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PREFACE

The work reported herein was performed as part of the base technology

activity under the Flow Induced Vibration Program (189a No. CA054-A; Old

No. 02659-A) sponsored by ERDA/RRD. The overall objective of the activity

is to develop new and/or improved analytical methods and guidelines for

designing LMFBR components to avoid detrimental flow induced vibration.

In this report, a general analytical method is presented for evaluating

the natural frequencies and mode shapes of a circular cylindrical shell

with homogeneous boundary conditions of any type. The solution is obtained

through a direct solution procedure using Sanders' shell equations in which

the axial modal displacements are represented as simple Fourier series

expressions. Stokes* transformation is used to legitimize the derivatives

of the Fourier series. From the exact frequency equation obtained, the

numerical results are calculated.

The method is applicable to the dynamic analysis of reactor internal

and plant components that can be represented as circular cylindrical shells;

the thermal liner of the Fast Test Reactor (FTR) is such a component. The

thermal liner is a relatively thin shell concentric with and separated by

a narrow fluid-filled gap from the main reactor vessel. The main function

of the thermal liner is to shield the reactor vessel from excessive heat

from the core and thereby to protect it from possible damage. The thermal

liner is subjected to sodium coolant flow, and is thus susceptible to

flow induced vibrations. The excitation mechanism may be associated with

random pressure fluctuations, fluidelastic instabilities, or resonant

vibration resulting from a coincidence between component natural frequencies

and vortex-shedding or other flow-related driving frequencies. As an

example of the application of the developed method, the determination of



the free vibration modal characteristics of the thermal liner is presented

and discussed.
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NOMENCLATURE

h, R, I Thickness, radius and length of shell

k Fourier component in axial direction

m Number of axial mode number

n Number of circumferential waves

u, v, w Axial, circumferential and radial displacement

x, 9 Axial, and circumferential coordinates

t time

v » v« > w , w. Unspecified end values

A. , B. , C, Fourier coefficients for u, v and w

D Extensional rigidity, Eh/(l-v2)

E Young's modulus

G Shear modulus

K Flexural rigidity, Eh3/12(l-v2)

M , Mfl, M _ Bending and twisting moment per unit length
X u XO

N , Ng, N . Membrane force per unit length

N - Effective membrane shear force per unit length

Q Effective transverse shear force per unit length

Y 2 1/«J2 = pR 2(l-u 2)/E
o

6 h2/12 R2

v Poisson's ratio

p Mass density

<J»U» ip » * Axial mode shapes corresponding to axial, circumferential,

and radial directions, respectively

u Circular frequency of shell

<»o Lowest extensional frequency of a ring in plain strain(=/E/{pR2(l-v2)}

2 2Frequency parameter (= w /to )



NOMENCLATURE (Contd.)

( . . . ) ' = d( ) /dx

( . . . ) = 3

( . . . ) fl = 3

( . . . ) = 3( ) / 3 t
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VIBRATIONS OF CIRCULAR

CYLINDRICAL SHELLS

by

Ho Chung

ABSTRACT

An exact solution method for the free vibration problem of thin

circular cylindrical shells is presented. The differential equations

of motion are solved directly with the use of simple Fourier series as

the modal displacement functions. Stokes* transformation is exploited

to obtain correct series expressions for the derivatives of the Fourier

series. From this method an explicit expression of the exact frequency

equation can be obtained for any kind of boundary conditions. The accuracy

of the present method is checked against available data. The proposed

method is then used to find the modal characteristics of the thermal liner

of the Fast Test Reactor (FTR). The numerical results obtained are

compared with finite element method solutions.



I. INTRODUCTION

The vibration of thin circular cylindrical shells has been of great

interest to many structural engineers in recent years. Many investiga-

tions following the pioneering work of Arnold and Warburton [1,2] have

been summarized b/ Leissa [3]. Methods of solution for linear shell vibra-

tions have ranged from approximate energy methods by Arnold and Warburton

[I,'1] and Sharma [4,5] to the exact solutions as studied by Forsberg [6,7,

8], Warburton [9], Warburton and Higgs [10], and Goldman [11]. Recently,the pres-

ent autbur used a modified Rayleigh-Ritz procedure to obtain exact solu-

tions [12]. In this report, the differential equations of shell are solved

directly., and an exact frequency equation is obtained.

The problem is treated within the framework of linear, elastic, first-

order shell theory. Starting with Sanders1 theory [13], the dependent

variables are expanded in Fourier series in the circumferential direction.

The problem is then considered on a mode-by-mode basis associated with the

circumferential Fourier index n. In the axial direction, the variables are

built up to form a set of complete orthogonal functions in the form of

simple Fourier series which are not required to satisfy the boundary condi-

tions term by term. Stokes* transformation [15] is used to obtain correct

series expressions for derivatives of the Fourier series. The boundary

conditions which are not satisfied directly by the assumed series are

enforced. The unwanted boundary conditions, that are originally unspecified

but are implied by the nature of the assumed series, are released to remain

unspecified. Through this process, all the boundary conditions of the

problem become satisfied by the assumed displacement function in an overall

sense. It should be empnasized that the present method can solve problems

Numbers in brackets designate References at the end of the report.
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with any kind of bounaary conditions. The direct solution method used in

this report differs from those of other contributors [6-11] in the selection

of general solutions of shell equations. They chose exponential functions

for the modal displacements along the axial direction and substituted them

into the equations of motion and enforced the eight specified boundary

conditions. This led to an eighth-order algebraic equation and an eighth-

order frequency determinant which are coupled together. The simultaneous

solution of these two systems of equations involves extremely laborious

computation [16]. In the present report, the use of simple Fourier series

along the axial direction greatly simplifies the solution procedure and

leads to a frequency determinant of low order (< 4).

The numerical results from this method are checked with the available

exact solutions reported by other contributors. The natural frequencies

of the thermal liner model of the Fast Test Reactor (FTR) are calculated

and discussed. In particular, the variation of natural frequencies due to

the change of boundary conditions is discussed in detail.
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II. THEOHETICAL BACKGROUND

A. Equations of Motion

First-order liner shell theories, based on Karchhoffs hypothesis,

have been given by Donnell, Love, Timoshenko, Novozhilov, Fliigge, Vlasov,

Sanders, and others. For an excellent summary see Leissa [3]. Sanders'

shell equations [13] are said to be "best" for the following reasons [14]:

they can be written in general tensor form for arbitrary shell geometry; the

principle of virtual work, the minimum energy and the reciprocal relations

all apply; the stresses are described by six stress measures that satisfy

the equations of equilibrium without approximation; the stress and strain

measures obey the uncoupled Love constitutive relations, etc. The

celebrated Fliigge1 s equations cannot be given in general tensor £orm, and

they do not satisfy the uncoupled constitutive laws. The present author has

chosen Sanders' shell equations

vRw + X ~ V R6w „„ = Y
2u

,x 2 ,x88 ' ,tt

f) ».
(1)

R6uxee + vRu ' v

where

,x88 ,x 2 " ,xx6 T v,9 w

+ 6{R4w + 2R2w + w - v } = -v2w
,xxxx ,xx9e ,6986 ,8G8J Y ,tt

= pR2(l-v2)/E , 6 = h2/12R2 .

The geometry of a circular cylindrical shell is shown in Fig. 1. Also

shown on the figure are the forces and moments acting on a section of

the shell parallel to the coordinate lines.
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Fig. 1. Cylindrical Shell with Applied Forces
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The boundary conditions applicable to Sanders' theory reduce to

prescribing the following quantities at the ends of the cylindrical shell:

N or
X

u ,

w ,

N

Nx9

Mx

3
2R

or v

or?
3x

Sx0 '

where

3M

(2)

x . 2
3x R 36

(3)

The "effective" forces per unit length N and Q are shown in Fig. 1.

The force quantities on the left in (2) are associated with the natural

boundary conditions while the displacement quantities on the right are

associated with the geometric boundary conditions. Further information

on these relationships may be found in References [12] and [13]. It will

prove to be useful to have the relationships between boundary forces and

displacements explicitly written out,

l fl 3 a \ + ( 1 + 9 6 \ . 36w "I
t \ 4 ; ,6 V 4 J ,x ,x6 I

w,xxx J
w,xx]

x9 2
(4)

,99 _D2 ,x9 D2
 w,x99

Mx = K [ ^ <\e " w,ee> "

where D = Eh/(l-v2), K = Eh3/12(l-v2).

B. Modal Functions

The modes of vibration are characterized by the number, n, of circum-

ferential waves and the number, m, of axial waves. For each n,m combination

three natural frequencies exist [1,2]. The essential difference between these

three vibration forms are the relative amplitudes in the axial, circum-

ferential and radial directions. It can be shown [1,2] that for any n, a

Numbers in parentheses designate the equation numbers in the report.
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general relation for the displacements in any mode may be written in the

following form:

u(x,6,t) = ty (x)cos n6 sin ait

v(x,9,t) = \\) (x)sin n6 sin uit

w(x,9,t) = t|» (x)cos n9 sin ait

where it , ty , i> are mode functions corresponding to axial, tangential
u v w

and radial displacements, respectively. The crucial part of the analysis

involves choosing appropriate series forms for these mode functions. The

series should be simple in form and at the same time preserve orthogonality

properties. It is not necessary that the series satisfy any particular

boundary conditions since we are dealing with a general solution at this

point.

There are two convenient sets of Fourier series that meet all these

requirements for the mode functions along the axial direction. The first

set, designated "CSS," can be written in the form

* (x) = A + I A, cos —vu on f; Ten 2,

i /• \ V T> • kirx ...ty (x) = > B, sin — 7 — (6)
v ,_.. kn £. v '

CO

* (x) = I C. sin *™
w k = 1 kn I

while the second set, designated "SCC," can be written as

* W - T A, sin ̂ K-

* (x) = B + I B — kirxv on ,±. kn

b (x) = C + I C, cos ^
w o n

 I._T kn H

The first set represents the exact solution to the shell with simply-

supported ends with no axial constraint (SNA-SNA). This "SNA" shell
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has boundary conditions at each end of the form

N = 0 , v = 0 , w = 0 , M = 0 . (8)

The "CSS" set satisfies these boundary conditions term-by-term.

The second set represents the exact solution to the shell with

freely-supported ends with no tangential constraint (FSNT-FSNT). This

"FSHT" shell has boundary conditions at each end of the form

u = 0 . NxQ = 0 . Q x = 0 , £ - 0 • (9)

The "SCC" set satisfies the above boundary conditions term-by-term. It

should be carefully pointed out that by using Stokes' transformation, it

is possible to use these sets to find exact solutions for shell problems

with any possible combination of homogeneous end conditions. There are

sixteen possible sets of homogeneous boundary conditions that can be

specified independently at each end [6]; these are listed in Appendix A.

C. Stokes' Transformation

When differentiating the foregoing series, care must be taken with

respect to the end values. For example, when using a sine series to

represent a function, the end values of the function are forced to be zero.

With Stokes' transformation [15,17].however, the end values of the sine

series are released by being defined separately and these values are then

included in the successive derivatives of the series.

Consider a function f(x) represented by a Fourier sine series in the

open range 0 < x < I and by values f and f at the end points,

f(°) = f , ftt) = f. , f(x) = I a sin ~ (0 < x < a) (10)

*• k=l K *

Since it is not certain that the derivative f'(x) can be represented by

term-by-term differentiation of the sine series, the derivative is instead

represented by an independent cosine series of the form
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f' (x) = b + I b cos *f . (11)
k=l

Stokes1 transformation then consists of integrating by parts in the

basic definitions of the coefficients to obtain the required relation-

ship between b. and a,, as follows

2 ,,, , kux ,b = T f'(x)cos—dx
Jo

2 ,,
= T f'

Jo

= j f (x)cos — + —o- f(x)?xn — dx (12)
1 L Jo r jo *

Similar care must be taken when finding the correct sine series corre-

sponding to f"(x). The complete set of formulas for the sine series are

then written as

f (o) = fQ f (« = ££

.f (x) = I a s in ~ (0 < x < «.)
k=l

. , , . o 8. r 2 r , . , . k , , I T , I kirx ,_ „,

:'(x) - - — — - £Jj {fQ- (-1) f£} - T kafcj cos — (0 * x * «
(13)

f"(o) = f" f ( a ) = f"

(0 < x < SL)

If the function f(x) is expanded in a Fourier cosine series, similar

transformation formulas must be used tc establish the correct form of the

differentiated series. These formulas for the sine and cosine series are

used in the direct solution procedure of the shell equations.
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III. GENERAL FORMULATIONS

The preceding theoretical considerations will now be used to solve

cylindrical shell problems. The first set (6) of mode functions, CSS,

identically satisfies all the boundary conditions (both geometrical and

natural), only for the SNA (simple support without axial constraint)

shell. Therefore, substitution of this set into the equations of motion

(1) leads to the frequency equation for an SNA shell extensively studied by

Dym [18]. For all shells with other boundary conditions, the frequency equation

is determined from the specified boundary conditions. Using CSS, the

most complicated case (from the point of view of the size of the resulting

frequency determinant) involves boundary conditions that are freely-

supported without tangential constraint at both ends (FSNT-FSNT). It is

interesting to note that for the second set, SCC, all the boundary condi-

tions of the FSNT shell are satisfied on a term-by-term basis and this

problem is therefore simple to solve. The most complicated problem for

SCC is the SNA shell. In Appendix B, an outline is given of the set of

mode functions to use to obt'in the simplest frequency equation.

In the following work, details are given only for the solution using

the CSS set. However, results for frequencies are shown based on both

sets of axial mode functions. For maximum generality of the formulation,

the FSNT shell will serve ;.s the base problem for CSS. All ether shell

problems with different boundary conditions a::e simplified special cases

of this base problem. For this base problem, none of the eight boundary

conditions are satisfied by CSS on a term-by-term basis. Thus the con-

straint conditions to satisfy these boundary conditions lead to an eight-

by-eight frequency determinant. Solutions for shells with other boundary

conditions lead to a smaller size determinant.
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A solution for the vibratory characteristics of an FSNT shell will

now be outlined using CSS. The CSS set is given in (6) and their derivatives

are obtained through the use of Stokes' transformation (see Appendix C).

Substitution of the CSS set and their derivatives into the equations of

motion (1) leads to an explicit relation for A and, in addition, a set

of equations in which A, , B. , and C. are coupled together. The solution

of these coupled equations allows all the coefficients to be written

explicitly in terms of the eight unspecified quantities u , u., v , v ,
O JO O Ki

w , w , w , w and the frequency parameter Q as follows

2(an-Q) »o + V ]

" a3[Vo + V" l > *

(14)

(a9k3

(15)

where

n = = E/pR2(l-v2)

Other symbols are listed in Appendix D.

The equations (14) and (15) include the four unspecified quantities v ,

v , w , and w which are directly related to the geometrical boundary

values

v ( 0 ' e ) • e v ( l ' e )

(16)
Wo ° ~ it sin n3



The other four quantities uo> u &, wo, w^ are associated with the unspecified

end forces N and moments M a.s. follows (see (4)),
x x

cos n9

(17)

"UJ S
6

The equations (14) and (15) may now be rewritten in terms of the eight

specified boundary quantities v , v , w , w , N , N , M , M for a
O XJ O Jo X X X X

un

FSNT shell.

Aon ~

(19)

+ (- (20)

2 2
2R (1-V ) , rDjO

k l Mx

0)

where

x cos n8

X I COS n9 x

cos nG
(21)

M U,8)
, cos n8 x

The boundary conditions appropriate to the FSNT shell are listed in (9).

The geometric boundary conditions that must be satisfied are associated

with u and 3w/3x. Hence for arbitaray n it follows that
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•u<
0> = Aon + J x A n

•»<*> - V

X {WO + <-»S + kCkn>] - °
(22)

o

The natural boundary conditions that must be forced to zero are N „ = 0

and 6 = 0 at both ends. Substitution of the CSS set and their derivatives

into these equations, one obtains the following four equations

+v \ #w +w

kBkn>

(23)

kBkn>

+ q3{wo + wa(-l)
k + kC^} I (-l)k = 0 (24)

+ Jl tq

+ a 9{w o+w a(-l)
k-w ok

2 - w£k
2(-l)k-k3Ckn}] = 0 (25)

+w n

Von
/w +wn\

(V)
Jl

-w £k
2(-l) k- k 3 ^ } ] ( - ! ) k = 0 (26)



21

The l as t two equations contain the inexpedient w , w . Therefore,

the equations (25) and (26) are rewritten in terms of M and M̂  as for the

case of equations (14) and (15).

IV + V - \ ,'W + t t

Von + q3 \—T- "ql8 h i - ] -—ihT— [-T~} + X %^

2 M

(27)

(Vo+Vl\ fWo+WM 2R2(l-v
«»4Aon + q3 [-^-J ~ q18 [—T~j ~ Eh£

v2) f ^ + ^ \
^—2—J

(28)

The frequency determinant may now be constructed. Substitution

of the relations for the coefficients A , A. , B, , and C, (19,20) into r.he
on Ten kn Icn

eight constraint conditions due to the geometric and the natural boundary

conditions (22-24, 27. 28) leads to the homogeneous matrix equation

i . 3 t M ' J k v v v V T = {0} (29)

where i,1 = 1,2, ... 8 .

It is interesting to compare this equation to the result previously obtained

by the present author [12] through a Rayleigh-Ritz procedure in conjunction

with Lagrange multipliers. By redefining the unspecified end forces
^6 1 "vf. 2
N = - £ • , N = •—

X ffK X 7TR

N , M as proportional to the Lagrange multipliers N = -£• , N = •— ,
X ffK X 7TR. . X ffK X 7TR

"3 *H£ 4

x = Ri * a n d x = RA ' e < i l u a t i o n (29) becomes identical to the matrix equa-

tion in reference f l2] . For anontr iv ia l solution of (29), the determinant
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of the matrix must vanish,

| e i > ; . | = 0 (30)

resulting in a characteristic equation whose eigenvalues determine the

natural frequencies of the shell. The corresponding eigenvectors determine

the mode shapes. This frequency determinant is symmetric, and is based on

the exact satisfaction of the boundary conditions. The natural frequency

2
appears as a parameter ft = (w/a) ) in this equation. Each element of this

frequency determinant is an infinite series, and is listed in Appendix E.

From the development of these equations it may be shown that there are

two restrictions involved. The first restriction is ft / — ^ - (l+xl n •

For axisymmetric (n=0) shell vibrations, this becomes ft ̂  0; thereby

invalidating (19) for rigid body motion. However, conditions associated

with this rigid body motion are usually determined by inspection. For

non-axisymmetric motion (n^O), the case of ft = — — • 1 + T ' n is automatically

rejected on the grounds that it leads to rigid body motion with non-zero

frequency. The second restriction, [j, 4 0, may be shown to imply that

this CSS set cannot be used to solve the FSNT shell. This is not a

serious drawback since it is easy to show that the second (SCC) set offers

a very simple solution to this case.
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IV. FREQUENCY DETERMINANT

In this section, the frequency determinant is derived for several

cases of shell boundary conditions. The frequency determinant (30) is

based on the boundary conditions of "freely-supported with no tangential

constraints" at both ends (FSNT-FSNT). None of the FSNT-FSNT boundary

conditions are satisfied by the CSS set of displacement functions on a

term-by-term basis. The requirement to satisfy these boundary conditions

by the CSS set in an overall sense led to the eight-by-eight frequency

determinant (30). From this determinant, one can also obtain the frequency

equation for any combination of boundary conditions among sixteen possible

cases (See Appendix A) without going through the detailed procedures required

to formulate the corresponding algebraic eigenvalue problems. This can

be done by deleting inapplicable rows and columns from the frequency deter-

minant (30). Therefore, solutions for shells with other boundary conditions

lead to a smaller size determinant than for the FSNT-FSNT shell. For

certain boundary conditions, the second set, SCC, leads to a simpler frequency

determinant than the CSS set. The better choice of the mode displacement

functions is suggested in Appendix B. Indeed, if the order of the frequency

determinant obtained by the use of one set is "P" the one obtained by the

other set is "8-P" for the same set of boundary conditions. Therefore, one

can always obtain the exact frequency determinant with the order < 4 for

any case of boundary conditions.

A. Simply-Supported Shell with No Axial Constraints at Both Ends (SNA-SNA)

The simplest case of boundary conditions is, of course, the SNA shell

since the CSS set of axial mode functions satisfies all the boundary

conditions,

N x = 0 , v = 0 , w = 0 , M x = 0 (x= 0,1) (31)

on a term-by-term basis. It should be noted that the boundary values
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u, N , Q , and —• at both ends are unspecified by this set. The fre-
Xu X oX

quency equation for the SNA shell is directly obtained from the equations

of motion as a three-by-three determinant. The elements of the frequency

determinant are no longer infinite series but reduce to algebraic terms.

Past work on this problem includes that of Arnold and Warburton [1,2] and

Dvra [18]. The frequency equation is as follows

b12 b13

S 2 3 = 0 . (32)

Symm. N S 3,

B. Simply-Supported Shell with Axial Constraints at Both Ends (SS-SS)

As a typical case involving the enforcement of geometric boundary

conditions and the release of unwanted natural boundary conditions,

consider the simply-supported shell with axial constraints at both ends.

The boundary conditions are

u = 0 , v = 0 , w = 0 , M (x = 0,1) (33)

The CSS set automatically satisfies the last three equations and the

unwanted natural boundary conditions N = 0 at both ends (see Eq. (31)).

The frequency equation can be found from the geometrical constraint condi-

tions of u = 0 at both ends, and at the same instance, leaving the end

forces N unspecified. This is effectively done with (30) by retaining

the rows and columns associated with N°, N . The end result is the exact
x x

two-by-two frequency determinant

e."1,1 1,2

symm.
"2,2

= 0 (34)

The elements of the determinant are listed in Appendix E. It is interesting

to note that the second set, SCC, would involve the enforcement and

release of geometric and natural boundary conditions, and lead to a six-

by-six determinant.
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C. Shell with Clamped Ends (C-C)

Consider the shell clamped at both ends. The boundary conditions

are

aw
u = 0 , v = 0 , w = 0 , "g = 0 (x= 0,1) . (35)

Among these conditions, the four geometric boundary conditions u = 0

awand — = 0 a t both ends are not automatically sa t is f ied by the CSS se t .
dX

Instead, this CSS set unnecessarily satisfied N = 0, M = 0 at the ends.

x x

The frequency determinant i s obtained from (30) by retaining the rows and

columns associated with N°, N , M°, M ,
X X X ' X

el,2 el,3 el,4

0 . (36)
62,4

Synnn. \ 3 ' 3 ^

64,4

If the second se t , SCC, i s used, one would obtain a different four-by-

four frequency determinant.

D. Shell with Free Ends (F-F)

As a typical case involving the enforcement of natural boundary

conditions and the release of unwanted geometrical boundary conditions

consider a free-free shell with boundary conditions

N = 0 , N „ = 0 - 0 = 0 . M = 0 (x. = 0 i.~) . (37)

From t -. properties of CSS it is apparent that the tangential and radial

displaces ts, v and w respectively, are identically zero at the ends.

Therefore, t, > releasing procedure is required to remove these unwanted

geometric bouna -y conditions. By defining v and w separately at the

end points (17) ai including these values in the subsequent differentiation

via Stokes1 transform tion, the exact frequency equation can be found from
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the enforcement of natural boundary conditions N = 0,
xy

= 0 at the

ends. The result is obtained from (30) by retaining the rows and columns

associated with v , v , w , w
O JL O X/

Symm.

= 0 (38)

The use of the second set also leads to another four-by-four determinant.

E. Clamped-Free Shell (C-F)

This case involves the enforcement and release of geometrical and

natural boundary conditions. For this non-symmetric set of boundary condi-

tions

u = 0 , v = 0 , w = 0 , -f^=0 (x = 0)

, H = 0 (x = !l) ,
(39)

the fSS set leads to a four-by-four frequency determinant. The u = 0

and 3w/3x = 0 conditions at x = 0 must be enforced with the release of

the end force and moment N , M . The N fl = 0 and 6 = 0 conditions at

x = I must be enforced with the release of the end displacements v, w.

Retaining the rows and columns in (30) associated with ET, M°, v , v

leads to

1,1 "1,3 ~1,6 "1,8

Symm.

= 0 (40)

If the second se t , SCC, were used, a different four-by-four frequency

determinant would be obtained.
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V. DISCUSSIONS OF RESULTS

A. Convergence and Accuracy

The frequency equations derived in the former chapter involve

infinite series of algebraic terms. Before any numerical results are

calculated, manipulations should be performed to make the rate of

convergence of the infinite series terms as close to each other as

possible. The convergence of certain sums can be accelerated by subtrac-

ting off a series with a known sum [19].

As a typical example, consider the following sequence of manipula-

tions for a simple series

v m _ v ° • y 1

m=l m - 9. m=l (m -£2)m m=l m

II 1T
m=l (m -

fl

m=l (m -J2)m

m=l

»6
 o

945 "

_±
m

- + 1
j *

m=

, 2

6 '

=1
_1

*
m

Through the above process, the order of the series has been improved from

m to m , and accordingly, the rate of convergence will be greatly

accelerated.

The infinite series in the shell frequency determinant were treated

in the same way as in the above example. In this way, fast convergence

was obtained and the same upper limit could be used for all series in

the frequency determinant; typically an upper limit of 50 terms was used.

Frequency results were obtained from the frequency determinant by substituting

values of u>/a>o and monitoring the determinant until it vanished.

Convergence and accuracy of the present method is described in Tables

1 and 2. In order to facilitate comparison with the exact solutions

reported by other contributors who used Fliigge's and Donnell's theory,
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Table 1. Convergence of Natural Frequency Parameters, u/

Number
of
Terms

5

7

10

20

30

40

50

100

150

200

300

500

Ref. [19]

Case

Sanders

.01523

.01520

.01517

.01515

.01513

.01512

.01510

.01509

.01509

.01509

.01508

.01508

.01508*

1

Dcnnell

.01555

.01552

.01550

.01547

.01545

.01544

.01542

.01541

.01541

.01541

.01541

.01541

.01541

Case

Sanders

.05880

.05851

.05823

.05795

.05788

.05785

.05784

.05784

.05784

.05784

.05784

.05784

.05787*

2

Donnell

.0684

.0681

.06792

.06767

.06760

.06758

.06758

.06757

.06757

.06757

.0675?

.06757

.06757

Case

Sanders

.3161

.3134

.3122

.3119

.3119

.3119

.3118

.3118

.3118

.3118

.3118

.3118

.3117*

3

Donneil

.3230

.3203

.3191

.3188

.3188

.3188

.3188

.3188

.3188

.3188

.3J»P

.3188

.3188

Case

Sanders

.3589

.3586

.3585

.3585

.3585

.3585

.3585

.3585

.3585

.3585

.3585

.3585

.3583*

4

Donnell

.3594

.3591

.3590

.3590

.3590

.3590

.3590

.3590

.3590

.3590

.3590

.3590

**

Case 1: Clamped-Clamped Shell {l/R = 10, R/h = 500, v = 0.3, n = 4)

Case 2: Clamped-Clamped Shell U/R = 10, R/h = 20, v = 0.3, n = 2)

Case 3: Clamped-Clamped Shell (£,/R = 2, R/h = 20, \> = 0.3, n = 3)

Case 4: Free-Free Shell (£/R = 5, R/h = 20, v = 0.3, n = 1)

Solutions based on Fliigge's theory [7,8] .

**
No exact solutions are available from literature.
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Table 2. Comparison &f Natural Frequency Parameters,

n

4

2

3

1

0

2

2

2

2

1

1

0

2

4

m

1

1

1

1

1

5

1

2

3

1

1

3

1

i

1

Boundary
Condition

C-C

c-c

C-C

F-F

F-F

F-F

C-F

C-F

C-F

SS-SS

SNAT-SNAT

SHAT-SNAT

SNA-SNA

SNA-SNA

SNA-SNA

Shell

l/R

10

10

2

5

8.1

8.67

1.14

2.88

5.07

10

30

5

2a

2s

2-n

Parameters

R/h

500

20

20

20

20

500

20

20

20

500

300

500

10

10

10

V

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

Present

Sanders

.01508

.05784

.3118

.3585

.3669

.4472

.3076

.3081

.3079

.01508

.00702

.3699

.296081

.095812

.425921

Method

tennell

.01541

.06757

.3188

.3590

.295804

.119730

.454809

Others

FlUgge

.01508

.05787

.3117

.3583

.3671

.4472

.3082

.3082

.3082

.01507

.00700

.3698

.296081**

.095812**

.425921**

Donne11

.01541

.06757

.3188

.295804

.119730

.454808

These resulcs are due to Forsberg [6,7,81, Warburton [9,10] and

Dym [18].

**These solutions are based on Sanders' theory [18].
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the present method was also applied to lonnell's equations. In general,

the solution approaches the exact frequency from above as th» number of

terms included in the series increases. However, as shown in Table 1,

the use of more than 50 terms did not improve the solutions significantly.

Table 2 compares the results of the present method with the available

exact solutions. In all cases there was excellent comparison for a wide

variety of boundary conditions and geometric parameters. For shells

clamped at both ends, the solutions of the present method using Donnell's

theory are the same as those reported by Forsberg [8]. The frequency

parameters for the SNA-SNA shell by the use of Sanders' as well as Donnell's

theory are also identical to the results given by Dym [18]. For other

boundary conditions, F-F, C-F, SS-SS and SNAT-SNAT, the available solu-

tions are all based on Fliigge's shell theory. The differences between

solutions obtained from different thin shell theories are usually

negligible as revealed in Table 2.

Mode shapes for a particular natural frequency can always be investigated

by substituting the calculated frequency parameter into the frequency

matrix and finding the relative values of unspecified end forces and

values, and finally evaluating the coefficients of the assumed modal

displacement functions. Comparison of mode shapes between the present

method and others is not attempted in this report.

B. Vibrations of Thermal Liner

The thermal liner of the Fast Test Reactor (FTR) is a thin, circu-

lar cylindrical shell situated concentrically inside the main reactor

vessel. The annular gap between these two cylindrical vessels is occupied

by sodium coolant. Since the thermal liner is subjected to sodium coolant

flow, it is susceptible to flow-induced vibrations. A vibration problem
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may occur if the natural frequencies of the thermal liner are close to

the frequency of some vibration source in the reactor vessel. The support

conditions of the thermal liner may be best represented as rigidly fixed

at the bottom and free at the top: clamped-free (C-F) boundary conditions.

A series of experiments had been performed as a part of an effort to

investigate the modal characteristics of the thermal liner [20].

The experimental model is approximately 1/14 scale of the prototype

thermal liner for the FTR, giving the following dimensions and material

properties:

Thickness h = 0.058 in.

Radius (to the center

of thickness) R = 8.505 in

Length i. = 20.125 in.

Material density p = 701 x 10~ lb-sec /in.

Young's modulus E = 26.5 x 10 psi

Poisson's ratio v = 0.3

The experimental model was intended to simulate a clamped-free shell;

however, insufficient clamping (3w/9x # 0) and imperfect axial constraint

(u 4 0) at the bottom has been judged a probable cause for disagreement

between the experimental results and the analytical predictions of natural

frequencies. Therefore, in this study the sensitivity of the natural fre-

quencies to changes in the bottom-boundary conditions is investigated

using the exact present solution method. The accuracy of the solutions

is compared to the results obtained by two finite element computer codes:

SAP IV [21] and NASTRAN [22]. The boundary conditions considered are:

(1) C-F : Clamped-Free

(2) SS-F : Simply Supported-Free
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(3) CNA-F: Clamped with No Axial Constrain-Free

(4) SNA-F: Simply Supported with No Axial Constrain-Free.

In Table 3 the solutions of the present method are compared to the

SAP IV and NASTRAN results for the thermal liner with clamped-free boundary

conditions. The finite element grid used with the two computer codes is

the same and consists of 10 divisions vertically and 9 divisions over a

quarter of the shell circuraferentiaily. Apparently the present exact

method always gives lower values compared to the two finite element computer

codes. The solutions of SAP IV are better than those of NASTRAN, as shown

by their closeness to the results of the present method, because SAP IV

uses a more accurate quadrilateral element.

The natural frequencies for the thermal liner model in vacuum are

calculated by the present method for the ahove four cases of boundary

conditions, and summarized in Table 4 and Fig. 2. The frequencies become

smaller as the boundary conditions change from Case (1) to Case (4) for

a given circuraferential and an .ixial mode number, n and nt. The effect of

clamping (3w/3x = 0) can be evaluated by comparing the frequencies for

the two pairs of boundary conditions: C-F and SS-F, CNA-F and SNA-F.

The natural frequencies for SS-F are smaller than those for C-F by about

less than i%; thus they are not distinguishable in Fig. 2. The differences

between frequencies for CNA-F and SNA-F are also small (< 1.5%), except

for the modes of n = 0 to 3 with m = 1. The influence of axial constraint

(u = 0) is evident in Fig. 2 and, in contrast to the effect of clamping,

is significant throughout most of the region of interest. Note that the

frequency curve for m = 1 is greatly shifted down for n < 5; moreover,

the lowest natural frequencies for shell-type vibration (n > 2) occur at

n = 2 for CNA-F and SNA-F, in contrast to n = 4 for C-F and SS-F. However,

for higher axial half-waves (m = 2,3), the differences are less than 20%
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Table 3. Comparison of Natural Frequencies (Hz) for che Thermal

Liner with Claraped=Free Boundary Conditions

n

I

2

3

4

5

6

7

8

9

3

4

5

6

7

8

9

m

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

Present Method

855.10

403.72

223.34

171.77

199.16

268.86

361.92

472.54

599.03

928.28

644.48

494.69

442.00

464.59

539.45

648.34

SAP IV

405.1

225.6

174.3

201.7

272.0

366.2

478.4

505.8

454.3

476.7

NASTRAN

856.3

410.1

232.2

180.5

206.2

275.5

370.1

483.5

614.0

943.2

671.4

529.3

478.0

496.9

567.2

673.2
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Table 4. Natural Frequencies (H2) of Thermal Liner

for Various Boundary Conditions

n

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

m

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

C-P

1497.90

855.10

403.72

223.34

171.77

199.16

268.86

361.92

472.54

599.03

740.81

2351.51

2318.98

1437.11

928.28

644.48

494.69

442.00

464.59

539.45

648.34

781.15

3076.05

2487.60

1834.82

1367.64

1057.12

864,82

767.65

750.67

798.18

893.60

SS-F

1497.90

853.85

402.59

222.61

171.34

198.63

268.72

361.82

472.45

598.94

740.77

2346.69

2318.98

1435.35

925.39

641.43

491.99

439.89

463.06

538.31

647.41

780.37

3070.64

2484.64

1830.35

1361.83

1050.67

858.43

761.85

745.75

794.11

890.18

CNA-F

0

12.50

27.79

61.81

112.92

179.68

261.69

358.81

470.97

598.15

740.32

1497.90

2077.48

1408.98

844.59

552.22

418.54

390.44

434.21

522.17

638.16

774.87

2723.53

2479.20

1811.52

1323.62

1001.38

808.93

720.27

715.49

774.21

877.72

SNA-F

0

0

21.57

58.93

111.32

178.68

261.03

358.34

470.63

597.89

740.12

1497.90

2077.24

1407.79

842.44

548.87

414.14

385.77

430.04

518.70

635.28

772.44

2723.02

2476.84

1808.06

1318.80

995.01

801.14

711.69

707.05

766.53

871.04
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Fig. 2. Natural Frequencies of Thermal Liner Model
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throughout the entire range of circumferential wave numbers n. A

comparative study of the natural frequencies between the analytical

predictions and experimental results is not considered to be within the

scope of the present report and is reported elsewhere [20].
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VI. CONCLUSIONS

In th i s report, a general solution procedure for the free vibrat ion

of a c i rcular cylindrical she l l i s presented. The present method offers

dis t inct computational advantages over other exact solution methods [6-11].

Table 5 compares the present method and other exact solution procedures.

An uncoupled expl ic i t expression of frequency determinant i s obtained by

direct ly solving Sanders1 she l l equations. The frequency equation i s

obtained in the process of satisfying a l l boundary conditions exactly by

the assumed simple Fourier s e r i e s . This frequency equation involves

inf in i te se r ies which are evaluated by the use of appropriate numerical

techniques and a computer. The order of frequency determinant may vary

from 1 to 8 depending on the boundary conditions to be sa t i s f ied . However,

an appropriate choice of displacement functions ( i . e . , the CSS or SCC

set) can always furnish a frequency determinant of low order (< 4) for

any given boundary conditions. The frequency determinant obtained by

others [6-11] i s always eight-by-eight and coupled with eighth-order

algebraic equations resul t ing from the shell equations. The elements of

frequency determinant consist of transcendental functions in place of the

inf ini te ser ies of the present method. However, i t should be noted that

the transcendental function i s evaluated as a ser ies in the present day

computer.

In conclusion, the method presented in t h i s report i s a r e l a t ive ly

simple, exact-solution method for the free vibrat ion problem of c i rcular

cylindrical she l l s .
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Table 5. Comparisons of the Present Method with

the Other Exact Solution Method

Items

1. Frequency
Determinant

2. Order of Frequency
Determinant

3. Element of
Frequency Determinant

Present Method

Uncoupled
explicit expression

Varies (1^4)
dependent on
boundary conditions

Infinite series
(rate of conver-
gence can be
accelerated)

Others*

Coupled with
8th order
algebraic equation

Fixed (8)

Transcendental
Functions
(also series in computer
computation)

References [6-11]
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APPENDIX A

Boundary Conditions of Circular Cylindrical Shell

Case

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Code

C

CNA

CNT

CNAT

SS

SNA

SNT

SNAT

FS

FSNA

FSNT

F5NAT

FAT

FT

FA

F

Description

Clamped

Clamped with no Axial
Constraints

Clamped with no Tangential
Constraints

Clamped with no Axial,
Tangential Constraints

Simply-Supported

Simply-Supported with no Axial
Constraints f Shear Diaphragm)

Simply-Supported with no
Tangential Constraints

Simply-Supported with no
Axial, Tangential Constraints

Freely-Supported

Freely-Supported with no
Axial Constraints

Freely-Supported with no
Tangential Constraints

Freely-Supported with no
Axial, Tangential Constraints

Free with Axial, Tangential
Constraints

Free with Tangential
Constraints

Free with Axial Constraints

Free

Boundary
Conditions

w 3w/3x u v

w 3w/3x N v

w 3w/3x u N axb

w 3w/3x N x NxQ

w M u v
X

w M N v
X X

w M u N .
x x8

w M N N .
x x x6

6 3w/3x u v

6 3w/3x N v

Qx 3w/3x u N x e

% 3w/3x Nx\e

Q x M x u v

% \ \ V

*x \ U \e

<x Mx Nx\e
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APPENDIX B

Shell Boundary Conditions to be Satisfied

on usingthe First (CSS) or the Second (SCC) Set

Case

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Code

C

CNA

CNT

CNAT

SS

SNA

SNT

SNAT

FS

FSNA

FSNT

FSNAT

FAT

FT

FA

F

u

u

u

u

u

u

u

u

First Set

3w/3x

3w/3x

3w/3x

3w/3x

-

3w/3x

3w/3x

3w/3x

3w/3x

(CSS)

KB
Nxe

Nxe

fix9

N X 9 6̂

KB K
A

Sx9 %

Second

V

V

V

V

V

V

V

V

w

w

w

w

w

w

w

w

Set

Nx

N
X

N
X

N
X

Nx

-

Nx

N
X

N
X

(SCC)

M
X
M
X

Mx
M
X

M
X
M
X
M
X
M
X

Better
Choice

1, 2

1

2

1, 2

1

1

1. 2

1

2

2

2

2

2

1

2

2



41

APPENDIX C

First Set (CSS) of Displacement Functions and Their Derivatives

u(x,6) = (A + I A^cos - ^ cosnQ (0 < x < £)

^ cos n6 (0 < x < £)

u,x(0'9) =-( f l )

U,xx

v(x,9) = I B sin ^ £ S i n n 0 (0 < x < £)
k=l ra *

v(0,9) = - |

o

',xx = - (1)

3
-~j v sinne
2ji2 o

3
~ v sinn8

{vo + V . (-1>k + ^kn^0 3 ^ f ] - n n 8 (0 .< x .<

(0 < x
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w(x,9) = I C. sin ̂  cosnG (0 < x < *)
k=l ta Z

w(0,8) = - -r- w cos n6

w(£,9) = y w cosn9

cos

'C, }sin ~ I cos n0 (0 < x < II)
2 "™* °° ""\

W,xx = - [Tj I J x
 { W0 k + " l ^ - " + k Ckn}sin — J

w cos n9
o

IT3

- k3C. }cos ̂  cosne (0 £ x < «,)

w
,xxxx

^+ k4Ckn)sin ̂  cos n9 (0 < x <

w (0,9) = w cos n9,xxxx o
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APPENDIX D

Symbols used In Equations (14)-(28) and Appendix E

6\ 2
4J n - Q

a3 " " £ [_ 2 8 6 *
/ TJ\2

a 5 = '

TTR 1

L
a6 =

a10 - 2 ( ? ) 6"2 • a n = 1 + fin4 - n ,

TTR 1-V /. 3

T 4 6./ n ' q2 = "a5 'q2 = "a5 <h - - Tr
£ j 2

, IB:\ IZ^ fin
2

= 2
IT)

q6 = -(a9m + q u )

2= - IT)
a l k + a21 " fi ' S12 = a 3 k ' S13 = a 4 k

fin

S22 a 6 1 -

2

S23 + a8 ' S33

kn

+ a12 ~

aY = ( S 12 S 23- S 13 S 22 ) / D k n < 8 11 S 33- kn

bY = (S12S13 ' S11S23)' U kn

D kn

511 S12 S13

512 S22 S23

513 S23 S33

C
Y
 = (S11S22 " kn
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APPENDIX E

Elements of Frequency Determinant Using the First

Set (CSS) of Displacement Functions

a

a 3 - £ a k , e - f a k(-l)k ,
±f<* k=l Y ij^ k=l Y

el ,6

4 . r r . . , i
e l , 7 2ao

 + . £ . i q4aa + q5agk + q 6 a
Y

k }

1 A "
e,-1,8

e2,2 e l , l • e2,3 el ,4 ' e2,4 = el ,3 ' e2,5 " el,6 '

e2,6 = el,5 ' e2,7 = el,8 ' e2,8 = el,7

e3,3

e3,5

e3,6

CO

e3,7 - I + Jn
 { Va k
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3,8
{V«k

e, , = e_ e, , = e_ e, , = e.4,4 " e 3,3 * e4,5 " e 3,6 ' C4,6 =3,5 ' C4,7 "3,8 •

e4,8 - e3,7

2 . 2 , 2
*5,5

2 q 2 q 3 b
Y

k + 2 q l q 3 a
Y

k + q 2 }

'5,6 T

q l q 4 q3 r
e5,7 = -2^7 + T + I { q 4 C q i a a + q2bak

^ 1 ^ / . q,
*5,8 q2b«k

e6,6 " e 5,5 ' e6,7 = e 5,8 ' e6,8 = e5,7

q4 ql8 t
e7,7 " 2iT " " 2 s + J ,

£m K . — X
a + q5bak + q6Cak )



e7,8 = IT

e8,8 = e7,7

46

Vak>
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