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An investigation into the dynamic behavior of a slightly curved resonant microbeam having nonideal boundary conditions is
presented. �e model accounts for midplane stretching, an applied axial load, and a small AC harmonic force. �e ends of the
curved microbeam are on immovable simple supports and the microbeam is resting on a nonlinear elastic foundation. �e forced
vibration response of curved microbeam due to the small AC load is obtained analytically by means of direct application of the
method of multiple scales (a perturbation method). �e e�ects of the nonlinear elastic foundation as well as the e�ect of curvature
on the vibrations of the microbeam are examined. It is found that the e�ect of curvature is of so
ening type. For su�ciently high
values of the coe�cients, the elastic foundation and the axial load may suppress the so
ening behavior resulting in hardening
behavior of the nonlinearity. �e frequencies and mode shapes obtained are compared with the ideal boundary conditions case
and the di�erences between them are contrasted on frequency-response curves. �e frequency response and nonlinear frequency
curves obtained may provide a reference for the choice of reasonable resonant conditions, design, and industrial applications of
such systems. Results may be bene�cial for future experimental and theoretical works on MEMS.

1. Introduction

Electrically actuated microbeams are mostly used in micro-
electromechanical systems. �ey have superior features such
as compact size, high resolution, high sensitivity, digital
output, and low-power consumption. �ese sensors become
an attractive alternative to conventional piezoresistive sensors
due to these superior features. An axial strain is applied to
a microbeam to cause variations in its natural frequencies.
�ese variations of frequency enable the microbeam to be
used as a sensor to measure physical quantities such as
temperature, pressure, force, and acceleration. Vibrations of
electrically actuated straight microbeams in resonant sensors
are of interest to many researches [1–17]. Younis and Nayfeh
[1] presented response of a resonant microbeam to an electric
actuation. �ey used a nonlinear model to account for the
midplane stretching, a DC electrostatic force, and an AC
harmonic force. �e e�ect of the design parameters on
the dynamic responses is discussed. Zhang and Meng [2]

presented a simpli�ed model to study the resonant responses
andnonlinear dynamics of idealized electrostatically actuated
microcantilever-based devices in microelectromechanical
systems (MEMS). �ey discussed the e�ects of di�erent
applied voltages, the cubic nonlinear spring, and the squeeze
�lm damping on the nonlinear and chaotic behaviors of the
system. Mestrom et al. [3] modeled the dynamics of a MEMS
resonator that potentially captures the observed behavior.
Apart from the model consisting of a mechanical and an
electrical (measurement) part, the e�ect of thermal noise
was also estimated. With the proposed model, a quantitative
match between the simulation and experimental results was
established such that a good starting point is achieved for a
more thorough modeling procedure. Jia et al. [4] presented
an analytical study on the forced vibration of electrically
actuated microswitches near resonance region. �ey used
the perturbation based method of averaging to solve the
governing nonlinear partial-di�erential equation. Abu-Salih
and Elata [5] analyzed the electromechanical buckling of
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a prestressed layer bonded to an elastic foundation. �e
e�ect of sti�ening and so
ening elastic foundations on the
postbuckling behavior of the system is discussed. Rivlin
and Elata [6] proposed a method for designing nonlinear
elastic springs with increasing sti�ness to counteract the
nonlinear e�ects of electrostatic attraction. �ey intended to
increase the dynamic range of the parallel-plates electrostatic
actuator and force a linear relation between the applied
voltage and the displacement in their study. �ey achieved a
good agreement between experiments and modal prediction
for concept of nonlinear springs. Kong et al. [7] solved the
dynamic problems of Bernoulli-Euler beams analytically on
the basis of modi�ed couple stress theory. �e size e�ect
on the microbeam’s natural frequencies for two kinds of
boundary conditions that were simply supported microbeam
and cantilever microbeam was investigated. It was found that
the natural frequencies of the microbeams predicted by the
new model were larger than that predicted by the classical
beam model.

In recent years, curvedmicrobeams have been considered
in the microelectromechanical systems (MEMS) because of
their superior features than the straight microbeams such
as their bistability nature and performance in large strokes.
�e curved microbeams can be resting in either of two
states and do not need energy to keep the mechanism in
either of their bistable states. �ey have a practical use in
applications such as micro-valves, electrical micro-relays,
microswitches andmicro-�lters thanks to their snap-through
action. �is action is static phenomenon due to static forces.
�ey may exhibit pull-in instability due to an interaction
between mechanical and electrostatic nonlinearities, when
the curvedmicrobeams are actuated by electro static forces. It
is very important that the critical voltage which causes pull-in
instability is de�ned because of the microbeams’ failure over
the critical voltages [8].

Casals-Terre and Shkel [9] investigated theoretically and
experimentally the use of mechanical resonance to switch
between states of a bistable nature. Qiu et al. [10] analyzed a
bistable mechanism that plays a vital role in the development
of MEMS mechanisms. Modal analysis and �nite element
analysis simulation of the curved beam were used to predict
and design its bistable behavior. Zhang et al. [11] studied
theoretically and experimentally the snap-through and the
pull-in instabilities of themicromachined arch-shaped beams
under an electrostatic loading. �eir analysis was static and
showed that the e�ect of arch con�guration was important
for the snap-through instability.

Krylov et al. [12] presented results of theoretical and
experimental investigation of initially curved microbeams by
electrostatic force. Results of their work provided a better
understanding of the physical phenomena of such systems.
Good agreement was observed among their theoretical and
experimental results. Das and Batra [13] studied transient
analysis of the curved microbeam. �ey emphasized that the
microarches had advantages asMEMS electrodes because the
curved microbeams could have a larger operational range
without the pull-in instability than a corresponding straight
microbeam. Younis et al. [14] presented an analytic approach
and reduced order model to investigate electrically actuated

microbeam. Results of their work showed that the pull-in
voltage corresponds to a saddle-node bifurcation.

Ouakad and Younis [8] studied the dynamic behavior
of clamped-clamped micromachined arches. �ey calculated
the natural frequencies and mode shapes of the arch for
various values of DC voltages and initial rises. �eir results
showed so
ening type behavior for the resonance frequency
for all DC and AC loads as well as the initial rise of the arch.

An electrically actuated imperfect microbeam has been
investigated very recently [15, 16]. Ruzziconi et al. [15] studied
the nonlinear response of an electrically actuated microbeam
which had imperfections due to microfabrications. �eir
theoretical and experimental results were in good agreement.

Ruzziconi et al. [16] also developed a dynamical integrity
analysis to interpret and predict the experimental response
of the microbeam which had imperfections. �e integrity
charts provide invaluable information for engineering design
of such structures.

�e nonlinear vibrations of a slightly curved macroscale
beam have been investigated in the literature [18, 19]. Öz
et al. [18] investigated nonlinear vibrations of the slightly
curved beams which were resting on a nonlinear elastic
foundation. �e amplitude and phase modulation equations
were derived for the case of primary resonances. E�ects
of the nonlinear elastic foundation and curvature on the
vibrations of the microbeam were examined. It is found that
the e�ect of the curvature is of so
ening type. �e elastic
foundation may suppress the so
ening behavior resulting in
a hardening behavior of the nonlinearity. Öz and Pakdemirli
[19] studied two-to-one internal resonances between any two
modes of vibration of shallow curved beams. �ey discussed
the steady-state solutions and their stability.

Nonideal boundary condition concept was proposed
recently [17, 20–23]. Deviations from ideal conditions were
formulated using perturbation theory. A nonideal simple
support may have small de�ections or small moments or a
combination of both. Similarly nonideal built-in supportmay
have small de�ections and small slopes.

Nonideal boundary conditions of both macroscale
and micro-scale beams have been investigated recently.
Pakdemirli and Boyaci [20–23] applied the concept of
nonideal boundary conditions to the macroscale beam
problem. �e boundaries were assumed to allow small
de�ections. �ey showed that the small variations of the
de�ections at the ends may a�ect the frequencies of the
response. Ekici and Boyaci [17] investigated the e�ect of
nonideal boundary conditions on the vibrations of straight
microbeams. �ey showed that the nonideal boundary
conditions could cause shi
ing of the frequencies or the
frequency-response curves to the le
 or right side or no
shi
ing, depending on the mode numbers, axial forces,
de�ections, and moments on the boundaries.

In this study, the nonlinear model of the microbeam
accounts for the slightly curved beamwith anACelectrostatic
force, midplane stretching, and an applied axial load. �e
microbeam is bonded to an elastic foundation with cubic
nonlinearities.�e equations of motion are made nondimen-
sional and solved by the method of multiple scales, a pertur-
bation technique. Approximate response of the microbeam
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Figure 1: A simply supported slightly curved microbeam resting on
a nonlinear elastic foundation.

to a primary-resonance excitation is obtained. E�ects of the
elastic foundation, the dielectric constants, the axial load,
the AC component of the voltage, the curvature, and the
strength of the midplane stretching on the vibrations of the
microbeam are analyzed. �e frequencies and mode shapes
obtained are compared with the ideal boundary conditions
case and the deviations from the ideal case are shown on
the frequency-response curves. �is investigation provides
an understanding of the nonlinear dynamic characteristics
of slightly curved microbeams having nonideal boundary
conditions.

2. Equation of Motion

A schematic view of a slightly curved microbeam bonded to
an elastic nonlinear foundation is presented in Figure 1. �e
kinetic and potential energies of the system are

� = 12 ∫
1

0
���̇∗2�	∗,


 = 12 ��1 − ]
2 ∫10 (
∗� + �∗�0 �∗� + 12�∗�)

2�	∗
+ 12 ��1 − ]

2 ∫10 �∗��2�	∗ + 12�∗ ∫
1

0
�∗�2�	∗

+ ∫1
0
(12�1�∗2 + 14�2�∗4)�	∗,

(1)

where �∗ is the transverse displacement, 
∗ is the longitu-
dinal displacement, �∗0 is the arbitrary initial rise function
(curvature),� is themodulus of elasticity,�∗ is the axial load,� is the rectangular cross-sectional area (� = �ℎ), � is the
poisson’s ratio, and ℎ and � are the microbeam thickness and
width, respectively. � is the gap width, � is the area moment

of inertia with respect to the neutral axis (� = (1/12)�ℎ3),� is the volumetric density, �1 is the linear spring constant
for the elastic foundation, and �2 is the nonlinear spring
constant for the elastic foundation. 	∗ and �∗ are the spatial
and time variables, respectively, and prime and dot denote
di�erentiationwith respect to these variables.�e �rst term is
the energy due to the stretching of themicrobeam, the second
term is the energy due to the bending of the microbeam, the
third term is the energy due to the tensile or compressive
axial load, and the last term is the energy due to the elastic
foundation.

�e Hamilton Principle can be employed to obtain
the equation of motion for transverse vibrations of the
microbeam. �e �nal result is

���2�∗��∗2 + ��1 − ]
2
�4�∗�	∗4 + 2�∗ ��

∗

��∗ + �1�∗ + �2�∗3
= [ ��� (1 − ]

2) (�
2�0∗�	∗2 + �2�∗�	∗2 )]

× [∫1
0
(12(��

∗

�	∗ )
2 + ��0∗�	∗ ��

∗

�	∗ )�	∗]
+ �∗ �2�∗�	∗2 + "0�(
AC cos (Ω∗�∗))22(� + �0 + �)2 ,

(2)

where �∗ is the viscous damping and "0 is the dielectric
constant of the vacuum.�e last term in the right hand side of
(2) represents the parallel plate electric forces [24] assuming
a complete overlapping area between the microbeam and the
stationary electrode. Here it is assumed that themicrobeam is
simply supported fromboth ends.However, it is assumed that
the boundary condition at the right hand side is not ideal and
some slight variations occur in the right hand side de�ections

�∗ (0, �∗) = 0, �2�∗ (0, �∗)�	∗2 = 0,
�∗ (�, �∗) = $ (�∗) , �2�∗ (�, �∗)�	∗2 = 0,

(3)

where " is a small perturbation parameter denoting that the
variations in de�ections are small.

Introducing the dimensionless variables for universality
of the results:

� = �∗� , 	 = 	∗� , � = �∗� , �0 = �0∗� , (4)

the equation of motion and the boundary conditions become

�4��	4 + �2���2 + 2����� + $1� + $2�3
= Γ(�2�0�	2 + �2��	2 )[∫

1

0
(12(���	 )

2 + ��0�	 ���	 )�	]
+ ��2��	2 + $3&�,

(5)

� (0, �) = 0, �2� (0, �)�	2 = 0,
� (1, �) = "3$ (�) , �2� (1, �∗)�	2 = 0,

(6)

where

&� = 
2
AC

cos2Ω�
(1 + �0 + �)2 . (7)
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Table 1: �e nondimensional parameters.

Parameter De�nition

$1 = �1�4(1 − ]
2)���2 �e linear coe�cient of the foundation

$2 = �2�4 (1 − ]
2

�� ) �e nonlinear coe�cient of the foundation

$3 = "0�(1 − ]
2)�42�3�� �e electric force parameter

Γ = 12�2ℎ2 �emidplane stretching parameter

� = �∗�2√���� �e damping parameter

� = �∗�2(1 − ]
2)�� �e axial force parameter

�e model is a nondimensional integropartial-di�erential
equation with nonlinear terms and � is a time scale which
is chosen as

� = ℓ2√��(1 − ]
2)

�� . (8)

�e dimensionless parameters are de�ned in Table 1.

3. Perturbation Analysis

We investigate the nonlinear vibrations of a simply supported
slightly curvedmicrobeam subject to a small AC electric load.
We analyzed its nonlinear response to a primary-resonance
excitation because it is the case that is mostly encountered in
resonator applications.

�e direct-perturbation method is applied to the
integropartial-di�erential equation. �is direct treatment
has some advantages over the more common method of
discretizing the partial-di�erential system and then applying
perturbations [25–28]. Solutions are assumed to be of the
form:

� (	, �; ") = "�1 (	, �0, �1, �2) + "2�2 (	, �0, �1, �2)
+ "3�2 (	, �0, �1, �2) , (9)

where �0 = � is the usual fast time scale and �1 = "� and�2 = "2� are the slow time scales. Time derivatives are de�ned
as

��� = 60 + "61 + "262,
�2��2 = 602 + 2"6061 + "2 (612 + 26062) ,

(10)

where6� = �/���.
In order that the nonlinearity balances the e�ects of

voltage excitation, $3 is rescaled as "3$3. �e perturbation
technique is limited to small AC amplitudes. Hence, the
results of this study are valid under e�ects of small AC load

and slight curvature. �e dynamic pull-in [8] phenomenon
was not investigated in this study.

If (9) and (10) are substituted into (5), the following
equations are obtained at each order of ":

Order "
��V1 + 620�1 + $1�1 − ����1 − Γ���0 ∫10 ��0��1 �	 = 0,
�1 (0, �0, �1, �2) = 0, ���1 (0, �0, �1, �2) = 0,
�1 (1, �0, �1, �2) = 0, ���1 (1, �0, �1, �2) = 0,

(11)

Order "2
��V2 + 620�2 + $1�2 − ����2 − Γ���0 ∫10 ��0��2 �	
= 12Γ���0 ∫

1

0
��21 �	 + Γ���1 ∫10 ��0��1 �	 − 26061�1,

�2 (0, �0, �1, �2) = 0, ���2 (0, �0, �1, �2) = 0,
�2 (1, �0, �1, �2) = 0, ���2 (1, �0, �1, �2) = 0,

(12)

Order "3
��V3 + 620�3 + $1�3 − Γ���0 ∫10 ��0��3 �	 − ����3

= −26061�2 − (621 + 26062)�1 − 2�60�1
− $2�31 + Γ���0 ∫10 ��1��2 �	
+ 12Γ���1 ∫

1

0
��21 �	 + Γ���1 ∫10 ��0��2 �	

+ Γ���2 ∫10 ��0��1 �	 + $3
2AC cos2Ω�(1 + �0)2
�3 (0, �0, �1, �2) = 0, ���3 (0, �0, �1, �2) = 0,

�3 (1, �0, �1, �2) = $ (�0, �1, �2) ,
���3 (1, �0, �1, �2) = 0.

(13)

At order ", the solution may be expressed as

�1 (	, �0, �1, �3) = (� (�1, �2) 7��	0 + 88) 9 (	) , (14)

where 88 stands for the complex conjugates of the preceding
terms. �e mode shapes satisfy the following di�erential
system:

9
� − :29 − Γ���0 ∫10 ��09��	 − �9�� = 0,
9 (0) = 9��(0) = 9�� (1) = 0, 9 (1) = 0,

(15)

where

:2 = <2 − $1. (16)
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Figure 2: �e �rst two natural frequencies versus linear coe�cients of the elastic foundation for various axial force parameters.
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Figure 3: Nonlinear frequency versus amplitude for the �rst mode:" = 1, $2 = 10, � = 0, Γ = 15, and ?1 = 0.

De�ning

? = Γ∫1
0
��09� �	, (17)

one has

9
� − :29 − ?���0 − �9�� = 0. (18)

By choosing a sinusoidal curvature function

�0 = sin@	, (19)

solutions can be obtained for two di�erent cases. If ? = 0, the
solutions are

9 = A sin B@	, : = √B4@4 + B2@2� B = 2, 3, 4, . . . .
(20)

If ? ̸= 0, then the solution is

9 = A sin@	, : = √32@4 + �@2 B = 1. (21)

From the solvability condition at order "2 (see details of
�nding solvability conditions in [29]), one obtains

61� = 0, � = � (�2) . (22)

A solution can be written at this order of the form:

�2 = (�272��	0 + 88) F1 (	) + 2��F2 (	) . (23)

If one normalizes the eigenfunctions at order " by requiring∫10 92 �	 = 1, one has
9 (	) = √2 sin B@	. (24)

Substituting (23) into (12) yields

FIV1 − (4<2 − $1) F1 − �F��1 − Γ���0 ∫10 ��0F�1 �	
= 12Γ���0 ∫

1

0
9�2 �	 + Γ9�� ∫1

0
��09� �	,

FIV2 − �F��2 + $1F2 − Γ���0 ∫10 ��0F�2 �	
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For ? = 0 (B ̸= 1) case the mode shapes at this order are

F1 = ΓB2@48B4@4 + 8B2@2� + 6$1 − 2�@2 − 2@4 − Γ@4× sin@	,
F2 = − ΓB2@42@4 + 2�@2 + 2$1 + Γ@4 sin@	 B = 2, 3, . . .

(26)
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and for ? ̸= 0 (B = 1) case

F1 = 3Γ@410@4 + 6�@2 + 6$1 − Γ@4 sin@	,
F2 = − 3Γ@42@4 + 2�@2 + 2$1 + Γ@4 sin@	 B = 1. (27)

�e solution at order "3 is written as

�3 (	, �0, �2) = L (	, �2) 7��	0 +M(	, �0, �2) + 88. (28)

�e excitation frequency is taken as

2Ω = < + "2N, (29)

where N is a detuning parameter of O("), L is the part
of solution related to the secular terms, and M is the
part of solution related to the nonsecular terms. Inserting
expressions (14), (23), (28), and (29) into (13) and considering
only the terms producing secularities, one has

L�V − (<2 − $1) L − Γ���0 ∫10 ��0L� �	 − �L��
= −2I<9 (62� + ��)
+ �2�(−3$293 + Γ9���4 + 2Γ9���5

+ Γ�7 (F��1 + 2F��2 ) + 32ΓB2@29��
+ Γ�2���0 + 2Γ�3���0 ) + $3�6
2AC7��	24 ,

L (0) = 0, L (1) = ?1� (�2) ,
L�� (0) = 0, L�� (1) = 0,

(30)

where

�1 = ∫1
0
94 �	, �2 = ∫1

0
9�F�1 �	,

�3 = ∫1
0
9�F�2 �	, �4 = ∫1

0
�0F�1 �	,

�5 = ∫1
0
��0F�2 �	, �6 = ∫1

0

9
(1 + �0)2 �	,

�7 = ∫1
0
9���0 �	, ∫1

0
92 �	 = 1.

(31)

Here ?1 is a constant representing the magnitude of the
de�ection of the right end of the microbeam.

�e homogenous problem of (15) possesses a nontrivial
solution. For the non-homogenous problem of (30) to pos-
sess a solution, a solvability condition should be satis�ed (see
[29] for details of calculating this condition). For the present
problem, the solvability condition requires

P� = −2I< (62� + ��) − Q�2� + $34 
2AC �67��	2 , (32)

where

Q = − ∫1
0
9[ − 3$293 + Γ9���4 + 2Γ�59��

+ Γ�7 (F��1 + 2F��2 ) + 32ΓB2@29��
+ Γ�2���0 + 2Γ�3���0 ] �	,

P = ?1√2@B (B2@2 + �) cos@B.

(33)
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Figure 9: Frequency-response curves for the �rst mode: " = 1, � = 0.4, $2 = 10, $3 = 1, 
AC = 10, � = 0, Γ = 15, and ?1 = 0. (a) $1 = 0,
(b) $1 = 50, (c) $1 = 100, (d) $1 = 500, (e) $1 = 1000, and (f) $1 = 5000.
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Figure 10: Frequency-response curves for the �rst mode: " = 1, � =0.4, $1 = 500, $3 = 1, 
AC = 10, � = 0, Γ = 15, and ?1 = 0.
Equation (32) represents the modulations in the complex
amplitudes which can be written in the polar form:

� = 12T7�
. (34)

Substituting this form into (32) and separating real and
imaginary parts, one �nally obtains

U� = N − P2<� −
T2Q8<� +

$34T<� �6
2AC cos U, (35)

T� = −T� + $34<� �6
2AC sin U, (36)

where U is de�ned to be

U = N�2 − V. (37)

�e response is �nally found by substituting (37), (34), (29),
(24), (23), and (14) into (9) and is

� (	, �) = "T cos (2Ω� − U)√2 sin B@	
+ "2 (T22 ) (cos (4Ω� − 2U) F1 (	) + F2 (	))
+ O ("3) .

(38)

�e amplitude “T” and the phase “U” are now governed by
(35) and (36).

4. Numerical Results

In this section, we determine the nonlinear frequencies <,
the e�ective nonlinearity parameter Q of the system, and
the frequency-response curves. Numerical results for free
vibrations are presented �rst. �en forced vibrations with
damping are considered.

4.1. Free Vibrations. Natural frequencies were given in (16),

< = √:2 + $1, (39)

and substituting for : from (20) and (21) yields

< = √32@4 + �@2 + $1 B = 1, ? ̸= 0,
< = √B4@4 + �B2@2 + $1 B = 2, 3, 4 . . . , ? = 0.

(40)

�e�rst two frequency valueswith respect to the linear elastic
foundations are given for various axial loads in Figure 2.
As the axial load increases, the natural frequencies increase.
Similarly, a gradual small increase of frequencies is observed
as the linear elastic coe�cient increases.

Next the undamped nonlinear frequency corrections
to these linear ones, which are amplitude dependent, are
calculated. Returning to (35) and (36), one takes N = 0, � =0, 
AC = 0, and U = −V. From (36) one obtains T = T0, T
constant amplitude. Substituting this further into (35), using
(37) yields

V� = T2Q8<� +
P2<� . (41)

�e nonlinear frequency is

<�� = <� + "2 ( P2<� +
T2Q8<�) . (42)

�e �rst correction term is due to the nonideal boundary
condition and the second term is due to the cumulative e�ect
of all nonlinearities.

In Tables 2 and 3, Q values are given for cases B = 1 andB = 2, respectively, for various linear and nonlinear elastic
foundation coe�cients. From Table 2, for the �rst mode (B =1), for a �xed lower value of the nonlinear elastic coe�cient$2, a switch from so
ening to hardening and then hardening
to so
ening behavior and �nal to hardening behavior is
observed as linear elastic foundation coe�cient $1 gradually
increases. For su�ciently high values of $2, however, there is
only one switch from so
ening to hardening behavior. From
Table 3, for the second mode (B = 2), the switch between
hardening and so
ening behavior cannot be observed. For
this mode, only hardening behavior is obtained.

In Tables 4 and 5, Q values are given for cases B = 1
and B = 2, respectively, for various linear elastic foundation
coe�cients and axial loadings. From these tables, for the �rst
mode (B = 1), for some values of $1 and� so
ening behavior
can be observed (negative Q), whereas for the second mode
(B = 2) only hardening behavior is observed.

From Table 4, for the �rst mode (B = 1), for su�ciently
high values of the axial loads (i.e.,� = 500), only hardening
behavior is observed. For lower axial loading, switches from
so
ening to hardening and vice versa can be observed
depending on the numerical values of the elastic foundation
coe�cients $1and axial loads�. FromTable 5, for the second
mode (B = 2) there is only hardening behavior.
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Figure 11: Frequency-response curves for the �rst mode: " = 1, � = 0.4, $1 = 10, $2 = 0, $3 = 1, 
AC = 10, Γ = 15, and ?1 = 0. (a)� = 0,
(b)� = 10, (c)� = 20, (d)� = 50, (e)� = 100, and (f)� = 500.
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Table 2: Q values corresponding to $1 and $2 values for B = 1,� = 0, and Γ = 15.
$2 $1

0 50 100 500 1000 5000

0 −29136.78 −60113.23 76892.06 −1219.66 −1321.26 868.78

10 −29091.78 −60068.23 76937.06 −1174.66 −1276.25 913.78

50 −28911.78 −59888.23 77117.06 −994.66 −1096.26 1093.78

100 −28686.78 −59663.23 77342.06 −769.66 −871.26 1318.78

500 −26886.78 −57863.23 79142.06 1030.335 928.74 3118.78

1000 −24636.78 −55613.23 81392.06 3280.34 3178.74 5368.78
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Figure 12: Frequency-response curves for the �rst mode: " = 1, � =0.4, $1 = 500, $2 = 10, $3 = 0.1, � = 0, Γ = 15, and ?1 = 0.
Table 3: Q values corresponding to $1and $2values for B = 2,� = 0,
and Γ = 15.
$2 $1

0 50 100 500 1000 5000

0 16019.07 17151.16 18158.90 23442.61 26739.84 32555.18

10 16064.07 17196.16 18203.90 23487.61 26784.84 32600.18

50 16244.07 17376.16 18383.90 23667.61 26964.84 32780.18

100 16469.07 17601.16 18608.90 23892.61 27189.84 33005.18

500 18269.07 19401.16 20408.90 25692.61 28989.84 34805.18

1000 20519.07 21651.16 22658.90 27942.61 31239.84 37055.18

In Figures 3–5 the nonlinear frequencies versus ampli-
tudes are shown for the �rst mode (B = 1). Figure 3 shows
the comparison of nonlinear frequencies for various linear
elastic foundation values. From this �gure, since $2 = 10,� = 0, Γ = 15 from Table 2, the transitions from so
ening
to hardening are expected between $1 = 50 and $1 = 100,$1 = 1000 and $1 = 5000. Mathematically speaking, since
the dependence of Q on $1 is rather complex and Q changes
sign depending on the values of $1, a frequent change of

sign occurs which causes the transitions. However, as $2
becomes dominant on which Q is linearly dependent, the sign
changes are restricted to only one transition from so
ening to
hardening. Physically speaking, the hardening behavior due
to nonlinear elastic coe�cient suppresses all other so
ening
behaviors, and becomes dominant for a reasonably large
linear elastic coe�cient. In Figure 4, linear elastic foundation,
axial load, and mid plane stretching values are �xed and only
one transition occurs. In Figure 4(a), from Table 2 for $1 =500, Γ = 15, and � = 0, the critical transition value for $2
is 271.04. As can be veri�ed from the �gure, for $2 < 271.04
the behavior is so
ening type and for $2 > 271.04 it is of
hardening type. In Figure 4(b), from Table 2 for $1 = 1000,Γ = 15 and � = 0 the critical transition value for $2 is
293.61. As can be veri�ed from the �gure, for $2 < 293.61,
the behavior is so
ening type, and for $2 > 293.61 it is of
hardening type.

In Figure 5, linear and nonlinear elastic foundation and
mid plane stretching values are �xed and axial force values are
increased. From this �gure, since $1 = 10, $2 = 0, and Γ =15, from Table 4, the transitions from so
ening to hardening
are expected between � = 0 and � = 10, � = 100 and� = 500. Mathematically speaking, since the dependence ofQ on � is rather complex and Q changes sign depending on
the values of�, a frequent change of sign occurs which causes
the transitions. Physically speaking, the hardening behavior
due to a reasonable large axial force value suppresses all other
so
ening behaviors and becomes dominant for a reasonably
large linear elastic coe�cient.

In Figures 6, 7, and 8, the nonlinear frequency versus
amplitudes are shown for the second mode (B = 2). For non-
negative elastic foundation coe�cient values one can observe
only a hardening type of behavior.

4.2. Forced Vibrations with Damping. To consider forced
vibrations with damping one returns again to the amplitude
and phase modulation equations given in (35) and (36). For
steady-state solutions T� = U� = 0. �e frequency response
equation is determined by eliminating U between (35) and
(36), �nding N, and then substituting this value into (29)

2Ω = <� + "2( 12<�P+ 18<� T2Q ∓ √
$23�26
4AC16<�2T2 − �2) .

(43)
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Figure 13: Frequency-response curves for the second mode: " = 1, � = 0.4, $2 = 10, $3 = 0.5, 

AC

= 10, � = 0, Γ = 15, and ?1 = 0. (a)$1 = 0, (b) $1 = 50, (c) $1 = 100, (d) $1 = 500, (e) $1 = 1000, and (f) $1 = 5000.
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Table 4: Q values corresponding to $1 and N values for B = 1, $2 = 0, and Γ = 15.
N

$1
0 10 50 100 500 1000 5000

0 −29136.78 −31769.73 −60113.23 76892.06 −1219.66 −1321.26 868.78

10 83207.07 50114.0 16068.78 6458.78 −1448.28 −1221.06 889.82

20 6599.75 5598.68 2890.98 1060.28 −1508.12 −1117.22 910.22

50 −1194.90 −1232.26 −1349.87 −1441.49 −1327.62 −812.96 967.78

100 −1333.93 −1324.23 −1284.49 −1233.26 −819.36 −381.04 1053.11

500 854.5 856.71 865.47 876.27 956.78 1044.65 1461.58

Table 5: Q values corresponding to $1and N values for B = 2, $2 = 0, and Γ = 15.
N

$1
0 10 50 100 500 1000 5000

0 16019.07 16256.52 17151.16 18158.90 23442.61 26739.84 32555.18

10 17886.48 18067.87 18793.60 19619.91 24114.06 27066.34 32575.67

20 19431.12 19588.35 20187.61 20875.91 24735.88 27385.82 32598.16

50 22809.36 22904.88 23272.85 23703.36 26287.35 28250.30 32672.56

100 26079.37 26130.31 26328.56 26564.61 28082.72 29367.79 32803.64

500 32211.05 32216.14 32236.34 32261.20 32445.67 32645.38 33570.82
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Figure 14: Frequency-response curves for the second mode: " =1, � = 0.4, $1 = 500, $3 = 0.5, 
AC = 10, � = 0, Γ = 15, and ?1 =0.
In this section, to describe the dynamic response of

the microbeam, frequency-response curves are analyzed
with respect to the e�ective physical parameters which are
the linear and nonlinear elastic foundation coe�cients, the
voltage amplitudes, the axial forces, and the strength of the
midplane stretching. In Figures 9–11, for the �rst mode,
the frequency-response curves are shown with changes of
qualitative behavior from so
ening to hardening.

In Figure 9, frequency-response curves are drawn for the
speci�c values of linear elastic foundation parameter $1 for$2 = 10,� = 0, and Γ = 15. As the linear elastic foundation

increases, the frequency-response curves shi
 to the right
with the changes of qualitative behavior from so
ening to
hardening. �ese changes are observed between $1 = 50 and$1 = 100, $1 = 1000 and $1 = 5000.

E�ect of nonlinear elastic foundation coe�cient on the
frequency-response curves is depicted in Figure 10. For
increasing nonlinear elastic foundation coe�cients, transi-
tion occurs from so
ening behavior to hardening behavior
without an increase in themaximumamplitudes. In Figure 11,
the frequency-response curves are drawn for speci�c values
of the axial force parameter�. As the axial force increases, the
frequency curves shi
 to the right with a decrease in the peak
amplitudes. �e transitions from so
ening to hardening are
observed between� = 0 and� = 10,� = 100 and� = 500.

It is observed that the e�ects of linear elastic foundation
coe�cients on frequency-response curves are similar to the
e�ects of the axial load coe�cients, when Figures 9 and
11 are addressed together. �eir variations a�ect maximum
amplitudes of the frequency-response curves and shi
 these
curves. In the frequency-response curves, two transitions
from so
ening to hardening are obtained.

In Figure 12, frequency-response curves are drawn for
speci�c values of the voltage amplitude 
AC for $1 = 500,$2 = 10, � = 0, and Γ = 15. Note that $3 and 
AC
appear as multiplications in the equations of motion so due
to their similar in�uences only 
AC e�ect is considered. �e
maximum amplitudes increase for an increase in 
AC and
the multivalued regions responsible for jump phenomena
increase considerably.

In Figures 13–15, the frequency-response curves are
shown for the second mode. In Figure 13, $2 and� are �xed
and $1 is increased. All curves show hardening behavior. In
Figure 14, $1 and� are �xed and $2 is increased. �e multi-
valued regions increase without an increase in the maximum
amplitude. In Figure 15, the frequency-response curves are
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Figure 15: Frequency-response curves for the second mode: " = 1, � = 0.4, $1 = 10, $2 = 0, $3 = 0.5, 

AC

= 10, Γ = 15, and ?1 = 0. (a)� = 0, (b)� = 10, (c)� = 20, (d)� = 50, (e)� = 100, and (f)� = 500.
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Figure 16: Frequency-response curves for ideal (solid) and nonideal (dotted) cases: (a) �rst mode (" = 1, $1 = 500, $2 = 10, $3 = 0.5,� = 0,

AC
= 10, � = 0.4, Γ = 15, and ?1 = 1), (b) second mode (" = 1, $1 = 500, $2 = 10, $3 = 0.5,� = 0, 


AC
= 10, � = 0.4, Γ = 15, and ?1 = 1).

drawn for speci�c values of the axial force parameter �. As
the axial force increases, the frequency curves shi
 to the
right with a decrease in the maximum amplitudes.

�e designers may use the frequency-response curves
given in Figures 9–15 to select the optimum values of linear-
nonlinear elastic foundation coe�cients, voltage amplitudes,
and axial loads for their design.

4.3. E�ect of the Nonideal Boundary Condition. Response
amplitude versus excitation frequency curves is drawn for
ideal (solid) and nonideal (dashed) cases for the �rst mode
in Figure 16(a) and for the second mode in Figure 16(b). It
can be seen from these graphs that the nonideal frequency-
response curves shi
 to the le
 with respect to the ideal case
for the �rst mode. On the contrary, for the second mode, the
shi
 is to the right. Resonance shi
ing is a very important
phenomenon, especially in resonant microbeams. It can be
achieved by transition from so
ening to hardening behavior
as well as by shi
ing the curves with nonidealities.

It is signi�cant to understand the nonlinear behavior
of resonant microbeams in order to improve their design.
Various design parameters, such as the curvature of the
microbeam, the amplitude of the AC excitation voltages, the
elastic foundation coe�cients, and the nonideal boundary
conditions, have to be investigated to optimize the resonant
MEMS sensors and minimize any undesirable behavior.

Using the results of this work, frequency responses of the
microbeams can be passively controlled by adjusting design
parameters.

5. Concluding Remarks

�e nonlinear dynamic response of a slightly curved
microbeam resting on a nonlinear elastic foundation that

is actuated by an electric load subject to an axial load is
analyzed.�e nonlinearities arise due to the nonlinear elastic
foundation and immovable end conditions which cause mid-
plane stretching. Nonideal boundary conditions are de�ned
and formulated using perturbation theory. Approximate
analytical solutions are found using the method of multiple
scales, a perturbation technique.

E�ects of the linear elastic foundation, the nonlinear
elastic foundation, the AC harmonic load of amplitude, the
axial force, and the midplane stretching on the responses are
investigated. Nonlinear frequencies and frequency-response
curves are drawn for various design parameters. Results
show that increasing the linear elastic foundation coe�cient
shi
s curves to the right with either hardening or so
ening
behavior. For an increase in the nonlinear elastic foundation
coe�cient, the multivalued regions responsible for the jump
phenomena increase considerably without an increase in the
maximum amplitudes. Maximum amplitudes increase for
higher AC harmonic loads of the amplitude.

So
ening and hardening behavior can be observed for the
�rst mode depending on the physical parameters. It is found
that the e�ect of curvature is of so
ening type. For su�ciently
high values of the coe�cients, the elastic foundation and
axial load may suppress the so
ening behavior resulting in a
hardening behavior of the nonlinearity. For the second mode
and for positive values of the elastic foundation coe�cients,
only hardening behavior can be observed. �e curvature
e�ects are of hardening type only.

�e nonideal boundary conditions can cause shi
ing to
the le
 or right hand side in the frequency amplitude curves,
depending on the mode numbers. �is may cause a shi
 of
the resonant region which has direct practical implications
in design of such systems. Depending on the goal of the
design, by adjusting nonideal conditions, system can be run
or avoided from running in the resonant region.
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Results provide a reference for the choice of reasonable
resonant conditions, design, and industrial applications of
such slightly curved microbeams bonded to an elastic foun-
dation.
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