nx

j�1
Aijuj − B + B

T
  

Nx

j�1
Bijwbj − Bs + B

T
s  

Nx

j�1
Bijwsj � 0,

B + B
T

  

Nx

j�1
Aijuj − D + D

T
  

Nx

j�1
Bijwbj − Ds + D

T
s  

Nx

j�1
Bijwsj � 0,

Bs + B
T
s  

Nx

j�1
Aijuj − Ds + D

T
s  

Nx

j�1
Bijwbj − Hs + H

T
s  

Nx

j�1
Bijwsj � 0,

wbi � 0, wsi � 0.

(45)

Boundary conditions based on this method are written in
relation (45).

.e boundary degrees and domain of freedom separate
parts of the freedom degrees for obtaining the eigenvalue
system of equations as

d{ } �

u{ },

wb ,

ws ,

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
domain

, b{ } �

u{ },

wb ,

ws ,

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
boundary

. (46)

In the matrix form, using (46), the motion equations
separated form can be arranged differently as

Sdb  b{ } + Sd d  d{ } − ω2
i [M] d{ } � 0. (47)

[M] is the mass matrix where [Sdb] and [Sd d] are the
rigid matrices. Similarly, the separated form condition of the
boundary is

Sbb  b{ } + Sb d  d{ } � 0. (48)

.e rigid matrices are [Sbb] and [Sb d]. For removing the
freedom boundary degree b{ } from (47), (48) is applied
resulting in

[S] − ω2
i [M]  d{ } � 0, (49)

where [S] � [Sd d] − [Sdb][Sbb]− 1[Sb d]. To find the natural
frequencies, the former eigenvalue equation can be solved.

7. Results and Discussion

First, the method convergence is considered for simply
supported conditions of boundary. .e conclusion accuracy
is confirmed by comparing other available solutions. A beam
containing aluminum (Al) and alumina (Al2O3) is con-
sidered for temperature-independent states. Table 1 shows
the FG material characteristics.

A beam concluding stainless steel (SUS304) and silicon
nitride (Si3N4) is estimated for the temperature-dependent
cases. In Table 2, the temperature-dependent material at-
tributes for somemetals and ceramics are listed, according to
the data given in [40].

.e natural frequency of nondimensional (λn) are
explained as

λn �
ωnL

2

h

���ρm

Em



. (50)
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.e metallic layer density and Young’s modulus are ρm

and Em . Parameter values at the reference temperature of
T0 � 300K are used for temperature-dependent FG beam.
.e dimensionless elastic substrate constants are defined as

Kw �
kwL

4

E0I
,

KP �
kPL

2

π2E0I
.

(51)

Parameter I is defined as

I �
bh

3

12
. (52)

Here, the number of differential quadrature grid points
along the length was investigated for frequency convergence.
However, the elastic substrate and porosity effects were
ignored. Table 3 presents the natural frequency converging
for simply supported conditions. In this table, it is clear that
the results converged with Nx � 29.

In Table 4 the parameters of frequency were estimated
and compared with those by Ebrahimi and Jafari [20] and
Şimşek [9]. .e good agreement was observed.

Further confirming the results obtained from the
GDQM, Zahedinejad, in an article [37], investigated the
isotropic beam frequencies depending on an elastic layer and
in comparison with Matsunga [34]. .e impacts of elastic
substrate and slenderness ratio parameters are considered.
.e method accuracy was observed between the presented
results in close agreement.

In Table 5, the first nondimensional frequency computed
under the temperature-dependent environments with
conditions of the simply supported boundary is compared
with those by Ebrahimi and Jafari [20]. Here, three thermal
states are considered: (1) uniform temperature rise (UTR),

(2) linear temperature rise (LTR), and (3) nonlinear tem-
perature rise (NLTR). .ere is a good agreement between
the two solutions. .e validity of using the GDQM is
confirmed because of the above consequences comparison
and the good agreement of these results and other articles. In
the following, the various factors’ impacts on the first fre-
quencies are investigated.

For considering the elastic substrates impact on FG beam
nondimensional natural frequencies, studies were per-
formed on both parameters of the elastic substrates. A beam
with uniform porosity distribution applies a uniform
thermal load. By canceling Pasternak’s parameter, for po-
rosity coefficient values, the dimensionless frequencies
variation versus the Winkler’s parameter can be figured in
Figure 2. Also, by canceling Winkler’s parameter for various
porosity coefficients, these variations are plotted versus
Pasternak’s parameter in Figure 3. From these figures, for the
porosity coefficient value, enhancing Winkler’s and Pas-
ternak’s parameters causes the natural frequencies to in-
crease. Because of enhancing both elastic substrate factors,
the complete system stiffness increases, and therefore the
dimensionless frequencies increase. .e higher frequencies
can be obtained by the larger porosity coefficient values. As

Table 1: Properties of alumina and aluminum.

Properties Metal (Al) Ceramic (Al2O3)

E(GPa) 70 38
υ 0.3 0.3
ρ(kg/m3) 2702 3960

Table 2: .e temperature-dependent coefficients in metals and ceramics.

Material Properties P0 P− 1 P1 P2 P3

Si3N4

E(Pa) 348.43e+ 9 0 − 3.070e − 4 2.160e − 7 − 8.946e − 11
α(1/K) 5.8723e − 6 0 9.095e − 4 0 0

k(w/mK) 13.723 0 − 1.032e − 3 5.466e − 7 7.876e − 11
υ 0.24 0 0 0 0

ρ(kg/m3) 2370 0 0 0 0

SUS304

E(Pa) 201.04e+ 9 0 3.079e − 4 − 6.534e − 7 0
α(1/K) 12.330e − 6 0 8.086e − 4 0 0

k(w/mK) 15.379 0 − 1.264e − 3 2.092e − 6 − 7.223e − 10
υ 0.3262 0 − 2.002e − 4 3.797e − 7 0

ρ(kg/m3) 8166 0 0 0 0

Table 3: First three frequencies of nondimensional converging
(p� 5).

L/h n
(Nx) number of grid points

5 9 15 21 25 29 33

5
1 2.995 3.373 3.392 3.396 3.398 3.399 3.399
2 19.546 11.512 11.482 11.511 11.521 11.526 11.526
3 35.921 19.789 19.788 19.787 19.786 19.785 19.785

20
1 3.273 3.646 3.648 3.648 3.648 3.648 3.648
2 78.673 14.558 14.364 14.369 14.370 14.372 14.372
3 143.686 36.194 31.522 31.551 31.559 31.565 31.565
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shown in Figure 4, natural frequencies versus different
temperature differences are in the range of 4 to 7 for different
values of Winkler’s parameter, and those are in the range of
25 to 40 for different values of Pasternak’s parameter.

Pasternak’s parameter has a greater effect on natural fre-
quencies than Winkler’s parameter; also, combining both
elastic substrate factors caused higher frequencies. In other
words, Pasternak’s parameter and combining both elastic

Table 4: Comparing frequency of first nondimensional FG beam simply supported conditions (Tc � Tm � 300, a � 0, Kw � Kp � 0).

L/h Source and solution method Material power law index (p)
0 0.2 0.5 1 2

5
Ebrahimi Navier solution 5.152 4.808 4.410 3.990 3.626
Şimşek Lagrange’s equations 5.152 4.806 4.408 3.990 3.634
Present DQM 5.149 4.804 4.407 3.988 3.624

20
Ebrahimi Navier solution 5.460 5.081 4.651 4.205 3.836
Şimşek Lagrange’s equations 5.460 5.082 4.651 4.205 3.836
Present DQM 5.460 5.081 4.651 4.205 3.836

Table 5: Comparison of the first nondimensional frequency for simply supported FG porous beam with various thermal loads and material
power law index ( L/h � 20).

a .ermal loads Reference
(p) power law index

0 0.1 0.2 0.5 25 29 33
ΔT � 20

0

UTR Ebrahimi 6.303 5.558 5.072 4.278 3.727 3.331 3.014
Present 6.301 5.556 5.071 4.276 3.726 3.330 3.014

LTR Ebrahimi 6.358 5.615 5.132 4.340 3.389 3.390 3.071
Present 6.337 5.595 5.129 4.320 3.781 3.388 3.074

NLTR Ebrahimi 6.358 5.616 5.134 4.343 3.792 3.394 3.074
Present 6.346 5.609 5.131 4.341 3.791 3.393 3.073

0.1

UTR Ebrahimi 6.889 5.911 5.308 4.369 3.744 3.308 2.968
Present 6.880 5.907 5.303 4.366 3.741 3.306 2.966

LTR Ebrahimi 6.937 5.962 5.361 4.424 3.779 3.361 3.020
Present 6.929 5.958 5.358 4.420 3.796 3.359 3.018

NLTR Ebrahimi 6.937 5.963 5.363 4.427 3.803 3.365 3.022
Present 6.930 5.957 5.359 4.423 3.799 3.362 3.021

0.2

UTR Ebrahimi 7.824 6.418 5.627 4.478 3.758 3.274 2.908
Present 7.821 6.416 5.625 4.477 3.757 3.274 2.908

LTR Ebrahimi 7.865 6.463 5.675 4.527 3.807 3.321 2.953
Present 7.859 6.458 5.670 4.523 3.805 3.319 2.953

NLTR Ebrahimi 7.894 6.464 5.676 4.530 3.810 3.324 2.955
Present 7.884 6.458 5.670 4.525 3.797 3.321 2.953

ΔT � 40

0

UTR Ebrahimi 6.033 5.292 4.810 4.022 3.476 3.084 2.772
Present 6.029 5.289 4.808 4.021 3.475 3.084 2.772

LTR Ebrahimi 6.213 5.480 5.002 4.218 3.671 3.276 2.959
Present 6.207 5.475 4.994 4.213 3.667 3.273 2.957

NLTR Ebrahimi 6.213 5.482 5.006 4.224 3.678 3.283 2.964
Present 6.205 5.475 5.001 4.219 3.675 3.280 2.962

0.1

UTR Ebrahimi 6.641 5.671 5.073 4.140 3.521 3.090 2.755
Present 6.638 5.669 5.070 4.137 3.519 3.088 2.753

LTR Ebrahimi 6.801 5.838 5.243 4.314 3.695 3.260 2.920
Present 6.792 5.830 5.236 4.308 3.689 3.256 2.917

NLTR Ebrahimi 6.801 5.840 5.247 4.320 3.702 3.267 2.925
Present 6.792 5.833 5.241 4.314 3.697 3.264 2.923

0.2

UTR Ebrahimi 7.595 6.602 5.418 4.277 3.563 3.084 2.723
Present 7.590 6.197 5.415 4.275 3.561 3.082 2.721

LTR Ebrahimi 7.736 6.349 5.568 4.430 3.715 3.232 2.867
Present 7.728 6.334 5.564 4.426 3.711 3.229 2.865

NLTR Ebrahimi 7.736 6.351 5.572 4.437 3.722 3.239 2.871
Present 7.727 6.346 5.566 4.433 3.718 3.236 2.869
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substrate parameters increase the stiffness and thus increase
the natural frequency.

Figure 5 shows the temperature impact on frequencies,
the variation of nondimensional natural frequency versus
temperature for different power law indexes, and a constant
slenderness ratio. A uniform temperature rise is subjected by
the beam with a uniform porosity distribution. For power
law indexes smaller than one, first, the natural frequency
decreases with increasing temperature and then further
natural frequency increases with rising temperature. But,

always for indexes of power law greater than one, decreasing
the natural frequencies of the beam concurred with in-
creasing temperature. In the case of porous beams, given the
modulus of elasticity, density, coefficients of inertia, and
other mechanical properties in addition to the observance of
temperature and porosity, it can also be affected by the
power law index. .e natural frequency with increasing
temperature depending on the value of the power law index
and porosity coefficient has been down to a point, and, from
there, with the predominance of the effects of the power law

a = 0
a = 0.1
a = 0.2

0
4

4.5

5

5.5

λ1

6

6.5

20 40
Kw

60 80 100

Figure 2: Winkler’s parameters impact on the first nondimensional FG porous beam frequency with the simply supported condition.
p � 0.5, ΔT � 100, and L/h �5.
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Figure 3: Pasternak’s parameters impact on the first nondimensional FG porous beam frequency with the simply supported condition.
p � 0.5, ΔT � 100, and L/h �5.
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index and the porosity coefficient, this trend will increase. In
this case, by approaching the ceramic material, this issue will
be more evident. Also, with enhancing the power law index,
the frequency decreases for a certain temperature variation.

Figure 6 shows the frequency consequences contrary to
the different porosity parameters temperature at fixed values
of the slenderness ratio and index of power law to display the
porosity coefficient impact with a uniform porosity distri-
bution on the natural frequency. Higher natural frequencies

are required for a higher value of the porosity coefficient. As
shown in Figure 6, for the nonporosity mode, with in-
creasing temperature variation for a thick beam, the natural
frequency decreases because of the change in beam stiffness
and greater flexibility with increasing temperature. In the
case of porous beams, given that porosity can affect all the
elasticity modulus, coefficients of inertia density, and other
mechanical attributes with observing temperature and

0
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8
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∆ T (°K)

600500 800700 1000900 0
25

30

λ1

35
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200100 400300
∆ T (°K)

600500 800700 1000900

Kw = 0 Kp = 0
Kw = 40 Kp = 0

Kw = 0 Kp = 0
Kw = 40 Kp = 0

Figure 4: Winkler’s and Pasternak’s parameters impact on the first nondimensional FG porous beam frequency with the rise in uniform
temperature with the simply supported condition. p � 0.5, a � 0.2, and L/h �5.
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Figure 5: Various temperatures differences impact on the first
nondimensional FG porous beam frequency with the simply
supported condition. a � 0.2 and L/h �5.
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Figure 6: Porosity index impact on the first nondimensional FG
porous beam frequency with the simply supported condition and
various temperatures differences. p � 0.5 and L/h �5.
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power law index, the natural frequency with increasing
temperature depending on the power law index value and
coefficient of porosity to a point and, from there, with the

predominance of the index of power law impact and the
coefficient of porosity, can cause this trend increase. For a
larger porosity coefficient, this will occur at lower temper-
ature differences.

In Figure 7, the thermal load’s effect on frequencies is
presented. .e uniform porosity distribution of the beam is
displayed in three uniform, linear, and nonlinear thermal
loads for fixed values coefficient of porosity, slenderness
ratio, and index of power law. .e frequencies are higher
than the other two states for the uniform temperature
distribution with various temperatures differences, and the
slope of the frequency decreasing variations is smaller. .is
is due to the greater flexibility of the beam due to the higher
temperature of different points in the beam thickness
direction.

For different slenderness ratio values and constant values
coefficient of the porosity and the index of power law, the
differences of the dimensionless natural frequencies of FG
beam with the temperature versus a uniform porosity dis-
tribution are presented in Figure 8. .e beam is exposed in a
uniform temperature rise. As shown in the figure, at a high
slenderness ratio, thermal buckling occurs at a lower tem-
perature difference. .erefore, the comparison of frequen-
cies should be made below the critical temperature. It is
clear, in the figure, that the natural frequencies were higher
at a given temperature difference for a smaller slenderness
ratio, and this is due to the greater geometric stiffness of the
beam with a smaller slenderness ratio.

8. Conclusion

.is research studies functionally graded beams dynamic
behavior with an elastic substrate of two parameters in a
temperature-dependent environment and uniform porosity.
Temperature-dependent and constant variation in the di-
rection of the beam thickness and the distribution of power
law of the material constituents’ volume fraction are the
material attributes. Uniform, linear, and nonlinear thermal
loads are carried out in the direction of beam thickness. For
considering the thick beam’s vibrational behavior, the theory
of third-order shear deformation is used. For the motion
equations, Hamilton’s principle was administered. For solving
the equations of governing, generalized differential quadra-
ture method has been used. .e impacts of power law index,
type of thermal load porosity coefficient, and beam slen-
derness ratio on natural beam frequencies were investigated.
We can conclude the numerical consequences as follows:

(i) the decrease in frequency, there is an increase in
the material index (p).

(ii) .e shorter (or thicker) beam has a higher natural
frequency.

(iii) the increase in temperature, there is a decrease in
natural frequency for nonporous beam, because
high temperatures can reduce the material stiffness
with fixed mass.

(iv) In the case of porous beams, given the modulus of
elasticity, density, coefficients of inertia, and other
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Figure 7: .ermal field type impact on the first nondimensional
FG porous beam frequency with the simply supported condition
and various temperatures differences. p � 0.5, a � 0.2, and L/h �5.
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Figure 8: Slenderness ratio effect on the first nondimensional FG
porous beam frequency with the simply supported condition and
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mechanical properties in addition to the obser-
vance of temperature and power law index, it can
also be affected by porosity. .e natural frequency
with increasing temperature depending on the
value of the power law index and porosity coef-
ficient has been down to a point, and, from there,
with the predominance of the effects of the power
law index and the porosity coefficient, this trend
will increase.

(v) .e natural frequency under the uniform increase
in temperature for thick functionally graded po-
rous beam is greater than those under the linear
and nonlinear increase in temperature.

(vi) .e porosity increase will enhance the natural
frequency in the distribution of uniform porosity
and a certain thermal variation.

(vii) .ere is a significant effect on the natural fre-
quency by changes in the elastic substrate rigidity.
.e total system stiffness and, accordingly, the
natural frequency are enhanced by increasing both
elastic substrate factors. In other words, combining
both elastic substrate parameters increases the
stiffness and thus increases the natural frequency.

(viii) .e presented numerical method is in good
agreement with the solution methods in other
articles. In other words, generalized differential
quadrature method provides very accurate results,
and, with fewer divisions, the answer can be
reached faster.
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