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ABSTRACT

The effect of blade vibration on the unsteady

forces developed by an elastic marine propeller is
investigated for a controlled laboratory situation.

The study involves the development of a theory for

a flexible propeller operating in a spatially non-
uniform inflow velocity field and a series of

experimental tests. Measurements of unsteady
propeller forces in a 24-inch water tunnel are

presented for two model propellers whose funda-

mental resonance frequencies are excited by a non-
uniform inflow field. Measured unsteady thrust and
torque, presented as a function of excitation fre-

quency, show distinctly different elastic effects--

one propeller demonstrates a large force amplifi-

cation near its resonance frequency while the other
did not. The simple theoretical model explains the

difference as being due to differing amounts of

induced hydrodynamic damping; there is a large

hydrodynamic damping in one case and a small amount
in the other case. Another result of the study is
that blade vibration can significantly reduce the
unsteady forces transmitted to the propeller shaft
over a certain range of excitation frequencies.

Calculated forces are in general agreement with the

experimental measurements.

ADMINISTRATIVE INFORMATION

The investigation presented in this report was initiated under the

Independent Research Program and completed under funding from the Naval Sea

Systems Command (0511) under Task Area SF 43452702, Task 18185, Work Units

1960-010 and 1960-020.

ACKNOWLEDGMENT

I would like to thank Dr. Murray Strasberg for his assistance through-

out the formulation, execution and documentation of this work.



INTRODUCTION

The study of the unsteady forces developed by a marine propeller

as it operates and interacts with a nonuniform inflow velocity field, has

given us an enormous body of research over the past fifty years or so (for

example, references 1-6).* For the most part, the recent, more sophisti-

cated theories agree with the existing, albeit small, set of reliable

experimental measurements. Almost all of the studies, however, assume

that the blades do not respond elastically to the fluctuating pressure

field. The assumption is valid provided the excitation frequency is much

below the propeller's fundamental resonance frequency, but it is certainly

not true at or near resonance. It is the nature of the resulting unsteady

forces near blade resonance that is the subject of the present study.

One of the early researchers in this area was Sears [2). He

applied a two-dimensional unsteady wing theory, developed by von Karman

and Sears [7], to the problem of a fan operating in a nonuniform inflow.

The frequency of loading was such as to excite the fundamental torsional

mode on each blade. In addition to providing a forcing mechanism, he

shoved that the fluid adds damping to the response and adds "mass" to the

blades.

A more recent study of a marine propeller by Tsushima [8), using

the complicated three-dimensional lifting theory developed by Tsakonas and

company 141 and the water tunnel facilities at the now Applied Research

Laboratory of the Pennsylvania State University, showed the potentially

pernicious effect of resonant blade vibration on propeller forces. The

A complete listing of references is given on page 125.
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propeller was excited into vibration by operating it in a nonuniform inflow.

For loading frequencies near the blade's fundamental resonance frequency,

the propeller developed significantly larger forces than if the blades were

perfectly rigid. He successfully predicted the propeller's resonance

frequency in water, and he had some success in predicting the peak magni-

tude of the unsteady force produced by the blade vibration.

Tsushima's study, however, was limited to one type of propeller

geometry, and he studied the propeller's forced response only over a limited

range of exciting frequencies about the propeller's fundamental resonance

frequency. He also left the impression that blade vibration near resonance

is a condition which should be avoided.

In this report we present a separate, more extensive study of the

effect of blade vibration on unsteady propeller forces. We explore the

effect blade width can have on the vibration by considering propellers with

two different blade geometries, one with narrow blades and one with wide

blades, and measure the unsteady forces and moments transmitted to the

propeller shaft over a wide range of exciting frequencies, including a

range beyond the resonance frequency of each. We show that radically dif-

ferent responses are possible for the two geometries, and that blade vibra-

tion can in some instances actually reduce the unsteady propeller forces.

This result is significantly different from that obtained by Tsushima.

In the following sections we describe a general theory for propeller-

blade vibration and sunmarize a computational scheme for calculating blade

vibration amplitudes and propeller forces. We also report the results of

a series of experimental tests designed to measure the effect of blade

vibrations on unsteady propeller forces and moments. And, finally, we

compare calculations with experimeht.

3



THEORY FOR BLADE VIBRATION AND

RESULTING PROPELLER FORCES

As a marine propeller moves through a nonuniform fluid velocity

field, it develops an unsteady pressure distribution on its blade surfaces.

Since the blades are not rigid their surfaces respond by vibrating, thereby

inducing a pressure distribution that can be quite different than the one

produced by a rigid propeller. Whether or not this elastic effect is signif-

icant in contributing to ship vibrations or propeller fatigue depends on

the magnitude of the induced blade motion which, in turn, is controlled by

the fluid inflow conditions and the elastic characteristics of the blade.

We focus attention on an elastic propeller operating in a spatially

nonuniform flow field where the rebulting blade vibration is steady. The

analysis could also be adapted to other steady state vibration situations

such as the case of an elastic propeller operating in close proximity to a

rudder or other ship appendage, where steady blade oscillations are produced

through an interference effect. Excluded from the analysis is the often

important situation of the transient vibration brought about by a ship

executing a sudden turn or change in shaft speed.

The blade-vibration theory described below assumes that a great deal

is known already about the propeller. We assume the pressure distribution

is known on each blade surface and that the pressure is the sum of the

induced pressure caused by blade vibration only and that caused by rigid

blades in the absence of blade vibration. We also assume that a propeller

blade's in-air mode shapes and resonance frequencies are known and,

4



moreover, are the same for each blade. Later we will describe a procedure

for calculating the pressure distribution and a technique for measuring

the blade's mode shapes and resonance frequencies.

The general theory developed here accounts for the contributions

from all the vibrational modes. In the last section we give approximations

for the resulting propeller forces when the fundamental mode is the domi-

nant contributor to the vibration of the blades.

KINEMATICS OF BLADE AND FLUID MOTION

It is convenient to measure the blade motion from a nonoscillating

surface which rotates and advances with the propeller. The time-averaged

(averaged over one blade oscillation) mid-surface of the blade is taken

for this purpose. This surface is identical to the mid-surface of a rigid

propeller blade provided there is no static elastic deformation of the

blades, as we will assume in this study. If the ship advances with steady

velocity Va and the propeller rotates with steady angular velocity 6I, then

a point on this reference surface, located a vector distance 9 from the

center of the propeller hub, has velocity Va + fl X S, when measured from a

fixed inertial frame. The vector vibration displacement of a point on the

mid-surface is taken as dCS,t), and the instantaneous velocity of that

point at time t is then

va + x+ 6 t

where 6/6t denotes time differentiation in an advancing and rotating

coordinate system fixed to the reference surface; and Iis reckoned

positive when the displacement has an axial component directed towards

the ship.

5



We assume that the oscillatory motion of the blade's mid-surface

can be written as a superposition of its in vacuo or in-air (and not

rotating) normal modes,

d(St) = Z qi(t) ,(S) & (g), (2)

where q(t) is a set of normal displacement amplitudes which measures the

amount mode i is excited, ii(g) is a set of modal patterns and 6.(S) is a

4.

unit vector giving the local direction of motion for mode i at point S.

And for each modal pattern *i there is a characteristic in-air resonance

frequency of vibration wa,i"

For most propellers the modal pattern for the fundamental or lowest

characteristic frequency probably resembles a one-noded cantilever mode

with some twisting motion--i.e., its modal displacement is almost zero

near the hub, increases radially towards the tip, and is nonuniform

along a chord of constant radius. The next mode would probably resemble

a two-noded cantilever mode or a one-noded twisting mode, depending on

the width-to-length ratio of the blade.

The modes are orthogonal to one another and are taken to be nor-

malized as

PB
f rf *YiJ (61.61) dV - (3a)

where

MB pBfff dV (3b)

and where dV is a local differential element of blade volume, the blade is

of homogeneous density pB' and the modal patterns are normalized by the

blade's total mass MB

6



Take U as the time-independent fluid velocity which would be at

the propeller disk if the propeller were removed and the ship were con-

strained to maintain its advance speed. This velocity is made up of two

parts: a part u 0 which is spatially uniform or at most a function of

radial position, and a part um which is a function of both radial position

r and angular position Y. By the rules of Fourier Series we can decompose

u into an infinite suammation of circumferential wake harmonics m,

min

where c is the phase angle for the m(th) harmonic of the inflow. This

decomposition is important since it allows us, because of the assumption

of linearity which follows, to examine the effect of one wake harmonic at

a time. And therefore we can consider only one circumferential harmonic

m to be present in the inflow.

The additional velocity induced by the presence and motion of the

elastic propeller is denoted by v. Then the velocity of a fluid particle

4. . . 4
is u + v relative to a fixed inertial frame and u + v - V - X S relative

to a frame fixed to the blade's reference surface.

The component of fluid velocity normal to the blade's surface is

equal to the normal component of blade velocity. If n.is (tt) is an

instantaneous outward normal at a point S' on the blade's surface, then

this condition at the boundary is expressed as

ninst.( a 0(a

where the dot over the displacement vector is shorthand notation for 6/6t.

Consider only one modal component, then the boundary condition is linearized

by first approximating the instantaneous surface normal by

7



nnst( t) n S qi(t) Vtan£n .I )  (6)

+ qi(t) n' V .(' 6)
tan i

where n' is the time-averaged unit surface normal (or unit normal for a

rigid blade) at point S' and V stands for the tangential gradient taken
tan

along the reference surface (see Appendix A for a detailed derivation of

equation (6)). The first gradient term in expression (6) gives a gradient

contribution to the instantaneous norma1 vector from the normal component

of displacement and the second gradient term gives the contribution from

the'tangential displacement.

Now replace the surface normal in the boundary condition by this

approximation. Expanding and retaining only those terms which are at least

linear in q. we get a linearized boundary condition

n (a +Tx' - U) +;v i(n* d

- - tani tan'

We now separate the fluid velocity v into a velocity vR, which is

induced by a propeller with no blade vibration, and an additional velocity

v induced by the vibrating blades. Consistent with the linearized

boundary condition of equation (5b) we assume

V V R + 'V(7)

8



with boundary conditions

A 1. O + 6-4 - i
n v n V+fl0 u m (8)

and (assuming small spatial variations so that IJ is small compared with

I+ - U'I)

n Vv q*i (n" ) - q (a + 64' - 0)'Vtan ) ("d

a u tan 4 (9)

The assumption leading to equations (7-9) allows the total induced

fluid velocity to be considered as a sum of the induced velocities resulting

from two independent propeller problems. The first is the standard problem

of a rigid propeller operating in a spatially nonuniform fluid velocity

field. The (' + ix' - ) n' portion of the normal fluid velocity isa o

steady in time and results in a steady thrust and torque on the propeller.

(This steady portion is suppressed in the subsequent analysis since we are

mainly interested in time-dependent velocities and pressures.) The i'.iu
m

portion is time varying (in a coordinate system fixed to the blades) and

results in unsteady forces and moments on the blade.

The second problem is that of an elastic propeller, operating in a

fluid velocity field with no circumferential variations (i.e., 'u - 0),
m

whose surface is constrained to vibrate with a prescribed pattern and ampli-

tude. It has the alternative interpretation of a rigid propeller operating

in a flow field which is both time varying and spatially nonuniform; the

variations being exactly those that give the boundary condition of equa-

tion (9). Also, with some slight rearrangement of terms, equation (9)

9



can be reinterpreted as a rigid propeller operating in a particular time

independent, spatially nonuniform flow field; so that a solution scheme

which solves problems of the type given in equation (8) could be used to

give solutions to the boundary conditions posed in equation (9).

EQUILIBRIUM EQUATION OF BLADE MOTION

We make several assumptions about the equilibrium state of the

vibrating propeller blade and its surrounding fluid. We ignore the blade's

rotational acceleration compared to its local acceleration.* The fluid

is idealized as being inviscid and of constant density p, and is assumed

to be irrotational except on propeller surfaces and on infinitesimally

thick regions of fluid vorticity which trails each of the blades. Energy

losses by structural damping (and boundary layer shear stresses) are ne-

glected compared to the energy lost by the blades shedding fluid vorticity.

We will show later that the losses due to structural damping are small

enough to be neglected compared to the losses due to hydrodynamically

induced damping.

Using the orthogonality properties of the modes, the normal roor-

dinate qi obeys the equation of motion of a simple, forced oscillator

Qi~ + ,j q,) - -ffdo pP iP.81  (10)

where w a is the circular resonance frequency, in air, for mode i, qi is

the acceleration amplitude of the mode relative to a coordinate system

*The centrifugal force makes the blades behave stiffer than when

they are not rotating. This increases the fundamental frequency in air
from W2 to approximately 1 .4z[9], less than a 0.5 percent change for

the propellers tested in this Atudy.

10



fixed to the reference surface, p is the local surface pressure due to

water loading, da' is an element of surface area with outward normal n'.i.

and the integration extends over both the forward and rear faces of a

single blade. Note that we need only specify the component of the modal

pattern normal to the surface of the blade.

The surface pressure is set up by the circumferentially varying

inflow urm buffeting the propeller blade. This results in a time-dependent

pressure, even though the inflow itself is not time dependent. Because

of the assumption of linearity, each wake harmonic m of the inflow results

in an independent surface pressure which has a frequency of loading w - 0

The total pressure field is determined by adding contributions from all

wake harmonics.

Expression (10) is the motion equation for a single blade; to get

the vibration on all blades, we need to see how blade motion on one blade

is related to that on another. For vibration with single frequency w -

produced by the interaction of the propeller with a single wake harmonic,

the surface pressure on blade k, at position gk and time t, is the same as

that on blade I earlier when it occupied the position of blade k, i.e.,

p (S k, t) = p (Slt-At) (Ula)

At =27 k - 1
Q NB

where NB is the total number of propeller blades. Noreover, if the

pressure on blade 1 is of the form

P ( '1
't) Po (S1) cos (Wt + p (12)

11



where p is a phase angle in the reference coordinate system and w =Q,

then the pressure on blade k is

p(kt)-p Cos (Wt + * -27r (k -1) (13)

We see that the normal coordinate describing the motion of mode i

of blade k is similarly related, provided all blades have identical elastic

properties, by

q ,k(t) - qi,1 (t - At) (14)

and

q~ (t) - q cos (wt + 0 - 2w (k - 1)I B) (15)

where qo.' is the amplitude of the normal coordinate for mode i on blade 1,

and 0 is its phase angle. This means that we need specify only the pressure

on a single blade and need solve only for the normal coordinate pertaining

to that blade. The pressures, normal coordinates and blade displacements

on all other blades are then obtained using the simple time transformation.

Consistent with the field decomposition represented by equations

(7-9), the local surface pressure on any one blade is caused by all propel-

ler blades interacting with both a spatially nonuniform inflow, which is

present whether or not the blades vibrate, and a time varying velocity

field created by the induced blade vibrations. We assume that the total

unsteady pressure is a sum of the pressures induced by each of these two

effect--i.e., we assume

P = PR +Pv (16)

12



where p1 is the unsteady pressure distribution that would be present on

the blade surfaces if the blades were perfectly rigid, and pv is the

pressure set up on the blade surface if there were no circumferential

nonuniformities (u = 0) in the inflow and the blades were constrained to

vibrate with a prescribed velocity ?.

We now introduce this decomposition of pressure into equation (10)

to get

MB ( 1 + ai qi) - QRi (17a)

where PR excites mode i with a modal force

QR,i - JJfdo' PR *i (n 'i)e (17b)

which is independent of the normal coordinate qi, and pV excites mode i

with a modal force

qV-i ff d' Pv (ni (17c)

Since PV is the pressure induced by blade vibration composed of all

modes, the resulting modal force QV'i is a function of all the normal coor-

dinates, and, consequently, the differential equation of motion is not

uncoupled in the normal coordinate qi" In principle, there exists a new

set of mode shapes *'i and frequencies w i which are characteristic of the

blade vibration of an advancing and rotating propeller and which lead to a

set of uncoupled equations of motion, provided the damping is of a partic-

ular form.* But if these new mode shapes are nearly the same as the in-air

*If the vibration were conservative, then both the mode shape J'j

and frequency w'i are real and can be expressed in terms of the in-air mode

shape ft and frequency wi [101. But ours is not a conservative system and

what we mean by the mode shape *'i and frequency Wj needs careful examina-

tion. Following an idea of Rayleigh [111, a real set of mode shapes will

13
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ones, then the induced pressure from mode i is the major contributor to

the modal force QVJ1 " The other modes induce pressures that would result

in much smaller contributions to QV'i and could be neglected. This simpli-

fication is followed here, but neglecting contribution from the remaining

modes is probably a better approximation for the first few modes, where

the mode shapes are fairly simple and water loading only alters the patterns

slightly, than for the more complicated patterns of the higher modes.

In making the assumption that QV,' arises only from blade motion

contribution from mode i, we have introduced a great simplification in

that analysis, for now the equation of motion becomes uncoupled in the

normal coordinate qi. It remains still to specify the functional depend-

ence of QV'1 on the blade motion.

Let PV,i be the local induced pressure on the blade caused by each

blade vibrating with velocity ii,k (t) *i (k (k), where qi,k is

given by equation (15). Since pressures are assumed to behave linearly,

is directly proportional to q the amplitude of the normal mode

coordinate. Furthermore, in the most general case, PV'i has a time

dependent part in phase with the local blade acceleration and a part in

phase with -the local velocity. So if

q (t) - q o cos (Wt +), (18a)

W- no, (18b)

exist if the two phase components of the pressure distribution pV form a

ratio which is constant over the entire blade surface; then the mode

shapes are real and the characteristic frequencies are complex. However,

in the more general case, the classical modal description breaks down and

the equations of motion are only approximately uncoupled [12).

14



this pressure can be split into two parts

p (It) - p C ( C) Cos (Wt + 0)- a () sin (Wt + ), (19)V V, IV, i

and consequently the modal force Qv,i is rewritten in the form

,I(t) - - Hi i - wDi i (20)

where

M i --jf do ' i (2 qo,1 * (U i ) (21)

D i M ffd' PVs (
2 
qo)- *i (n"6 ) (22)

The quantities M. and D. are independent of the absolute amplitude

of motion and are easily shown to be independent of the frequency of vibra-

tion W -t as well, provided the advance ratio

V +

J - 2 a o (23)

--where Va is the advance speed of the ship, V a + i is the amplitude of

the mean volume velocity which flows through the propeller disk (if the

propeller were removed and the ship constrained to advance with speed Va) ,

is the shaft's angular frequency, and D is the propeller's diameter--is

kept constant as the vibration frequency changes. M i can be interpreted as

an induced modal mass or added mass of the propeller vibrating in its i(th)

mode; Di has the interpretation of an induced modal hydrodynamic damping

(with units of mass) of the propeller vibrating in the same mode. The

pressure distribution p Vi (for a unit q o.) is a function only of the

15



propeller geometry, mode shape, shaft harmonic m and advance ratio. Like-

wise, the hydrodynamic quantities M. and D. are intrinsic or characteristic2. 1

quantities of the propeller itself. These characteristic quantities are

independent of mean speed (for a fixed advance ratio) provided viscous

effects are negligible, as we assume to be the case.

If the propeller vibrated without generating an unsteady circulation

about the blade surface--the so-called "non-lifting" or no circulation

problem--the modal force Qv,1 would be in phase with the acceleration i,

and the hydrodynamic damping D. would be zero. But the presence of a sharp

trailing edge in a well-designed propeller sets up circulation about the

blade. And the vorticity, generated in the fluid boundary layer, is shed

by the blades into a "wake" region and subsequently convected downstream

away from the propeller. This process results in vibrational energy dis-

sipation, accounted for in the analysis by Di, and results in an added mass

contribution H. which is generally different than that for the solution for

no circulation.

Equations (17a) and (20) give the final form of the equation for

the steady state motion for the i(th) normal mode

W2 q Q (24)
(M B + M) i 

+ 
Wei'i + W, i " R,i

where the water loading increases the apparent mass from its in-air value

of M5 to MS + Mi, thereby decreasing the blade's resonance frequency from

0a,i to

wi - /H + Hi  
)
ai (25)
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and the ratio of modal dissipative forie to modal inertial force is given

by the modal hydrodynamic damping factor*

D 1

" - (26)

Enough is now known about the motion to enable us to solve for qi"

The relevant propeller characteristics--MB, Mi, i, i. wa,i--can all be

specified independently from the forcing field PR by either a calculation

or measurement or a combination of both. Mode shapes and resonance fre-

quencies are easily measured, as was done in this analysis, or calculated

[13,8]. But the hydrodynamic quantities M. and 8i are more difficult to

measure and are possibly best estimated using an appropriate propeller

theory.

If we let QR,i be of the form

QR,i(t) - QoR,i cos (Wt - *oR, ) (27)

where QoR,i is the amplitude of the modal driving force and oR, is its

phase angle (measured relative to the coordinate system fixed to the

reference system), then the normal mode has the solution

qi(t) - qo,1 cos (wt - oRi + *q,j) (28)

*The value of 0 1 depends on the distribution of vorticity in the

propeller's wake region. Since this distribution pattern is not the same

for the transient as for the steady state vibration, the hydrodynamic

damping factor for the two cases are generally different. This means that

0 is in general different from a hydrodynamic damping factor obtained by

oserving the free, exponential decay of blade vibration while the propel-
ler operates in the uniform inflow.

17
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where the modal displacement amplitude is given by

qQoRai - 1

qo, 2( 2 2 2 2 (29)

w~i i

and the phase angle is

qi - tan (2 -i2) (30)

Since the modal force QoRi is proportional to the square of frequency for

a constant advance ratio, the ratio Q oR,i/W 2 
is independent of frequency,

and the frequency dependence of the displacement is determined entirely by

the quantity under the radical in equation (29). We see that the amplitude

of displacement is near zero when w is much below Wi; it reaches a maximum

at resonance (defined when w 
f w .); and has a non-zero asymptotic value

w , i

for frequencies much above resonance. Likewise, the phase angle 0q* i is

zero or slightly negative much below resonance; has a value -7/2 at reso-

nance; and reaches an asymptotic value tan (-8/-1) above resonance.

PROPELLER FORCES AND MOMENTS

Take qo, momentarily, to be unity, then we can define a charac-

teristic quantity Pvi (with units of pressure per unit displacement) which

is independent of the amplitude of vibration

PV,i v,i/qo,i 
(31)

The total pressure field, accounting for all modes of motion, is then

+ FPR + q 0j1  ' (32)

The net vector force exerted by the water on the blade surfaces, account-

ing for the induced pressure contributions from all the modes of vibration,

is then

18



where

R dal (34a)

and

S q, 1 f PV, n dall (34b)

and where the intergration extends over the surfaces of all blades. 11
R

is the force exerted on the blades by the water loading if the blades were

rigid; this is also the force transmitted to the propeller's hub or shaft

for a rigid propeller. V is the additional force exerted on the blades
V

by the water because of the vibration of the blades.

The net vector force transmitted to the propeller's hub or shaft

is given by

F(t) - F B + F 1  (35)

where

--ZIPB ff ,~ i dV1  (36)

The transmitted force differs froL the force fB exerted by the water on

the blades, the difference being the inertial reaction of the blades F .

It is important to make this distinction between F and FB since in the

subsequent experiments we measure the unsteady forces acting on the propel-

ler shaft, not the blade surfaces.

Likewise, the net vector moment exerted by the water on the blade

surfaces is

19



H tp P ff x do 11  (37)

where

MR - JJPR all (38a)

and

A qo0 , ff4v, n dall (38b)

and the net vector moment transmitted to the hub is

i4(t) M MB + MI (9

where

MI OB ff q *j x~ i dVall (40)

Because of the rotational symmetries of blade geometry and the

rotational symmetries of pressure distribution (cf. equation (13)], only

certain harmonics of shaft frequency result in noncancelling forces and

moments on the blade surfaces [1]. Similar arguments limit the shaft

harmonics which result in noncancelling propeller forces and moments trans-

mitted to the hub. For wake or shaft harmonics where m/N B is an integer,

there is a net axial force or alternating thrust and a net alternating

torque about the axial direction whose amplitudes are NB times that force

and moment acting on any one blade. When (m*l)/N is an integer, there
B

are net sidwise forces and moments whose amplitudes are NB/2 times those

of any single blade. Although the other wake harmonics can result in

forces and moments on individual blades--and even destructively large

20
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forces and moments near resonance--they produce cancelling or near cancel-

ling transmitted propeller forces and moments when they are summed at the

hub or propeller shaft.

It is conventional to nondimensionalize each component of force

and moment by a force or moment characteristic of the size and operating

speed of the propeller. Then a typical alternating component of force F is

represented by a force coefficient

42F

K- Q2 D4 (41la)

and a typical alternating moment component M by a moment coefficient

42M

K - 2D5 (41b)

The notable thing about these coefficients is that they are independent

of rotation frequency provided the blades behave rigidly, i.e., the alter-

nating forces and moments increase with the square of shaft rotation speed

as long as the advance ratio is maintained constant and the relative inflow

variations do not change. This is not the case when the propeller responds

elastically since the amplitude of blade vibration, and consequently the

resulting forces and moments, are a function of shaft rotation speed.

ONE-MODE APPROXIMATION

For the calculations which follow of unsteady thrust and unsteady

torque, we make a simplifying assumption to the general theory for the

resulting propeller forces developed in equations (1) through (40). We

assume that the vibration pattern over the blades does not change with

excitation frequency, that is, only the fundamental mode of vibration is

excited by the m NB harmonic of the nonuniform inflow. This one-mode

21
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approximation is strictly valid only if the impressed pressure field on the

blade surface is proportional to the fundamental mode shape, i.e.,

PR/n.
6 do'/dV) is orthogonal to all modes except the first one [cf.

equations (17b) and 3b)]. We would expect it to be a good approximation

for excitation frequencies near the fundamental resonance, particularly if

PR on the blade resembles 'the fundamental mode shape. We will reexamine

this approximation in light of the calculated and experimental results in a

later section.

Neglecting the induced pressure field contributions as well as the

inertial blade reactions from all but the first mode in equations (35) and

(39) we get the transmitted unsteady thrust at the hub to be

Fz(t) - z /t n"z do'll + pv, n
A
z d

o
'

z all 1PR a all

- 41 I1 I*
z dVall (42)

and the unsteady torque transmitted to the hub to be

M (t) PV,1 ffP (
S 

X'z do'l43

(43)

B i ff 1 1 )z dVall

We see that a calculation of the transmitted force requires the addition of

three separate quantities, taking proper account of phase and amplitude of

each as the excitation frequency varies.

The quantities given by equations (42) and (43) can be interpreted

as a modal force and a modal moment which correspond to the first mode of
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vibration. These two expressions, which we will refer to as the "inertial

approximations", would be exact--within the assumptions of the theory--if

only the first mode is excited into vibration.

There is another, much simpler, one-mode approximation which can

be derived and which is also exact if only the first mode is excited. The

expressions above are a statement that the transmitted force (or moment)

is equal to the applied force less the inertial reaccion of the blades.

The transmitted force, however, is also proportional to the blade motion.

If only one mode is excited and the shaft and hub are rigid, then the

transmitted thrust amplitude F is given by

Fz = K qo0. (44)

where K can be interpreted as a dynamic stiffness constant, which for simple,

linear vibrations would be independent of excitation frequency. (In the

general case where more than one mode is excited, K would be a function of

excitation frequency and qo,1 would be replaced by a weighted average of

modal displacements.) Since K is independent of loading frequency, we can

take

K (45)

J-const

Then from equations (29), (35), (45), and (44) we get the simple and useful

relationship

F (W 
(46)

.1/2 (1)2 
+ 02

Equation (46) says that the ratio of the transmitted thrust F to the£

force FZR, which would be transmitted were the blades rigid, is a function

only of the hydrodynamic damping factor B1 and the ratio of excitation
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frequency to the fundamental resonance frequency in water. If more than one

mode is excited, the equation would be an approximation whose validity

depends on the dominance of the fundamental mode to the vibration.

The approximation given by equation (46) suggests some interesting

properties about the forces transmitted to a propeller hub when the funda-

mental mode dominates the vibration. First we see that the transmitted

force can be smaller when the blades vibrate than when they do not. This

would occur for excitation frequencies

w 1 1 + a02(7

1

We can also show that the maximum force magnification brought on by blade

vibration is

( R)max (8

which occurs wheni 0
1 (49)

After a derivation similar to that given above, we get the identical

relationship for the transmitted unsteady torque ratio

m1

z -(O 2 2 2 (50)

We will refer to equations (46) and (50) as the "stiffness approximation."

The two sets of expressions, given in equations (42) and (43) and

equations (46) and (50), although different in appearance, give identical

results if only the fundamental mode is excited into vibration. The blade

24



then acts as a simple oscillator which causes the unsteady force ratio to

diminish to zero as the excitation frequency is increased beyond the funda-

mental resonance frequency. in the real situation where many modes are

excited, the two sets of equations are only approximations and they give

different results. The stiffness approximation indicates that the force

ratios always go to zero for a sufficiently large exciting frequency. There

is no such requirement inherent in the inertial approximations and, in

general, their high-frequency asymptotic values will approach same constant.

In the real situation, the higher modes begin to dominate as the exciting

frequency is increased, causing multiple resonances to be observed, and

both sets of approximations break down.

Nevertheless, of the two sets of approximations, we can argue that

the first one should give marginally better results than the second. In

the first set of approximations ye neglected the inertial reaction of the

higher modes. Examination of the second set of equations suggests that we

neglected the stiffness contributions of the higher modes in arriving at

this set of one-mode approximations. The contributions of the higher modes

would be expected to be smaller for the inertial approximation than for the

stiffness approximation. This is because the stiffness contribution of

each mode depends on the second span-wise derivative of the mode shape at

the hub. Fo% the same amplitude of vibration in each mode, the second

derivative gives added weight to the higher modes. Also the stiffness

contribution depends only on the mode shape at one point at the hub. The

inertial contribution depends on the average value of the mode shape, averaged

along the span. For the same amplitude of vibration in each mode, span-

wise averaging reduces the weight of the higher modes, because the higher

modes have more nodes.
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Therefore, since the inertial contributions of the higher modes are

smaller than the stiffness contributions of the higher modes, at least for

excitation frequencies below the second resonance frequency, we would expect

the set of inertial approximations to be the better one. Accordingly, the

inertial approximation was used in the subsequent calculations. But we

will show later that both sets of approximations agree with the experiment.
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EXPERIMENT

The experiment has two primary objectives. We want to demonstrate

that blade vibration can affect and significantly alter unsteady propeller

forces and moments, and we want to show that quite different responses are

possible, depending upon the propeller's hydrodynamic damping and mass.

And, equally important, we wish to establish a reliable set of experimental

results which can be compared with theoretical predictions. For this

purpose propeller forces and all controlling variables, such as mode shapes,

resonance frequencies and fluid inflow velocities, were carefully measured.

Of the six possible generalized propeller forces, only alternating

thrust and torque were measured during the experiment. These two are suf-

ficient to accomplish the main objectives of the study. The measurements

were made in a water tunnel using a six-component dynamometer which utilizes

semiconductor strain gages as sensing elements [14,61. A new technique

for measuring alternating thrust, using an upstream hydrophone as a sensor,

was also explored in this study, however, the method failed to give satis-

factory results for reasons to be discussed subsequently.I To generate large measurable alternating thrust and torques, a wake

screen, located upstream from the test propeller, was used to produce an

angular wake harmonic equal to the number of propeller blades, m - NB. The

frequency of the thrust and torque generated was then equal to the number

of blades multiplied by the rotational frequency of the propeller shaft.

When this loading frequency was near the resonance frequency for the

propeller's fundamental mode, large oscillating blade motion was possible,

and it was possible to study its effect on unsteady thrust and torque.
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In testing for the elastic effect, the test propellers were

operated over a range of loading frequencies by spanning the fundamental

resonance frequency while keeping the advance ratio constant. This enabled

us to observe and record the changes in propeller loading at the different

frequencies of the blade vibration.

There are several possible ways to demonstrate the effects of blade

vibration. The most direct way is to take two propellers of identical

geometries, but different elastic characteristics--one very flexible, having

a resonance frequency within the operating range of the facility and one

rigid, having a resonance frequency far beyond the operating range--and

measure the alternating forces generated by each under identical flow

conditions. Then any measured differences are presumed to be due to dif-

ferences in blade elasticity. Geometrically identical propellers made of

aluminum and plastic could accomplish this, with the lighter mass of the

plastic propeller further magnifying the effect.

An alternative method is to select a propeller which has a resonance

frequency within the tunnel-operating range and to make measurements at a

constant advance ratio over a range of shaft frequencies. If the blades

were rigid, the unsteady thrust coefficient would be a constant for all

shaft frequencies. A rigid condition is approximated when the resonance

frequency of the blades is much larger than the loading frequency, and an

elastic condition holds for higher loading frequencies. So by keeping the

advance ratio constant and measuring alternating forces for successively

larger shaft frequencies, any deviation of the unsteady thrust coefficient

over those obtained at low shaft frequencies could be presumed due to blade

vibration.
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Still a third way is to measure alternating forces over a range of

operating conditions for a propeller with a resonance frequency much higher

than the operating range, then lowering the natural frequency to within the

operating range by cutting the blades near their bases. The propeller

would then be re-tested under identical conditions as before, but nov the

blades will respond elastically. This method, however, was not attempted

here.

The first and third methods have the advantage that the rigid and

flexible propellers operate under identical flow excitation conditions, so

that any differences are presumed due solely to elastic blade effects. This

is not quite true of the second method since flow similarity is required to

exist at a constant advance ratio for a large range of operating conditions

and viscosity effects are not distinguished.

Both the first and second methods were used in the present study.

For the first method, two geometrically identical 10.04 inch diameter

propellers with somewhat narrow blades were selected; one is made of

aluminum (DTNSRDC No. 3956) and the other of plastic (DTNSRDC No. 3958).

An 11.52 inch diameter aluminum propeller with wide, overlapping blades

(DTNSRDC No. 4064) was selected for the second method.

These propellers enabled a wide variation in geometry to be studied

They were selected based upon some preliminary calculations of hydrodynamic

damping which indicated that the two geometrically different propellers

would have quite different responses near their fundamental resonance

frequencies; the narrower bladed propeller was expected to exhibit much

higher hydrodynamic damping than the wider bladed propeller.
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TEST FACILITY

Except for propeller-mode shape measurements, the experiment was

done at the 24-inch variable pressure water tunnel, located at the

David W. Taylor Naval Ship Research and Development Center (DTNSRDC). The

tunnel is approximately 120 feet in length with a diameter which varies from

6 feet, a few feet upstream from the propeller, to 27 inches at the enshrouded

propeller section. The tunnel facility is capable of a maximum water speed

of 60 fps. The dynamometer overloads for steady torques in excess of 25 ft-

lbs; this limits the maximum shaft rotation speed as well as the useful range

of mean propeller loading. Also, the tunnel can be pressurized from 2 to 30 psia,

the higher pressures being useful in cavitation suppression. A wake screen

which produces large unsteady thrust and unsteady torque was located about

30 inches upstream from the propeller. One hydrophone was positioned along

the tunnel axis at the honeycomb section and one was placed near the center

of the wake screen. The basic configuration is shown in Figure 1.

Numerous unsteady propeller force measurements using the facilities'

six-component dynamometer system have been made at this facility over the

past 12 years [14,151, and the peculiarities and specifications of the system

are well documented elsewhere [6,14]. The propeller is mounted on a six-

component dynamometer which is an extension of the propeller shaft. Fluctu-

ating propeller forces and moments create fluctuating strains in a section

of the shaft which are sensed by a semiconductor strain-gage bridge and are

resolved into six voltages from which forces and moments are determined.

The voltages are, in turn, amplified and exit the rotating shaft by way of

slip rings. A signal is then analyzed, and in this case, the amplitude

and phase of the blade-passing frequency component is recorded. Phase is

measured relative to that of a known reference signal. A schematic diagram
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SCREEN FORCE BALANCE

Figure 1 -Test Configuration
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of the instrumentation used in measuring alternating thrust and torque is

shown in Figure 2a. Forward of the amplifiers, the shaft system has a

built-in 2-millivolts (rms), 235-Hz voltage source which was used repeatedly

throughout the experiment to calibrate the output voltages from the analyzer.

A sketch of the six-component dynamometer system is shown in Figure 2b.

(Both Figures 2a and 2b are taken from Reference 6.)

Before the testing started, we calibrated the dynamometer by applying

known static thrusts and torques and recording the thrust and torque channel

voltages. There was a slight interference between thrust and torque voltages,

with the calibration given by

F = 2.15 eF - .070 em lb/mvolts (51a)z

Hz - - .189 em lb-ft/mvolts (51b)

where Fz is the thrust, Hz is the torque, eF is the thrust channel voltage,

expressed in millivolts, and eM is the torque channel voltage in millivolts.

This static calibration was presumed to hold for all test frequencies. In

order to identify any resonances in the system, after the dynamometer was

in place and the tunnel filled with water, a waterproofed Wilcoxon F3 electro-

magnetic shaker with built-in impedance head was attached to a block mass,

which replaced the propeller, and driven over a range of frequencies from

25 to 300 Hz. The ratio of thrust to thrust voltage varied only slightly

(+5 percent) over this frequency range. This agrees with the previous

experience of Miller [141.

The errors introduced by using this static calibration are probably

not significant, at least in the frequency range used in this experiment.

As we explained, there seems to be only a small frequency dependence over

the frequency range of interest. Also the calibration showed the desired
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linear dependence of voltage on applied forces, i.e., when we increased

the force and moment, the voltage increased proportionally. In addition,

the interference between the thrust and torque voltages and the other

four voltages is negligible; and the slight interference between thrust

and torque voltages is easily accounted for.

PROPELLER MODE SHAPES AND FREQUENCIES

Mode shapes were measured in-air on a laboratory bench. A Wilcoxon

F3 shaker with built-in accelerometer and force gage was mounted to the

propeller's hub. And a McIntosh 60 watt power amplifier drove the shaker/

propeller with a varying sinusoidal excitation until the propeller's resonance

frequency was excited. A resonance frequency was identified when the phase

of output voltage from the accelerometer was 90 degrees to that of the force

gage. Since the propellers used in the test were lightly damped, with a

mechanical loss factor of about 0.01 for No. 4064 and about 0.02 for No. 3958,

resonance frequencies were easy to identify by this method. They could also

be clearly detected by simply listening to the sound from the vibrating blades.

The mode shapes were measured using a Model KD-38 Mechanical Technology

Inc. Fotonic Sensor which enables displacements to be measured without loading

the blade surfaces. It senses displacements through a needle-like probe

containing strands of fiber optics fibers, of which half transmit light and

receive the reflected light. The end of the probe is positioned initially

about 100 mils from a point on the resonating blade surface. The vibrating

surface reflects a fluctuating light intensity which is received and trans-

lated into a voltage output signal, whose amplitude and phase are measured

using an AC voltmeter and oscilloscope. The mean received light intensity

(or DC output voltage) as a function of gap distance (between the probe's

end and a point on the mean vibrating surface) is zero when there is no gap,
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reaches a maximum at a distance of about 100 mils, and then decreases slowly

beyond that. This response curve is linear for gap distances between about

140 to 240 mils; at the midpoint of the linear range, the output DC voltage

is approximately 70 percent of its maximum value. Small changes in gap

distance, caused by fluctuating surface displacements within this linear

range, produce AC voltages which are directly proportional to the slope of

the DC response curve. In this range, the AC voltage is insensitive to the

exact gap distance.

The procedure for measuring the relative normal displacement for

points on the blade surface is to adjust the gap distance until 70 percent

of maximum DC voltage is reached, and then record the corresponding AC volt-

age. This procedure, repeated for a number of points on the surface, maps

out the normal component of mode shape 4, .n' in rapid order. The two

inplane components of motion could be resolved by attaching a small perpen-

dicular reflecting surface to a point on the blade and thereby measuring

displacements parallel to the local blade surface. This was not done here

since the inplane components do not enter into the determination of either

the modal forces or the net vector force and moment exerted by the water to

the blade surfaces [cf. equation (17), (33), (07)). For the parts of the

theory where a complete description of the mode shape is necessary, we

assumed that

n~i~~ (52)

or, in effect, neglected the in-plane components. * This is probably a good

*The complete mode shape is necessary in the normalization procedure

[equation 03a)J and in figuring the blade-mass acceleration contributions

(equations (36), (40)1. The approximation also ignores the contributions

of modal tangential displacements compared to the modal normal displace-

ments in equation (9).
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approximation at these frequencies since the local ;nplane stiffness is

much larger than the local bending stiffness.

The results of the mode shape measurements for propeller No. 3958

and 4064 are listed in Tables 1 and 2. The tabulated values which are along

chords of constant radius and normalized to the tip displacement, are for

the mode shape on one blade. In the table, chord fraction refers to the

local fractional distance along a chord of constant radius; the chord

fraction is 0.0 at the trailing edge (T.E.) and 1.0 at the leading edge

(L.E.) of the blade. Values on the other blades at rotationally symmetric

points differed by as much as ±100 percent in absolute displacement, but

only ±10 percent when normalized by their tip displacements.

Measurements of resonance frequencies were made with the propeller

in place in the water tunnel. The waterproofed shaker was mounted to the

propeller's hub and excited the blades into vibration. The shaft was locked

in place which reduced the propeller tendency to rotate when the blades

oscillated. Resonances were identified by sweeping the frequency of the

input voltage and monitoring the thrust and torque output voltages from the

dynamometer. The plastic propeller (No. 3958) has an in-air fundamental

resonance frequency of 435 Hz and a second resonance at 940 Hz. In still

water this same propeller has a fundamental resonance of 160 Hz and the

apparent second resonance is at 400 Hz. The aluminum counterpart (No. 3956)

has a fundamental frequency of 800 Hz in air and 360 Hz in still water and

for the frequency range of excitation we are interested in, we would expect

it to act almost like a rigid propeller. Propeller No. 4064 has a funda-

mental in-air resonance frequency of 355 Hz and a second resonance at 1050 Hz.

In still water the fundamental resonance is 108 Hz and the second resonance

is 370 Hz.
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TABLE 1

MEASURED FUNDAMENTAL MODE SHAPE FOR PROP. 3958

Radius Chord Fraction

Inches 0.0 (T.E.) 0.5 1.0 (L.E.)

1.512 0.000 0.000 0.000

2.016 .010 .010 .010

2.520 .030 .030 .030

3.024 .100 .100 .100

3.528 .185 .148 .111

4.032 .407 .352 .185

4.536 .704 .630 .519

4.788 .815 .778 .648

5.040 * = 
1.0 at the blade tip

TABLE 2

MEASURED FUNDAMENTAL MODE SHAPE FOR PROP. 4064

Radius Chord Fraction
Inches 0.0 (T.E.) 0.33 0.66 1.0 (L.E.)

1.152 0.000 0.000 0.000 0.000

1.728 0.000 0.000 0.000 0.000

2.304 .010 .010 .010 .010

2.880 .010 .010 .010 .010

3.456 .020 .030 .040 .030

4.032 .060 .060 .090 .120

4.608 .210 .390 .550 .390

5.184 .480 .760 .700 .420

5.472 .820 .850 .850 .820

5.760 - 1.0 at the blade tip
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WAKE SURVEY

In order to excite a large, measurable unsteady thrust and torque,

an appropriate wake screen was constructed. Three and four-cycle screens

which produce wake harmonic velocity amplitudes that are roughly 20 percent

of the mean inflow velocity, have been built and tested in the past, and

the swpe construction procedures were followed here 116,6J. A base screen,

made of 0.0095 inch diameter 16 mesh stainless steel, is welded to a 27 inch

stainless steel support ring. By overlaying sections of 0.016 inch diameter

18 mesh stainless steel screening, a circumferential periodic solidity

pattern is produced which matches the number of blades on the test propellers.

The nonuniform flow distribution set up by the wake screen was

measured with a pitot tube rake mounted to the shaft in place of the test

propeller. Both upstream hydrophones were also in place. Only the longi-

tudinal component of flow was measured; the other components of velocity

were presumed to be of secondary importance. The average tunnel speed

(as measured by the facilities venturi meter) was set at 10.0 fps and the

local dynamic head of water was measured at six radial positions in six

degree increments. The local longitudinal velocity was then calculated.

Knowing the average velocity u 0 at each of the radial positions, the

appropriate volume mean velocity 5 for each test propeller was estimatedo

by the equation

-O 2 ( tip

t W-N7b2 2w u (r) r dr (53)0 tp %b hub 0

The volume mean velocity was 8.6 fps for propeller No. 3956, 3958 and 8.8

fps for propeller No. 4064.

The inflow velocity (suppressing all but the zero and N B harmonic)

was assumed to be of the form

39



u Uo + u a uo(r) z + uN.(r) coo (NB T+ CN (r)) (54)

where z is a longitudinal unit vector (positive in the direction of flow),

(rjy) are the radial and angular coordinates with measured from the

vertical and positive in the direction of rotation of a right hand propeller

(T-O corresponds to the top of the wake screen) and EN(r) is the radial

B

distribution of phase of the N B harmonic. The local velocity u was normal-

ized by the appropriate volume mean velocity and this ratio was assumed to

be independent of tunnel speed-speeds that ranged from 1.5 fps to 20 fps--

throughout the experiment, i.e., iuiIo is assumed independent of Uo •

The velocity field was analyzed for its harmonic content [17].

Values of the zero and N B harmonics are shown as a function of radius r in

Figure 3. The harmonic amplitude is very small at radii less than five

inches because of the close spacing of the pie sections near the screen's

center. Beyond this distance there is only a small amount of mixing and

the amplitude flattens out.

HYDROPHONE MASURENENTS

An alternative method for measuring unsteady thrust was also inves-

tigated in this study. The method depends on establishing a stable, measure-

able relationship between alternating thrust and the accompanying induced

alternating pressure in the water. At distances from the propeller which

are much less than one acoustic wavelength, the water behaves as though

it were incompressible, and there are two geometric configurations where a

simple relation between alternating thrust and alternating pressure exists:

one is the incompressible pressure field surrounding an oscillating point

force in an infinite fluid and the other is the incompressible pressure

field about a point force oscillating in a rigid duct of constant diameter.
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In the first case the pressure falls off as the square of the distance

between the pressure point and the force 1181, and in the second the

pressure is indR endent of distance beyond one duct diameter 1191; in both

cases the pt. ,ure is directly proportional to the force and independent of

the frequency of oscillation. In our water tunnel, we have neither of

these two idealized situations, but we nevertheless wanted to explore

experimentally the existence of a relationship.

To do this, we located two hydrophones upstream from the propeller.

The first hydrophone, a UT 103 with a voltage sensitivity of -104 dB re

I V/pbar, was located about 30 inches from the propeller in the 27-inch

diameter section of the tunnel. The other hydrophone, an LC 10 with a

sensitivity of -108 dB re I V/pbar, was placed about 10 feet upstream from

the propeller in the 6-foot diameter section. Both hydrophones were placed

along the tunnel axis so that the unwanted portion of pressure at the blade-

rate frequency which is due to rotational noise--pressure field generated

by the propeller's steady rotating surface pressure--would be minimized.

Particular care was taken in mounting the hydrophones to ensure that they

did not respond to either structureborne or waterborne vibrations. Under

normal operating conditions the first hydrophone was expected .to receive

the clearest pressure signal. But if the first hydrophone became flow-

noise limited at the higher water tunnel speeds, a strong signal might

still be received at the second hydrophone since it operates in lower flow

speed region.

To calibrate the system and to explore the relationship between

pressure and alternating thrust, we suspended an oblate spheroidal disk in

place of the propeller. The 12-inch diameter disk had a hollowed-out section

which enclosed a Wilcoxon F3 shaker with built-in impedance head. The disk
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was shaken in the broadside direction over a range of frequencies. Both

the drive-point force and the disk's acceleration (measured on the face

opposite the drive point) were monitored. The disk oscillated nearly as a

rigid body over the frequency range of interest. Therefore, the force the

disk exerts on the water was equal to its added water mass times its axial

rigid body acceleration. Alternatively, the oscillating force on the water

is equal to the force, as measured by the force gage, less the disk's body

force (the disk's mass times its rigid body acceleration). In any event,

since the force exerted on the water was known, as was the oscillation

frequency and hydrophone pressure, a relationship between alternating

thrust and received pressure could be established.

The results of the calibration are shown in Figure 4. These results

show a disappointingly strong dependence on frequency. At both hydrophones

there was a quasi-periodic structure to the response with local maxima at

multiples, roughly, of 25 Hz interspersed with local minima. The response

was not very stable, with small deviations in driving frequency resulting

in large changes in hydrophone voltage response; neither was the calibration

repeatable from test-to-test and from day-to-day.

The source of the instability in the response was never determined

for certain. The possibility of a resonance condition in the hydrophone

support mounting was investigated carefully and eliminated as a potential

source. Some interference effect between the elastic duct and the driving

pressure field could be a possible source, as could be the interference

between the incident pressure field and the sound field which travels one

or more times around the circular-like water tunnel (this would produce a

maxima at multiples of 40 Hz).
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Nevertheless, the hydrophones were left in place throughout the

experiment and measurements were recorded whenever possible. Interpreting

the voltage output from the hydrophones was complicated by the presence of

gear noise in the water. This is caused by the meshing of gear teeth in

the shafting system which causes harmonics of the shaft rotational frequency

to be present in the pressure output even when the shaft rotates without a

propeller. Since the pressure field induced by the operation of the propel-

ler also has frequencies which are multiples of the shaft frequency, the

gear noise acts as noise. During the tests for the two narrow-bladed

propellers, the pressure signals from the propellers were judged to be

insufficiently above the gear noise to permit proper interpretation.

Figure 5 gives a hydrophone output typical of these propellers. The pres-

sure signal induced by the operation of the wide-bladed propeller, however,

was above the gear noise, with a typical hydrophone output given in

Figure 6.

Figure 7 shows the measured values for at two advance ratios for

the wide-bladed propeller; to illustrate the hydrophone response to the

force the propeller imparts to the water, a nominal hydrophone response of

0.8 mvolts per pound of propeller force is used here instead of the measure

response curve given in Figure 4. The alternating thrust values show a

peak near 100 Hz (even when the calibration curve is used) and a decline

beyond that. Although this is in general agreement with the strain-gauge

measurements, the hydrophone method does not appear to be a dependable

alternative method for measuring alternating thrust. It should be noted,

however, that if the technique worked, the force calculated from the meas-

ured sound pressure would be the force the propeller exerts on the water,

which would be somewhat different from the force transmitted through the

hub to the dynamometer.
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TEST FOR NO. 4064 PROPELIER

The DTNSRDC No. 4064 propeller was operated over a large range of

shaft rotation frequencies, the upper frequency range of which was limited

when the steady torque overloaded the dynamometer. This allowed the

exciting frequency to range beyond 200 Hz, spanning the propeller's funda-

mental resonance frequency. For each shaft frequency, alternating thrust

and torque, voltages were measured for two different advance ratios--J=0.597,

near zero steady thrust and at J-0.485, where the steady thrust is positive

(LT-0.05).

With the propeller operating, there is no direct method for meas-

uring the volume mean velocity 5 . This means there is no direct way for

determining the advance ratio, taken here as

27 U
D (55)

What is commonly done, and was done for this set of tests, is to infer ;0

from an experimentally determined open water curve relating steady thrust

coefficient to advance ratio. This curve is available and is reproduced

here as Figure 8. The procedure was to adjust the shaft rotation frequency

to the desired value, then slowly vary the water tunnel speed until the

measured steady thrust coefficient was zero, to obtain a value J-.597, or

until RT=.05, to obtain a value J-0.485.

Steady thrust was measured by balancing the forces acting on the

shaft against known weights. To separate the portion of the measured force

that is due to the action of the propeller blades from those remaining

forces acting on the propeller's hub and on the shafting system, a "bladeless

propeller", having no blades (but the same hub construction as the test
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propeller) was measured under identical flow conditions. This force yas

then subtracted fromn the total measured force, giving steady thrust and,

therefore, the advance ratio.

Having attained the desired advance ratio, the phase and amplitude

of the alternating thrust and torque output voltages were recorded; the

signals from the hydrophones were also recorded. Figure 9 gives a typical

alternating thrust voltage signal from the dynamometer assembly and its

spectrum.

Figure 10 shows the measured unsteady thrust as a function of blade

frequency for two advance ratios--Jin0.597 where the steady thrust is zero

and J-0.485 where the steady thrust coefficient is 0.05. If the blades did

not vibrate, the alternating thrust coefficient should be constant, ilqde-

pendent of rotational frequency (provided inflow velocity similarity is

maintained over all frequencies). Clearly this is not the case here. The

thrust coefficient for the J-0.597 case builds up slowly from an apparent

low-frequency asymptotic value of about 0.025 to a maximum value of 0.160

at 105 Hz, and then falls off rapidly for higher frequencies. The apparent

alternating thrust at the blade resonance frequency is about six times that

of a rigid blade. Consequently, the apparent loss factor is about 0.15,

much greater than the propeller's measured material loss factor of 0.01,

and is presumed to be due to the vibration induced hydrodynamic dissipation

discussed in equation (22).

Very similar results were obtained at the lower advance raLiC

(0-0.485). Unsteady thrust were uniformly smaller over the entire frequency

range. Again the maximum thrust coefficient occurred at 105 Hiz, but the

magnification at the resonance frequency was about 10% greater than that at

the higher advance ratio.
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Figure 10 - Measured Unsteady Thrust for Prop. No. 4064
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The response curves for unsteady torque were also very similar, as

shown in Figure 11. For the J-0.597 case, the unsteady torque coefficient

had a maximum value of 0.0175 at 105 Hz and an apparent torque magnifi-

cation of about 6. For the J-O.485 case, the torques were uniformly

smaller and the apparent torque magnification was about LOZ greater.

TEST FOR NO. 3956, 3958 PROPELLERS

Both the aluminum (DTNSRDC No. 3956) and the plastic (DTNSRDC

No. 3958) propellers operated under identical flow conditions. The exci-

tation frequency ranged up to about 240 Hz. Unsteady thrust and torque

were measured, as a function of excitation frequency, for three advance

ratios--J=0.76, J-0.67 and J-0.59.

The operating advance ratio could not be determined as it was in

the previous test, since there is no available open water curves for either

propeller. There is, however, a venturi meter at the water tunnel which

measures the difference in pressure (in inches of water AH) between two

sections of the tunnel with different cross-sectional diameters. This

difference is, in turn, a function of the volume mean velocity. What we

did was to record AH as a function of inferred B in the test for the No.
0

4064 propeller. This established a basic relationship between the venturi

meter reading and the volume mean velocity into the No. 4064 propeller

disk.* To determine the advance ratio, we then assumed that this same

relationship held for the two narrow bladed propellers.

* The venturi meter was calibrated many years ago by measuring flow

velocities with a pitot tube and comparing them to the venturi meter readings.

For the same H, the indicated velocities in the present study were 85 percent

(Q 3M) of those indicated by the old calibrations. The lower mean velocities

are probably due to the impeding presence of the wake screen.
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The aluminum propeller (No. 3956) was tested first for three dif-

ferent advance ratios, then the plastic propeller (No. 3958) was tested

under identical flow conditions. Figure 12 gives the results for J-0.76,

a flow condition for which the steady thrust is near zero. Both propellers,

as one would expect, have nearly identical unsteady thrusts and torques at

the lower frequency end of the response curves. The aluminum propeller,

with the much higher resonance frequency, has an almost flat response up

to about 150 Hz, and then has a slow increase in both thrust and torque

coefficients beyond that point. The plastic propeller exhibits a different

response curve. Both the thrust and torque coefficients increase gradually

with excitation frequency until about 130 Hz. At this point both the

thrust and torques are 42 percent higher than was evidenced by the aluminum

propeller. Beyond this frequency the coefficients fall off rapidly; at the

highest frequency (196 Hz) they had fallen to 50 percent of the corresponding

values for the aluminum propeller.

Results at the two other advance ratios are given in Figures 13 and

14. The response curves are very similar to the J=0.76 case. The unsteady

thrust and torque coefficients for the aluminum propeller were fairly constant

with frequency, with a slight increase evidenced at the higher frequencies.

The alternating thrust and torque coefficients for the plastic propeller

increased until they were about 50 percent higher than those for the aluminum

propeller, and then decreased dramatically.

Because the necessary flow speeds at these advance ratios are lower

than for the J-.76 case, we were able to record the frequency response up

to 238 Hz. At this frequency the plastic propeller's unsteady thrust is

only 27 percent of that of the aluminum propeller--a marked reduction in

unsteady force.
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Before taking the final set of. measurements for all three test

propellers, certain checkpoint measurements were repeated periodically

while the experiment was being "debugged." We noted no more than a ± 5%

variation in the day-to-day unsteady thrust and torque readings.

The experimental results for the No. 3958 propeller differed

significantly from those of No. 4064. Both evidenced a resonance peak--the

wide-blade propeller at 105 Hz and the narrow-bladed propeller at about

130 Hz. But force amplification caused by blade vibration was an order of

magnitude larger for the wide-bladed propeller than for the narrow-bladed

propeller. The hypothesis is that this response near a propeller's reso-

nance frequency is controlled mainly by the induced hydrodynamic damping

factor discussed previously (see equation 26). And that the large differ-

ence in force amplification between the two propellers are due to corre-

spondingly large differences ir hydrodynamic damping factors. Calculations

in following sections substantiate this hypothesis.
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CALCULATION METHOD

Much of the preceding discussion can be summarized by expressing

the net vector force (or moment) as a function of its governing variables

F - func (geometry, J., ,B, Uit , pR, pv (56)

There is no difficulty in specifying the first four functional variables;

and the first few in-air mode shapes and resonance frequencies can be meas-

ured or estimated separately. The difficulty comes in specifying the

hydrodynamic surface pressures. Ruling out direct measurements of these

pressures as too difficult a job for most practical applications,* an

estimation of the fluctuating surface pressures using propeller theory

offers perhaps the best approach. Which one of the many available propel-

ler theories is chosen depends upon the degree of sophistication and accu-

racy deemed necessary for the particular application, but we should caution

that none of even the most encompassing of the existing theories and their

accompanying calculation schemes give consistent agreement with experiments.

In the present study both a new three-dimensional propeller theory

(described in the next section) and a simpler theory were used to advantage.

A simple two-dimensional theory was used initially as a screening device to

aid in selecting candidate test propellers. The theory was used to estimate

the hydrodynamic damping factor of equation (26). A propeller blade was

represented as a long, thin, uncambered wing whose width c was the same as

*Measurements of unsteady surface pressures developed by propeller

blades has been recently attempted by Noonan, et al [201.
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the propeller's chord at a radius of 70 percent of the blade's tip radius;

this wing was given a forward speed of

U 0- /(Va +u)2 + (.35 SID)
2  (57)

and it oscillated normally to the forward direction as a rigid body with a

frequency w - N B. Then, from a two-dimensional wing theory [21, we can

calculate the portion of the unsteady hydrodynamic force which is in phase

with the wing's velocity and that which is in phase with its acceleration,

and derive the approximation

2 Re fC(w)/(

__ +4-2, {Ca%)~11(58a)+ 1 + 2 Im {

M0

where W is a reduced frequency W Wc/2U and C(v) is a complex function

composed of modified Bessel functions, i.e.,

C(W) = K (iw')/[K (iw) + K1 (iw)] (58b)

The fraction MB/M ° is the ratio of blade mass to inertial water mass, where

the inertial water mass is 7r/4 c2 times the length of the blade.

The approximations leading to equation (58) are too crude to be

used throughout the present study since they neglect three-dimensional

effects, the helical-like geometries of the blade and shed vorticity, inter-

ference effects between blades, propeller-blade mode shape, etc. Neverthe-

less, the equation was useful in selecting two test propellers with a wide

variation in hydrodynamic damping factor. Using equation (58), the hydro-

dynamic damping factor for model propeller No. 3958 was estimated to be

quite large (0=1.1) and to be much smaller (B.3) for model propeller

No. 4064. The indication that one propeller has large hydrodynamic damping
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and the other small hydrodynamic damping was later confirmed both by the

experimental results and calculations based upon a more refined, three-

dimensional propeller theory.

As we have illustrated, the propeller-blade vibration theory

developed in equations (1) through (40) will accomnodate any propeller

theory which gives approximate solutions for surface pressures consistent

with the boundary conditions of equation (5a) or any of its variations,

such as equations (8) and (9). In the following section we briefly outline

a new propeller theory developed recently by George Chertock [211. This

theory and its computational scheme were used here to calculate the pres-

sures and forces generated by rigid versions of propellers No. 3958 and

4064 operating in the measured nonuniform inflow velocity fields given in

Figure 3. Both were extended to incorporate the propeller-blade vibration

theory developed in the present study. The details of these extensions are

also included in the discussion below.
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CHERTOCK'S PROPELLER THEORY WITH EXTENSION TO BLADE VIBRATION PROBLEMS*

The propeller theory recently developed by Chertock, along with

its associate computer program, give the steady and unsteady pressures,

forces and moments generated by a rigid marine propeller as it operates in

a flow with small spatial variations of axial inflow velocity. An inflow

velocity is assumed of the specific form

u u0 (r)+um (r) COS (Mp+ E) Z (59)

where umu<<u, and uo, urn, and E can all vary with radius. The propeller

can have arbitrary pitch, chord, skew, camber, thickness and number of

blades.

The theory assumes that the induced flow field is inviscid and

irrotational for all points outside the propeller and its wake. This al-

lows the induced flow field to be constructed using the mathematical tools

of potential flow theory. The boundary condition is that there is no flow

into the propeller or into its hub, and that there are no nearby surfaces.

An additional condition is imposed on the flow field which is equivalent to

a Kutta condition in wing theory. The assumption is that the flow velocity

at the trailing edge, relative to an observer on the moving blade, has no

component normal to the median surface of the blade. And that each

propeller blade sheds a thin, quasi-helicoidal sheet of vorticity which

* The material in this section is adapted from a soon-to-be

published paper by Chertock and Brooks 1211. The Chertock theory was

developed for rigid propellers, but the extension to vibrating blades (or

any other condition leading to a linear normal velocity boundary condition)

is simple and easily included in a description of his theory.
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moves with the mean inflow velocity and does not roll up. This Kutta

condition is applied to both unsteady as well as steady flow situations in

the theory.

The flow field satisfying these conditions is approximated by

assuming the flow induced by the propeller is the same as that from a layer

of normal dipoles on the median surface of each blade and a layer of dipoles

normal to each blade's wake. These dipoles vary with time and position. In

the Chertock theory the induced flow results only from the interaction of

the (rigid) propeller and the inflow velocity. This situation is modeled

by a single dipole distribution V R(S,t). To include the additional flow

resulting from blade vibration, we need to modify the boundary condition

4.

and take two distributions of dipoles. We take p(S,t) as the total instan-

taneous dipole density on the (time-averaged) median surface, then

V(S,t) - uR(s,t) + yvs,t) (60)

where PV is the dipole distribution resulting from blade vibration. The

instantaneous dipole densities P R are calculated from the integral equation

PR E do - nl-. z - uz +

fa o

_Um coS (me+Mt+e) AJ (61)

which says that the velocity field induced by all the dipole densities is

such that, relative to an observer moving with a propeller blade, there is

no normal component of fluid velocity at the outer surfaces of the (rigid)

propeller blade. In equation (61) the fixed angle T has been reexpressed

in a frame rotating with the blade (7 + Qt). The right-hand side of
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this equation is the component of the inflow velocity at (&,t) (relative

to a frame rotating with blade) in the n' direction normal to the outer

surface at 9'. E( ',n $, n) is the (negative) induced velocity in the n'

direction at 9', due to unit dipole density, in n direction, over area do

at 9,t. The integration is over the median (cambered) surface of each blade

and each wake. An integral equation, like (61) is solved for each point S'.

The kernel function E, which can be interpreted as a Green's function,

can be written in a very simple form

6 '4) - 3(n ) (;'-6)
E 

= 
-nn1n (62)

an 4n 4--r)4r

where D ' - S. Note that E depends critically on the angles between the

three directions, n, n', and D, and varies at I/D . This means that its

numerical value drops off very quickly with distance and changes rapidly

with changes in direction. Hence, the average value, averaged over the

element do about the source point, depends critically and in a complicated

way on the shape of the source element do.

The instantaneous dipole distribution V is calculated from a similar

integral equation.

-ff;l, E do - 4 , 's

-ql (a + x '- ) " V * (n'6 ) (63)
Sa o tani i

where the integration is over the time-averaged median surface. Also,

following the approximation of equation (52), we ignore the tangential

component of displacement.
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The linearized boundary conditions from equation (5b), which are

incorporated in the integral equations (61) and (63), can be written as a

sum of one time-independent part and four time-dependent parts

g &") + 4 ("") Cos not + a (P) sin no~t

(64)

+ 4V (P) Cos (nft + 40 + 4 &') sin wnt + o0

Since the integral equations are linear, it is convenient to take jlt

in five parts

Ii (S't 0 . + "RCos not - 4sin n~t

(65)

+j i coo Wnt + ) - a sin I~t + 0

and to solve five integral equations for five parts 110, J Pi N. i at

every field point S' on every blade and on every point in the wake of every

blade.

jj 1 E do - n'-[ Zu0 - Z V a - STXSJ (66)

If PiR E do - (n z) u mcos (me + c) (67)

URE do - (n z) u sin (me + 0) (68)

a (i'.A)
f j E do - vQq ' *1 (70)
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The integral equations need only be solved on one blade and along

the beginning of the wake adjacent to the trailing edge of one blade, since

the dipole density at the remaining points are determined by symmetry and

conservation arguments. The dipole distribution VR is completely specified

by equations (64), (65) and (66). Equations (69) and (70) are solved taking

qoi equal to unity. The dipole distribution Iv then requires knowing the

modal displacement amplitude qoi and the modal phase angle *.

The instantaneous linearized pressure difference across the propeller

blade at each station is constructed from the difference in velocity potential

V(9,t) across the blade. The difference in velocity potential is approximated

by

V( °,t)V +v cos not -V sin n t

+ cos (not+) - sin (Wt + ) (71)

where

V0 = )o - 2h go

- 2h &R Vc - 2h&v

VR 1R .- 2hg R vV VV 2h 4 (72)

and where 2h is the local blade thickness. The expression for the pressure

comes from a particular version of Bernoulli's equation. This requires

differentiation of the difference in velocity potential in the chordwise

and spanwise directions at every station on one blade do get the difference

in tangential velocity across the blade.
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The difference in pressure across the blade is taken as the sum of

a steady and four time-dependent parts

Ap - Ap + Apc cos =at - Apo sin uet

+ qo,1 Ap cos (zet + q) - AW (not + *) (73)

The modal quanities qo~ and * are calculated after the pressure distribu-

tions on the rigid blade Apc and Ap are calculated (c.f. eqs. (28), (29)

and (30)].

The steady component of the pressure difference is

a 0 tan o

which depends on the difference in the steady induced tangential components

of velocity.

The unsteady (rigid) components are in phase with either cos net

or sin net, and each has an integral part proportional to a local "added

mass" and a part dependent upon the differences in steady and unsteady

induced tangential velocities,

cps + P (V u +a o VRC

- p u cos (me + c).V v (75)
m 0

-Pum sin (me + ).V v (76)
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The unsteady (blade vibration) components are in phase with either

cos (nQt+ ) or sin (milt+) and have similar "added mass" and unsteady

induced tangential velocity contributions,

qo0,1 APv oo V + p(v a z - u0°  X)VVV(7

The net vector force on one blade due to the total induced pressure

where the integration extends over the median surface of one blade and ^ is

the local unit normal at the median surface. And the net vector moment on

one blade from the induced total pressure field is

M M ff Ap (x) medan - M 
+ Mc cos mt + M sin urt (80)

Both the force and moment have a steady component and two time-dependent

components in phase with either cos u~t or sin mit. To get the net axial

force and torque on all blades, the axial force and torques on one blade

are multiplied by the number of blades. And to get side forces and moments

they are multiplied by half the number of blades.

The Chertock theory, in previous studies, was used to calculate the

added mass of elliptical and rectangular disks in ideal potential flow,

without circulation, and shows agreement within, say, one percent with

exact calculations or other numerical calculations 1221. Such problems are

solved by computer program by treating the disks as specially shaped propellers,
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omitting the vortex wake that accounts for the circulation forces and using

an appropriate inflow velocity distribution. The program was also used to

calculate the non-circulating potential flow about two model propellers [23J.

But a systematic comparison of the complete Chertock theory with experimental

measurements, where they exist, is not complete as yet.

SYNOPSIS OF NUMERICAL METHOD *

To solve these integral equations with their troublesome singular

kernels and geometric complications, finite element-type methods are used.

Typically, 150 stations are selected on the median surface of each blade,

with an additional 10 to 20 stations per blade to cancel flow into the hub.

From 200 to 400 stations are selected on the trailing wake which extends

downstream as a semi-infinite helicoid. The propeller median surface and a

portion of the wake region, roughly one propeller radius in width, are

divided into compact areas about their included stations. The dipole den-

sities are assumed to be constant over each element of area. And, after

accounting for all the symmnetries in the problem, the set of integral equa-

t ions is converted into a set of matrix equations of 1000 equations with

1000 unknowns. The area elements are taken to be regular hexagons, of

equal area, except around the blade's leading and trailing edge. At the

border of the blade, the elements are irregular polygons which are sections

of regular hexagons. The remainder of the wake is divided into semi-infinite

helical strips, each having 8 to 16 stations spaced according to a Laguerre

integration scheme. Figure 15 shows a mapping of these hexagon locations

in a mathematical plane representing the expanded median surface of the

blade.

Details of the numerical method and computer program are in a
soon-to-be published paper by Chertock & Brooks [211.
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Breaking the blade's median surface and its adjacent wake region

into regular hexagons is only one of several ways to partition these surfaces.

Hexagons are advantageous because they "almost" fill all space on the median

surface of the blade without overlapping. Also, very simple formulas for

calculating the E function coefficients in the matrix are obtained when the

source element is a hexagon, and these formulas are virtually independent

of direction for all practical orientations. In addition, for the partial

hexagon elements at the blade boundaries, very good approximations for E

are obtained by replacing these elements by circles of equal area and a

further approximation which depends on the closeness to the boundary.

Integration, such as that in equation (79), is done by summation

over all blade stations, adding the product of station pressure difference

and vector area (Cda). Differentiation, as in equations (63) and (74-78),

is done in two (spanwise and chordwise) directions using 3 or 5 point

numerical differentiation formulas for each direction.

The input data for the calculation are the same small set of numer-

ical specifications for pitch, camber, thickness, chord length, skew, and

rake that are used to prepare the construction drawings of the propeller.

Also required are the specified values for the advance coefficient and the

mean and periodic components of the inflow velocity at, say, 5 to 10 dif-

ferent radii. Hence, the preparation of the input data requires only a

matter of minutes. Otherwise, all calculations of the position, size, and

inclination of each hexagon and the detailed inflow velocity to each hexa-

gon are done automatically. The matrix equations are solved by iteration

rather than by a direct method. The solutions converge to within 0.1 per-

cent in 10 to 30 iterations depending on the square of the number of ele-

ments, and normally there is no problem with stability. The time for a
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complete calculation with, say, 2800 stations on the CDC 6700 System is 8

or 10 minutes, but it would take less than a quarter of this time to make a

complete calculation for an additional set of inflow velocities on the same

propeller. These times vary principally as the square of the number of

elements of area.

In a typical calculation sequence, a calculation for no circulation

is made first. The calculaton is made for the same inflow conditions and

advance ratio as measured during the experiment, using the same procedures

as the full calculation with circulation, except that contributions from

shed vorticity are neglected. Alternating thrust, alternating torque and

other hydrodynamic quantities are calculated for this case by taking the

propeller to be first rigid and then flexible. It is advisable to refine

and gain confidence in this calculation before proceeding to the full

calculation, which includes the shed vorticity, because it exercises most

of the calculation procedures, allowing input and execution errors to be

spotted in a cheaper and simpler format. Also, the sensitivity of calcu-

lated forces to the size and details of the hexagon grid is easier to

assess in this case.

After a satisfactory selection of grid size is made and the "bugs"

are exorcised from the calculation for no circulation, the full calculation,

including the wake vorticity, is made. In the phase, we test the sensitivity

of the calculated results to the number and density of integration points

in the vortex wake. This issue is resolved and convergence is guaranteed

to within one percent for the present propellers by taking a wake strip of

complete hexagons equal in length to the propeller's tip radius and then

approximating the rest of the infinite wake by 16 Laguerre integration

points.
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DTNSRDC propeller No. 3958 (and 3956) was modeled by dividing its

expanded area into 20 rows along the radius. There were 156 hexagons on a

blade of which 23 were incomplete hexagons along the leading edge and 23

along the trailing edge. And each row in the wake had 23 hexagons in the

near region and 16 points spaced along the strip subtending one propeller

revolution. Because of blade's symmetries and conservation of vorticity in

the wake, the total number of unknown dipoles which are solved in one matrix

equation reduces to 222.

The wide-bladed propeller (No. 4064) was modeled by dividing its

expanded area into 15 rows along the radius (see Figure 15). On a blade,

there were 138 complete hexagons, 20 incomplete ones along the leading edge

and 19 along the trailing edge. Again in the wake, there were 16 points

along a strip extending downstream one propeller revolution, and 18 complete

hexagons in wake's near region. One matrix equation contained 228 unknown

dipole densities.
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CALCULATED RESULTS AND COMPARISON WITH EXPERIMENT

In this section and the following one we present the main body of

the calculated results and compare them with experimental measurements

wherever possible. Most of the calculations in this section use the one-mode

inertial approximation for unsteady thrust and torque given in equations (42)

and (43).

PROP NO. 4064

Some of the important calculated hydrodynamic quantities for Prop

No. 4064 are listed in Table 3.

TABLE 3. - SOME CALCULATED RESULTS FOR PROP NO 4064

MI/ M B aI (k)Rigid (KQ)Rigid

.485 10.7 .208 .0221 .00212

.597 10.7 .210 .0265 .00252

We see that the calculated added water mass for the first mode is more than

10 times the blade mass, resulting in a predicted resonance frequency

f w 104 Hz, some 4 percent smaller than the measured frequency when the

propeller vibrated in still water. The hydrodynamic damping factor, which

controls the blade response near resonance, is 30 percent less than that

predicted by the simple two-dimensional theory discussed earlier, and

decreases slightly with increasing steady thrust (or decreasing J).

77



We also made two calculations for unsteady thrust and torque for

a rigid version of this propeller using the analysis and computer program

of Tsakonas [4]. The program is available at DTNSRDC, and since it is

presently the most highly regarded calculation method within the naval

architectural coumunity, it is desirable to establish a checkpoint by

comparing our present calculation for a rigid propeller with the Tsakonas

calculation. The Tsakonas calculation was made, for this propeller as well

as for Propeller No. 3956, by diving the blade surface into 8 radial strips

and approximating the distribution in pressure difference across the surface

by a 5 term Birnbaum series which gives a zero pressure difference at the

blades' trailing edge and results in a square-root singularity at the leading

edge. For J-.485 the Tsakonas calculation has (T)Rigid = 0.0316 and

R Q)Rigid = 0.00325, 45 and 55 percent higher than that calculated using the

Chertock analysis, and also higher than the low-frequency values (approxi-

mating a rigid condition) recorded during the experiment. For J-.597 the

Tsakonas calculation gives ( Rigid 
= 
0.0385 and (KQ)Rigid - 0.00408, also

higher than the Chertock calculation and the experimental values by about

the same amounts as in the smaller advance ratio case.

The calculated rms vibration velocity

v r qffl 2 2
/
v (81)

as a fraction of the mean volume inflow velocity, is shown in Figure 16.

Almost identical frequency dependence is evidenced at the two advance

ratios. Since the calculated added mass and hydrodynamic damping factor

are about the same at the two advance ratios, and since we expect the modal

driving force QoR,1 to be approximately proportional to the advance ratio,

it is not surprising that, substantially, the same functional relationship
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is obtained. It is interesting that near resonance the tip vibration

velocity wq01j 1 (Rtip) = .196 U 0 has about the same magnitude as the meas-

ured amplitude of the nonuniform inflow velocity produced by the wake screen.

In the next four figures we have the main results--a comparison of

calculated and experimental alternating thrust and torque coefficients as a

function of excitation frequency, with coefficients calculated by assuming

that only the fundamental mode of vibration contributes to the blade vibra-

tion. Figure 17 shows the unsteady thrust comparison for the J=.485 case.

The calculated unsteady thrust coefficient has a low-frequency value of

0.0221 (approximating a rigid propeller), shows a sharp resonance at 101 Hz

where it equals 0.111, then declines smartly beyond this frequency to an

asymptotic value of 0.00778, about one-third the low-frequency value. The

calculated values are uniformly smaller than the experimental values,

although the predicted and measured frequencies of maximum amplification

match to within a few percent. The calculated force magnification--over

that of a rigid propeller--near resonance is 5.0, about 20 percent smaller

than the apparent magnification indicated in the experiment. In the low-

frequency (rigid) range the agreement is within 10 or 15 percent. The

calculated resonance peak is 66 percent of its experimental counterpart.

Both the calculated and experimental values track one another fairly well up

to about 150 Hz, with the calculated thrust capturing the main element of

the experimental results--the sharp resonance near 105 Hz. However, the

one-mode calculation shows that, for sufficiently high excitation frequency,

an elastic propeller could have smaller unsteady forces and moments than its

rigid counterpart. This effect could not be verified by the experiment

because we could not go to high enough frequencies in the experiment.
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The calculated alternating torque coefficient has a similar behavior

with excitation frequency; there is a sharp resonance at 101 Hz with a torque

magnification of 5.4 (see Figure 18). This compares favorably with the

experimental resonance at 105 Hz and torque magnification of 6.5. The cal-

culated peak value is 70 percent of the experimental peak value. The higher

frequency values of the coefficient do not agree as well. The calculated

results show that a reduction in alternating thrust Cover that for a rigid

propeller) is possible at a higher loading frequency, while there is no

indication of this in the experiment, again, possibly because of the limita-

tions in the experimental frequencies.

Figure 19 compares calculated and measured unsteady thrust coefficient

at J=;0.597, where the steady thrust is zero. Overall, the one-mode inertial

calculation agrees slightly better with experiment at this advance ratio

than at the smaller advance ratio; the calculated peak value is 16 percent

smaller than the measured value, and the calculated thrust magnification is

4.9 compared to the apparent experimental magnification of 6.2. Qualitatively,

the alternating thrust and torque (shown in Figure 20) have the same overall

frequency behavior as the previous advance ratio, and demonstrates similar

agreement with the experiment.

PROP NO. 3958 (AND 3956)

A listing of important calculated quantities, similar to those in

Table 3, are given in Table 4. We see that, in contrast with our experience

with Prop No. 4064, the added mass, as well as the hydrodynamic damping

factor for the first mode, increases slightly with advance ratio. The funda-

mental resonance frequency, as we have defined it in equation (25), occurs

at a nominal frequency of 193 Hz, 20 percent larger than the measured or
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calculated still-water frequency. Also the calculated 08 's confirm that the

damping is quite large for this propeller, as we estimated by the two-

dimensional theory.

TABLE 4. - SOME CALCULATED RESULTS FOR PROP NO 3958

J M /M 1 (K)Rigid ~Q )Rigid

.59 4.03 1.25 .0147 .00195

.67 4.11 1.26 .0178 .00236

.76 4.17 1.28 .0213 .00284

In Figure 21 we present both experimental and calculated values of

unsteady thrust and torque as a function of advance ratio for the aluminumj

(rigid) propeller No. 3956 at a shaft rotation frequency of 15 rps. The

calculated thrust coefficient (see Figure 21a) agrees with the experimental

results to within 20 percent over the range of advance ratios--the calculated

value is 15 percent smaller at J-.59, is 2 percent larger at J-.69 and is 20

percent larger at J-s.76. Even though the individual calculated and experi-

mental values agree, the slopes do not. The difference is unexplained except

to note that different experimental slopes are possible at other shaft rota-

tional frequencies (see Figures 12, 13, 14). The calculated unsteady torques

agree much better with experiment in both amplitude and slope (see Figure 21b)--

the calculated unsteady torque coefficients are between 5 and 10 percent

than experiment and have the same slope.

Also shown in Figure 21 are the results of the Tsakonas calculation

for unsteady thrust and torque. The unsteady thrusts are about 10 percent
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larger than those from the Chertock axialyses, and the unsteady torque are 25

percent larger. The Tsakonas results give the same slope as the present

calculation.

The calculated rms vibration velocity, as defined in equation (81),

as a fraction of mean volume inflow 
velocity, is given in Figure 22. As is

the case with the wide-bladed propeller, almost identical frequency depend-

ence is obtained at the three calculated advance ratios. Near resonance the/

normalized tip vibration velocity is 0.126 for J=.76 and slightly smaller at

the other two advance ratios. _-ause of the much larger damping factor,

the blade velocities exhibit less peakedness near resonance than is the case

for the wide-blade propeller.

A comparison of calculated and measured unsteady thrust and torque

coefficients at an advance ratio of 0.76 is given in Figure 23. The results

of the one-mode inertial calculation show the coefficients are almost con-

stant with frequency up to about 100 Hz, rapidly decreasing with increasing

frequency until about 200 or 250 Hz, and then leveling off to 40 or 50 per-

cent of the low-frequency values. The same basic pattern is repeated at the

two other advance ratios (see Figures 24 and 25). Although the calculated

unsteady thrusts and torques agree with experiment to within 10 or 15 per-

cent at the low frequency values, and they do confirm the experimental

observation that the maximum thrust and moment coefficients are only some-

what larger than those produced by rigid blades, the details of the calcu-

lated curve shapes do not agree exactly with experiment. The calculated

maximum thrust and torque occur at about 100 to 115 Hz, slightly less than

the 120 to 140 Hz range evidenced in the experiment. The maximum calculated

alternating thrusts are only about 10 percent greater than their low-

frequency values, while in the experiment the force amplification was about
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1.5 at the three advance ratios; the calculated unsteady torques are about

20 percent greater than the low-frequency values while the experimental

torque magnifications are about 1.5 to 1.6. In addition, the experimental

results do not show high-frequency asymptotic thrust and torque values as do

the calculated results. However, the limitations of the water tunnel facil-

ity prevented us from verifying whether a high-frequency asymptote exists at

some higher loading frequency.

Nevertheless, the calculations did predict that the frequency re-

sponse is highly damped. This is in basic agreement with the measurements.

It is also significant that measurements show substantial reductions in

alternating thrust and torque (over those of a rigid propeller) in the

higher frequency range, above 170 Hz. This is also true of the calculated

results, although the details of frequency range and reduction levels differ.

COMPARISON OF THE TWO ONE-MODE APPROXIMATIONS

We also made calculations for unsteady thrust and torque using the

much simpler one-mode stiffness approximation given in equations (46) and

(50). To make this comparison, we have expressed the results in terms of

thrust, torque and frequency ratios--Fz /FzR, Mz/M z,R and W/W, respec-

tively.

These approximations are compared in Figure 26 with the one-mode

inertial approximation of equations (42) and (43) for Prop No 4064 at its

two advance ratios. We see that the two approximation methods agree with

ne another to within 25 percent up to a frequency ratio of about 1.4 for

)th the thrust and torque ratios; beyond this frequency they diverge

pidly, with the stiffness approximation approaching zero as (w 1w) 2 . We
w ,I

see that each approximation gives almost identical results at the two
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advance ratios. This is to be expected since the calculated hydrodynamic

damping factors are about the same at the two advance ratios. The experi-

mental results, expressed in terms of these ratios, also give almost iden-

tical values at the two advance ratios.

The same type of comparison was made for Prop No 3958, which is

shown in Figure 27; for a frequency ratio up to about 1.3 the two approxi-

mation methods agree with one another to within 25 percent or better. Again,

each approximation method gives an almost identical curve for each advance

ratio, as does the experimental results. Although the stiffness approxima-

tion presented in equations (46) and (50) are expected to be less accurate

than the inertial approximation of equations (42) and (43), it agrees better

with the experimental results for both unsteady thrust and torque, especially

at the higher frequencies where both the stiffness approximation and the

experimental results are decreasing at a rate approximately proportioned to

2

The good agreement which is demonstrated by the two sets of one-mode

approximations, at least for these propellers and for a range of excitation

frequency up to 1.3 times the fundamental resonance frequency in water, means

that the simpler, more physically insightful set of approximations given by

equations (46) and (50) can be used to predict unsteady forces and moments.

COMPARISON WITH CALCULATION FOR NO CIRCULATION

Of incidental note is an interesting empirical relationship that seems

to exist between the alternating (rigid) thrust and torque for a calculation

for no circulation and the same values for a complete (with circulation)

calculation, or the experimental values: the values for no circulation are

approximately twice the real or experimental values. The following table

shows the comparison.
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TABLE 5. - NO CIRCULATION, COMPLETE AND EXPERIMENTAL RESULTS

Prop No. 3956 Prop No. 4064

(low-freq limit)

coef\J .76 .67 .59 .597 .485

.5 ()no circ .0214 .0189 .0166 .0292 .0237

( )complete .0213 .0178 .0147 .0265 .0221

(KT)exper .0188 .0178 .0170 .025 .022

.5 (K Qno circ .00305 .00269 .00237 .00298 .00242

(KQ complete .00284 .00236 .00195 .00252 .00212

(KQ expe r  .00260 .00228 .00185 .0028 .0024

This relationship has also been noted for other propellers. It is not known

whether this is a general result. But if it is, the calculation of unsteady

thrust would be considerably simplified since the theory for no circulation

and calculation methods based on that theory are on a much firmer foundation

than the theory and calculation methods based on the theory with circulation.

The no circulation or simple potential theory also very often accomodates

simple approximations in terms of independently estimable quantities.*

*For example, we can derive on such simple approximation for the

thrust for no circulation in terms of some gross geometric properties of the

propeller and the average inflow conditions at the propeller. The approxi-

mation assumes that the thrust is the same as that developed by a rigid

propeller oscillating in the axial direction. In terms of the thrust coef-

ficient, the approximation is
('Yno crc 6.6 (PAR) (D/t) J "iM/(Va+uo )

where PAR is the propeller's projected area ratio (ratio of projected blade

area, projected onto the plane perpendicular to the axis, to the disk area

.25,D
2 
), I is the perimeter length of one blade and im is an average inflow

-velocity (averaged over the projected area Az of one blade) for the wake

harmonic m=N B defined as
Z UM COS (me+E)12 + dz uM Sin (me+p)) 2

where doz is an element of the propellers projected area and equal to

do n-z. The details of the approximation are given in Appendix B.
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DISCUSSION AND CONCLUSIONS

We made several major assumptions in developing the blade-vibration

theory, in calculating the propeller forces and moments and in measuring and

interpreting the experimental results. We will now review some of the more

critical assumptions and assess, where possible, the probable effect of

removing the restrictions. And finally we will discuss the main implica-

tions of our results and list the significant conclusions.

REVIEW OF ASSUMPTIONS

In developing the equations for blade vibrations we assumed the

induced pressures and velocities behave linearly. This is important for

then we can make the separation between the field driving the blade motion--

i.e., PR and VR--and the field induced by this driving field--pv and vV.

The validity of this assumption increases as both the amplitudes of blade-

vibration velocity i~i and the nonuniform inflow velocity urm become smaller

fractions of the mean inflow speed ' a - u Near the blade tips of the

test propellers the measured amplitudes of the nonuniform inflow were 22 to

25 percent of the mean inflow and the calculated blade-velocity amplitudes

were at most 13 to 20 percent of the same mean inflow speed. But perhaps a

more representative test for linearity is to compare the mean inflow veloc-

ities with the rms velocities (averaged over the blade midsurface), rather

thaft the maximum velocities near the blade tip. Then, for the two test

propellers, the rms nonuniform inflow velocities range from 8.8 (for No. 3958)

to 11.1 (for No. 4064) percent of the mean inflow velocity, and the maximum

rms blade vibration velocities range from 2.7 (for No. 3958) to 5.6 (for No. 4064)
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percent. In any event, the neglected nonlinear coupling of the and

fields present in the boundary condition of equation (5a) varies principally

as the product of these velocities and is proportional to the local surface

gradient of the mode shape, itself a small term since the measured mode

shapes vary slowly over the blade surfaces. Based on this sort of reasoning

we can argue for the validity of the linearity assumption.

The theory assumes the mode shapes for the propeller operating in

water are the same, or effectively the same, as those for a non-rotating

propeller vibrating in air. This is probably the most critical assumption

in the general theory developed in equations (1) to (40). What counts is

not how much the mode shapes change in water, but rather how those changes

alter the calculated forces and moments. To determine this, we made addi-

tional unsteady thrust calculations using the inertial approximation for

widely different mode shapes, although each still resembled a one-noded

cantilever mode. It turns out that the measured mode shape in air for propel-

ler No. 3958, at a chord midsection, is proportional, roughly, to the cube

of the radial distance from the blade root. Figure 28 shows calculated thrust,

as a function of loading frequency, for four perturbations about the original

mode shape: one where the mode shape at the midsection of a chord varies as

the square of the radial distance from the blade root, another where it

varies as the fourth power of that distance, both mode shapes having the

same chordwise derivative; in the other two, the radial distribution at the

midchord was as the original, and the chordwise derivative was varied--in

one we took the derivate as twice that of the original mode shape and in the

other as one-half the original. We see that the low-frequency thrust values

are the same as the original calculation up to 50 or 60 Hz, and the high-

frequency asymptotes above 300 Hz differ by only ±10 percent of the original
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one. The main difference is in the 60 to 250 Hz range where thrust coeffi-

cients differ by as much as 100 percent from the original. Closer examina-

tion of the calculations show the calculated hydrodynamic quantities--

M I and 01 --are all within ±15 percent of the original calculated ones; and

that the differences arise because of the different phase relationship between

FR and FV for each mode shape. None of these new calculations, however, agree

any better with measured alternating thrust than does the original calculation.

The important thing is that the hydrodynamic damping and general functional

dependence of unsteady thrust on loading frequency is generally the same for

all these various assumed mode shapes.

A similar calculation, shown in Figure 29, was made for the wide-

bladed propeller. The various peak values of the alternating thrust coeffi-

cients are all within ±30 percent of the original calculation. The calcu-

lated coefficients all have similar frequency dependence up until about

170 Hz. The asymptotic values above this frequency are then quite different.

Again we see that the general functional dependence on loading frequency is

relatively insensitive to the exact details of the assumed mode shape, at

least for loading frequencies at or below resonance, and that rough estimates

for alternating thrust at or near resonance can be calculated using almost

any reasonable mode shape.

In the calculations we assumed that only the first vibration mode

contributes to the unsteady thrust and torque. We expect this to be true--

at least for these propeller--for two reasons. One is that the second reso-

nance frequency for both the plastic propeller and the wide-bladed propeller

are at least two times their fundamental frequencies. Another is that the

nonuniform inflow resembles a cantilever mode--i.e., the velocities are small

near the root of the blades and increase to a peak value near the blade's tip--
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causing the blade's fundamental cantilever mode to be excited more than some

of the higher modes. Therefore, we expect the one--mode inertial approxi-

mation to be good for exciting frequencies near or below the propeller's

fundamental frequency in water.

For exciting frequencies much beyond the fundamental resonance, we

would expect the second mode and higher modes to contribute to the vibration.

This may account for some of the differences between calculated and measured

thrust and torque in the frequency range above 150 Hz for the wide-bladed

propeller, which has its second resonance at 310 Hz. For the plastic propel-

ler, we only measured thrust and torque for exciting frequencies up to 238 Hz,

and since the apparent second resonance is near 400 Hz, it is unlikely that

additional modal contributions can explain the differences between calcula-

tions and experiment.

Nevertheless, we did a calculation to see what the effect might be

from the second mode for propeller No. 3958. This was done by using equation

(35) and summing contribution from two modes. We assumed that the second mode

is the same as that of a uniform cantilever beam. Figure 30 shows how this

second mode might affect the transmitted thrust. We see that it contributes

at most t20 percent to the transmitted thrust for loading frequencies from

150 to 300 Hz, and contributes less than 5 percent for frequencies below

150 Hz. This tends to confirm the assumption that the fundamental mode domi-

nates the vibration, at least over the range of measured loading frequencies.

Another assumption in the theory is that all blades vibrate with

equal amplitude, and that there is only one one-noded cantilever resonance

frequency. Actually, because of slight construction differences in the

blades and because of the blade coupling thr~ough the common elastic hub

and added-mass coupling through the water, there are as many possible one-
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noded cantilever resonance frequencies as there are blades. These frequencies,

NB in number, will cluster about some central frequency, the width of the

clustering dependent upon the amount of mass and stiffness coupling that

exists between individual blades. At each of these frequencies the mode

shapes on individual blades are probably very similar, although the phase and

amplitude at rotationally symmetric points, say at the blade tips, may differ.

We noticed this multi-resonance phenomenon during the in-air mode

shape measurements, although by far the dominant resonance occurred when

all blades were in phase (at the weaker resonance frequencies the blades had

different phase relations). However, when we measured the fundamental reso-

nance frequency for propeller No. 3958 in still water, with the propeller

mounted on the dynamometer, we observed only one fundamental resonance

frequency (at 160 Hz) through the thrust or torque channels of the strain-gage

bridge. But on the side-force channels we recorded a slightly different reso-

nance frequency (at 150 Hz). The same held true for propeller No. 4064--108 Hz

on the thrust channel and 102 Hz on the side-force channels. The implication

is that a propeller can resonate at more than one fundamental frequency, some

producing only thrust components of force, some only side-force components and

maybe some producing no net forces at all.

In any case, the blades of th4 test propellers probably did not

vibrate at the loading frequency with equal amplitude as was assumed in the

theory. It is also possible that the true unsteady thrust response of the

propeller resulted from more than one fundamental resonance frequency. The

total effect would be to reduce the calculated force FV in equation (34) and

to increase the effective hydrodynamic damping.

In the theory we also neglect the structural damping compared to the

hydrodynamic damping. This is justified since the calculated hydrodynamic
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damping factors are about 20 times larger than the structural damping factor

for the case of propeller No. 4064, and about 50 times larger in the case of

propeller No. 3958.

There were also several assumptions made during the experiment which

need further examination. We assumed that the local ratio of nonuniform

velocity u to velume mean inflow speed 50 remains constant as the tunnel

speed increases. This assumption is particularly critical for the test with

the wide-blade propeller. One test of the assumption is to measure the

unsteady thrust coefficient for a rigid propeller, at a constant J, as a

function of tunnel speed. If the velocities scale as we assumed, then the

unsteady thrust coefficient should be constant. We have this test for a

near-rigid (aluminum) propeller (No. 3956). We see in Figures 12, 13 and 14

that, up to about 200 Hz, the thrust coefficients are nearly constant (devi-

ations from the mean are only ±10 percent). Beyond this frequency, the

coefficients increase slowly, possibly an etastic effect since this propel-

ler's first resonance frequency in water is near 360 Hz.

Also we did not consider the steady elastic deformations of the

blades in either the theory or the experiment. The effect of the deformation,

to a first approximation, is the same as if the propeller geometry were

warped to accommodate rake. This effect could distort the comparison of the

results for the cases of high steady loading, but would not affect the

comparison near zero steady thrust, a case chosen purposefully for each of

the test propellers (J-.597 for No. 4064 and J-.76 for No. 3958).
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FURTHER DISCUSSION

Although the calculations do not agree with the measurements in all

respects, they do capture the most prominent features of the experiment

results; the relatively sharp resonant response of the unsteady thrust and

torque near 105 Hiz for the wide-bladed propeller, and the apparent extra-

ordinarily highly, damped response of the narrower-bladed one. The theory

attributes this apparent large difference in damping to a hydrodynamic

effect brought about by the relative difference in shed vorticity produced

by the two propellers.

We can explain why the two propellers have different hydrodynamic

damping by returning to the two-dimensional theory of equation (58). The

hydrodynamic damping factor B in this expression decreases monotonically

with increasing reduced frequency d. Since the reduced frequency is propor-

tional to the chord width, the narrower the blade (all other conditions

being equal), the higher the hydrodynamic damping. Rephrased, this means

that the larger the ratio of shed vorticity wavelength to blade width (or

chordwise vibration wavelength), the higher the hydrodynamic damping factor,

where near the blade tip

shed vorticity l .10 j2 (82)

We can suggest one possible physical explanation for this behavior

of the hydrodynamic damping factor 0. We know that the force associated with

the added water mass depends strongly on the blade width, being approximately

proportional to the square of the blade width. The induced hydrodynamic

107

-~ ~ M M ;77- .. . . . ,,,. - -- T ' -



damping force, however, depends on the amount of circulation set up by the

flow off the trailing edge of the blade; it is a function of the details of

the blade near the trailing edge and probably not strongly influenced by the

width of the blade. Therefore, 0, which depends on the ratio of these two

types of forces, would tend to decrease with increasing propeller width,

provided everything else remains the same. This explains why the narrower-

bladed propeller exhibits larger damping than does the wide-bladed one,

since otherwise they are roughly the same diameter, have similar resonance

frequencies and operate under similar flow conditions.

An interesting feature of the experiment for propeller No. 3958 is

that, for frequencies larger than the propeller's resonance frequency in

water, the net unsteady thrust and torque is actually smaller than if the

blades behaved rigidly. This interesting phenomenon is also substantiated by

the calculated results.

To see how this is possible from a theoretical viewpoint, we recall

that the total induced pressure acting on the blade's surface is composed of

two competing fields: the (rigid) pressure field PR that exists when the

blades do not vibrate and the additional field p,, that exists when they do.

They produce separate components of the total propeller force. To under-

stand how these components cancel over a certain frequency range, we refer

to Figure 31, a vector diagram showing the calculated phase and amplitude of

the two forces fR and fV (nondimensionalized by pQ D 4/47r2 ) as a function of

loading frequency. The phase and amplitude of F R are independent of loading

frequency at a fixed advance ratio. The F V component's amplitude increases

slowly with frequency, reaches a maximum at 191 Hz, then decreases beyond

that. At the low-frequency limit, the phase is 97 deg, then it increases

slowly to 187 deg at resonance, and has a high-frequency asymptotic value of

108



0.02-

Fpm

f-&0

f 109

f -........261



222 deg. For frequencies below 105 Hz the two forces tend to add, that is,

they produce a total force whose amplitude is greater than the amplitude of

F R*In the frequency range above this, the pressure field pV, tends to cancel

on the average, the pRfield and produce a net force whose amplitude is smaller

than the amplitude of F R.

The force cancellation at the hub is also enhanced by the propeller

blades acting as a single degree-of-freedom isolation mount, which attenuates

transmitted vibrations to the hub from unsteady loads whose frequencies are

higher than the resonance frequency of the mounting system. This analogy

comes from equation (46), where the applied load is F zRand the resonance

frequency of the mount is W. From this equation we see that cancellation

will always occur for sufficiently large exciting frequencies, provided only

the fundamental mode is excited, and will be more pronounced for larger values

of hydrodynamic damping B.

Whether or not this phenomenon can be exploited to reduce transmitted

unsteady forces and moments in a practical situation is a subject which needs

to be studied further. But a partial recipe for the construction of a propeller

which would exploit this cancellation phenomenon would require a propeller with

(1) narrow blades (i.e., large 8), (2) a fundamental resonance frequency in

water which is well within the operating range of the ship and (3) a second

resonance frequency which is well above the first one. All of this would have

to be achieved without degrading the static strengthi of the blades.

In addition to the effect of blade vibration on propeller forces, the

effect of the vibration on, stress levels, particularly near the blade root,

is also important, since large, sustained unsteady stresses can result in the

propeller failing by material fatigue. A full blown study of the stress

distribution in the blades, either using a complicated analytical model or a
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fully instrumented test propeller, is outside the scope of the present work.

But we did make rough estimations for the unsteady stress a as a fraction of

the mean or steady propeller stress 0desig n developed by the test propellers

operating near its design advance ratio.

One way is to assume that the stresses are in the same ratio as the

tip deflections. Then if d is the unsteady tip deflection and d design is the

steady tip deflection at design J, we have

- a (83)
0
design ddesign

We have d from the calculation, and the steady tip deflection was estimated

by applying a known concentrated force, as measured by a Chatillon (static)

force gage, and measuring the resulting tip deflection. Using these bits of

information, along with the design J and KT, we can estimate the stress ratio

for any loading frequency. For the wide-bladed propeller the tip deflected

.125 inches under an 18 pound force concentrated at the midchord of a section

whose radius is approximately 70 percent of the tip radius; the advance ratio

at design is 0.40 and the steady thrust coefficient is 0.15. Taken all

together, we estimate that at resonance (104 Hz) the ratio of dynamic stress

(for an advance ratio of .597) to design steady stress is 0.60. For the narrow

bladed plastic propeller, the static loading ratio (ratio of tip deflection to

static force applied at the 70 percent radius point) was 0.015 inches/pounds;

the design point was taken to be a nominal J=.65 and I=0.10. At resonance

(193 Hz) the ratio of unsteady stress (at an advance ratio of .76) to design

steady stresi; is calculated, by equation (83), as 0.14, a much smaller ratio

than for the wide-bladed propeller.
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Another way to estimate the ratio of stresses quickly is to assume

0design (IT .) design 
(4

At resonance this gives the stress ratio for the plastic propeller as .09

(using calculated 1(T) or .13 (using experimental Y,~ and approximates the

stress ratio for the wide-bladed propeller as .80 (using calculated KT) or

1.0 (using experimental Yr.

In any case, the approximations of equation (83) and (84) both indicate

a potentially severe fatigue problem if the wide-bladed propeller were to

operate near its resonance frequency for long periods of time. On the other

hand, the narrower, plastic propeller probably would not fatigue if it oper-

ated near its resonance frequency, in fact the dynamic stress is actually

reduced because of vibration.

And finally, we have only studied the effect of blade-vibration on

unsteady thrust and torque. But the vibration most likely has the same type

of effect on side forces and moment, that is, the hydrodynamic damping factors

and added masses are probably the same, or nearly the same, as for unsteady

thrust; the mode shapes are the same, in both cases so, except for slightly

different blade-to-blade interaction producing a slightly different pressure

distribution pV, the hydrodynamic quantities should be about the same. This

means that a propeller which exhibits large hydrodynamic damping for unsteady

thrust will have large hydrodynamic damping for side forces as well.

CONCLUSIONS

There are many conclusions we can draw from this study, some more

isqrtant than others. But after distilling the results, three important

conclusions emerge.
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1. Marine propellers, operating in nonuniform inflows, can develop

widely differing unsteady force (and moment) responses for excitation frequen-

cies near the blade's fundamental resonance frequency. A key response deter-

minant is the relative amount of hydrodynamically induced damping developed

by the propeller. This damping is, in turn, a function primarily of the

blade geometry and the fundamental mode shape of the blade. There is spine

indication that the narrower the blade chord (everything else being constant),

the larger the induced damping and the flatter the forced response near the

first blade resonAnce. For some propellers, as we see in the present study,

the hydrodynamic damping can be so large that there is relatively little

force amplification near resonance, and, consequently, blade vibration is

not a major problem. For other propellers, the force amplifications can

become very large indeed and can generate significant propeller vibrations

and even cause propeller damage by fatigue.

2. Besides increasing the unsteady propeller forces near reso-

nance, blade vibration can, in some situations and for some propellers,

actually reduce propeller forces over a large frequency range. This would

occur, typically, for propellers with large hydrodynamic damping and for

loading frequencies above the propeller's fundamental resonance frequency.

3. A simple, one-mode approximation is useful in interpreting

conclusions (1) and (2):

(k)~(~) (~W1) (W2 /W1) 2 +

where the force and moment ratio are ratios of transmitted unsteady force

and moment to those that would be transmitted were the blades rigid; the

xpression applies equally to 
the transmitted forces from 

one blade as to

the total transmitted force from all blades. It agrees fairly weil with the
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measured unsteady thrust and torques over the frequency range observed in

the experiment, but does not apply for excitation frequencies where the

higher vibration modes are important. In that case, to account for the

higher modes, the general theory, given in equations (35) and (39), should

be used instead.
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APPENDIX A

Two surface coordinates - a radial distance r and a helical arc

distance c - are sufficient to specify the position and inclination at

any point on the time-averaged median or outer surfaces of the propeller

blade [21). If 9 (r,c) is a position vector measured from a reference

frame rotating and advancing with the propeller to a point on the time-

averaged midsurface of the blade, then the instantaneous position S of

the vibrating midsurface is

_S (ric)+ qct

S(r,c,t) = (rc) + q(t) i(rc) (r,c) (Al)

An instantaneous vector normal to the vibrating surface is constructed by

taking the vector cross product of two surface tangent vector, i.e.,

nrnst = ( x \TC (A2)

Retaining only linear terms in q, (A2) becomes

ninst = no + q L r r X no 4 0 ac (A3)

where n is vector normal to the time-averaged surface and

o ( r ac n 0 x no (A4)
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(Z , no ) form an oblique set of vectors which is tangent to the

local midsurface. Reciprocal to this set is another set of surface tangent

vectors (Qo, no) given by (25]

to,- (no x jn )/(Eo, 0 x~ n) (A)

+* -). . 4. 4.

no, (no X tod *r no n 0)(A6)

We can specify a surface gradient operator Vtan in terms of the

reciprocal set as [26]

Via no  (A7)

Now take *igi in two components: one normal to the time-averaged

median surface and one tangent to it, i.e.,

i, " i(6-n0 ) no + n o x (Six n0 (A8)

4.

Then if we assume that the normal n varies much more slowly over the

midsurface of the blade than does *161, we can derive the approximation

T *i(6i' n ;o) no T (i(;n )) no x

,*(;i' o )ino Eo (A9)
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and

ox ( *i( i.no)no ac 6- 1 .;o Ino I o  (Ano)
0 Ciio T 0o0 0 0lo

so that

i(i'i o) Q + t xo ( *i(in o)no

"- Io tan (*i io a)

Similarly for the tangential component of the mode displacement *i61

we have the approximation

ioX (oX) o - xo X x ()

T-r 0 0 0 0 0r i o

and by similar manipulations

So o(*c i "no o

117



or

*in0Xn0)Xn+t X 2- (,; X 61x n0

Then from (A12) and (A14) along with (A3) we have an instantaneous

vector normal to the midsurface

ninst m no - q Vta n (*i -.n + q no Van (A15)

To get an approximate instantaneous vector normal to the outer surface

of the blade we replace the midsurface unit normal n0 by the unit normal

n' and retain the midsurface gradient operator of equation (A7). This

gives Equation (6) in the main text.
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APPENDIX B

Here we derive approximations for the unsteady forces developed by

a (rigid) marine propeller without circulation when it operates in a

nonuniform inflow velocity field. We also give approximate expressions

for the forces developed by an elastic propeller without circulation

vibrating with a prescribed pattern and operating in a uniform inflow

field.

Take a general propeller boundary condition

n -v W g (S.t) nz (Bl)

where g (1,t) n-z can stand for the right-hand-side of equation (8) or

(9), for example. We also take the propeller thickness equal to zero,

so we need only specify boundary conditions on one side of a blade. If

v (1,t) is the local difference in induced velocity potential across the

blade, and if g has a harmonic time dependence with frequency W, then

the alternating thrust amplitude F on one blade is
z

Fz  PW f do v n-z (B2)

where the intergration is over the midsurface of the blade.

The solution set (v, g n-z) can be reinterpreted as the solution

for a stationary propeller interacting with a time dependent axial

inflow velocity g z. If Az is the projected area of a blade surface

onto the axial plane, we can expand this inflow into a spatially uniform

component and a component with zero spatial average (averaged over Az) , i.e.,
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g "go + 1 (B3) '

where

go- Jg do n.z (B4)
Az

Likewise we can take v as the sum of the difference of two potentials:

V o z induced by the propeller when it oscillates as a rigid body with

axial velocity g z (or equivalently, the difference in velocity potential

induced by the nonrotating propeller interacting with a uniform axial

inflow g0); and v1 ,z, induced by gl I 
"  Then

Fz - w fdo n z (v o,Z+ Vl,z) (B5)

Rewriting this using Green's Second Theorem

Fz "Pgo n.z (V oz/go) + do nz (V oz/go) (gl/go (B6)

Wgo0 Mo0, z+ l (7

The unsteady thrust can now be interpreted as an added mass times an

average rigid body acceleration wgo. (NBMoz) can be interpreted as

the added mass of a propeller oscillating along its axis with unit

velocity amplitude, i.e.,
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M 0, z  JJ P do n-z (/g 0 ) (B8)

HM z is also an added mass, in some generalized sense.

In many situations, we can argue that Mz will be much smaller than

Moz v 0 is generally all positive (or all negative) at points on

the blade midsurface, and g, has zero mean value when averaged over the

surface Az . MI,z , therefore, tends to have a small value when compared

with Mo , particularly if go is larger than, say, the average of the

absolute value of gl. Under these conditions wer can ignore M z compared

to M
o,z

Accepting this approximation, but realizing that it may be invalid

if g is "small", we have the simple result that the alternating thrust

developed by a rigid propeller oscillating in the axial direction iwth

acceleration amplitude wgo,

gz 
= Wg 0o,z (B9)

Following the same arguments we can approximate the total force

acting on a blade as

A..x A . 1
"wg - x + M -l Z (BlO)

o~A o,y A oz JX yf

where

Ho,x - f do p n.x v (Bll)

121

M=-



I

Ax - ff do nex (112)

and similar expressions for M oy and Ay.

Chertock [241, a few years ago, noticed an interesting relationship

for the added mass M of elliptical and rectangular disks in broadside

motion,

2

-0 1.7 p I- (B13)

where A is the (one side) area of the disk and I is the disk's perimeter

length. The relatonship is exact for elliptical disks of arbitrary

length-to-width ratio. It is good to within 8 percent for all rectangular

disks -the constant is 1.57 for a long strip and is 1.83 for a square

disk. It is also probably a good estimate for the added mass of any

arbitrarily, but compactly, shaped disk.

Using the approximation in equation (B13), we can estimate the

three propeller masses and rewrite (B0) as

A Ax A
1.7 p ~Wgo+ A y + z (B14)

£z z

Then to get the total propeller force, if w -BO we get the total

unsteady thrust

A
2

(M 117pM (115)
thrust 1 9 " go
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and if w - (NB + l)Q we get the total side force

(F) side force
=  

.
8 5

p NB (NB 1) go Q L A +A (B16)

We used the approximation (B15) and compared it with the calcula-

tion for the two propellers studied in this report. This was

done for the rigid propeller operating in the nonuniform inflow and

for the propeller vibrating with unit amplitude with prescribed velocity

pattern in a uniform inflow. The following table gives the results.

Rigid (No Circulation) Vibration (No Circulation)

(YT)R Kv

Prop go/U Approx cal go/Uo approx cal

3958 (J-.76) .0436 .0344 .0428 1.28 1.01 1.10

4064 (J-.597) .0081 .0277 .0584 1.09 3.77 4.08

The approximation agrees with the calculated results to within 25

percent in 3 of the 4 cases. However, it underestimates (T)R for the

wide-bladed propeller by 50 percent, probably because the canceling

effect of the large blade area results in a rigid body component of the

inflow velocity g which is "too small" for'the approximation in equation

(B9) to be valid (evidence also that g0 for the narrow-bladed propeller

is 5.5 times that for the wide-bladed one).
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